1
|
Ellis GS, Gelman SE. Model predictions of global geologic hydrogen resources. SCIENCE ADVANCES 2024; 10:eado0955. [PMID: 39671493 PMCID: PMC11641016 DOI: 10.1126/sciadv.ado0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Geologic hydrogen could be a low-carbon primary energy resource; however, the magnitude of Earth's subsurface endowment has not yet been assessed. Knowledge of the occurrence and behavior of natural hydrogen on Earth has been combined with information from geologic analogs to construct a mass balance model to predict the resource potential. Given the associated uncertainty, stochastic model results predict a wide range of values for the potential in-place hydrogen resource [103 to 1010 million metric tons (Mt)] with the most probable value of ~5.6 × 106 Mt. Although most of this hydrogen is likely to be impractical to recover, a small fraction (e.g., 1 × 105 Mt) would supply the projected hydrogen needed to reach net-zero carbon emissions for ~200 years. This amount of hydrogen contains more energy (~1.4 × 1016 MJ) than all proven natural gas reserves on Earth (~8.4 × 1015 MJ). Study results demonstrate that further research into understanding the potential for geologic hydrogen resources is merited.
Collapse
Affiliation(s)
| | - Sarah E. Gelman
- Energy Resources Program, U.S. Geological Survey, Denver, CO, USA
| |
Collapse
|
2
|
Militzer B. Phase separation of planetary ices explains nondipolar magnetic fields of Uranus and Neptune. Proc Natl Acad Sci U S A 2024; 121:e2403981121. [PMID: 39585980 PMCID: PMC11626115 DOI: 10.1073/pnas.2403981121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/27/2024] [Indexed: 11/27/2024] Open
Abstract
The Voyager spacecraft discovered that the ice giants Uranus and Neptune have nondipolar magnetic fields, defying expectations that a thick interior layer of planetary ices would generate strong dipolar fields. Stanley and Bloxham showed that nondipolar fields emerge if the magnetic field is only generated in a thin outer layer. However, the origin and composition of this dynamo active layer has so far remained elusive. Here, we show with ab initio computer simulations that a mixture of H2O, CH4, and NH3 will phase separate under the pressure-temperature condition in the interiors of Uranus and Neptune, forming a H2O-dominated fluid in the upper mantle and a CH4-NH3 mixture below. We further demonstrate that with increasing pressure, the CH4-NH3 mixture becomes increasingly hydrogen depleted as it assumes the state of a polymeric C-N-H fluid. Since the amount of hydrogen loss increases with pressure, we propose that the C-N-H fluid forms a stably stratified layer. The magnetic fields are primarily generated in an upper layer that is H2O-rich, homogeneous, convective, and electrically conducting. Under these assumptions, we construct ensembles of models for the interiors of Uranus and Neptune with the Concentric MacLaurin Spheroid method. We demonstrate that the phase separation of the solar-type H2O-CH4-NH3 mixture leads to models that match the observed gravity field and to layer thicknesses that are compatible with magnetic field measurements.
Collapse
Affiliation(s)
- Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
- Department of Astronomy, University of California, Berkeley, CA94720
| |
Collapse
|
3
|
Zhang L, Qi N, Li Y, Wang X, Zhang L. Immiscible metamorphic water and methane fluids preserved in carbonated eclogite. Commun Chem 2024; 7:267. [PMID: 39548260 PMCID: PMC11568306 DOI: 10.1038/s42004-024-01355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Subduction zones metamorphic fluids are pivotal in geological events such as volcanic eruptions, seismic activity, mineralization, and the deep carbon cycle. However, the mechanisms governing carbon mobility in subduction zones remain largely unresolved. Here we present the first observations of immiscible H2O-CH4 fluids coexisting in retrograde carbonated eclogite from the Western Tianshan subduction zone, China. We identified two types of fluid inclusions in host ankerite and amphibole, as well as in garnet and omphacite. Type-1 inclusions are water-rich with CH4 vapor, whereas Type-2 are CH4-rich, with minimal or no H2O. The coexistence of these fluid types indicates the presence of immiscible fluid phases under high-pressure conditions (P = 1.3-2.1 GPa). Carbonates in subduction zones can effectively decompose through reactions with silicates, leading to the generation of abiotic CH4. Our findings suggest that substantial amounts of carbon could be transferred from the slab to mantle wedge as immiscible CH4 fluids. This process significantly enhances decarbonation efficiency and may contribute to the formation of natural gas deposits.
Collapse
Affiliation(s)
- Lijuan Zhang
- Key Laboratory of Deep Petroleum Intelligent Exploration and Development, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Ning Qi
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Yuan Li
- Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany
| | - Xiao Wang
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Lifei Zhang
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China.
| |
Collapse
|
4
|
In-situ abiogenic methane synthesis from diamond and graphite under geologically relevant conditions. Nat Commun 2021; 12:6387. [PMID: 34737292 PMCID: PMC8569197 DOI: 10.1038/s41467-021-26664-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022] Open
Abstract
Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H2-rich fluids present at these depths may represent the key to unravelling deep abiotic hydrocarbon formation. We demonstrate an unexpected high reactivity between carbons' most common allotropes, diamond and graphite, with hydrogen at conditions comparable with those in the Earth's upper mantle along subduction zone thermal gradients. Between 0.5-3 GPa and at temperatures as low as 300 °C, carbon reacts readily with H2 yielding methane (CH4), whilst at higher temperatures (500 °C and above), additional light hydrocarbons such as ethane (C2H6) emerge. These results suggest that the interaction between deep H2-rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle.
Collapse
|
5
|
Bergermann A, French M, Redmer R. Gibbs-ensemble Monte Carlo simulation of H 2-H 2O mixtures. Phys Chem Chem Phys 2021; 23:12637-12643. [PMID: 34037010 DOI: 10.1039/d1cp00515d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The miscibility gap in hydrogen-water mixtures is investigated by conducting Gibbs-ensemble Monte Carlo simulations with analytical two-body interaction potentials between the molecular species. We calculate several demixing curves at pressures below 150 kbar and temperatures of 1000 K ≤T≤ 2000 K. Despite the approximations introduced by the two-body interaction potentials, our results predict a large miscibility gap in hydrogen-water mixtures at similar conditions as found in experiments. Our findings are in contrast to those from ab initio simulations and provide a renewed indication that hydrogen-water immiscibility regions may have a significant impact on the structure and evolution of ice giant planets like Uranus and Neptune.
Collapse
Affiliation(s)
- Armin Bergermann
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany.
| | | | | |
Collapse
|
6
|
Russell MJ, Ponce A. Six 'Must-Have' Minerals for Life's Emergence: Olivine, Pyrrhotite, Bridgmanite, Serpentine, Fougerite and Mackinawite. Life (Basel) 2020; 10:E291. [PMID: 33228029 PMCID: PMC7699418 DOI: 10.3390/life10110291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/25/2022] Open
Abstract
Life cannot emerge on a planet or moon without the appropriate electrochemical disequilibria and the minerals that mediate energy-dissipative processes. Here, it is argued that four minerals, olivine ([Mg>Fe]2SiO4), bridgmanite ([Mg,Fe]SiO3), serpentine ([Mg,Fe,]2-3Si2O5[OH)]4), and pyrrhotite (Fe(1-x)S), are an essential requirement in planetary bodies to produce such disequilibria and, thereby, life. Yet only two minerals, fougerite ([Fe2+6xFe3+6(x-1)O12H2(7-3x)]2+·[(CO2-)·3H2O]2-) and mackinawite (Fe[Ni]S), are vital-comprising precipitate membranes-as initial "free energy" conductors and converters of such disequilibria, i.e., as the initiators of a CO2-reducing metabolism. The fact that wet and rocky bodies in the solar system much smaller than Earth or Venus do not reach the internal pressure (≥23 GPa) requirements in their mantles sufficient for producing bridgmanite and, therefore, are too reduced to stabilize and emit CO2-the staple of life-may explain the apparent absence or negligible concentrations of that gas on these bodies, and thereby serves as a constraint in the search for extraterrestrial life. The astrobiological challenge then is to search for worlds that (i) are large enough to generate internal pressures such as to produce bridgmanite or (ii) boast electron acceptors, including imported CO2, from extraterrestrial sources in their hydrospheres.
Collapse
Affiliation(s)
- Michael J. Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| | - Adrian Ponce
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;
| |
Collapse
|
7
|
Huang JX, Xiong Q, Gain SEM, Griffin WL, Murphy TD, Shiryaev AA, Li L, Toledo V, Tomshin MD, O'Reilly SY. Immiscible metallic melts in the deep Earth: clues from moissanite (SiC) in volcanic rocks. Sci Bull (Beijing) 2020; 65:1479-1488. [PMID: 36747405 DOI: 10.1016/j.scib.2020.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
The occurrence of moissanite (SiC), as xenocrysts in mantle-derived basaltic and kimberlitic rocks sheds light on the interplay between carbon, hydrogen and oxygen in the lithospheric and sublithospheric mantle. SiC is stable only at ƒO2 < ΔIW-6, while the lithospheric mantle and related melts commonly are considered to be much more oxidized. SiC grains from both basaltic volcanoclastic rocks and kimberlites contain metallic inclusions whose shapes suggest they were entrapped as melts. The inclusions consist of Si0 + Fe3Si7 ± FeSi2Ti ± CaSi2Al2 ± FeSi2Al3 ± CaSi2, and some of the phases show euhedral shapes toward Si0. Crystallographically-oriented cavities are common in SiC, suggesting the former presence of volatile phase(s), and the volatiles extracted from crushed SiC grains contain H2 + CH4 ± CO2 ± CO. Our observations suggest that SiC crystalized from metallic melts (Si-Fe-Ti-C ± Al ± Ca), with dissolved H2 + CH4 ± CO2 ± CO derived from the sublithospheric mantle and concentrated around interfaces such as the lithosphere-asthenosphere and crust-mantle boundaries. When mafic/ultramafic magmas are continuously fluxed with H2 + CH4 they can be progressively reduced, to a point where silicide melts become immiscible, and crystallize phases such as SiC. The occurrence of SiC in explosive volcanic rocks from different tectonic settings indicates that the delivery of H2 + CH4 from depth may commonly accompany explosive volcanism and modify the redox condition of some lithospheric mantle volumes. The heterogeneity of redox states further influences geochemical reactions such as melting and geophysical properties such as seismic velocity and the viscosity of mantle rocks.
Collapse
Affiliation(s)
- Jin-Xiang Huang
- ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Qing Xiong
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Sarah E M Gain
- ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2109, Australia; Center for Microscopy, Characterisation and Analysis, the University of Western Australia, Perth 6009, Australia
| | - William L Griffin
- ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Timothy D Murphy
- ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Andrei A Shiryaev
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow 119071, Russia
| | - Liwu Li
- Key Laboratory of Gas Geochemistry, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | | | - Mikhail D Tomshin
- Diamond and Precious Metal Geology Institute, SB RAS, Yakutsk 677007, Russia
| | - Suzanne Y O'Reilly
- ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
8
|
Molecular hydrogen in minerals as a clue to interpret ∂D variations in the mantle. Nat Commun 2020; 11:3604. [PMID: 32681113 PMCID: PMC7367874 DOI: 10.1038/s41467-020-17442-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/26/2020] [Indexed: 11/25/2022] Open
Abstract
Trace amounts of water dissolved in minerals affect density, viscosity and melting behaviour of the Earth’s mantle and play an important role in global tectonics, magmatism and volatile cycle. Water concentrations and the ratios of hydrogen isotopes in the mantle give insight into these processes, as well as into the origin of terrestrial water. Here we show the presence of molecular H2 in minerals (omphacites) from eclogites from the Kaapvaal and Siberian cratons. These omphacites contain both high amounts of H2 (70 to 460 wt. ppm) and OH. Furthermore, their ∂D values increase with dehydration, suggesting a positive H isotope fractionation factor between minerals and H2–bearing fluid, contrary to what is expected in case of isotopic exchange between minerals and H2O-fluids. The possibility of incorporation of large quantities of H as H2 in nominally anhydrous minerals implies that the storage capacity of H in the mantle may have been underestimated, and sheds new light on H isotope variations in mantle magmas and minerals. Trace amounts of water dissolved in minerals play an important role in global tectonics through changing the density, viscosity and melting behaviour of the Earth’s mantle. Here, the authors identify the presence of molecular hydrogen in nominally anhydrous ecolgite minerals from the Kaapvaal and Siberian cratons, indicating that the storage capacity of H in the mantle may have been underestimated.
Collapse
|
9
|
Rimmer PB, Shorttle O. Origin of Life's Building Blocks in Carbon- and Nitrogen-Rich Surface Hydrothermal Vents. Life (Basel) 2019; 9:E12. [PMID: 30682803 PMCID: PMC6463091 DOI: 10.3390/life9010012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 11/16/2022] Open
Abstract
There are two dominant and contrasting classes of origin of life scenarios: those predicting that life emerged in submarine hydrothermal systems, where chemical disequilibrium can provide an energy source for nascent life; and those predicting that life emerged within subaerial environments, where UV catalysis of reactions may occur to form the building blocks of life. Here, we describe a prebiotically plausible environment that draws on the strengths of both scenarios: surface hydrothermal vents. We show how key feedstock molecules for prebiotic chemistry can be produced in abundance in shallow and surficial hydrothermal systems. We calculate the chemistry of volcanic gases feeding these vents over a range of pressures and basalt C/N/O contents. If ultra-reducing carbon-rich nitrogen-rich gases interact with subsurface water at a volcanic vent they result in 10 - 3 ⁻ 1 M concentrations of diacetylene (C₄H₂), acetylene (C₂H₂), cyanoacetylene (HC₃N), hydrogen cyanide (HCN), bisulfite (likely in the form of salts containing HSO₃-), hydrogen sulfide (HS-) and soluble iron in vent water. One key feedstock molecule, cyanamide (CH₂N₂), is not formed in significant quantities within this scenario, suggesting that it may need to be delivered exogenously, or formed from hydrogen cyanide either via organometallic compounds, or by some as yet-unknown chemical synthesis. Given the likely ubiquity of surface hydrothermal vents on young, hot, terrestrial planets, these results identify a prebiotically plausible local geochemical environment, which is also amenable to future lab-based simulation.
Collapse
Affiliation(s)
- Paul B Rimmer
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.
- Cavendish Astrophysics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK.
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK.
| | - Oliver Shorttle
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.
- Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK.
| |
Collapse
|
10
|
The Paleomineralogy of the Hadean Eon Revisited. Life (Basel) 2018; 8:life8040064. [PMID: 30562935 PMCID: PMC6315770 DOI: 10.3390/life8040064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 11/17/2022] Open
Abstract
A preliminary list of plausible near-surface minerals present during Earth’s Hadean Eon (>4.0 Ga) should be expanded to include: (1) phases that might have formed by precipitation of organic crystals prior to the rise of predation by cellular life; (2) minerals associated with large bolide impacts, especially through the generation of hydrothermal systems in circumferential fracture zones; and (3) local formation of minerals with relatively oxidized transition metals through abiological redox processes, such as photo-oxidation. Additional mineral diversity arises from the occurrence of some mineral species that form more than one ‘natural kind’, each with distinct chemical and morphological characteristics that arise by different paragenetic processes. Rare minerals, for example those containing essential B, Mo, or P, are not necessary for the origins of life. Rather, many common minerals incorporate those and other elements as trace and minor constituents. A rich variety of chemically reactive sites were thus available at the exposed surfaces of common Hadean rock-forming minerals.
Collapse
|
11
|
Effect of water activity on rates of serpentinization of olivine. Nat Commun 2017; 8:16107. [PMID: 28706268 PMCID: PMC5594423 DOI: 10.1038/ncomms16107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 05/30/2017] [Indexed: 12/05/2022] Open
Abstract
The hydrothermal alteration of mantle rocks (referred to as serpentinization) occurs in submarine environments extending from mid-ocean ridges to subduction zones. Serpentinization affects the physical and chemical properties of oceanic lithosphere, represents one of the major mechanisms driving mass exchange between the mantle and the Earth’s surface, and is central to current origin of life hypotheses as well as the search for microbial life on the icy moons of Jupiter and Saturn. In spite of increasing interest in the serpentinization process by researchers in diverse fields, the rates of serpentinization and the controlling factors are poorly understood. Here we use a novel in situ experimental method involving olivine micro-reactors and show that the rate of serpentinization is strongly controlled by the salinity (water activity) of the reacting fluid and demonstrate that the rate of serpentinization of olivine slows down as salinity increases and H2O activity decreases. Serpentinization of mantle rocks occurs in a variety of tectonic settings, but the controls on the rates of serpentinization are poorly constrained. Here, the authors developed an in situ experimental method to show that the rate of serpentinization is strongly controlled by the salinity of the reacting fluid.
Collapse
|
12
|
Soubiran F, Militzer B. MISCIBILITY CALCULATIONS FOR WATER AND HYDROGEN IN GIANT PLANETS. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/806/2/228] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Cottrell E, Kelley KA. Redox Heterogeneity in Mid-Ocean Ridge Basalts as a Function of Mantle Source. Science 2013; 340:1314-7. [DOI: 10.1126/science.1233299] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|