1
|
Blumenstiel JP. From the cauldron of conflict: Endogenous gene regulation by piRNA and other modes of adaptation enabled by selfish transposable elements. Semin Cell Dev Biol 2025; 164:1-12. [PMID: 38823219 DOI: 10.1016/j.semcdb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States.
| |
Collapse
|
2
|
Deng Z, Zhang Y, Xie X, Li H, Guo H, Ni X, Li X. Transcriptomic and proteomic elucidation of Z chromosome dosage compensation in Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2024; 33:744-755. [PMID: 38949741 DOI: 10.1111/imb.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Transcriptomic data have been used to study sex chromosome dosage compensation (SCDC) in approximately 10 Lepidoptera ZW species, yielding a consensus compensation pattern of Z ≈ ZZ < AA . It remains unclear whether this compensation pattern holds when examining more Lepidoptera ZW species and/or using proteomic data to analyse SCDC. Here we combined transcriptomic and proteomic data as well as transcriptional level of six individual Z genes to reveal the SCDC pattern in Helicoverpa armigera, a polyphagous lepidopteran pest of economic importance. Transcriptomic analysis showed that the Z chromosome expression of H. armigera was balanced between male and female but substantially reduced relative to autosome expression, exhibiting an SCDC pattern of Z ≈ ZZ < AA . When using H. amigera midgut proteomic data, the SCDC pattern of this species changed from Z ≈ ZZ < AA at transcriptomic level to Z = ZZ = AA at the proteomic level. RT-qPCR analysis of transcript abundance of six Z genes found that compensation for each Z gene could vary from no compensation to overcompensation, depending on the individual genes and tissues tested. These results demonstrate for the first time the existence of a translational compensation mechanism, which is operating in addition to a translational mechanism, such as has been reported in other lepidopteran species. And the transcriptional compensation mechanism functions to accomplish Z chromosome dosage balance between the sexes (M = F on the Z chromosome), whereas the translation compensation mechanism operates to achieve dosage compensation between Z chromosome and autosome (Z = AA).
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yakun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingcheng Xie
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huihui Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Han Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, Georgia, USA
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Seiler J, Beye M. Honeybees' novel complementary sex-determining system: function and origin. Trends Genet 2024; 40:969-981. [PMID: 39232877 DOI: 10.1016/j.tig.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Complementary sex determination regulates female and male development in honeybees (Apis mellifera) via heterozygous versus homo-/hemizygous genotypes of the csd (complementary sex determiner) gene involving numerous naturally occurring alleles. This lineage-specific function offers a rare opportunity to understand an undescribed regulatory mechanism and the molecular evolutionary path leading to this mechanism. We reviewed recent advances in understanding how Csd recognizes different versus identical protein variants, how these variants regulate downstream pathways and sexual differentiation, and how this mechanism has evolved and been shaped by evolutionary forces. Finally, we highlighted the shared regulatory principles of sex determination despite the diversity of primary signals and demonstrated that lineage-specific mutations are very informative for characterizing newly evolved functions.
Collapse
Affiliation(s)
- Jana Seiler
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
4
|
Mitchell LC, Moczek AP, Nadolski EM. Male is the default sex: functional significance of the sex determination cascade in horned dung beetles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617608. [PMID: 39416209 PMCID: PMC11482913 DOI: 10.1101/2024.10.10.617608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sex-specific trait expression represents a striking dimension of morphological variation within and across species. The mechanisms instructing sex-specific organ development have been well studied in a small number of insect model systems, suggesting striking conservation in some parts of the somatic sex determination pathway while hinting at possible evolutionary lability in others. However, further resolution of this phenomenon necessitates additional taxon sampling, particularly in groups in which sexual dimorphisms have undergone significant elaboration and diversification. Here, we functionally investigate the somatic sex determination pathway in the gazelle dung beetle Digitonthophagus gazella, an emerging model system in the study of the development and evolution of sexual dimorphisms. We find that RNA interference (RNAi) targeting transformer1 (tra1) caused chromosomal females to develop morphological traits largely indistinguishable from those normally only observed in males, and that tra1 RNAi is sufficient to induce splicing of the normally male-specific isoform of doublesex in chromosomal females, while leaving males unaffected. Further, intersex RNAi was found to phenocopy previously described RNAi phenotypes of doublesex in female but not male beetles. These findings match predictions derived from models of the sex determination cascade as developed largely through studies in Drosophila melanogaster. In contrast, transformed2 RNAi resulted in larval mortality and was not sufficient to affect doublesex splicing, whereas RNAi targeting Sex-lethal and two putative orthologs of hermaphrodite yielded no obvious phenotypic modifications in either males or females, raising the possibility that the function of a subset of sex determination genes may be derived in Diptera and thus non-representative of their roles in other holometabolous orders. Our results help illuminate how the differential evolutionary lability of the somatic sex determination pathway has contributed to the extraordinary morphological diversification of sex-specific trait expression found in nature.
Collapse
Affiliation(s)
- London C. Mitchell
- Department of Biology, Indiana University, Bloomington, 915 East 3 Street, Bloomington IN 47405, USA
| | - Armin P. Moczek
- Department of Biology, Indiana University, Bloomington, 915 East 3 Street, Bloomington IN 47405, USA
| | - Erica M. Nadolski
- Department of Biology, Indiana University, Bloomington, 915 East 3 Street, Bloomington IN 47405, USA
| |
Collapse
|
5
|
Yamashita T, Komenda K, Miłodrowski R, Robak D, Szrajer S, Gaczorek T, Ylla G. Non-gonadal expression of piRNAs is widespread across Arthropoda. FEBS Lett 2024. [PMID: 39358781 DOI: 10.1002/1873-3468.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
PIWI-interacting RNAs (piRNAs) were discovered in the early 2000s and became known for their role in protecting the germline genome against mobile genetic elements. Successively, piRNAs were also detected in the somatic cells of gonads in multiple animal species. In recent years, piRNAs have been reported in non-gonadal tissues in various arthropods, contrary to the initial assumptions of piRNAs being exclusive to gonads. Here, we performed an extensive literature review, which revealed that reports on non-gonadal somatic piRNA expression are not limited to a few specific species. Instead, when multiple studies are considered collectively, it appears to be a widespread phenomenon across arthropods. Furthermore, we systematically analyzed 168 publicly available small RNA-seq datasets from diverse tissues in 17 species, which further supported the bibliographic reports that piRNAs are expressed across tissues and species in Arthropoda.
Collapse
Affiliation(s)
- Takahisa Yamashita
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krystian Komenda
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Rafał Miłodrowski
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Dominik Robak
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Szymon Szrajer
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tomasz Gaczorek
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Guillem Ylla
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
6
|
Kalita AI, Keller Valsecchi CI. Dosage compensation in non-model insects - progress and perspectives. Trends Genet 2024:S0168-9525(24)00207-5. [PMID: 39341686 DOI: 10.1016/j.tig.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
In many multicellular eukaryotes, heteromorphic sex chromosomes are responsible for determining the sexual characteristics and reproductive functions of individuals. Sex chromosomes can cause a dosage imbalance between sexes, which in some species is re-equilibrated by dosage compensation (DC). Recent genomic advances have extended our understanding of DC mechanisms in insects beyond model organisms such as Drosophila melanogaster. We review current knowledge of insect DC, focusing on its conservation and divergence across orders, the evolutionary dynamics of neo-sex chromosomes, and the diversity of molecular mechanisms. We propose a framework to uncover DC regulators in non-model insects that relies on integrating evolutionary, genomic, and functional approaches. This comprehensive approach will facilitate a deeper understanding of the evolution and essentiality of gene regulatory mechanisms.
Collapse
|
7
|
Zhu Z, Younas L, Zhou Q. Evolution and regulation of animal sex chromosomes. Nat Rev Genet 2024:10.1038/s41576-024-00757-3. [PMID: 39026082 DOI: 10.1038/s41576-024-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Animal sex chromosomes typically carry the upstream sex-determining gene that triggers testis or ovary development and, in some species, are regulated by global dosage compensation in response to functional decay of the Y chromosome. Despite the importance of these pathways, they exhibit striking differences across species, raising fundamental questions regarding the mechanisms underlying their evolutionary turnover. Recent studies of non-model organisms, including insects, reptiles and teleosts, have yielded a broad view of the diversity of sex chromosomes that challenges established theories. Moreover, continued studies in model organisms with recently developed technologies have characterized the dynamics of sex determination and dosage compensation in three-dimensional nuclear space and at single-cell resolution. Here, we synthesize recent insights into sex chromosomes from a variety of species to review their evolutionary dynamics with respect to the canonical model, as well as their diverse mechanisms of regulation.
Collapse
Affiliation(s)
- Zexian Zhu
- Evolutionary and Organismal Biology Research Center and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lubna Younas
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Qi Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Transvascular Implantation Devices, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Lee J, Fujimoto T, Yamaguchi K, Shigenobu S, Sahara K, Toyoda A, Shimada T. W chromosome sequences of two bombycid moths provide an insight into the origin of Fem. Mol Ecol 2024; 33:e17434. [PMID: 38867501 DOI: 10.1111/mec.17434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
Fem is a W-linked gene that encodes a piRNA precursor, and its product, Fem piRNA, is a master factor of female determination in Bombyx mori. Fem has low similarity to any known sequences, and the origin of Fem remains unclear. So far, two hypotheses have been proposed for the origin of Fem: The first hypothesis is that Fem is an allele of Masc, which assumes that the W chromosome was originally a homologous chromosome of the Z chromosome. The second hypothesis is that Fem arose by the transposition of Masc to the W chromosome. To explore the origin of Fem, we determined the W chromosome sequences of B. mori and, as a comparison, a closely relative bombycid species of Trilocha varians with a Fem-independent sex determination system. To our surprise, although the sequences of W and Z chromosomes show no homology to each other, a few pairs of homologues are shared by W and Z chromosomes, indicating the W chromosome of both species originated from Z chromosome. In addition, the W chromosome of T. varians lacks Fem, while the W chromosome of B. mori has over 100 copies of Fem. The high-quality assembly of the W chromosome of B. mori arose the third hypothesis about the origin of Fem: Fem is a chimeric sequence of multiple transposons. More than half of one transcriptional unit of Fem shows a significant homology to RTE-BovB. Moreover, the Fem piRNA-producing region could correspond to the boundary of the two transposons, gypsy and satellite DNA.
Collapse
Affiliation(s)
- Jung Lee
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Toshiaki Fujimoto
- Laboratory of Applied Entomology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Katsushi Yamaguchi
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Shuji Shigenobu
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Ken Sahara
- Laboratory of Applied Entomology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | - Toru Shimada
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
9
|
Han MJ, Luo C, Hu H, Lin M, Lu K, Shen J, Ren J, Ye Y, Westhof E, Tong X, Dai F. Multiple independent origins of the female W chromosome in moths and butterflies. SCIENCE ADVANCES 2024; 10:eadm9851. [PMID: 38896616 PMCID: PMC11186504 DOI: 10.1126/sciadv.adm9851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Lepidoptera, the most diverse group of insects, exhibit female heterogamy (Z0 or ZW), which is different from most other insects (male heterogamy, XY). Previous studies suggest a single origin of the Z chromosome. However, the origin of the lepidopteran W chromosome remains poorly understood. Here, we assemble the genome from females down to the chromosome level of a model insect (Bombyx mori) and identify a W chromosome of approximately 10.1 megabase using a newly developed tool. In addition, we identify 3593 genes that were not previously annotated in the genomes of B. mori. Comparisons of 21 lepidopteran species (including 17 ZW and four Z0 systems) and three trichopteran species (Z0 system) reveal that the formation of Ditrysia W involves multiple mechanisms, including previously proposed canonical and noncanonical models, as well as a newly proposed mechanism called single-Z turnover. We conclude that there are multiple independent origins of the W chromosome in the Ditrysia (most moths and all butterflies) of Lepidoptera.
Collapse
Affiliation(s)
- Min-Jin Han
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Chaorui Luo
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Hai Hu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Meixing Lin
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Kunpeng Lu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jianghong Shen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jianyu Ren
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Yanzhuo Ye
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Eric Westhof
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, UPR9002 CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Pan Q, Darras H, Keller L. LncRNA gene ANTSR coordinates complementary sex determination in the Argentine ant. SCIENCE ADVANCES 2024; 10:eadp1532. [PMID: 38820161 PMCID: PMC11141628 DOI: 10.1126/sciadv.adp1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Animals have evolved various sex determination systems. Here, we describe a newly found mechanism. A long noncoding RNA (lncRNA) transduces complementary sex determination (CSD) signal in the invasive Argentine ant. In this haplodiploid species, we identified a 5-kilobase hyper-polymorphic region underlying CSD: Heterozygous embryos become females, while homozygous and hemizygous embryos become males. Heterozygosity at the CSD locus correlates with higher expression of ANTSR, a gene that overlaps with the CSD locus and specifies an lncRNA transcript. ANTSR knockdown in CSD heterozygotes leads to male development. Comparative analyses indicated that, in Hymenoptera, ANTSR is an ancient yet rapidly evolving gene. This study reveals an lncRNA involved in genetic sex determination, alongside a previously unknown regulatory mechanism underlying sex determination based on complementarity among noncoding alleles.
Collapse
Affiliation(s)
- Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Hugo Darras
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Laurent Keller
- Social Evolution Unit, Cornuit 8, BP 855, Chesières, Switzerland
| |
Collapse
|
11
|
van’t Hof AE, Whiteford S, Yung CJ, Yoshido A, Zrzavá M, de Jong MA, Tan KL, Zhu D, Monteiro A, Brakefield PM, Marec F, Saccheri IJ. Zygosity-based sex determination in a butterfly drives hypervariability of Masculinizer. SCIENCE ADVANCES 2024; 10:eadj6979. [PMID: 38701204 PMCID: PMC11067997 DOI: 10.1126/sciadv.adj6979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Nature has devised many ways of producing males and females. Here, we report on a previously undescribed mechanism for Lepidoptera that functions without a female-specific gene. The number of alleles or allele heterozygosity in a single Z-linked gene (BaMasc) is the primary sex-determining switch in Bicyclus anynana butterflies. Embryos carrying a single BaMasc allele develop into WZ (or Z0) females, those carrying two distinct alleles develop into ZZ males, while (ZZ) homozygotes initiate female development, have mismatched dosage compensation, and die as embryos. Consequently, selection against homozygotes has favored the evolution of spectacular allelic diversity: 205 different coding sequences of BaMasc were detected in a sample of 246 females. The structural similarity of a hypervariable region (HVR) in BaMasc to the HVR in Apis mellifera csd suggests molecular convergence between deeply diverged insect lineages. Our discovery of this primary switch highlights the fascinating diversity of sex-determining mechanisms and underlying evolutionary drivers.
Collapse
Affiliation(s)
- Arjen E. van’t Hof
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Sam Whiteford
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Carl J. Yung
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Maaike A. de Jong
- Netherlands eScience Center, Science Park 402, 1098 XH Amsterdam, Netherlands
| | - Kian-Long Tan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Dantong Zhu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Ilik J. Saccheri
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
12
|
Qian YX, Guo SG, Zhao XH, Li ZW, Qiu R, Kan YC, Li DD. Role of small nucleolar RNAs in alternative splicing of the doublesex gene in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22117. [PMID: 38706214 DOI: 10.1002/arch.22117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
More and more evidence shows that small noncoding RNAs (ncRNAs) play diverse roles in development, stress response and other cellular processes, but functional study of intermediate-size ncRNAs is still rare. Here, the expression profile of 16 intermediate-size ncRNAs in ovary and testis of silkworm Bombyx mori were analyzed. Twelve ncRNAs, including 5 small nucleolar RNAs (snoRNAs) and 7 unclassified ncRNAs, accumulated more in the testis than in the ovary of silkworm, especially Bm-163, Bm-51 and Bm-68. Four ncRNAs (including three orphan snoRNAs and one unclassified ncRNA) had higher expression level in the ovary than in the testis, especially Bm-86. Overexpression of the testis-enriched snoRNA Bm-68 in the female led to the accumulation of male-specific isoform of doublesex (BmdsxM) and increased the expression ratio of BmdsxM: BmdsxF. While overexpression of ovary-enriched snoRNA Bm-86 in the male decreased the expression ratio of BmdsxM: BmdsxF, indicating the roles of the two snoRNAs played in the alternative splicing of Bmdsx of silkworm, which will provide new clues for the functional study of snoRNAs in insects.
Collapse
Affiliation(s)
- Yu-Xin Qian
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Shi-Gang Guo
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Xu-Hui Zhao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Zhong-Wei Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Reng Qiu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Yun-Chao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
- Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Dan-Dan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, The International Joint Laboratory of Insect Biology in Henan Province, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| |
Collapse
|
13
|
Li X, Liu H, Bi H, Wang Y, Xu J, Zhang S, Zhang Z, Zhang Z, Huang Y. Masculinizer gene controls sexual differentiation in Hyphantria cunea. INSECT SCIENCE 2024; 31:405-416. [PMID: 37464965 DOI: 10.1111/1744-7917.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023]
Abstract
The Masculinizer gene, Masc, encodes a lepidopteran-specific novel CCCH-type zinc finger protein, which controls sex determination and dosage compensation in Bombyx mori. Considering the potential application of it in pest control, it is necessary to investigate the function of Masc gene in Hyphantria cunea, a globally invasive forest pest. In the present study, we identified and functionally characterized the Masc gene, HcMasc, in H. cunea. Sequence analysis revealed that HcMASC contained the conserved CCCH-type zinc finger domain, nuclear localization signal, and male determining domain, in which the last was confirmed to be required for its masculinization in BmN cell line. However, expression data showed that unlike male-biased expression in B. mori, HcMasc gene expresses in main all developmental stages or tissues in both sexes. Clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-based disruption of the common exons 1 and 3 of the HcMasc gene resulted in imbalanced sex ratio and abnormal external genitalia of both sexes. Our results suggest that the HcMasc gene is required for both male and female sexual differentiation and dosage compensation in H. cunea and provide a foundation for developing better strategies to control this pest.
Collapse
Affiliation(s)
- Xiaowei Li
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Huihui Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Honglun Bi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Yaohui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| |
Collapse
|
14
|
Zhang G, Zheng C, Ding YH, Mello C. Casein kinase II promotes piRNA production through direct phosphorylation of USTC component TOFU-4. Nat Commun 2024; 15:2727. [PMID: 38548791 PMCID: PMC10978872 DOI: 10.1038/s41467-024-46882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/10/2024] [Indexed: 04/01/2024] Open
Abstract
Piwi-interacting RNAs (piRNAs) are genomically encoded small RNAs that engage Piwi Argonaute proteins to direct mRNA surveillance and transposon silencing. Despite advances in understanding piRNA pathways and functions, how the production of piRNA is regulated remains elusive. Here, using a genetic screen, we identify casein kinase II (CK2) as a factor required for piRNA pathway function. We show that CK2 is required for the localization of PRG-1 and for the proper localization of several factors that comprise the 'upstream sequence transcription complex' (USTC), which is required for piRNA transcription. Loss of CK2 impairs piRNA levels suggesting that CK2 promotes USTC function. We identify the USTC component twenty-one-U fouled-up 4 (TOFU-4) as a direct substrate for CK2. Our findings suggest that phosphorylation of TOFU-4 by CK2 promotes the assembly of USTC and piRNA transcription. Notably, during the aging process, CK2 activity declines, resulting in the disassembly of USTC, decreased piRNA production, and defects in piRNA-mediated gene silencing, including transposons silencing. These findings highlight the significance of posttranslational modification in regulating piRNA biogenesis and its implications for the aging process. Overall, our study provides compelling evidence for the involvement of a posttranslational modification mechanism in the regulation of piRNA biogenesis.
Collapse
Affiliation(s)
- Gangming Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Chunwei Zheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yue-He Ding
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Craig Mello
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Howard Hughes Medical Institute, Worcester, MA, 01605, USA.
| |
Collapse
|
15
|
Sarkies P. The curious case of the disappearing piRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1849. [PMID: 38629193 DOI: 10.1002/wrna.1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Small non-coding RNAs are key regulators of gene expression across eukaryotes. Piwi-interacting small RNAs (piRNAs) are a specific type of small non-coding RNAs, conserved across animals, which are best known as regulators of genome stability through their ability to target transposable elements for silencing. Despite the near ubiquitous presence of piRNAs in animal lineages, there are some examples where the piRNA pathway has been lost completely, most dramatically in nematodes where loss has occurred in at least four independent lineages. In this perspective I will provide an evaluation of the presence of piRNAs across animals, explaining how it is known that piRNAs are missing from certain organisms. I will then consider possible explanations for why the piRNA pathway might have been lost and evaluate the evidence in favor of each possible mechanism. While it is still impossible to provide definitive answers, these theories will prompt further investigations into why such a highly conserved pathway can nevertheless become dispensable in certain lineages. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Ma S, Zhang T, Wang R, Wang P, Liu Y, Chang J, Wang A, Lan X, Sun L, Sun H, Shi R, Lu W, Liu D, Zhang N, Hu W, Wang X, Xing W, Jia L, Xia Q. High-throughput and genome-scale targeted mutagenesis using CRISPR in a nonmodel multicellular organism, Bombyx mori. Genome Res 2024; 34:134-144. [PMID: 38191205 PMCID: PMC10903940 DOI: 10.1101/gr.278297.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Large-scale genetic mutant libraries are powerful approaches to interrogating genotype-phenotype correlations and identifying genes responsible for certain environmental stimuli, both of which are the central goal of life science study. We produced the first large-scale CRISPR-Cas9-induced library in a nonmodel multicellular organism, Bombyx mori We developed a piggyBac-delivered binary genome editing strategy, which can simultaneously meet the requirements of mixed microinjection, efficient multipurpose genetic operation, and preservation of growth-defect lines. We constructed a single-guide RNA (sgRNA) plasmid library containing 92,917 sgRNAs targeting promoters and exons of 14,645 protein-coding genes, established 1726 transgenic sgRNA lines following microinjection of 66,650 embryos, and generated 300 mutant lines with diverse phenotypic changes. Phenomic characterization of mutant lines identified a large set of genes responsible for visual phenotypic or economically valuable trait changes. Next, we performed pooled context-specific positive screens for tolerance to environmental pollutant cadmium exposure, and identified KWMTBOMO12902 as a strong candidate gene for breeding applications in sericulture industry. Collectively, our results provide a novel and versatile approach for functional B. mori genomics, as well as a powerful resource for identifying the potential of key candidate genes for improving various economic traits. This study also shows the effectiveness, practicality, and convenience of large-scale mutant libraries in other nonmodel organisms.
Collapse
Affiliation(s)
- Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China;
| | - Tong Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ruolin Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Pan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Yue Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jiasong Chang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Aoming Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Xinhui Lan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Le Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Hao Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Run Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Dan Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Na Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Wenbo Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Xiaogang Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- China Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Weiqing Xing
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ling Jia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China;
| |
Collapse
|
17
|
Zhang B, Zhong Y, Du J, Ye R, Fan B, Deng Y, Bai R, Feng Y, Yang X, Huang Y, Liang B, Zheng J, Rong W, Yang X, Huang Z. 1,2-Dichloroethane induces testicular pyroptosis by activating piR-mmu-1019957/IRF7 pathway and the protective effects of melatonin. ENVIRONMENT INTERNATIONAL 2024; 184:108480. [PMID: 38341879 DOI: 10.1016/j.envint.2024.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
1,2-Dichloroethane (1,2-DCE) is a prevalent environmental contaminant, and our study revealed its induction of testicular toxicity in mice upon subacute exposure. Melatonin, a prominent secretory product of the pineal gland, has been shown to offer protection against pyroptosis in male reproductive toxicity. However, the exact mechanism underlying 1,2-DCE-induced testicular toxicity and the comprehensive extent of melatonin's protective effects in this regard remain largely unexplored. Therefore, we sequenced testis piRNAs in mice exposed to environmentally relevant concentrations of 1,2-DCE by 28-day dynamic inhalation, and investigated the role of key piRNAs using GC-2 spd cells. Our results showed that 1,2-DCE induced mouse testicular damage and GC-2 spd cell pyroptosis. 1,2-DCE upregulated the expression of pyroptosis-correlated proteins in both mouse testes and GC-2 spd cells. 1,2-DCE exposure caused pore formation on cellular membranes and lactate dehydrogenase leakage in GC-2 spd cells. Additionally, we identified three upregulated piRNAs in 1,2-DCE-exposed mouse testes, among which piR-mmu-1019957 induced pyroptosis in GC-2 spd cells, and its inhibition alleviated 1,2-DCE-induced pyroptosis. PiR-mmu-1019957 mimic and 1,2-DCE treatment activated the expression of interferon regulatory factor 7 (IRF7) in GC-2 spd cells. IRF7 knockdown reversed 1,2-DCE-induced cellular pyroptosis, and overexpression of piR-mmu-1019957 did not promote pyroptosis when IRF7 was inhibited. Notably, melatonin reversed 1,2-DCE-caused testicular toxicity, cellular pyroptosis, and upregulated piR-mmu-1019957 and IRF7. Collectively, our findings indicated that melatonin mitigates this effect, suggesting its potential as a therapeutic intervention against 1,2-DCE-induced male reproductive toxicity in clinical practice.
Collapse
Affiliation(s)
- Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingchi Fan
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruobing Bai
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiewei Zheng
- Department of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Weifeng Rong
- Institute of Chemical Surveillance, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
18
|
Fukui T, Kiuchi T, Tomihara K, Muro T, Matsuda-Imai N, Katsuma S. Expression of the Wolbachia male-killing factor Oscar impairs dosage compensation in lepidopteran embryos. FEBS Lett 2024; 598:331-337. [PMID: 37985236 DOI: 10.1002/1873-3468.14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Wolbachia are intracellular bacteria in insects that can manipulate the sexual development and reproduction by male killing or other methods. We have recently identified a Wolbachia protein named Oscar that acts as a male-killing factor for lepidopteran insects. Oscar interacts with the Masculinizer (Masc) protein, which is required for both masculinization and dosage compensation (DC) in lepidopteran insects. Embryonic expression of Oscar inhibits masculinization and causes male killing in two lepidopteran species, Ostrinia furnacalis and Bombyx mori. However, it remains unknown whether Oscar-induced male killing is caused by a failure of DC. Here, we performed a transcriptome analysis of Oscar complementary RNA-injected O. furnacalis and B. mori embryos, and found that Oscar primarily targets the Masc protein, resulting in male killing by interfering with DC in lepidopteran insects.
Collapse
Affiliation(s)
- Takahiro Fukui
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Kenta Tomihara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Tomohiro Muro
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Noriko Matsuda-Imai
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
19
|
Mora P, Hospodářská M, Voleníková AC, Koutecký P, Štundlová J, Dalíková M, Walters JR, Nguyen P. Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies. Mol Ecol 2024:e17256. [PMID: 38180347 DOI: 10.1111/mec.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
Sex chromosomes play an outsized role in adaptation and speciation, and thus deserve particular attention in evolutionary genomics. In particular, fusions between sex chromosomes and autosomes can produce neo-sex chromosomes, which offer important insights into the evolutionary dynamics of sex chromosomes. Here, we investigate the evolutionary origin of the previously reported Danaus neo-sex chromosome within the tribe Danaini. We assembled and annotated genomes of Tirumala septentrionis (subtribe Danaina), Ideopsis similis (Amaurina), Idea leuconoe (Euploeina) and Lycorea halia (Itunina) and identified their Z-linked scaffolds. We found that the Danaus neo-sex chromosome resulting from the fusion between a Z chromosome and an autosome corresponding to the Melitaea cinxia chromosome (McChr) 21 arose in a common ancestor of Danaina, Amaurina and Euploina. We also identified two additional fusions as the W chromosome further fused with the synteny block McChr31 in I. similis and independent fusion occurred between ancestral Z chromosome and McChr12 in L. halia. We further tested a possible role of sexually antagonistic selection in sex chromosome turnover by analysing the genomic distribution of sex-biased genes in I. leuconoe and L. halia. The autosomes corresponding to McChr21 and McChr31 involved in the fusions are significantly enriched in female- and male-biased genes, respectively, which could have hypothetically facilitated fixation of the neo-sex chromosomes. This suggests a role of sexual antagonism in sex chromosome turnover in Lepidoptera. The neo-Z chromosomes of both I. leuconoe and L. halia appear fully compensated in somatic tissues, but the extent of dosage compensation for the ancestral Z varies across tissues and species.
Collapse
Affiliation(s)
- Pablo Mora
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Monika Hospodářská
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Petr Koutecký
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jana Štundlová
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martina Dalíková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - James R Walters
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Petr Nguyen
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
20
|
Willink B, Tunström K, Nilén S, Chikhi R, Lemane T, Takahashi M, Takahashi Y, Svensson EI, Wheat CW. The genomics and evolution of inter-sexual mimicry and female-limited polymorphisms in damselflies. Nat Ecol Evol 2024; 8:83-97. [PMID: 37932383 PMCID: PMC10781644 DOI: 10.1038/s41559-023-02243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
Sex-limited morphs can provide profound insights into the evolution and genomic architecture of complex phenotypes. Inter-sexual mimicry is one particular type of sex-limited polymorphism in which a novel morph resembles the opposite sex. While inter-sexual mimics are known in both sexes and a diverse range of animals, their evolutionary origin is poorly understood. Here, we investigated the genomic basis of female-limited morphs and male mimicry in the common bluetail damselfly. Differential gene expression between morphs has been documented in damselflies, but no causal locus has been previously identified. We found that male mimicry originated in an ancestrally sexually dimorphic lineage in association with multiple structural changes, probably driven by transposable element activity. These changes resulted in ~900 kb of novel genomic content that is partly shared by male mimics in a close relative, indicating that male mimicry is a trans-species polymorphism. More recently, a third morph originated following the translocation of part of the male-mimicry sequence into a genomic position ~3.5 mb apart. We provide evidence of balancing selection maintaining male mimicry, in line with previous field population studies. Our results underscore how structural variants affecting a handful of potentially regulatory genes and morph-specific genes can give rise to novel and complex phenotypic polymorphisms.
Collapse
Affiliation(s)
- Beatriz Willink
- Department of Zoology, Stockholm University, Stockholm, Sweden.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Kalle Tunström
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sofie Nilén
- Department of Biology, Lund University, Lund, Sweden
| | - Rayan Chikhi
- Sequence Bioinformatics, Institut Pasteur, Université Paris Cité, Paris, France
| | - Téo Lemane
- University of Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Michihiko Takahashi
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan
| | | | | |
Collapse
|
21
|
Bronkhorst AW, Lee CY, Möckel MM, Ruegenberg S, de Jesus Domingues AM, Sadouki S, Piccinno R, Sumiyoshi T, Siomi MC, Stelzl L, Luck K, Ketting RF. An extended Tudor domain within Vreteno interconnects Gtsf1L and Ago3 for piRNA biogenesis in Bombyx mori. EMBO J 2023; 42:e114072. [PMID: 37984437 PMCID: PMC10711660 DOI: 10.15252/embj.2023114072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Piwi-interacting RNAs (piRNAs) direct PIWI proteins to transposons to silence them, thereby preserving genome integrity and fertility. The piRNA population can be expanded in the ping-pong amplification loop. Within this process, piRNA-associated PIWI proteins (piRISC) enter a membraneless organelle called nuage to cleave their target RNA, which is stimulated by Gtsf proteins. The resulting cleavage product gets loaded into an empty PIWI protein to form a new piRISC complex. However, for piRNA amplification to occur, the new RNA substrates, Gtsf-piRISC, and empty PIWI proteins have to be in physical proximity. In this study, we show that in silkworm cells, the Gtsf1 homolog BmGtsf1L binds to piRNA-loaded BmAgo3 and localizes to granules positive for BmAgo3 and BmVreteno. Biochemical assays further revealed that conserved residues within the unstructured tail of BmGtsf1L directly interact with BmVreteno. Using a combination of AlphaFold modeling, atomistic molecular dynamics simulations, and in vitro assays, we identified a novel binding interface on the BmVreteno-eTudor domain, which is required for BmGtsf1L binding. Our study reveals that a single eTudor domain within BmVreteno provides two binding interfaces and thereby interconnects piRNA-loaded BmAgo3 and BmGtsf1L.
Collapse
Affiliation(s)
| | - Chop Y Lee
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
- Integrative Systems Biology GroupInstitute of Molecular BiologyMainzGermany
| | - Martin M Möckel
- Protein Production Core FacilityInstitute of Molecular BiologyMainzGermany
| | - Sabine Ruegenberg
- Protein Production Core FacilityInstitute of Molecular BiologyMainzGermany
| | - Antonio M de Jesus Domingues
- Biology of Non‐coding RNA GroupInstitute of Molecular BiologyMainzGermany
- Present address:
Dewpoint Therapeutics GmbHDresdenGermany
| | - Shéraz Sadouki
- Biology of Non‐coding RNA GroupInstitute of Molecular BiologyMainzGermany
| | - Rossana Piccinno
- Microscopy Core FacilityInstitute of Molecular BiologyMainzGermany
| | - Tetsutaro Sumiyoshi
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
- Present address:
Department of Medical Innovations, Osaka Research Center for Drug DiscoveryOtsuka Pharmaceutical Co., Ltd.OsakaJapan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Lukas Stelzl
- Faculty of BiologyJohannes Gutenberg University MainzMainzGermany
- KOMET 1, Institute of PhysicsJohannes Gutenberg University MainzMainzGermany
| | - Katja Luck
- Integrative Systems Biology GroupInstitute of Molecular BiologyMainzGermany
| | - René F Ketting
- Biology of Non‐coding RNA GroupInstitute of Molecular BiologyMainzGermany
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg UniversityMainzGermany
| |
Collapse
|
22
|
Sun M, Fan X, Long Q, Zang H, Zhang Y, Liu X, Feng P, Song Y, Li K, Wu Y, Jiang H, Chen D, Guo R. First Characterization and Regulatory Function of piRNAs in the Apis mellifera Larval Response to Ascosphaera apis Invasion. Int J Mol Sci 2023; 24:16358. [PMID: 38003547 PMCID: PMC10671575 DOI: 10.3390/ijms242216358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
piRNAs are a class of small non-coding RNAs that play essential roles in modulating gene expression and abundant biological processes. To decode the piRNA-regulated larval response of western honeybees (Apis mellifera) to Ascosphaera apis infection, the expression pattern of piRNAs in Apis mellifera ligustica larval guts after A. apis inoculation was analyzed based on previously obtained high-quality small RNA-seq datasets, followed by structural characterization, target prediction, regulatory network investigation, and functional dissection. Here, 504, 657, and 587 piRNAs were respectively identified in the 4-, 5-, and 6-day-old larval guts after inoculation with A. apis, with 411 ones shared. These piRNAs shared a similar length distribution and first base bias with mammal piRNAs. Additionally, 96, 103, and 143 DEpiRNAs were detected in the 4-, 5-, and 6-day-old comparison groups. Targets of the DEpiRNAs were engaged in diverse pathways such as the phosphatidylinositol signaling system, inositol phosphate metabolism, and Wnt signaling pathway. These targets were involved in three energy metabolism-related pathways, eight development-associated signaling pathways, and seven immune-relevant pathways such as the Jak-STAT signaling pathway. The expression trends of five randomly selected DEpiRNAs were verified using a combination of RT-PCR and RT-qPCR. The effective overexpression and knockdown of piR-ame-945760 in A. apis-infected larval guts were achieved by feeding a specific mimic and inhibitor. Furthermore, piR-ame-945760 negatively regulated the expression of two target immune mRNAs, SOCS5 and ARF1, in the larval gut during the A. apis infection. These findings indicated that the overall expression level of piRNAs was increased and the expression pattern of piRNAs in larval guts was altered due to the A. apis infection, DEpiRNAs were putative regulators in the A. apis-response of A. m. ligustica worker larvae. Our data provide not only a platform for the functional investigation of piRNAs in honeybees, especially in bee larvae, but also a foundation for illuminating the piRNA-involved mechanisms underlying the host response to the A. apis infection.
Collapse
Affiliation(s)
- Minghui Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - He Zang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Yiqiong Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Xiaoyu Liu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Peilin Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Yuxuan Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Kunze Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jilin 132000, China; (Y.W.); (H.J.)
| | - Haibin Jiang
- Apiculture Science Institute of Jilin Province, Jilin 132000, China; (Y.W.); (H.J.)
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
23
|
Gupta P, Das G, Chattopadhyay T, Ghosh Z, Mallick B. TarpiD, a database of putative and validated targets of piRNAs. Mol Omics 2023; 19:706-713. [PMID: 37427797 DOI: 10.1039/d3mo00098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are a novel class of 18-36 nts long small non-coding single-stranded RNAs that play crucial roles in a wide array of critical biological activities besides maintaining genome integrity by transposon silencing. piRNAs influence biological processes and pathways by regulating gene expression at transcriptional and post-transcriptional level. Studies have reported that piRNAs silence various endogenous genes post-transcriptionally by binding to respective mRNAs through interaction with the PIWI proteins. Several thousands of piRNAs have been discovered in animals, but their functions remain largely undiscovered owing to a lack of proper guiding principles of piRNA targeting or diversity in targeting patterns amongst piRNAs from the same or different species. Identification of piRNA targets is essential for deciphering their functions. There are a few tools and databases on piRNAs, but there are no systematic and exclusive repositories to obtain information on target genes regulated by piRNAs and other related information. Hence, we developed a user-friendly database named TarpiD (Targets of piRNA Database) that offers comprehensive information on piRNA and its targets, including their expression, methodologies (high-throughput or low-throughput) for target identification/validation, cells/tissue types, diseases, target gene regulation types, target binding regions, and key functions driven by piRNAs through target gene interactions. The contents of TarpiD are curated from the published literature and enable users to search and download the targets of a particular piRNA or the piRNAs that target a specific gene for use in their research. This database harbours 28 682 entries of piRNA-target interactions supported by 15 methodologies reported in hundreds of cell types/tissues from 9 species. TarpiD will be a valuable resource for a better understanding of the functions and gene-regulatory mechanisms mediated by piRNAs. TarpiD is freely accessible for academic use at https://tarpid.nitrkl.ac.in/tarpid_db/.
Collapse
Affiliation(s)
- Pooja Gupta
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela-769008, Odisha, India.
| | - Gourab Das
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela-769008, Odisha, India.
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela-769008, Odisha, India.
| |
Collapse
|
24
|
Somers DJ, Kushner DB, McKinnis AR, Mehmedovic D, Flame RS, Arnold TM. Epigenetic weapons in plant-herbivore interactions: Sulforaphane disrupts histone deacetylases, gene expression, and larval development in Spodoptera exigua while the specialist feeder Trichoplusia ni is largely resistant to these effects. PLoS One 2023; 18:e0293075. [PMID: 37856454 PMCID: PMC10586618 DOI: 10.1371/journal.pone.0293075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Cruciferous plants produce sulforaphane (SFN), an inhibitor of nuclear histone deacetylases (HDACs). In humans and other mammals, the consumption of SFN alters enzyme activities, DNA-histone binding, and gene expression within minutes. However, the ability of SFN to act as an HDAC inhibitor in nature, disrupting the epigenetic machinery of insects feeding on these plants, has not been explored. Here, we demonstrate that SFN consumed in the diet inhibits the activity of HDAC enzymes and slows the development of the generalist grazer Spodoptera exigua, in a dose-dependent fashion. After consuming SFN for seven days, the activities of HDAC enzymes in S. exigua were reduced by 50%. Similarly, larval mass was reduced by 50% and pupation was delayed by 2-5 days, with no additional mortality. Similar results were obtained when SFN was applied topically to eggs. RNA-seq analyses confirm that SFN altered the expression of thousands of genes in S. exigua. Genes associated with energy conversion pathways were significantly downregulated while those encoding for ribosomal proteins were dramatically upregulated in response to the consumption of SFN. In contrast, the co-evolved specialist feeder Trichoplusia ni was not negatively impacted by SFN, whether it was consumed in their diet at natural concentrations or applied topically to eggs. The activities of HDAC enzymes were not inhibited and development was not disrupted. In fact, SFN exposure sometimes accelerated T. ni development. RNA-seq analyses revealed that the consumption of SFN alters gene expression in T. ni in similar ways, but to a lesser degree, compared to S. exigua. This apparent resistance of T. ni can be overwhelmed by unnaturally high levels of SFN or by exposure to more powerful pharmaceutical HDAC inhibitors. These results demonstrate that dietary SFN interferes with the epigenetic machinery of insects, supporting the hypothesis that plant-derived HDAC inhibitors serve as "epigenetic weapons" against herbivores.
Collapse
Affiliation(s)
- Dana J. Somers
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - David B. Kushner
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Alexandria R. McKinnis
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Dzejlana Mehmedovic
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Rachel S. Flame
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Thomas M. Arnold
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| |
Collapse
|
25
|
Otte M, Netschitailo O, Weidtkamp-Peters S, Seidel CA, Beye M. Recognition of polymorphic Csd proteins determines sex in the honeybee. SCIENCE ADVANCES 2023; 9:eadg4239. [PMID: 37792946 PMCID: PMC10550236 DOI: 10.1126/sciadv.adg4239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Sex in honeybees, Apis mellifera, is genetically determined by heterozygous versus homo/hemizygous genotypes involving numerous alleles at the single complementary sex determination locus. The molecular mechanism of sex determination is however unknown because there are more than 4950 known possible allele combinations, but only two sexes in the species. We show how protein variants expressed from complementary sex determiner (csd) gene determine sex. In females, the amino acid differences between Csd variants at the potential-specifying domain (PSD) direct the selection of a conserved coiled-coil domain for binding and protein complexation. This recognition mechanism activates Csd proteins and, thus, the female pathway. In males, the absence of polymorphisms establishes other binding elements at PSD for binding and complexation of identical Csd proteins. This second recognition mechanism inactivates Csd proteins and commits male development via default pathway. Our results demonstrate that the recognition of different versus identical variants of a single protein is a mechanism to determine sex.
Collapse
Affiliation(s)
- Marianne Otte
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Oksana Netschitailo
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Claus A. M. Seidel
- Institut für Physikalische Chemie, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
26
|
Muro T, Hikida H, Fujii T, Kiuchi T, Katsuma S. Two Complete Genomes of Male-Killing Wolbachia Infecting Ostrinia Moth Species Illuminate Their Evolutionary Dynamics and Association with Hosts. MICROBIAL ECOLOGY 2023; 86:1740-1754. [PMID: 36810610 PMCID: PMC10497655 DOI: 10.1007/s00248-023-02198-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Wolbachia is an extremely widespread intracellular symbiont which causes reproductive manipulation on various arthropod hosts. Male progenies are killed in Wolbachia-infected lineages of the Japanese Ostrinia moth population. While the mechanism of male killing and the evolutionary interaction between host and symbiont are significant concerns for this system, the absence of Wolbachia genomic information has limited approaches to these issues. We determined the complete genome sequences of wFur and wSca, the male-killing Wolbachia of Ostrinia furnacalis and Ostrinia scapulalis. The two genomes shared an extremely high degree of homology, with over 95% of the predicted protein sequences being identical. A comparison of these two genomes revealed nearly minimal genome evolution, with a strong emphasis on the frequent genome rearrangements and the rapid evolution of ankyrin repeat-containing proteins. Additionally, we determined the mitochondrial genomes of both species' infected lineages and performed phylogenetic analyses to deduce the evolutionary dynamics of Wolbachia infection in the Ostrinia clade. According to the inferred phylogenetic relationship, two possible scenarios were proposed: (1) Wolbachia infection was established in the Ostrinia clade prior to the speciation of related species such as O. furnacalis and O. scapulalis, or (2) Wolbachia infection in these species was introgressively transferred from a currently unidentified relative. Simultaneously, the relatively high homology of mitochondrial genomes suggested recent Wolbachia introgression between infected Ostrinia species. The findings of this study collectively shed light on the host-symbiont interaction from an evolutionary standpoint.
Collapse
Affiliation(s)
- Tomohiro Muro
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Hiroyuki Hikida
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8657, Japan
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | - Takeshi Fujii
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
27
|
Xia J, Fei S, Wu H, Yang Y, Yu W, Zhang M, Guo Y, Swevers L, Sun J, Feng M. The piRNA pathway is required for nucleopolyhedrovirus replication in Lepidoptera. INSECT SCIENCE 2023; 30:1378-1392. [PMID: 36495071 DOI: 10.1111/1744-7917.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The Piwi-interacting RNA (piRNA) pathway has been shown to be involved in the antiviral defense against RNA viruses, especially in mosquitoes, but its universality has been questioned. Here, we used the Bombyx mori nucleopolyhedrovirus (BmNPV) -infected silkworm as a model to explore the effects of the key factors of piRNA pathway, BmAgo3 and Siwi, on replication of a large DNA virus (belonging to the family of Baculoviridae). We demonstrated that BmAgo3 and Siwi could promote the replication of BmNPV through both overexpression and knockdown experiments in BmN cell lines and silkworm larvae. In addition, we also studied the effect of PIWI-class genes on Autographa californica nucleopolyhedrovirus (AcMNPV) replication in the Spodoptera frugiperda cell line Sf9. By knocking down the expression of PIWI-class genes in Sf9, we found that Piwi-like-1 and Piwi-like-2-3 could inhibit AcMNPV replication, while Piwi-like-4-5 promoted virus replication. Our study provides compelling evidence that the piRNA pathway affects host infection by exogenous viruses in Lepidoptera. Also, our results reflect the diversity of the roles of PIWI-class genes in virus infection of the host across species. This study is the first to explore the interaction of PIWI-class proteins with DNA viruses, providing new insights into the functional roles of the piRNA pathway.
Collapse
Affiliation(s)
- Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongyun Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yifan Yang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wensheng Yu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengmeng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiyao Guo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Center for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
28
|
Harumoto T. Self-stabilization mechanism encoded by a bacterial toxin facilitates reproductive parasitism. Curr Biol 2023; 33:4021-4029.e6. [PMID: 37673069 DOI: 10.1016/j.cub.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
A wide variety of maternally transmitted endosymbionts in insects are associated with reproductive parasitism, whereby they interfere with host reproduction to increase the ratio of infected females and spread within populations.1,2 Recent successes in identifying bacterial factors responsible for reproductive parasitism3,4,5,6,7 as well as further omics approaches8,9,10,11,12 have highlighted the common appearance of deubiquitinase domains, although their biological roles-in particular, how they link to distinct manipulative phenotypes-remain poorly defined. Spiroplasma poulsonii is a helical and motile bacterial endosymbiont of Drosophila,13,14 which selectively kills male progeny with a male-killing toxin Spaid (S. poulsonii androcidin), which encodes an ovarian tumor (OTU) deubiquitinase domain.6 Artificial expression of Spaid in flies reproduces male-killing-associated pathologies that include abnormal apoptosis and neural defects during embryogenesis6,15,16,17,18,19; moreover, it highly accumulates on the dosage-compensated male X chromosome,20 congruent with cellular defects such as the DNA damage/chromatin bridge breakage specifically induced upon that chromosome.6,21,22,23 Here, I show that without the function of OTU, Spaid is polyubiquitinated and degraded through the host ubiquitin-proteasome pathway, leading to the attenuation of male-killing activity as shown previously.6 Furthermore, I find that Spaid utilizes its OTU domain to deubiquitinate itself in an intermolecular manner. Collectively, the deubiquitinase domain of Spaid serves as a self-stabilization mechanism to facilitate male killing in flies, optimizing a molecular strategy of endosymbionts that enables the efficient manipulation of the host at a low energetic cost.
Collapse
Affiliation(s)
- Toshiyuki Harumoto
- Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
29
|
Pospíšilová K, Van't Hof AE, Yoshido A, Kružíková R, Visser S, Zrzavá M, Bobryshava K, Dalíková M, Marec F. Masculinizer gene controls male sex determination in the codling moth, Cydia pomonella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 160:103991. [PMID: 37536576 DOI: 10.1016/j.ibmb.2023.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
The molecular mechanisms of sex determination in moths and butterflies (Lepidoptera) with female heterogamety (WZ/ZZ) are poorly understood, except in the silkworm Bombyx mori. However, the Masculinizer (Masc) gene that controls male development and dosage compensation in B. mori, appears to be conserved in Lepidoptera, as its masculinizing function was recently confirmed in several moth species. In this work, we investigated the role of the Masc gene in sex determination of the codling moth Cydia pomonella (Tortricidae), a globally important pest of pome fruits and walnuts. The gene structure of the C. pomonella Masc ortholog, CpMasc, is similar to B. mori Masc. However, unlike B. mori, we identified 14 splice variants of CpMasc in the available transcriptomes. Subsequent screening for sex specificity and genetic variation using publicly available data and RT-PCR revealed three male-specific splice variants. Then qPCR analysis of these variants revealed sex-biased expression showing a peak only in early male embryos. Knockdown of CpMasc by RNAi during early embryogenesis resulted in a shift from male-to female-specific splicing of the C. pomonella doublesex (Cpdsx) gene, its downstream effector, in ZZ embryos, leading to a strongly female-biased sex ratio. These data clearly demonstrate that CpMasc functions as a masculinizing gene in the sex-determining cascade of C. pomonella. Our study also showed that CpMasc transcripts are provided maternally, as they were detected in unfertilized eggs after oviposition and in mature eggs dissected from virgin females. This finding is unique, as maternal provision of mRNA has rarely been studied in Lepidoptera.
Collapse
Affiliation(s)
- Kristýna Pospíšilová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Arjen E Van't Hof
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic.
| | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic.
| | - Renata Kružíková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Sander Visser
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; School of Science and Engineering, University of Groningen, 9700 CC, Groningen, the Netherlands.
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Kseniya Bobryshava
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Martina Dalíková
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
30
|
Kiuchi T, Shoji K, Izumi N, Tomari Y, Katsuma S. Non-gonadal somatic piRNA pathways ensure sexual differentiation, larval growth, and wing development in silkworms. PLoS Genet 2023; 19:e1010912. [PMID: 37733654 PMCID: PMC10513339 DOI: 10.1371/journal.pgen.1010912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) guide PIWI proteins to target transposons in germline cells, thereby suppressing transposon activity to preserve genome integrity in metazoans' gonadal tissues. Piwi, one of three Drosophila PIWI proteins, is expressed in the nucleus and suppresses transposon activity by forming heterochromatin in an RNA cleavage-independent manner. Recently, Piwi was reported to control cell metabolism in Drosophila fat body, providing an example of piRNAs acting in non-gonadal somatic tissues. However, mutant flies of the other two PIWI proteins, Aubergine (Aub) and Argonaute3 (Ago3), show no apparent phenotype except for infertility, blurring the importance of the piRNA pathway in non-gonadal somatic tissues. The silkworm, Bombyx mori, possesses two PIWI proteins, Siwi (Aub homolog) and BmAgo3 (Ago3 homolog), whereas B. mori does not have a Piwi homolog. Siwi and BmAgo3 are mainly expressed in gonadal tissues and play a role in repressing transposon activity by cleaving transposon RNA in the cytoplasm. Here, we generated Siwi and BmAgo3 loss-of-function mutants of B. mori and found that they both showed delayed larval growth and failed to become adult moths. They also exhibited defects in wing development and sexual differentiation. Transcriptome analysis revealed that loss of somatic piRNA biogenesis pathways results in abnormal expression of not only transposons but also host genes, presumably causing severe growth defects. Our results highlight the roles of non-gonadal somatic piRNAs in B. mori development.
Collapse
Affiliation(s)
- Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Shoji
- Institute for Quantitative Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Natsuko Izumi
- Institute for Quantitative Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
31
|
van Wolfswinkel JC. Insights in piRNA targeting rules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1811. [PMID: 37632327 PMCID: PMC10895071 DOI: 10.1002/wrna.1811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023]
Abstract
PIWI-interacting RNAs (piRNAs) play an important role in the defense against transposons in the germline and stem cells of animals. To what extent other transcripts are also regulated by piRNAs is an ongoing topic of debate. The amount of sequence complementarity between piRNA and target that is required for effective downregulation of the targeted transcript is guiding in this discussion. Over the years, various methods have been applied to infer targeting requirements from the collections of piRNAs and potential target transcripts, and recent structural studies of the PIWI proteins have provided an additional perspective. In this review, I summarize the findings from these studies and propose a set of requirements that can be used to predict targets to the best of our current abilities. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA-Based Catalysis > RNA-Mediated Cleavage.
Collapse
Affiliation(s)
- Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Center for Stem Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for RNA Biology and Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
32
|
Seth RK, Yadav P, Reynolds SE. Dichotomous sperm in Lepidopteran insects: a biorational target for pest management. FRONTIERS IN INSECT SCIENCE 2023; 3:1198252. [PMID: 38469506 PMCID: PMC10926456 DOI: 10.3389/finsc.2023.1198252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 03/13/2024]
Abstract
Lepidoptera are unusual in possessing two distinct kinds of sperm, regular nucleated (eupyrene) sperm and anucleate (apyrene) sperm ('parasperm'). Sperm of both types are transferred to the female and are required for male fertility. Apyrene sperm play 'helper' roles, assisting eupyrene sperm to gain access to unfertilized eggs and influencing the reproductive behavior of mated female moths. Sperm development and behavior are promising targets for environmentally safer, target-specific biorational control strategies in lepidopteran pest insects. Sperm dimorphism provides a wide window in which to manipulate sperm functionality and dynamics, thereby impairing the reproductive fitness of pest species. Opportunities to interfere with spermatozoa are available not only while sperm are still in the male (before copulation), but also in the female (after copulation, when sperm are still in the male-provided spermatophore, or during storage in the female's spermatheca). Biomolecular technologies like RNAi, miRNAs and CRISPR-Cas9 are promising strategies to achieve lepidopteran pest control by targeting genes directly or indirectly involved in dichotomous sperm production, function, or persistence.
Collapse
Affiliation(s)
- Rakesh K. Seth
- Department of Zoology, University of Delhi, Delhi, India
| | - Priya Yadav
- Department of Zoology, University of Delhi, Delhi, India
| | - Stuart E. Reynolds
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
33
|
Zhang G, Zheng C, Ding YH, Mello C. Casein kinase II promotes piRNA production through direct phosphorylation of USTC component TOFU-4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552615. [PMID: 37609319 PMCID: PMC10441431 DOI: 10.1101/2023.08.09.552615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are genomically encoded small RNAs that engage Piwi Argonaute proteins to direct mRNA surveillance and transposon silencing. Despite advances in understanding piRNA pathways and functions, how the production of piRNA is regulated remains elusive. Here, using a genetic screen, we identify casein kinase II (CK2) as a factor required for piRNA pathway function. We show that CK2 is required for the localization of PRG-1 and for the proper localization of several factors that comprise the 'upstream sequence transcription complex' (USTC), which is required for piRNA transcription. Loss of CK2 impairs piRNA levels suggesting that CK2 promotes USTC function. We identify the USTC component twenty-one-U fouled-up 4 (TOFU-4) as a direct substrate for CK2. Our findings suggest that phosphorylation of TOFU-4 by CK2 promotes the assembly of USTC and piRNA transcription. Notably, during the aging process, CK2 activity declines, resulting in the disassembly of USTC, decreased piRNA production, and defects in piRNA-mediated gene silencing, including transposons silencing. These findings highlight the significance of posttranslational modification in regulating piRNA biogenesis and its implications for the aging process. Overall, our study provides compelling evidence for the involvement of a posttranslational modification mechanism in the regulation of piRNA biogenesis.
Collapse
|
34
|
Chen B, Kou Z, Jiang Y, Luo X, Li P, Sun K, Wang W, Huang Y, Wang Y. Intersex is required for female sexual development in Hermetia illucens. INSECT SCIENCE 2023; 30:901-911. [PMID: 36719198 DOI: 10.1111/1744-7917.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Sex-determination pathways are extremely diverse. Understanding the mechanism of sex determination in insects is important for genetic manipulation of the pest population and for breeding of economically valuable insects. Although sex determination has been well characterized in the model species Drosophila melanogaster, little is known about this pathway in Stratiomyidae. In the present study, we first identified the Drosophila intersex (ix) homolog in Hermetia illucens, also known as the black soldier fly, which belongs to the Stratiomyidae family and which is an important insect for the conversion of various organic wastes. Phylogenetic analyses and multiple sequence alignment revealed that Hiix is conserved compared with Drosophila. We showed that Hiix is highly expressed in internal genitalia. Disruption of the Hiix gene using CRISPR/Cas9 resulted in female-specific defects in external genitalia and abnormal and undersized ovaries. Taken together, our study furthers our understanding of sex determination in insects and could facilitate breeding of H. illucens.
Collapse
Affiliation(s)
- Bihui Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zongqing Kou
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yuguo Jiang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Xingyu Luo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Peili Li
- Beijing Dabeinong Technology Group Co., ltd., No. 19, Chengwan Street, Suyier Village, Sujiatuo Town, Haidian District, Beijing, China
| | - Kaiji Sun
- Beijing Dabeinong Technology Group Co., ltd., No. 19, Chengwan Street, Suyier Village, Sujiatuo Town, Haidian District, Beijing, China
| | - Weiwei Wang
- Beijing Dabeinong Technology Group Co., ltd., No. 19, Chengwan Street, Suyier Village, Sujiatuo Town, Haidian District, Beijing, China
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yaohui Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
35
|
Luo JY, Shen SQ, Xu HJ, Yang JS, Ma WM. The transcription factor masculinizer in sexual differentiation and achieved full functional sex reversal in prawn. iScience 2023; 26:106968. [PMID: 37534170 PMCID: PMC10391606 DOI: 10.1016/j.isci.2023.106968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/08/2023] [Accepted: 05/23/2023] [Indexed: 08/04/2023] Open
Abstract
Some Zinc finger (ZnF) proteins are required for masculinization in silkworms. In the present study, a masculinizer gene (Mr-Masc) with multi-tissue expression is identified in the freshwater prawn Macrobrachium rosenbergii. The Mr-Masc is clustered into a separate branch with ZnF proteins from decapoda by phylogenetic tree analysis. Moreover, Mr-Masc silencing in male postlarvae prawn results in functional sex reversal females known as neo-females, which are applied to all-male monosex offspring breeding. This manipulation has been significant in sexually dimorphic cultured species. In addition, several significantly expressed transcripts are enriched and the effects of crucial signal pathways are focused through the comparative transcriptomic analysis in Mr-Masc gene knockdown. The significantly differentially expressed epidermal growth factor, upregulated low-density lipoprotein receptor, flotillin, and sex-lethal unigenes, downregulated heat shock proteins and forkhead box homologs are focused. The finding offers an innovative perspective on Masc proteins' evolution and physiological function.
Collapse
Affiliation(s)
- Jing-Yu Luo
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
| | - Shuai-Qi Shen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
- College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Hai-Jing Xu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Wen-Ming Ma
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
| |
Collapse
|
36
|
Baird RB, Mongue AJ, Ross L. Why put all your eggs in one basket? Evolutionary perspectives on the origins of monogenic reproduction. Heredity (Edinb) 2023:10.1038/s41437-023-00632-7. [PMID: 37328587 PMCID: PMC10382564 DOI: 10.1038/s41437-023-00632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Sexual reproduction is ubiquitous in eukaryotes, but the mechanisms by which sex is determined are diverse and undergo rapid turnovers in short evolutionary timescales. Usually, an embryo's sex is fated at the moment of fertilisation, but in rare instances it is the maternal genotype that determines the offspring's sex. These systems are often characterised by mothers producing single-sex broods, a phenomenon known as monogeny. Monogenic reproduction is well documented in Hymenoptera (ants, bees and wasps), where it is associated with a eusocial lifestyle. However, it is also known to occur in three families in Diptera (true flies): Sciaridae, Cecidomyiidae and Calliphoridae. Here we review current knowledge of monogenic reproduction in these dipteran clades. We discuss how this strange reproductive strategy might evolve, and we consider the potential contributions of inbreeding, sex ratio distorters, and polygenic control of the sex ratio. Finally, we provide suggestions on future work to elucidate the origins of this unusual reproductive strategy. We propose that studying these systems will contribute to our understanding of the evolution and turnover of sex determination systems.
Collapse
Affiliation(s)
- Robert B Baird
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Andrew J Mongue
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, 32611, USA
| | - Laura Ross
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, UK
| |
Collapse
|
37
|
Zhou J, Xie H, Liu J, Huang R, Xiang Y, Tian D, Bian E. PIWI-interacting RNAs: Critical roles and therapeutic targets in cancer. Cancer Lett 2023; 562:216189. [PMID: 37076042 DOI: 10.1016/j.canlet.2023.216189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a novel class of small regulatory RNAs (approximately 24-31 nucleotides in length) that often bind to members of the PIWI protein family. piRNAs regulate transposons in animal germ cells; piRNAs are also specifically expressed in many human tissues and regulate pivotal signaling pathways. Additionally, the abnormal expression of piRNAs and PIWI proteins has been associated with various malignant tumours, and multiple mechanisms of piRNA-mediated target gene dysregulation are involved in tumourigenesis and progression, suggesting that they have the potential to serve as new biomarkers and therapeutic targets for tumours. However, the functions and potential mechanisms of action of piRNAs in cancer have not yet been elucidated. This review summarises the current findings on the biogenesis, function, and mechanisms of piRNAs and PIWI proteins in cancer. We also discuss the clinical significance of piRNAs as diagnostic or prognostic biomarkers and therapeutic tools for cancer. Finally, we present some critical questions regarding piRNA research that need to be addressed to provide insight into the future development of the field.
Collapse
Affiliation(s)
- Jialin Zhou
- Department of Clinical Medicine, The Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Ruixiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Yufei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
38
|
Fukui T, Shoji K, Kiuchi T, Suzuki Y, Katsuma S. Masculinizer is not post-transcriptionally regulated by female-specific piRNAs during sex determination in the Asian corn borer, Ostrinia furnacalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103946. [PMID: 37075905 DOI: 10.1016/j.ibmb.2023.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Lepidopteran insects are heterogametic in females, although most insect species are heterogametic in males. In a lepidopteran model species, the silkworm Bombyx mori (Bombycoidea), the uppermost sex determinant Feminizer (Fem) has been identified on the female-specific W chromosome. Fem is a precursor of PIWI-interacting small RNA (piRNA). Fem piRNA forms a complex with Siwi, one of the two B. mori PIWI-clade Argonaute proteins. In female embryos, Fem piRNA-Siwi complex cleaves the mRNA of the male-determining gene Masculinizer (Masc), directing the female-determining pathway. In male embryos, Masc activates the male-determining pathway in the absence of Fem piRNA. Recently, W chromosome-derived piRNAs complementary to Masc mRNA have also been identified in the diamondback moth Plutella xylostella (Yponomeutoidea), indicating the convergent evolution of piRNA-dependent sex determination in Lepidoptera. Here, we show that this is not the case in the Asian corn borer, Ostrinia furnacalis (Pyraloidea). Although our previous studies demonstrated that O. furnacalis Masc (OfMasc) has a masculinizing function in the embryonic stage, the expression level of OfMasc was indistinguishable between the sexes at the timing of sex determination. Deep sequencing analysis identified no female-specific small RNAs mapped onto OfMasc mRNA. Embryonic knockdown of two PIWI genes did not affect the expression level of OfMasc in either sex. These results demonstrated that piRNA-dependent reduction of Masc mRNA in female embryos is not a common strategy of sex determination, which suggests the possibility of divergent evolution of sex determinants across the order Lepidoptera.
Collapse
Affiliation(s)
- Takahiro Fukui
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keisuke Shoji
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
39
|
Ye X, Wu M, Wang X, Dai X, Yu S, Tang X, Wang X, Zhong B. Sex separation by body color via a W-chromosome-linked transgene. Int J Biol Macromol 2023; 234:123649. [PMID: 36780960 DOI: 10.1016/j.ijbiomac.2023.123649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/02/2022] [Accepted: 02/04/2023] [Indexed: 02/13/2023]
Abstract
Sex separation processes are important for commercial insect production and sterile insect techniques. Here, we describe the transgenic insertion of a DsRed expression cassette driven by the enhancer HR3 and strong promoter IE1 into the silkworm W chromosome as a dominant visible marker of sex separation. The obtained transgenic lines showed female-specific body color visible to the naked eye at the second- to fifth-instar larval, pupal and adult stages, and their performance traits were comparable to those of a nontransgenic practical silkworm variety. This strategy can greatly facilitate the sex separation of silkworms for male-only rearing and to obtain hybrids while avoiding sibling mating, and it can also be applied to the sex separation of other light-colored insects.
Collapse
Affiliation(s)
- Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| | - Meiyu Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xinqiu Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiangping Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shihua Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaoli Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaoxiao Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
40
|
Zulhussnain M, Zahoor MK, Ranian K, Ahmad A, Jabeen F. CRISPR Cas9 mediated knockout of sex determination pathway genes in Aedes aegypti. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:243-252. [PMID: 36259148 DOI: 10.1017/s0007485322000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The vector role of Aedes aegypti for viral diseases including dengue and dengue hemorrhagic fever makes it imperative for its proper control. Despite various adopted control strategies, genetic control measures have been recently focused against this vector. CRISPR Cas9 system is a recent and most efficient gene editing tool to target the sex determination pathway genes in Ae. aegypti. In the present study, CRISPR Cas9 system was used to knockout Ae. aegypti doublesex (Aaedsx) and Ae. aegypti sexlethal (AaeSxl) genes in Ae. aegypti embryos. The injection mixes with Cas9 protein (333 ng ul-1) and gRNAs (each at 100 ng ul-1) were injected into eggs. Injected eggs were allowed to hatch at 26 ± 1°C, 60 ± 10% RH. The survival and mortality rate was recorded in knockout Aaedsx and AaeSxl. The results revealed that knockout produced low survival and high mortality. A significant percentage of eggs (38.33%) did not hatch as compared to control groups (P value 0.00). Highest larval mortality (11.66%) was found in the knockout of Aaedsx female isoform, whereas, the emergence of only male adults also showed that the knockout of Aaedsx (female isoform) does not produce male lethality. The survival (3.33%) of knockout for AaeSxl eggs to the normal adults suggested further study to investigate AaeSxl as an efficient upstream of Aaedsx to target for sex transformation in Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Muhammad Zulhussnain
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Kanwal Ranian
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aftab Ahmad
- Centre of Department of Biochemistry/US-Pakistan Center for Advance Studies in Agriculture and Food Security (USPCAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
41
|
Wu WT, Xu LY, Yan ZJ, Bi N, Cheng CY, Yang F, Yang WJ, Yang JS. Identification and characterization of the Doublesex gene and its mRNA isoforms in the brine shrimp Artemia franciscana. Biochem J 2023; 480:385-401. [PMID: 36852878 DOI: 10.1042/bcj20220495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/01/2023]
Abstract
Doublesex (DSX) proteins are members of the Doublesex/mab-3-related (DMRT) protein family and play crucial roles in sex determination and differentiation among the animal kingdom. In the present study, we identified two Doublesex (Dsx)-like mRNA isoforms in the brine shrimp Artemia franciscana (Kellogg 1906), which are generated by the combination of alternative promoters, alternative splicing and alternative polyadenylation. The two transcripts exhibited sex-biased enrichment, which we termed AfrDsxM and AfrDsxF. They share a common region which encodes an identical N-terminal DNA-binding (DM) domain. RT-qPCR analyses showed that AfrDsxM is dominantly expressed in male Artemia while AfrDsxF is specifically expressed in females. Expression levels of both isoforms increased along with the developmental stages of their respective sexes. RNA interference with dsRNA showed that the knockdown of AfrDsxM in male larvae led to the appearance of female traits including an ovary-like structure in the original male reproductive system and an elevated expression of vitellogenin. However, silencing of AfrDsxF induced no clear phenotypic change in female Artemia. These results indicated that the male AfrDSXM may act as inhibiting regulator upon the default female developmental mode in Artemia. Furthermore, electrophoretic mobility shift assay analyses revealed that the unique DM domain of AfrDSXs can specifically bind to promoter segments of potential downstream target genes like AfrVtg. These data show that AfrDSXs play crucial roles in regulating sexual development in Artemia, and further provide insight into the evolution of sex determination/differentiation in sexual organisms.
Collapse
Affiliation(s)
- Wen-Tao Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lian-Ying Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Jun Yan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ning Bi
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cai-Yuan Cheng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fan Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Jun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Yao Y, Li Y, Zhu X, Zhao C, Yang L, Huang X, Wang L. The emerging role of the piRNA/PIWI complex in respiratory tract diseases. Respir Res 2023; 24:76. [PMID: 36915129 PMCID: PMC10010017 DOI: 10.1186/s12931-023-02367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
PIWI-interacting RNA (piRNA) is a class of recently discovered small non-coding RNA molecules with a length of 18-33 nt that interacts with the PIWI protein to form the piRNA/PIWI complex. The PIWI family is a subfamily of Argonaute (AGO) proteins that also contain the AGO family which bind to microRNA (miRNA). Recently studies indicate that piRNAs are not specific to in the mammalian germline, they are also expressed in a tissue-specific manner in a variety of human tissues and participated in various of diseases, such as cardiovascular, neurological, and urinary tract diseases, and are especially prevalent in malignant tumors in these systems. However, the functions and abnormal expression of piRNAs in respiratory tract diseases and their underlying mechanisms remain incompletely understood. In this review, we discuss current studies summarizing the biogenetic processes, functions, and emerging roles of piRNAs in respiratory tract diseases, providing a reference value for future piRNA research.
Collapse
Affiliation(s)
- Yizhu Yao
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yaozhe Li
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiayan Zhu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
43
|
Suzuki Y, Yamada T, Suzuki MG. In Vitro Comparison of Sex-Specific Splicing Efficiencies of fem Pre-mRNA under Monoallelic and Heteroallelic Conditions of csd, a Master Sex-Determining Gene in the Honeybee. J Dev Biol 2023; 11:jdb11010010. [PMID: 36976099 PMCID: PMC10057164 DOI: 10.3390/jdb11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The sexual fate of honeybees is determined by the complementary sex determination (CSD) model: heterozygosity at a single locus (the CSD locus) determines femaleness, while hemizygosity or homozygosity at the CSD locus determines maleness. The csd gene encodes a splicing factor that regulates sex-specific splicing of the downstream target gene feminizer (fem), which is required for femaleness. The female mode of fem splicing occurs only when csd is present in the heteroallelic condition. To gain insights into how Csd proteins are only activated under the heterozygous allelic composition, we developed an in vitro assay system to evaluate the activity of Csd proteins. Consistent with the CSD model, the co-expression of two csd alleles, both of which lack splicing activity under the single-allele condition, restored the splicing activity that governs the female mode of fem splicing. RNA immunoprecipitation quantitative PCR analyses demonstrated that the CSD protein was specifically enriched in several exonic regions in the fem pre-mRNA, and enrichment in exons 3a and 5 was significantly greater under the heterozygous allelic composition than the single-allelic condition. However, in most cases csd expression under the monoallelic condition was capable of inducing the female mode of fem splicing contrary to the conventional CSD model. In contrast, repression of the male mode of fem splicing was predominant under heteroallelic conditions. These results were reproduced by real-time PCR of endogenous fem expression in female and male pupae. These findings strongly suggest that the heteroallelic composition of csd may be more important for the repression of the male splicing mode than for the induction of the female splicing mode of the fem gene.
Collapse
Affiliation(s)
- Yukihiro Suzuki
- INTERSTELLAR Inc., 301 Unico A, 3-4 Nisshin-cho, Kawasaki-ku, Kawasaki 210-0024, Kanagawa, Japan
| | - Takafumi Yamada
- YAMADA-KUN’S Bee Farm, 95 Ochino, Mugegawa, Seki 501-2602, Gifu, Japan
| | - Masataka G. Suzuki
- Division of Biological Sciences, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 302 Bioscience-Bldg, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
- Correspondence: ; Tel.: +81-4-7136-3694
| |
Collapse
|
44
|
Laslo M, Just J, Angelini DR. Theme and variation in the evolution of insect sex determination. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:162-181. [PMID: 35239250 PMCID: PMC10078687 DOI: 10.1002/jez.b.23125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022]
Abstract
The development of dimorphic adult sexes is a critical process for most animals, one that is subject to intense selection. Work in vertebrate and insect model species has revealed that sex determination mechanisms vary widely among animal groups. However, this variation is not uniform, with a limited number of conserved factors. Therefore, sex determination offers an excellent context to consider themes and variations in gene network evolution. Here we review the literature describing sex determination in diverse insects. We have screened public genomic sequence databases for orthologs and duplicates of 25 genes involved in insect sex determination, identifying patterns of presence and absence. These genes and a 3.5 reference set of 43 others were used to infer phylogenies and compared to accepted organismal relationships to examine patterns of congruence and divergence. The function of candidate genes for roles in sex determination (virilizer, female-lethal-2-d, transformer-2) and sex chromosome dosage compensation (male specific lethal-1, msl-2, msl-3) were tested using RNA interference in the milkweed bug, Oncopeltus fasciatus. None of these candidate genes exhibited conserved roles in these processes. Amidst this variation we wish to highlight the following themes for the evolution of sex determination: (1) Unique features within taxa influence network evolution. (2) Their position in the network influences a component's evolution. Our analyses also suggest an inverse association of protein sequence conservation with functional conservation.
Collapse
Affiliation(s)
- Mara Laslo
- Department of Cell Biology, Curriculum Fellows ProgramHarvard Medical School25 Shattuck StBostonMassachusettsUSA
| | - Josefine Just
- Department of Organismic and Evolutionary BiologyHarvard University26 Oxford StCambridgeMassachusettsUSA
- Department of BiologyColby College5734 Mayflower Hill DrWatervilleMaineUSA
| | - David R. Angelini
- Department of BiologyColby College5734 Mayflower Hill DrWatervilleMaineUSA
| |
Collapse
|
45
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
46
|
Just J, Laslo M, Lee YJ, Yarnell M, Zhang Z, Angelini DR. Distinct developmental mechanisms influence sexual dimorphisms in the milkweed bug Oncopeltus fasciatus. Proc Biol Sci 2023; 290:20222083. [PMID: 36722087 PMCID: PMC9890105 DOI: 10.1098/rspb.2022.2083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Sexual dimorphism is common in animals. The most complete model of sex determination comes from Drosophila melanogaster, where the relative dosage of autosomes and X chromosomes leads indirectly to sex-specific transcripts of doublesex (dsx). Female Dsx interacts with a mediator complex protein encoded by intersex (ix) to activate female development. In males, the transcription factor encoded by fruitless (fru) promotes male-specific behaviour. The genetics of sex determination have been examined in a small number of other insects, yet several questions remain about the plesiomorphic state. Is dsx required for female and male development? Is fru conserved in male behaviour or morphology? Are other components such as ix functionally conserved? To address these questions, we report expression and functional tests of dsx, ix and fru in the hemipteran Oncopeltus fasciatus, characterizing three sexual dimorphisms. dsx prevents ix phenotypes in all sexes and dimorphic traits in the milkweed bug. ix and fru are expressed across the body, in females and males. fru and ix also affect the genitalia of both sexes, but have effects limited to different dimorphic structures in different sexes. These results reveal roles for ix and fru distinct from other insects, and demonstrate distinct development mechanisms in different sexually dimorphic structures.
Collapse
Affiliation(s)
- Josefine Just
- Department of Biology, Colby College, 5700 Mayflower Hill, Waterville, ME 04901, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Mara Laslo
- Curriculum Fellows Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Ye Jin Lee
- Department of Biology, Colby College, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - Michael Yarnell
- Department of Pediatrics, University of Colorado School of Medicine, 13123 East 16th Avenue, B065, Aurora, CO 80045, USA
| | - Zhuofan Zhang
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive, Atlanta, GA 30332, USA
| | - David R. Angelini
- Department of Biology, Colby College, 5700 Mayflower Hill, Waterville, ME 04901, USA
| |
Collapse
|
47
|
Wang X, Ramat A, Simonelig M, Liu MF. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol 2023; 24:123-141. [PMID: 36104626 DOI: 10.1038/s41580-022-00528-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 02/02/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that associate with proteins of the PIWI clade of the Argonaute family. First identified in animal germ line cells, piRNAs have essential roles in germ line development. The first function of PIWI-piRNA complexes to be described was the silencing of transposable elements, which is crucial for maintaining the integrity of the germ line genome. Later studies provided new insights into the functions of PIWI-piRNA complexes by demonstrating that they regulate protein-coding genes. Recent studies of piRNA biology, including in new model organisms such as golden hamsters, have deepened our understanding of both piRNA biogenesis and piRNA function. In this Review, we discuss the most recent advances in our understanding of piRNA biogenesis, the molecular mechanisms of piRNA function and the emerging roles of piRNAs in germ line development mainly in flies and mice, and in infertility, cancer and neurological diseases in humans.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Anne Ramat
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
48
|
Hejníčková M, Dalíková M, Zrzavá M, Marec F, Lorite P, Montiel EE. Accumulation of retrotransposons contributes to W chromosome differentiation in the willow beauty Peribatodes rhomboidaria (Lepidoptera: Geometridae). Sci Rep 2023; 13:534. [PMID: 36631492 PMCID: PMC9834309 DOI: 10.1038/s41598-023-27757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The W chromosome of Lepidoptera is typically gene-poor, repeat-rich and composed of heterochromatin. Pioneering studies investigating this chromosome reported an abundance of mobile elements. However, the actual composition of the W chromosome varies greatly between species, as repeatedly demonstrated by comparative genomic hybridization (CGH) or fluorescence in situ hybridization (FISH). Here we present an analysis of repeats on the W chromosome in the willow beauty, Peribatodes rhomboidaria (Geometridae), a species in which CGH predicted an abundance of W-enriched or W-specific sequences. Indeed, comparative analysis of male and female genomes using RepeatExplorer identified ten putative W chromosome-enriched repeats, most of which are LTR or LINE mobile elements. We analysed the two most abundant: PRW LINE-like and PRW Bel-Pao. The results of FISH mapping and bioinformatic analysis confirmed their enrichment on the W chromosome, supporting the hypothesis that mobile elements are the driving force of W chromosome differentiation in Lepidoptera. As the W chromosome is highly underrepresented in chromosome-level genome assemblies of Lepidoptera, this recently introduced approach, combining bioinformatic comparative genome analysis with molecular cytogenetics, provides an elegant tool for studying this elusive and rapidly evolving part of the genome.
Collapse
Affiliation(s)
- Martina Hejníčková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic.
| | - Martina Dalíková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Magda Zrzavá
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - František Marec
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Jaén, Spain
| | - Eugenia E Montiel
- Department of Experimental Biology, Genetics Area, University of Jaén, Jaén, Spain
| |
Collapse
|
49
|
Long Q, Sun MH, Fan XX, Cai ZB, Zhang KY, Wang SY, Zhang JX, Gu XY, Song YX, Chen DF, Fu ZM, Guo R, Niu QS. First Identification and Investigation of piRNAs in the Larval Gut of the Asian Honeybee, Apis cerana. INSECTS 2022; 14:insects14010016. [PMID: 36661944 PMCID: PMC9863445 DOI: 10.3390/insects14010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Piwi-interacting RNAs (piRNAs), a class of small non-coding RNAs (ncRNAs), play pivotal roles in maintaining the genomic stability and modulating biological processes such as growth and development via the regulation of gene expression. However, the piRNAs in the Asian honeybee (Apis cerana) are still largely unknown at present. In this current work, on the basis of previously gained high-quality small RNA-seq datasets, piRNAs in the larval gut of Apis cerana cerana, the nominated species of A. cerana, were identified for the first time, followed by an in-depth investigation of the regulatory roles of differentially expressed piRNAs (DEpiRNAs) in the developmental process of the A. c. cerana. Here, a total of 621 piRNAs were identified in A. c. cerana larval guts, among which 499 piRNAs were shared by 4-(Ac4 group), 5-(Ac5 group), and 6-day-old (Ac6 group) larval guts, while the numbers of unique ones equaled 79, 37, and 11, respectively. The piRNAs in each group ranged from 24 nucleotides (nt) to 33 nt in length, and the first base of the piRNAs had a cytosine (C) bias. Additionally, five up-regulated and five down-regulated piRNAs were identified in the Ac4 vs. Ac5 comparison group, nine of which could target 9011 mRNAs; these targets were involved in 41 GO terms and 137 pathways. Comparatively, 22 up-regulated piRNAs were detected in the Ac5 vs. Ac6 comparison group, 21 of which could target 28,969 mRNAs; these targets were engaged in 46 functional terms and 164 pathways. The results suggested an overall alteration of the expression pattern of piRNAs during the developmental process of A. c. cerana larvae. The regulatory network analysis showed that piR-ace-748815 and piR-ace-512574 in the Ac4 vs. Ac5 comparison group as well as piR-ace-716466 and piR-ace-828146 in the Ac5 vs. Ac6 comparison group were linked to the highest number of targets. Further investigation indicated that targets of DEpiRNAs in the abovementioned two comparison groups could be annotated to several growth and development-associated pathways, such as the Jak/STAT, TGF-β, and Wnt signaling pathways, indicating the involvement of DEpiRNAs in modulating larval gut development via these crucial pathways. Moreover, the expression trends of six randomly selected DEpiRNAs were verified using a combination of stem-loop RT-PCR and RT-qPCR. These results not only provide a novel insight into the development of the A. c. cerana larval gut, but also lay a foundation for uncovering the epigenetic mechanism underlying larval gut development.
Collapse
Affiliation(s)
- Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-Hui Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao-Xue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zong-Bing Cai
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai-Yao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si-Yi Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jia-Xin Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao-Yu Gu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Xuan Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Da-Fu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jilin Institute of Apicultural Research, Jilin 132000, China
| | - Zhong-Min Fu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jilin Institute of Apicultural Research, Jilin 132000, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jilin Institute of Apicultural Research, Jilin 132000, China
| | - Qing-Sheng Niu
- Jilin Institute of Apicultural Research, Jilin 132000, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
50
|
Herran B, Sugimoto TN, Watanabe K, Imanishi S, Tsuchida T, Matsuo T, Ishikawa Y, Kageyama D. Cell-based analysis reveals that sex-determining gene signals in Ostrinia are pivotally changed by male-killing Wolbachia. PNAS NEXUS 2022; 2:pgac293. [PMID: 36712932 PMCID: PMC9837667 DOI: 10.1093/pnasnexus/pgac293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Wolbachia, a maternally transmitted bacterium, shows male-killing, an adaptive phenotype for cytoplasmic elements, in various arthropod species during the early developmental stages. In lepidopteran insects, lethality of males is accounted for by improper dosage compensation in sex-linked genes owing to Wolbachia-induced feminization. Herein, we established Ostrinia scapulalis cell lines that retained sex specificity per the splicing pattern of the sex-determining gene doublesex (Osdsx). We found that Wolbachia transinfection in male cell lines enhanced the female-specific splice variant of Osdsx (OsdsxF ) while suppressing the male-specific variant (OsdsxM ), indicating that Wolbachia affects sex-determining gene signals even in vitro. Comparative transcriptome analysis isolated only two genes that behave differently upon Wolbachia infection. The two genes were respectively homologous to Masculinizer (BmMasc) and zinc finger-2 (Bmznf-2), male-specifically expressed sex-determining genes of the silkworm Bombyx mori that encode CCCH-type zinc finger motif proteins. By using cultured cells and organismal samples, OsMasc and Osznf-2 were found to be sex-determining genes of O. scapulalis that are subjected to sex-specific alternative splicing depending upon the chromosomal sex, developmental stage, and infection status. Overall, our findings expound the cellular autonomy in insect sex determination and the mechanism through which sex is manipulated by intracellular selfish microbes.
Collapse
Affiliation(s)
| | | | - Kazuyo Watanabe
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Shigeo Imanishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Tsutomu Tsuchida
- Faculty of Science, Academic Assembly, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan
| | - Takashi Matsuo
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukio Ishikawa
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotogecho, Hirakata, Osaka 573-0101, Japan
| | | |
Collapse
|