1
|
Kore M, Acharya D, Sharma L, Vembar SS, Sundriyal S. Development and experimental validation of a machine learning model for the prediction of new antimalarials. BMC Chem 2025; 19:28. [PMID: 39885590 DOI: 10.1186/s13065-025-01395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
A large set of antimalarial molecules (N ~ 15k) was employed from ChEMBL to build a robust random forest (RF) model for the prediction of antiplasmodial activity. Rather than depending on high throughput screening (HTS) data, molecules tested at multiple doses against blood stages of Plasmodium falciparum were used for model development. The open-access and code-free KNIME platform was used to develop a workflow to train the model on 80% of data (N ~ 12k). The hyperparameter values were optimized to achieve the highest predictive accuracy with nine different molecular fingerprints (MFPs), among which Avalon MFPs (referred to as RF-1) provided the best results. RF-1 displayed 91.7% accuracy, 93.5% precision, 88.4% sensitivity and 97.3% area under the Receiver operating characteristic (AUROC) for the remaining 20% test set. The predictive performance of RF-1 was comparable to that of the malaria inhibitor prediction platform (MAIP), a recently reported consensus model based on a large proprietary dataset. However, hits obtained from RF-1 and MAIP from a commercial library did not overlap, suggesting that these two models are complementary. Finally, RF-1 was used to screen small molecules under clinical investigations for repurposing. Six molecules were purchased, out of which two human kinase inhibitors were identified to have single-digit micromolar antiplasmodial activity. One of the hits (compound 1) was a potent inhibitor of β-hematin, suggesting the involvement of parasite hemozoin (Hz) synthesis in the parasiticidal effect. The training and test sets are provided as supplementary information, allowing others to reproduce this work.
Collapse
Affiliation(s)
- Mukul Kore
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333 031, India
| | - Dimple Acharya
- Institute of Bioinformatics and Applied Biotechnology, Electronics City Phase I, Helix Biotech Park, Bengaluru, Karnataka, 560100, India
| | - Lakshya Sharma
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333 031, India
| | - Shruthi Sridhar Vembar
- Institute of Bioinformatics and Applied Biotechnology, Electronics City Phase I, Helix Biotech Park, Bengaluru, Karnataka, 560100, India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333 031, India.
| |
Collapse
|
2
|
Bouzón-Arnáiz I, Rawat M, Coyle R, Feufack-Donfack LB, Ea M, Orban A, Popovici J, Román-Álamo L, Fallica AN, Domínguez-Asenjo B, Moreno J, Arce EM, Mallo-Abreu A, Muñoz-Torrero D, Lee MCS, Fernàndez-Busquets X. YAT2150 is irresistible in Plasmodium falciparum and active against Plasmodium vivax and Leishmania clinical isolates. Sci Rep 2025; 15:2941. [PMID: 39848983 PMCID: PMC11758391 DOI: 10.1038/s41598-025-85346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
We recently characterized the potent antiplasmodial activity of the aggregated protein dye YAT2150, whose presumed mode of action is the inhibition of protein aggregation in the malaria parasite. Using single-dose and ramping methods, assays were done to select Plasmodium falciparum parasites resistant to YAT2150 concentrations ranging from 3× to 0.25× the in vitro IC50 of the compound (in the two-digit nM range) and performed a cross-resistance assessment in P. falciparum lines harboring mutations that make them resistant to a variety of antimalarial drugs. Resistant parasites did not emerge in vitro after 60 days of incubation, which postulates YAT2150 as an 'irresistible' antimalarial. The lyophilized compound is stable for at least one year stored at 25 °C. Tests performed in clinical isolates indicated that YAT2150 had also strong activity against Plasmodium vivax (IC50 between 4 and 36 nM) and Leishmania infantum (1.27 and 1.11 µM), placing it as a unique compound with perspectives of becoming the first drug to be used against both malaria and leishmaniasis.
Collapse
Affiliation(s)
- Inés Bouzón-Arnáiz
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, Barcelona, 08036, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Mukul Rawat
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Malen Ea
- Malaria Research Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, 120210, Phnom Penh, Cambodia
| | - Agnes Orban
- Malaria Research Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, 120210, Phnom Penh, Cambodia
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, 120210, Phnom Penh, Cambodia
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Paris, 75015, France
| | - Lucía Román-Álamo
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, Barcelona, 08036, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Antonino Nicolò Fallica
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, Barcelona, 08036, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Bárbara Domínguez-Asenjo
- WHO Collaborating Centre for Leishmaniasis, National Centre for Microbiology Instituto de Salud Carlos III, Majadahonda, 28220, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, National Centre for Microbiology Instituto de Salud Carlos III, Majadahonda, 28220, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Madrid, Spain
| | - Elsa M Arce
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Ana Mallo-Abreu
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, Barcelona, 08036, Spain.
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain.
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, Barcelona, 08028, Spain.
| |
Collapse
|
3
|
Knaab TC, Moritz A, Pessanha de Carvalho L, Klein S, Lungerich B, Lohse K, Kruse L, Mombo-Ngoma G, Orta L, Thibaud JL, de Villiers KA, Fidock DA, Burckhardt BB, Held J, Wittlin S, Kurz T. TKK130 is a 3-Hydroxy-Propanamidine (HPA) with Potent Antimalarial In Vivo Activity and a High Barrier to Resistance. J Med Chem 2025; 68:95-107. [PMID: 39723908 DOI: 10.1021/acs.jmedchem.4c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Malaria continues to pose a significant burden on populations in endemic areas and requires innovative treatment options. Here, we report the synthesis and preclinical evaluation of the novel 3-hydroxypropanamidine (HPA) 2 (TKK130), which shows excellent antiplasmodial in vitro activity against drug-sensitive and -resistant Plasmodium falciparum strains. Moreover, in various human cell lines, the compound shows no cytotoxicity and excellent parasite selectivity. The compound inhibits synthetic hemozoin (β-hematin) formation, with IC50 values lower than chloroquine (CQ), and its in vitro rate of activity is comparable with the fast-acting antimalarial drug dihydroartemisinin. Furthermore, selection studies reveal a very low propensity for resistance development. Based on initial in vivo pharmacokinetic snapshot data, 2 (TKK130) has a long-lasting, linear pharmacokinetic profile. In vivo, this novel HPA exhibits curative activity in the Plasmodium bergheimouse model and potent activity in theP. falciparum SCID mouse model after oral administration.
Collapse
Affiliation(s)
- Tanja C Knaab
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alena Moritz
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, 48149 Muenster, Germany
| | - Lais Pessanha de Carvalho
- Institute of Tropical Medicine, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Saskia Klein
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Beate Lungerich
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katharina Lohse
- Institute of Tropical Medicine, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
| | - Linn Kruse
- Institute of Tropical Medicine, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Medicales de Lambaréné, Lambaréné, B.P 242 Lambaréné, Gabon
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine and Department of Medicine, University Medical Centre Hamburg-Eppendorf, D-20359 Hamburg, Germany
| | - Lily Orta
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jessica L Thibaud
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland 7602, South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland 7602, South Africa
| | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Bjoern B Burckhardt
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, 48149 Muenster, Germany
| | - Jana Held
- Institute of Tropical Medicine, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
- German Center for Infection Research, Partner Site Tubingen, 72074 Tuebingen, Germany
- Centre de Recherches Medicales de Lambaréné, Lambaréné, B.P 242 Lambaréné, Gabon
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel 4002, Switzerland, University of Basel, Basel CH-4003, Switzerland
| | - Thomas Kurz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Eadsforth TC, Torrie LS, Rowland P, Edgar EV, MacLean LM, Paterson C, Robinson DA, Shepherd SM, Thomas J, Thomas MG, Gray DW, Postis VLG, De Rycker M. Pharmacological and structural understanding of the Trypanosoma cruzi proteasome provides key insights for developing site-specific inhibitors. J Biol Chem 2025; 301:108049. [PMID: 39638245 PMCID: PMC11748689 DOI: 10.1016/j.jbc.2024.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The proteasome is considered an excellent drug target for many infectious diseases as well as cancer. Challenges with robust and safe supply of proteasomes from infectious agents, lack of structural information, and complex pharmacology due to multiple active sites have hampered progress in the infectious disease space. We recombinantly expressed the proteasome of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, and demonstrate pharmacological equivalence to the native T. cruzi proteasome. Active-site mutant recombinant proteasomes reveal substrate promiscuity for WT proteasomes, with important implications for assessing pharmacological responses of active-site selective inhibitors. Using these mutant proteasomes, we show that some selective parasite proteasome inhibitors only partially inhibit the chymotrypsin-like activity, including a newly developed 5-(phenoxymethyl)furan-2-carboxamide-based proteasome inhibitor. In spite of partial inhibition, these compounds remain potent inhibitors of intracellular T. cruzi growth. Drug-resistant mutants provide further insights in drug mode-of-inhibition. We also present the high-resolution CryoEM structures of both native and recombinantly-expressed T. cruzi proteasomes which reveal pharmacologically relevant differences in the ligand-binding site compared to the related Leishmania proteasome. Furthermore, we show that the trypanosomatid β4/β5 selectivity pocket is not present in the proteasome structures of other protozoan parasites. This work highlights the need, and provides approaches, to precisely assess proteasome substrate selectivity and pharmacology. It enables structure-guided drug discovery for this promising Chagas disease drug target, provides a new chemical starting point for drug discovery, and paves the road for development of robust proteasome drug discovery programmes for other eukaryotic infectious diseases.
Collapse
Affiliation(s)
- Thomas C Eadsforth
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Leah S Torrie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | | | - Lorna M MacLean
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Christy Paterson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - David A Robinson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Sharon M Shepherd
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - John Thomas
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Michael G Thomas
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - David W Gray
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Vincent L G Postis
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK.
| |
Collapse
|
5
|
Jia X, Huang C, Liu F, Dong Z, Liu K. Elongation factor 2 in cancer: a promising therapeutic target in protein translation. Cell Mol Biol Lett 2024; 29:156. [PMID: 39707196 DOI: 10.1186/s11658-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
Aberrant elongation of proteins can lead to the activation of oncogenic signaling pathways, resulting in the dysregulation of oncogenic signaling pathways. Eukaryotic elongation factor 2 (eEF2) is an essential regulator of protein synthesis that precisely elongates nascent peptides in the protein elongation process. Although studies have linked aberrant eEF2 expression to various cancers, research has primarily focused on its structure, highlighting a need for deeper exploration into its molecular functions. In this review, recent advancements in the structure, guanosine triphosphatase (GTPase) activity, posttranslational modifications, regulatory factors, and inhibitors of eEF2 are summarized. These findings provide a comprehensive cognition on the critical role of eEF2 and its potential as a therapeutic target in cancer. Furthermore, this review highlights important unanswered questions that warrant investigation in future research.
Collapse
Affiliation(s)
- Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chuntian Huang
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathology and Pathophysiology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Fangfang Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
6
|
Sakura T, Ishii R, Yoshida E, Kita K, Kato T, Inaoka DK. Accelerating Antimalarial Drug Discovery with a New High-Throughput Screen for Fast-Killing Compounds. ACS Infect Dis 2024; 10:4115-4126. [PMID: 39561299 DOI: 10.1021/acsinfecdis.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The urgent need for rapidly acting compounds in the development of antimalarial drugs underscores the significance of such compounds in overcoming resistance issues and improving patient adherence to antimalarial treatments. The present study introduces a high-throughput screening (HTS) approach using 1536-well plates, employing Plasmodium falciparum lactate dehydrogenase (PfLDH) combined with nitroreductase (NTR) and fluorescent probes to evaluate inhibition of the growth of the asexual blood stage of malaria parasites. This method was adapted to efficiently assess the speed of action profiling (SAP) in a 384-well plate format, streamlining the traditionally time-consuming screening process. By successfully screening numerous compounds, this approach identified fast-killing hits early in the screening process, addressing challenges associated with artemisinin-based combination therapies. The high-throughput SAP method is expected to be of value in continuously monitoring fast-killing properties during structure-activity relationship studies, expediting the identification and development of novel, rapidly acting antimalarial drugs within phenotypic drug discovery campaigns.
Collapse
Affiliation(s)
- Takaya Sakura
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Ryuta Ishii
- Department of Cellular Architecture Studies, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Eri Yoshida
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Department of Infection Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Teruhisa Kato
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan
- Exploratory Research for Drug Discovery, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Department of Infection Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Gomez-Gonzalez PJ, Gupta A, Drought LG, Patel A, Okombo J, van der Watt M, Walker-Gray R, Schindler KA, Burkhard AY, Yeo T, Narwal SK, Bloxham TS, Flueck C, Walker EM, Rey JA, Fairhurst KJ, Reader J, Park H, Pollard HG, Stewart LB, Brandner-Garrod L, Kristan M, Sterk GJ, van Nuland YM, Manko E, van Schalkwyk DA, Zheng Y, Leurs R, Dechering KJ, Aguiar ACC, Guido RVC, Pereira DB, Tumwebaze PK, Nosbya SL, Rosenthal PJ, Cooper RA, Palmer M, Parkinson T, Burrows JN, Uhlemann AC, Birkholtz LM, Small-Saunders JL, Duffy J, Fidock DA, Brown A, Gardner M, Baker DA. Inhibitors of malaria parasite cyclic nucleotide phosphodiesterases block asexual blood-stage development and mosquito transmission. SCIENCE ADVANCES 2024; 10:eadq1383. [PMID: 39642214 PMCID: PMC11623267 DOI: 10.1126/sciadv.adq1383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024]
Abstract
Cyclic nucleotide-dependent phosphodiesterases (PDEs) play essential roles in regulating the malaria parasite life cycle, suggesting that they may be promising antimalarial drug targets. PDE inhibitors are used safely to treat a range of noninfectious human disorders. Here, we report three subseries of fast-acting and potent Plasmodium falciparum PDEβ inhibitors that block asexual blood-stage parasite development and that are also active against human clinical isolates. Two of the inhibitor subseries also have potent transmission-blocking activity by targeting PDEs expressed during sexual parasite development. In vitro drug selection experiments generated parasites with moderately reduced susceptibility to the inhibitors. Whole-genome sequencing of these parasites detected no mutations in PDEβ but rather mutations in downstream effectors: either the catalytic or regulatory subunits of cyclic adenosine monophosphate-dependent protein kinase (PKA) or in the 3-phosphoinositide-dependent protein kinase that is required for PKA activation. Several properties of these P. falciparum PDE inhibitor series make them attractive for further progression through the antimalarial drug discovery pipeline.
Collapse
Affiliation(s)
| | - Antima Gupta
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Laura G. Drought
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Ryan Walker-Gray
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Kyra A. Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Sunil K. Narwal
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Talia S. Bloxham
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Eloise M. Walker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Joshua A. Rey
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Kate J. Fairhurst
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Heekuk Park
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Harry G. Pollard
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Lindsay B. Stewart
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Luke Brandner-Garrod
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - Emilia Manko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Donelly A. van Schalkwyk
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Yang Zheng
- Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rob Leurs
- Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | - Rafael V. C. Guido
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Dhelio B. Pereira
- Research Center for Tropical Medicine of Rondonia, Porto Velho, Brazil
| | | | | | | | | | | | | | - Jeremy N. Burrows
- Medicines for Malaria Venture, Geneva, Switzerland
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Jennifer L. Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - James Duffy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - David A. Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
8
|
Xie SC, Tai CW, Morton CJ, Ma L, Huang SC, Wittlin S, Du Y, Hu Y, Dogovski C, Salimimarand M, Griffin R, England D, de la Cruz E, Deni I, Yeo T, Burkhard AY, Striepen J, Schindler KA, Crespo B, Gamo FJ, Khandokar Y, Hutton CA, Rabie T, Birkholtz LM, Famodimu MT, Delves MJ, Bolsher J, Koolen KMJ, van der Laak R, Aguiar ACC, Pereira DB, Guido RVC, Creek DJ, Fidock DA, Dick LR, Brand SL, Gould AE, Langston S, Griffin MDW, Tilley L. A potent and selective reaction hijacking inhibitor of Plasmodium falciparum tyrosine tRNA synthetase exhibits single dose oral efficacy in vivo. PLoS Pathog 2024; 20:e1012429. [PMID: 39652589 DOI: 10.1371/journal.ppat.1012429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/26/2024] [Accepted: 10/31/2024] [Indexed: 12/28/2024] Open
Abstract
The Plasmodium falciparum cytoplasmic tyrosine tRNA synthetase (PfTyrRS) is an attractive drug target that is susceptible to reaction-hijacking by AMP-mimicking nucleoside sulfamates. We previously identified an exemplar pyrazolopyrimidine ribose sulfamate, ML901, as a potent reaction hijacking inhibitor of PfTyrRS. Here we examined the stage specificity of action of ML901, showing very good activity against the schizont stage, but lower trophozoite stage activity. We explored a series of ML901 analogues and identified ML471, which exhibits improved potency against trophozoites and enhanced selectivity against a human cell line. Additionally, it has no inhibitory activity against human ubiquitin-activating enzyme (UAE) in vitro. ML471 exhibits low nanomolar activity against asexual blood stage P. falciparum and potent activity against liver stage parasites, gametocytes and transmissible gametes. It is fast-acting and exhibits a long in vivo half-life. ML471 is well-tolerated and shows single dose oral efficacy in the SCID mouse model of P. falciparum malaria. We confirm that ML471 is a reaction hijacking inhibitor that is converted into a tight binding Tyr-ML471 conjugate by the PfTyrRS enzyme. A crystal structure of the PfTyrRS/ Tyr-ML471 complex offers insights into improved potency, while molecular docking into UAE provides a rationale for improved selectivity.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Chia-Wei Tai
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig J Morton
- Biomedical Manufacturing Program, CSIRO, Clayton South, Victoria, Australia
| | - Liting Ma
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Shih-Chung Huang
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Yawei Du
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yongbo Hu
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Con Dogovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mina Salimimarand
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Griffin
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Dylan England
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Elisa de la Cruz
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Ioanna Deni
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Tomas Yeo
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Anna Y Burkhard
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Josefine Striepen
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Kyra A Schindler
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Benigno Crespo
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | | | | | - Craig A Hutton
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tayla Rabie
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Mufuliat T Famodimu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | - Anna C C Aguiar
- Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Dhelio B Pereira
- Research Center for Tropical Medicine of Rondonia, Porto Velho, Brazil
| | - Rafael V C Guido
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Darren J Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
| | - Lawrence R Dick
- Seofon Consulting, Natick, Massachusetts, United States of America
| | | | - Alexandra E Gould
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Steven Langston
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Leann Tilley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Biswas P, Roy R, Ghosh K, Nath D, Samadder A, Nandi S. To quest new targets of Plasmodium parasite and their potential inhibitors to combat antimalarial drug resistance. J Parasit Dis 2024; 48:671-722. [PMID: 39493470 PMCID: PMC11527868 DOI: 10.1007/s12639-024-01687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/08/2024] [Indexed: 11/05/2024] Open
Abstract
Malaria remains a global health challenge with significant mortality and morbidity annually, with resistant parasite strains complicating treatment efforts. There is an acute need for novel antimalarial drugs that can put a stop to the future public health crisis caused by the multi-drug resistance strains of the Plasmodium parasite. However, the discovery of these new components is very challenging in the context of the generation of multi-drug resistance properties of malaria. The novel drugs also need to have several properties involving enhanced therapeutic prospects, successful treatment capabilities, and novel mechanisms of action that will forestall the resistance. To successfully achieve this aim researchers are trying to focus on exploring promising malaria targets. Various approaches have been made for the development of drugs for malaria including the remodelling of existing drugs and the development of novel inhibitors which acts on new targets. Advancement in the study provides more information on the biology of parasites and the new targets which help in the development of novel drugs. The present review focuses on the study of novel targets of malaria parasites and subsequent inhibitors of those particular targets. Some of these targets include malarial protease, various transporter proteins, enzymes involved in the synthesis of DNA, and nucleic acids like dihydroorotate dehydrogenase, dihydrofolate reductase, apicoplast and dihydropteroate synthase. Other potential targets are also included in this review such as isoprenoid biosynthesis, farnesyl transferase of parasite, P. falciparum translational elongation factor 2, and phosphatidyl inositol 4 kinase. These promising targets have also been summed up along with their corresponding inhibitors for combating multi-drug resistance malaria.
Collapse
Affiliation(s)
- Pratyusa Biswas
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Rini Roy
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Kuldip Ghosh
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Debjani Nath
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Asmita Samadder
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713 India
| |
Collapse
|
10
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
Luth MR, Godinez-Macias KP, Chen D, Okombo J, Thathy V, Cheng X, Daggupati S, Davies H, Dhingra SK, Economy JM, Edgar RCS, Gomez-Lorenzo MG, Istvan ES, Jado JC, LaMonte GM, Melillo B, Mok S, Narwal SK, Ndiaye T, Ottilie S, Palomo Diaz S, Park H, Peña S, Rocamora F, Sakata-Kato T, Small-Saunders JL, Summers RL, Tumwebaze PK, Vanaerschot M, Xia G, Yeo T, You A, Gamo FJ, Goldberg DE, Lee MCS, McNamara CW, Ndiaye D, Rosenthal PJ, Schreiber SL, Serra G, De Siqueira-Neto JL, Skinner-Adams TS, Uhlemann AC, Kato N, Lukens AK, Wirth DF, Fidock DA, Winzeler EA. Systematic in vitro evolution in Plasmodium falciparum reveals key determinants of drug resistance. Science 2024; 386:eadk9893. [PMID: 39607932 DOI: 10.1126/science.adk9893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/21/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
Surveillance of drug resistance and the discovery of novel targets-key objectives in the fight against malaria-rely on identifying resistance-conferring mutations in Plasmodium parasites. Current approaches, while successful, require laborious experimentation or large sample sizes. To elucidate shared determinants of antimalarial resistance that can empower in silico inference, we examined the genomes of 724 Plasmodium falciparum clones, each selected in vitro for resistance to one of 118 compounds. We identified 1448 variants in 128 recurrently mutated genes, including drivers of antimalarial multidrug resistance. In contrast to naturally occurring variants, those selected in vitro are more likely to be missense or frameshift, involve bulky substitutions, and occur in conserved, ordered protein domains. Collectively, our dataset reveals mutation features that predict drug resistance in eukaryotic pathogens.
Collapse
Affiliation(s)
- Madeline R Luth
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | | | - Daisy Chen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - John Okombo
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiu Cheng
- Global Health Drug Discovery Institute, Beijing, China
| | - Sindhu Daggupati
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Heledd Davies
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan M Economy
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca C S Edgar
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | - Eva S Istvan
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Juan Carlos Jado
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Gregory M LaMonte
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Bruno Melillo
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sunil K Narwal
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Tolla Ndiaye
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Sabine Ottilie
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | | | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stella Peña
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Montevideo, Uruguay
| | - Frances Rocamora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Tomoyo Sakata-Kato
- Global Health Drug Discovery Institute, Beijing, China
- Department of Protozoology, Nekken Institute for Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jennifer L Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert L Summers
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | | | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Guoqin Xia
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Ashley You
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | | | - Daniel E Goldberg
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Daouda Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Gloria Serra
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Montevideo, Uruguay
| | - Jair Lage De Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Tina S Skinner-Adams
- Institute for Biomedicine and Glycomics and School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nobutaka Kato
- Global Health Drug Discovery Institute, Beijing, China
- Department of Protozoology, Nekken Institute for Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Godinez-Macias KP, Chen D, Wallis JL, Siegel MG, Adam A, Bopp S, Carolino K, Coulson LB, Durst G, Thathy V, Esherick L, Farringer MA, Flannery EL, Forte B, Liu T, Magalhaes LG, Gupta AK, Istvan ES, Jiang T, Kumpornsin K, Lobb K, McLean K, Moura IMR, Okombo J, Payne NC, Plater A, Rao SPS, Siqueira-Neto JL, Somsen BA, Summers RL, Zhang R, Gilson MK, Gamo FJ, Campo B, Baragaña B, Duffy J, Gilbert IH, Lukens AK, Dechering KJ, Niles JC, McNamara CW, Cheng X, Birkholtz LM, Bronkhorst AW, Fidock DA, Wirth DF, Goldberg DE, Lee MCS, Winzeler EA. Revisiting the Plasmodium falciparum druggable genome using predicted structures and data mining. RESEARCH SQUARE 2024:rs.3.rs-5412515. [PMID: 39649165 PMCID: PMC11623766 DOI: 10.21203/rs.3.rs-5412515/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The identification of novel drug targets for the purpose of designing small molecule inhibitors is key component to modern drug discovery. In malaria parasites, discoveries of antimalarial targets have primarily occurred retroactively by investigating the mode of action of compounds found through phenotypic screens. Although this method has yielded many promising candidates, it is time- and resource-consuming and misses targets not captured by existing antimalarial compound libraries and phenotypic assay conditions. Leveraging recent advances in protein structure prediction and data mining, we systematically assessed the Plasmodium falciparum genome for proteins amenable to target-based drug discovery, identifying 867 candidate targets with evidence of small molecule binding and blood stage essentiality. Of these, 540 proteins showed strong essentiality evidence and lack inhibitors that have progressed to clinical trials. Expert review and rubric-based scoring of this subset based on additional criteria such as selectivity, structural information, and assay developability yielded 67 high priority candidates. This study also provides a genome-wide data resource and implements a generalizable framework for systematically evaluating and prioritizing novel pathogenic disease targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anil K Gupta
- Calibr-Skaggs Institute for Innovative Medicines
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiu Cheng
- Global Health Drug Discovery Institute
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nguyen GB, Cooper CA, McWhorter O, Sharma R, Elliot A, Ruberto A, Freitas R, Pathak AK, Kyle DE, Maher SP. Screening the Global Health Priority Box against Plasmodium berghei liver stage parasites using an inexpensive luciferase detection protocol. Malar J 2024; 23:357. [PMID: 39580415 PMCID: PMC11585928 DOI: 10.1186/s12936-024-05155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Malaria, a disease caused by parasites of the genus Plasmodium, continues to impact many regions globally. The rise in resistance to artemisinin-based anti-malarial drugs highlights the need for new treatments. Ideally, new anti-malarials will kill the asymptomatic liver stages as well as the symptomatic blood stages. While blood stage screening assays are routine and efficient, liver stage screening assays are more complex and costly. To decrease the cost of liver stage screening, a previously reported luciferase detection protocol requiring only common laboratory reagents was adapted for testing against luciferase-expressing Plasmodium berghei liver stage parasites. METHODS After optimizing cell lysis conditions, the concentration of reagents, and the density of host hepatocytes (HepG2), the protocol was validated with 28 legacy anti-malarials to show this simple protocol produces a stable signal useful for obtaining quality small molecule potency data similar to that obtained from a high content imaging endpoint. The protocol was then used to screen the Global Health Priority Box (GHPB) and confirm the potency of hits in dose-response assays. Selectivity was determined using a galactose-based, 72 h HepG2 assay to avoid missing mitochondrial-toxic compounds due to the Crabtree effect. Receiver-operator characteristic plots were used to retroactively characterize the screens' predictive value. RESULTS Optimal luciferase signal was achieved using a lower HepG2 seed density (5 × 103 cells/well of a 384-well microtitre plate) compared to many previously reported luciferase-based screens. While producing lower signal compared to a commercial alternative, this luciferase detection method was found much more stable, with a > 3 h half-life, and robust enough for producing dose-response plots with as few as 500 sporozoites/well. A screen of the GHPB resulted in 9 hits with selective activity against P. berghei liver schizonts, including MMV674132 which exhibited 30.2 nM potency. Retrospective analyses show excellent predictive value for both anti-malarial activity and cytotoxicity. CONCLUSIONS This method is suitable for high-throughput screening at a cost nearly 20-fold less than using commercial luciferase detection kits, thereby enabling larger liver stage anti-malarial screens and hit optimization make-test cycles. Further optimization of the hits detected using this protocol is ongoing.
Collapse
Affiliation(s)
- Gia-Bao Nguyen
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Olivia McWhorter
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Ritu Sharma
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Anne Elliot
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Anthony Ruberto
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Rafael Freitas
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Ashutosh K Pathak
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Naude M, van Heerden A, Reader J, van der Watt M, Niemand J, Joubert D, Siciliano G, Alano P, Njoroge M, Chibale K, Herreros E, Leroy D, Birkholtz LM. Eliminating malaria transmission requires targeting immature and mature gametocytes through lipoidal uptake of antimalarials. Nat Commun 2024; 15:9896. [PMID: 39548094 PMCID: PMC11568134 DOI: 10.1038/s41467-024-54144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Novel antimalarial compounds targeting both the pathogenic and transmissible stages of the human malaria parasite, Plasmodium falciparum, would greatly benefit malaria elimination strategies. However, most compounds affecting asexual blood stage parasites show severely reduced activity against gametocytes. The impact of this activity loss on a compound's transmission-blocking activity is unclear. Here, we report the systematic evaluation of the activity loss against gametocytes and investigate the confounding factors contributing to this. A threshold for acceptable activity loss between asexual blood stage parasites and gametocytes was defined, with near-equipotent compounds required to prevent continued gametocyte maturation and onward transmission. Target abundance is not predictive of gametocytocidal activity, but instead, lipoidal uptake is the main barrier of dual activity and is influenced by distinct physicochemical properties. This study provides guidelines for the required profiles of potential dual-active antimalarial agents and facilitates the development of effective transmission-blocking compounds.
Collapse
Affiliation(s)
- Mariska Naude
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Mariëtte van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Dorè Joubert
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | | | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
- Department of Biochemistry, Stellenbosch University, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
15
|
Konsue A, Lamtha T, Gleeson D, Jones DJL, Britton RG, Pickering JD, Choowongkomon K, Gleeson MP. Design, preparation and biological evaluation of new Rociletinib-inspired analogs as irreversible EGFR inhibitors to treat non-small-cell-lung cancer. Bioorg Med Chem 2024; 113:117906. [PMID: 39299082 DOI: 10.1016/j.bmc.2024.117906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Epidermal growth factor receptor (EGFR) kinase has been implicated in the uncontrolled cell growth associated with non-small cell lung cancer (NSCLC). This has prompted the development of 3 generations of EGFR inhibitors over the last 2 decades due to the rapid development of drug resistance issues caused by clinical mutations, including T790M, L858R and the double mutant T790M & L858R. In this work we report the design, preparation and biological assessment of new irreversible 2,4-diaminopyrimidine-based inhibitors of EGFR kinase. Twenty new compounds have been prepared and evaluated which incorporate a range of electrophilic moieties. These include acrylamide, 2-chloroacetamide and (2E)-3-phenylprop-2-enamide, to allow reaction with residue Cys797. In addition, more polar groups have been incorporated to provide a better balance of physical properties than clinical candidate Rociletinib. Inhibitory activities against EGFR wildtype (WT) and EGFR T790M & L858R have been evaluated along with cytotoxicity against EGFR-overexpressing (A549, A431) and normal cell lines (HepG2). Selectivity against JAK3 kinase as well as physicochemical properties determination (logD7.4 and phosphate buffer solubility) have been used to profile the compounds. We have identified 20, 21 and 23 as potent mutant EGFR inhibitors (≤20 nM), with comparable or better selectivity over WT EGFR, and lower activity at JAK3, than Osimertinib or Rociletinib. Compounds 21 displayed the best combination of EGFR mutant activity, JAK3 selectivity, cellular activity and physicochemical properties. Finally, kinetic studies on 21 were performed, confirming a covalent mechanism of action at EGFR.
Collapse
Affiliation(s)
- Adchata Konsue
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Thomanai Lamtha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Duangkamol Gleeson
- Department of Chemistry & Applied Computational Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Donald J L Jones
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Robert G Britton
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - James D Pickering
- School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - M Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
16
|
Caldwell N, Peet C, Miller P, Colon BL, Taylor MG, Cocco M, Dawson A, Lukac I, Teixeira JE, Robinson L, Frame L, Seizova S, Damerow S, Tamaki F, Post J, Riley J, Mutter N, Hanna JC, Ferguson L, Hu X, Tinti M, Forte B, Norcross NR, Campbell PS, Svensen N, Caldwell FC, Jansen C, Postis V, Read KD, Huston CD, Gilbert IH, Baragaña B, Pawlowic MC. Cryptosporidium lysyl-tRNA synthetase inhibitors define the interplay between solubility and permeability required to achieve efficacy. Sci Transl Med 2024; 16:eadm8631. [PMID: 39441903 DOI: 10.1126/scitranslmed.adm8631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Cryptosporidiosis is a diarrheal disease caused by infection with Cryptosporidium spp. parasites and is a leading cause of death in malnourished children worldwide. The only approved treatment, nitazoxanide, has limited efficacy in this at-risk patient population. Additional safe therapeutics are urgently required to tackle this unmet medical need. However, the development of anti-cryptosporidial drugs is hindered by a lack of understanding of the optimal compound properties required to treat this gastrointestinal infection. To address this knowledge gap, a diverse set of potent lysyl-tRNA synthetase inhibitors was profiled to identify optimal physicochemical and pharmacokinetic properties required for efficacy in a chronic mouse model of infection. The results from this comprehensive study illustrated the importance of balancing solubility and permeability to achieve efficacy in vivo. Our results establish in vitro criteria for solubility and permeability that are predictive of compound efficacy in vivo to guide the optimization of anti-cryptosporidial drugs. Two compounds from chemically distinct series (DDD489 and DDD508) were identified as demonstrating superior efficacy and prioritized for further evaluation. Both compounds achieved marked parasite reduction in immunocompromised mouse models and a disease-relevant calf model of infection. On the basis of these promising data, these compounds have been selected for progression to preclinical safety studies, expanding the portfolio of potential treatments for this neglected infectious disease.
Collapse
Affiliation(s)
- Nicola Caldwell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Caroline Peet
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter Miller
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT 05401, USA
| | - Beatrice L Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Malcolm G Taylor
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mattia Cocco
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alice Dawson
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Iva Lukac
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jose E Teixeira
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT 05401, USA
| | - Lee Robinson
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Laura Frame
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Simona Seizova
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sebastian Damerow
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Fabio Tamaki
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - John Post
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jennifer Riley
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicole Mutter
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jack C Hanna
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Liam Ferguson
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Xiao Hu
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Neil R Norcross
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter S Campbell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nina Svensen
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Flora C Caldwell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Chimed Jansen
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Vincent Postis
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kevin D Read
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christopher D Huston
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT 05401, USA
| | - Ian H Gilbert
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mattie C Pawlowic
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
17
|
McLellan JL, Morales-Hernandez B, Saeger S, Hanson KK. A high content imaging assay for identification of specific inhibitors of native Plasmodium liver stage protein synthesis. Antimicrob Agents Chemother 2024; 68:e0079324. [PMID: 39254294 PMCID: PMC11459927 DOI: 10.1128/aac.00793-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Plasmodium parasite resistance to antimalarial drugs is a serious threat to public health in malaria-endemic areas. Compounds that target core cellular processes like translation are highly desirable, as they should be capable of killing parasites in their liver and blood stage forms, regardless of molecular target or mechanism. Assays that can identify these compounds are thus needed. Recently, specific quantification of native Plasmodium berghei liver stage protein synthesis, as well as that of the hepatoma cells supporting parasite growth, was achieved via automated confocal feedback microscopy of the o-propargyl puromycin (OPP)-labeled nascent proteome, but this imaging modality is limited in throughput. Here, we developed and validated a miniaturized high content imaging (HCI) version of the OPP assay that increases throughput, before deploying this approach to screen the Pathogen Box. We identified only two hits; both of which are parasite-specific quinoline-4-carboxamides, and analogs of the clinical candidate and known inhibitor of blood and liver stage protein synthesis, DDD107498/cabamiquine. We further show that these compounds have strikingly distinct relationships between their antiplasmodial and translation inhibition efficacies. These results demonstrate the utility and reliability of the P. berghei liver stage OPP HCI assay for the specific, single-well quantification of Plasmodium and human protein synthesis in the native cellular context, allowing the identification of selective Plasmodium translation inhibitors with the highest potential for multistage activity.
Collapse
Affiliation(s)
- James L. McLellan
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Beatriz Morales-Hernandez
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sarah Saeger
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Kirsten K. Hanson
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
18
|
Okombo J, Fidock DA. Towards next-generation treatment options to combat Plasmodium falciparum malaria. Nat Rev Microbiol 2024:10.1038/s41579-024-01099-x. [PMID: 39367132 DOI: 10.1038/s41579-024-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Malaria, which is caused by infection of red blood cells with Plasmodium parasites, can be fatal in non-immune individuals if left untreated. The recent approval of the pre-erythrocytic vaccines RTS, S/AS01 and R21/Matrix-M has ushered in hope of substantial reductions in mortality rates, especially when combined with other existing interventions. However, the efficacy of these vaccines is partial, and chemotherapy remains central to malaria treatment and control. For many antimalarial drugs, clinical efficacy has been compromised by the emergence of drug-resistant Plasmodium falciparum strains. Therefore, there is an urgent need for new antimalarial medicines to complement the existing first-line artemisinin-based combination therapies. In this Review, we discuss various opportunities to expand the present malaria treatment space, appraise the current antimalarial drug development pipeline and highlight examples of promising targets. We also discuss other approaches to circumvent antimalarial resistance and how potency against drug-resistant parasites could be retained.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
19
|
Huggins DJ, Baell J, Brennan PE, Burgin A, Scott DE. The benefits of translating biomedical research at drug discovery institutes. Nat Rev Drug Discov 2024:10.1038/d41573-024-00142-z. [PMID: 39327502 DOI: 10.1038/d41573-024-00142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
|
20
|
Ferreira LT, Cassiano GC, Alvarez LCS, Okombo J, Calit J, Fontinha D, Gil-Iturbe E, Coyle R, Andrade CH, Sunnerhagen P, Bargieri DY, Prudêncio M, Quick M, Cravo PV, Lee MCS, Fidock DA, Costa FTM. A novel 4-aminoquinoline chemotype with multistage antimalarial activity and lack of cross-resistance with PfCRT and PfMDR1 mutants. PLoS Pathog 2024; 20:e1012627. [PMID: 39471233 PMCID: PMC11521309 DOI: 10.1371/journal.ppat.1012627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Artemisinin-based combination therapy (ACT) is the mainstay of effective treatment of Plasmodium falciparum malaria. However, the long-term utility of ACTs is imperiled by widespread partial artemisinin resistance in Southeast Asia and its recent emergence in parts of East Africa. This underscores the need to identify chemotypes with new modes of action (MoAs) to circumvent resistance to ACTs. In this study, we characterized the asexual blood stage antiplasmodial activity and resistance mechanisms of LDT-623, a 4-aminoquinoline (4-AQ). We also detected LDT-623 activity against multiple stages (liver schizonts, stage IV-V gametocytes, and ookinetes) of Plasmodium's life cycle, a feature unlike other 4-AQs such as chloroquine (CQ) and piperaquine (PPQ). Using heme fractionation profiling and drug uptake studies in PfCRT-containing proteoliposomes, we observed inhibition of hemozoin formation and PfCRT-mediated transport, which constitute characteristic features of 4-AQs' MoA. We also found minimal cross-resistance to LDT-623 in a panel of mutant pfcrt or pfmdr1 lines, but not the PfCRT F145I mutant that is highly resistant to PPQ resistance yet is very unfit. No P. falciparum parasites were recovered in an in vitro resistance selection study, suggesting a high barrier for resistance to emerge. Finally, a competitive growth assay comprising >50 barcoded parasite lines with mutated resistance mediators or major drug targets found no evidence of cross-resistance. Our findings support further exploration of this promising 4-AQ.
Collapse
Affiliation(s)
- Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Gustavo Capatti Cassiano
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Luis Carlos Salazar Alvarez
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Center for the Research and Advancement in Fragments and molecular Targets, School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Center for Excellence in Artificial Intelligence, Institute of Informatics, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
- New York State Psychiatric Institute, Area Neuroscience – Molecular Therapeutics, New York, New York, United States of America
| | - Pedro V. Cravo
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
21
|
Woodland JG, Horatscheck A, Soares de Melo C, Dziwornu GA, Taylor D. Another decade of antimalarial drug discovery: New targets, tools and molecules. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:161-234. [PMID: 39370241 DOI: 10.1016/bs.pmch.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Malaria remains a devastating but preventable infectious disease that disproportionately affects the African continent. Emerging resistance to current frontline therapies means that not only are new treatments urgently required, but also novel validated antimalarial targets to circumvent cross-resistance. Fortunately, tremendous efforts have been made by the global drug discovery community over the past decade. In this chapter, we will highlight some of the antimalarial drug discovery and development programmes currently underway across the globe, charting progress in the identification of new targets and the development of new classes of drugs to prosecute them. These efforts have been complemented by the development of valuable tools to accelerate target validation such as the NOD scid gamma (NSG) humanized mouse efficacy model and progress in predictive modelling and open-source software. Among the medicinal chemistry programmes that have been conducted over the past decade are those targeting Plasmodium falciparum ATPase4 (ATP4) and acetyl-CoA synthetase (AcAS) as well as proteins disrupting parasite protein translation such as the aminoacyl-tRNA synthetases (aaRSs) and eukaryotic elongation factor 2 (eEF2). The benefits and challenges of targeting Plasmodium kinases will be examined, with a focus on Plasmodium cyclic GMP-dependent protein kinase (PKG), cyclin-dependent-like protein kinase 3 (CLK3) and phosphatidylinositol 4-kinase (PI4K). The chapter concludes with a survey of incipient drug discovery centres in Africa and acknowledges the value of recent international meetings in galvanizing and uniting the antimalarial drug discovery community.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - André Horatscheck
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Candice Soares de Melo
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa.
| |
Collapse
|
22
|
Maiga M, Dembele L, Courlet P, Khandelwal A, Dara A, Sogore F, Diakité O, Maiga FO, Dao F, Sissoko S, Barre Y, Goita S, Diakite M, Diakite SAS, Djimde AA, Oeuvray C, Spangenberg T, Wicha SG, Demarta-Gatsi C. Towards clinically relevant dose ratios for Cabamiquine and Pyronaridine combination using P. falciparum field isolate data. Nat Commun 2024; 15:7659. [PMID: 39227370 PMCID: PMC11372057 DOI: 10.1038/s41467-024-51994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
The selection and combination of dose regimens for antimalarials involve complex considerations including pharmacokinetic and pharmacodynamic interactions. In this study, we use immediate ex vivo P. falciparum field isolates to evaluate the effect of cabamiquine and pyronaridine as standalone treatments and in combination therapy. We feed the data into a pharmacometrics model to generate an interaction map and simulate meaningful clinical dose ratios. We demonstrate that the pharmacometrics model of parasite growth and killing provides a detailed description of parasite kinetics against cabamiquine-susceptible and resistant parasites. Pyronaridine monotherapy provides suboptimal killing rates at doses as high as 720 mg. In contrast, the combination of a single dose of 330 mg cabamiquine and 360 mg pyronaridine provides over 90% parasite killing in most of the simulated patients. The described methodology that combines a rapid, 3R-compliant in vitro method and modelling to set meaningful doses for new antimalarials could contribute to clinical drug development.
Collapse
Affiliation(s)
- Mohamed Maiga
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Laurent Dembele
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali.
| | - Perrine Courlet
- Merck Institute of Pharmacometrics (an affiliate of Merck KGaA), Lausanne, Switzerland
| | - Akash Khandelwal
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
- UCB Biosciences GmbH, Rolf-Schwarz-Schütte-Platz 1, Monheim am Rhein, Germany
| | - Antoine Dara
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Fanta Sogore
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Ousmaila Diakité
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Fatoumata O Maiga
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - François Dao
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Sekou Sissoko
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Yacouba Barre
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Siaka Goita
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Mahamadou Diakite
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Seidina A S Diakite
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
| | - Abdoulaye A Djimde
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Bamako, Mali
- Pathogens genomic Diversity Network Africa, Sotuba, Bamako, Mali
| | - Claude Oeuvray
- Global Health R&D of the healthcare business of Merck KGaA, Darmstadt, Germany, Ares Trading S.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland
| | - Thomas Spangenberg
- Global Health R&D of the healthcare business of Merck KGaA, Darmstadt, Germany, Ares Trading S.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstr. 45, Hamburg, Germany.
| | - Claudia Demarta-Gatsi
- Pathogens genomic Diversity Network Africa, Sotuba, Bamako, Mali.
- Global Health R&D of the healthcare business of Merck KGaA, Darmstadt, Germany, Ares Trading S.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland.
| |
Collapse
|
23
|
Niu Y, Zhang H, Li Z, Xie X, Liu Y. Copper-Catalyzed Regioselective Arylation or Alkenylation of Quinoline N-Oxides with Organoboronates. Org Lett 2024; 26:6921-6926. [PMID: 39088260 DOI: 10.1021/acs.orglett.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A copper-catalyzed arylation or alkenylation of quinoline N-oxides with aryl- or alkenylboronates, respectively, has been developed, which provides an efficient route for C2-substituted oxygenated quinolines under mild reaction conditions. The reaction shows a broad substrate scope for both quinoline N-oxides and aryl/alkenylboronates, mild reaction conditions, and high reaction efficiency. The formation of an aryl- or alkenyl-copper species as the key intermediate was suggested to be involved in this reaction.
Collapse
Affiliation(s)
- Yaru Niu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| | - He Zhang
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhongxian Li
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| | - Xin Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Yuanhong Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
24
|
Sivakumar R, Floyd K, Erath J, Jacoby A, Kim Kim J, Bayguinov PO, Fitzpatrick JAJ, Goldfarb D, Jovanovic M, Tripathi A, Djuranovic S, Pavlovic-Djuranovic S. Poly-basic peptides and polymers as new drug candidates against Plasmodium falciparum. Malar J 2024; 23:227. [PMID: 39090669 PMCID: PMC11295857 DOI: 10.1186/s12936-024-05056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-based combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs, such as lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. In this study, a common characteristic of the P. falciparum proteome-stretches of poly-lysine residues, such as those found in proteins related to adhesion and pathogenicity-is investigated for its potential to treat infected erythrocytes. METHODS This study utilizes in vitro culturing of intra-erythrocytic P. falciparum to assess the ability of poly-lysine peptides to inhibit the parasite's growth, measured via flow cytometry of acridine orange-stained infected erythrocytes. The inhibitory effect of many poly-lysine lengths and modifications were tested this way. Affinity pull-downs and mass spectrometry were performed to identify the proteins interacting with these poly-lysines. RESULTS A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 h. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers retains or increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. CONCLUSION Since poly-lysine dendrimers are already FDA-approved for drug delivery and this study displays their potency against intraerythrocytic P. falciparum, their adaptation as anti-malarial drugs presents a promising new therapeutic strategy for malaria.
Collapse
Affiliation(s)
- Roshan Sivakumar
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine Floyd
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex Jacoby
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Roche Pharma Research & Early Development, F. Hoffmann-LaRoche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Abhai Tripathi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| | | |
Collapse
|
25
|
Gado A, Hewitt P, Ballard P, Tornesi B, Baeurle THH, Oeuvray C, Spangenberg T, Demarta-Gatsi C. Absence of developmental and reproductive toxicity in rats, rabbits, and zebrafish embryos exposed to antimalarial drug cabamiquine. Birth Defects Res 2024; 116:e2389. [PMID: 39192608 DOI: 10.1002/bdr2.2389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND When developing new antimalarial drugs, considering their potential use during pregnancy as preventive or curative therapy is crucial. This prevents the parasite from affecting embryonic development and reduces maternal and fetal death risks. Consequently, understanding the exposure and safety of antimalarial drugs during pregnancy is crucial, with well-designed animal studies playing a key role in this assessment. METHODS As part of the drug development program for cabamiquine, a series of developmental and reproductive toxicity studies were conducted in rats and rabbits. Additionally, the zebrafish embryo model was used to further improve embryo exposure, minimize confounding factors related to maternal toxicity, and assess developmental risks of cabamiquine. RESULTS In these studies, although maternal toxicity was observed, there were no cabamiquine-related adverse effects on fertility, embryonic, or fetal development at maternal exposures representing significant multiples (up to five and 10 times higher in rabbit and rats, respectively) than the exposure at the anticipated efficacious human dose. Similarly, no adverse effects were observed on ZF embryonic development, even though cabamiquine concentrations in the embryos were 10-fold higher than nominal concentrations. CONCLUSIONS The results obtained in a full set of reproductive toxicity studies did not provide evidence of detrimental effects on the conceptuses and progeny at maternally nontoxic doses and exposures, still representing a multiple of the anticipated systemic exposures in women of childbearing potential (WOCBP). Cabamiquine can therefore be considered a suitable therapeutic option for WOCBP and pregnant women living in malaria-endemic regions by significantly reducing maternal and infant malaria death rates.
Collapse
Affiliation(s)
- Andreas Gado
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Philip Hewitt
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | | | - Claude Oeuvray
- Global Health R&D of the healthcare business of Merck KGaA, Darmstadt, Germany, Ares Trading S.A. (an affiliate of Merck KgaA, Darmstadt, Germany), Eysins, Switzerland
| | - Thomas Spangenberg
- Global Health R&D of the healthcare business of Merck KGaA, Darmstadt, Germany, Ares Trading S.A. (an affiliate of Merck KgaA, Darmstadt, Germany), Eysins, Switzerland
| | - Claudia Demarta-Gatsi
- Global Health R&D of the healthcare business of Merck KGaA, Darmstadt, Germany, Ares Trading S.A. (an affiliate of Merck KgaA, Darmstadt, Germany), Eysins, Switzerland
| |
Collapse
|
26
|
Appetecchia F, Fabbrizi E, Fiorentino F, Consalvi S, Biava M, Poce G, Rotili D. Transmission-Blocking Strategies for Malaria Eradication: Recent Advances in Small-Molecule Drug Development. Pharmaceuticals (Basel) 2024; 17:962. [PMID: 39065810 PMCID: PMC11279868 DOI: 10.3390/ph17070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Malaria drug research and development efforts have resurged in the last decade following the decelerating rate of mortality and malaria cases in endemic regions. The inefficiency of malaria interventions is largely driven by the spreading resistance of the Plasmodium falciparum parasite to current drug regimens and that of the malaria vector, the Anopheles mosquito, to insecticides. In response to the new eradication agenda, drugs that act by breaking the malaria transmission cycle (transmission-blocking drugs), which has been recognized as an important and additional target for intervention, are being developed. These drugs take advantage of the susceptibility of Plasmodium during population bottlenecks before transmission (gametocytes) and in the mosquito vector (gametes, zygotes, ookinetes, oocysts, sporozoites). To date, compounds targeting stage V gametocytes predominate in the chemical library of transmission-blocking drugs, and some of them have entered clinical trials. The targeting of Plasmodium mosquito stages has recently renewed interest in the development of innovative malaria control tools, which hold promise for the application of compounds effective at these stages. In this review, we highlight the major achievements and provide an update on the research of transmission-blocking drugs, with a particular focus on their chemical scaffolds, antiplasmodial activity, and transmission-blocking potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| |
Collapse
|
27
|
Dziwornu G, Seanego D, Fienberg S, Clements M, Ferreira J, Sypu VS, Samanta S, Bhana AD, Korkor CM, Garnie LF, Teixeira N, Wicht KJ, Taylor D, Olckers R, Njoroge M, Gibhard L, Salomane N, Wittlin S, Mahato R, Chakraborty A, Sevilleno N, Coyle R, Lee MCS, Godoy LC, Pasaje CF, Niles JC, Reader J, van der Watt M, Birkholtz LM, Bolscher JM, de Bruijni MHC, Coulson LB, Basarab GS, Ghorpade SR, Chibale K. 2,8-Disubstituted-1,5-naphthyridines as Dual Inhibitors of Plasmodium falciparum Phosphatidylinositol-4-kinase and Hemozoin Formation with In Vivo Efficacy. J Med Chem 2024; 67:11401-11420. [PMID: 38918002 PMCID: PMC11247499 DOI: 10.1021/acs.jmedchem.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Structure-activity relationship studies of 2,8-disubstituted-1,5-naphthyridines, previously reported as potent inhibitors of Plasmodium falciparum (Pf) phosphatidylinositol-4-kinase β (PI4K), identified 1,5-naphthyridines with basic groups at 8-position, which retained Plasmodium PI4K inhibitory activity but switched primary mode of action to the host hemoglobin degradation pathway through inhibition of hemozoin formation. These compounds showed minimal off-target inhibitory activity against the human phosphoinositide kinases and MINK1 and MAP4K kinases, which were associated with the teratogenicity and testicular toxicity observed in rats for the PfPI4K inhibitor clinical candidate MMV390048. A representative compound from the series retained activity against field isolates and lab-raised drug-resistant strains of Pf. It was efficacious in the humanized NSG mouse malaria infection model at a single oral dose of 32 mg/kg. This compound was nonteratogenic in the zebrafish embryo model of teratogenicity and has a low predicted human dose, indicating that this series has the potential to deliver a preclinical candidate for malaria.
Collapse
Affiliation(s)
- Godwin
Akpeko Dziwornu
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Donald Seanego
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Stephen Fienberg
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Monica Clements
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jasmin Ferreira
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Venkata S. Sypu
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sauvik Samanta
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Ashlyn D. Bhana
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Constance M. Korkor
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Larnelle F. Garnie
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Nicole Teixeira
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kathryn J. Wicht
- Drug
Discovery and Development Centre (H3D), Department of Chemistry and
Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Dale Taylor
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Ronald Olckers
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Mathew Njoroge
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Liezl Gibhard
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Nicolaas Salomane
- Drug
Discovery and Development Centre (H3D), Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Observatory, Cape Town 7925, South Africa
| | - Sergio Wittlin
- Swiss Tropical
and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | | | | | - Nicole Sevilleno
- Wellcome
Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K.
| | - Rachael Coyle
- Wellcome
Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K.
| | - Marcus C. S. Lee
- Wellcome
Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K.
| | - Luiz C. Godoy
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Charisse Flerida Pasaje
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jacquin C. Niles
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Janette Reader
- Department
of Biochemistry, Genetics and Microbiology, Institute
for Sustainable Malaria Control, University
of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariette van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department
of Biochemistry, Genetics and Microbiology, Institute
for Sustainable Malaria Control, University
of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Judith M. Bolscher
- TropIQ Health Sciences, Transistorweg 5, 6534 AT Nijmegen, The Netherlands
| | | | - Lauren B. Coulson
- Drug
Discovery and Development Centre (H3D), Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Observatory, Cape Town 7925, South Africa
| | - Gregory S. Basarab
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Sandeep R. Ghorpade
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery
and Development
Research Unit, Department of Chemistry and Institute of Infectious
Disease and Molecular Medicine, University
of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
28
|
Giannangelo C, Challis MP, Siddiqui G, Edgar R, Malcolm TR, Webb CT, Drinkwater N, Vinh N, Macraild C, Counihan N, Duffy S, Wittlin S, Devine SM, Avery VM, De Koning-Ward T, Scammells P, McGowan S, Creek DJ. Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as an antimalarial strategy. eLife 2024; 13:RP92990. [PMID: 38976500 PMCID: PMC11230628 DOI: 10.7554/elife.92990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.
Collapse
Affiliation(s)
- Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Matthew P Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Rebecca Edgar
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Tess R Malcolm
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Chaille T Webb
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Nyssa Drinkwater
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Natalie Vinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Christopher Macraild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Natalie Counihan
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Sandra Duffy
- Discovery Biology, Centre for Cellular Phenomics, Griffith UniversityNathanAustralia
| | - Sergio Wittlin
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Shane M Devine
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, The University of MelbourneParkvilleAustralia
| | - Vicky M Avery
- Discovery Biology, Centre for Cellular Phenomics, Griffith UniversityNathanAustralia
- School of Environment and Science, Griffith UniversityNathanAustralia
| | - Tania De Koning-Ward
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Peter Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Sheena McGowan
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| |
Collapse
|
29
|
Barber BE, Webster R, Potter AJ, Llewellyn S, Sahai N, Leelasena I, Mathison S, Kuritz K, Flynn J, Chalon S, Marrast AC, Gobeau N, Moehrle JJ. Characterising the blood-stage antimalarial activity of pyronaridine in healthy volunteers experimentally infected with Plasmodium falciparum. Int J Antimicrob Agents 2024; 64:107196. [PMID: 38734217 DOI: 10.1016/j.ijantimicag.2024.107196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
With the spread of artemisinin resistance throughout Southeast Asia and now in Africa, the antimalarial drug pyronaridine is likely to become an increasingly important component of new antimalarial drug regimens. However, the antimalarial activity of pyronaridine in humans has not been completely characterised. This volunteer infection study aimed to determine the pharmacokinetic/pharmacodynamic (PK/PD) relationship of pyronaridine in malaria naïve adults. Volunteers were inoculated with Plasmodium falciparum-infected erythrocytes on day 0 and administered different single oral doses of pyronaridine on day 8. Parasitaemia and concentrations of pyronaridine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 47 ± 2. Outcomes were parasite clearance kinetics, PK and PK/PD parameters from modelling. Ten participants were inoculated and administered 360 mg (n = 4), 540 mg (n = 4) or 720 mg (n = 1) pyronaridine. One participant was withdrawn without receiving pyronaridine. The time to maximum pyronaridine concentration was 1-2 h, the elimination half-life was 8-9 d, and the parasite clearance half-life was approximately 5 h. Parasite regrowth occurred with 360 mg (4/4 participants) and 540 mg (2/4 participants). Key efficacy parameters including the minimum inhibitory concentration (5.5 ng/mL) and minimum parasiticidal concentration leading to 90% of maximum effect (MPC90: 8 ng/mL) were derived from the PK/PD model. Adverse events considered related to pyronaridine were predominantly mild to moderate gastrointestinal symptoms. There were no serious adverse events. Data obtained in this study will support the use of pyronaridine in new antimalarial combination therapies by informing partner drug selection and dosing considerations.
Collapse
Affiliation(s)
- Bridget E Barber
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; University of the Sunshine Coast Clinical Trials, Morayfield, QLD, Australia; Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Rebecca Webster
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Adam J Potter
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Stacey Llewellyn
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nischal Sahai
- University of the Sunshine Coast Clinical Trials, Morayfield, QLD, Australia
| | - Indika Leelasena
- University of the Sunshine Coast Clinical Trials, Morayfield, QLD, Australia
| | - Susan Mathison
- University of the Sunshine Coast Clinical Trials, Morayfield, QLD, Australia
| | | | - Julia Flynn
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Edgar RCS, Malcolm TR, Siddiqui G, Giannangelo C, Counihan NA, Challis M, Duffy S, Chowdhury M, Marfurt J, Dans M, Wirjanata G, Noviyanti R, Daware K, Suraweera CD, Price RN, Wittlin S, Avery VM, Drinkwater N, Charman SA, Creek DJ, de Koning-Ward TF, Scammells PJ, McGowan S. On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity. mBio 2024; 15:e0096624. [PMID: 38717141 PMCID: PMC11237774 DOI: 10.1128/mbio.00966-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 06/13/2024] Open
Abstract
To combat the global burden of malaria, development of new drugs to replace or complement current therapies is urgently required. Here, we show that the compound MMV1557817 is a selective, nanomolar inhibitor of both Plasmodium falciparum and Plasmodium vivax aminopeptidases M1 and M17, leading to inhibition of end-stage hemoglobin digestion in asexual parasites. MMV1557817 can kill sexual-stage P. falciparum, is active against murine malaria, and does not show any shift in activity against a panel of parasites resistant to other antimalarials. MMV1557817-resistant P. falciparum exhibited a slow growth rate that was quickly outcompeted by wild-type parasites and were sensitized to the current clinical drug, artemisinin. Overall, these results confirm MMV1557817 as a lead compound for further drug development and highlights the potential of dual inhibition of M1 and M17 as an effective multi-species drug-targeting strategy.IMPORTANCEEach year, malaria infects approximately 240 million people and causes over 600,000 deaths, mostly in children under 5 years of age. For the past decade, artemisinin-based combination therapies have been recommended by the World Health Organization as the standard malaria treatment worldwide. Their widespread use has led to the development of artemisinin resistance in the form of delayed parasite clearance, alongside the rise of partner drug resistance. There is an urgent need to develop and deploy new antimalarial agents with novel targets and mechanisms of action. Here, we report a new and potent antimalarial compound, known as MMV1557817, and show that it targets multiple stages of the malaria parasite lifecycle, is active in a preliminary mouse malaria model, and has a novel mechanism of action. Excitingly, resistance to MMV15578117 appears to be self-limiting, suggesting that development of the compound may provide a new class of antimalarial.
Collapse
Affiliation(s)
- Rebecca C S Edgar
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Tess R Malcolm
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Natalie A Counihan
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Matthew Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Sandra Duffy
- Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, Queensland, Australia
| | - Mrittika Chowdhury
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Jutta Marfurt
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Madeline Dans
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Grennady Wirjanata
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Kajal Daware
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Chathura D Suraweera
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Ric N Price
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Vicky M Avery
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, Queensland, Australia
| | - Nyssa Drinkwater
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Sheena McGowan
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
31
|
Achan J, Barry A, Leroy D, Kamara G, Duparc S, Kaszubska W, Gandhi P, Buffet B, Tshilab P, Ogutu B, Taylor T, Krishna S, Richardson N, Ramachandruni H, Rietveld H. Defining the next generation of severe malaria treatment: a target product profile. Malar J 2024; 23:174. [PMID: 38835069 DOI: 10.1186/s12936-024-04986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Severe malaria is a life-threatening infection, particularly affecting children under the age of 5 years in Africa. Current treatment with parenteral artemisinin derivatives is highly efficacious. However, artemisinin partial resistance is widespread in Southeast Asia, resulting in delayed parasite clearance after therapy, and has emerged independently in South America, Oceania, and Africa. Hence, new treatments for severe malaria are needed, and it is prudent to define their characteristics now. This manuscript focuses on the target product profile (TPP) for new treatments for severe malaria. It also highlights preparedness when considering ways of protecting the utility of artemisinin-based therapies. TARGET PRODUCT PROFILE Severe malaria treatments must be highly potent, with rapid onset of antiparasitic activity to clear the infection as quickly as possible to prevent complications. They should also have a low potential for drug resistance selection, given the high parasite burden in patients with severe malaria. Combination therapies are needed to deter resistance selection and dissemination. Partner drugs which are approved for uncomplicated malaria treatment would provide the most rapid development pathway for combinations, though new candidate molecules should be considered. Artemisinin combination approaches to severe malaria would extend the lifespan of current therapy, but ideally, completely novel, non-artemisinin-based combination therapies for severe malaria should be developed. These should be advanced to at least phase 2 clinical trials, enabling rapid progression to patient use should current treatment fail clinically. New drug combinations for severe malaria should be available as injectable formulations for rapid and effective treatment, or as rectal formulations for pre-referral intervention in resource-limited settings. CONCLUSION Defining the TPP is a key step to align responses across the community to proactively address the potential for clinical failure of artesunate in severe malaria. In the shorter term, artemisinin-based combination therapies should be developed using approved or novel drugs. In the longer term, novel combination treatments should be pursued. Thus, this TPP aims to direct efforts to preserve the efficacy of existing treatments while improving care and outcomes for individuals affected by this life-threatening disease.
Collapse
Affiliation(s)
| | - Aïssata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Didier Leroy
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - George Kamara
- Médecins Sans Frontières, Magburaka District Hospital, Freetown, Sierra Leone
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bénédicte Buffet
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Terrie Taylor
- Queen Elizabeth Central Hospital and Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sanjeev Krishna
- Institut Für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (Dzif), Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Clinical Academic Group, Institute for Infection and Immunity, St. George's University of London, London, UK
- St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Hanu Ramachandruni
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| | - Hans Rietveld
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| |
Collapse
|
32
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
33
|
McLellan JL, Hanson KK. Differential effects of translation inhibitors on Plasmodium berghei liver stage parasites. Life Sci Alliance 2024; 7:e202302540. [PMID: 38575357 PMCID: PMC10994859 DOI: 10.26508/lsa.202302540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
Increasing numbers of antimalarial compounds are being identified that converge mechanistically at inhibition of cytoplasmic translation, regardless of the molecular target or mechanism. A deeper understanding of how their effectiveness as liver stage translation inhibitors relates to their chemoprotective potential could prove useful. Here, we probed that relationship using the Plasmodium berghei-HepG2 liver stage infection model. After determining translation inhibition EC50s for five compounds, we tested them at equivalent effective concentrations to compare the parasite response to, and recovery from, a brief period of translation inhibition in early schizogony, followed by parasites to 120 h post-infection to assess antiplasmodial effects of the treatment. We show compound-specific heterogeneity in single parasite and population responses to translation inhibitor treatment, with no single metric strongly correlated to the release of hepatic merozoites for all compounds. We also demonstrate that DDD107498 is capable of exerting antiplasmodial effects on translationally arrested liver stage parasites and uncover unexpected growth dynamics during the liver stage. Our results demonstrate that translation inhibition efficacy does not determine antiplasmodial efficacy for these compounds.
Collapse
Affiliation(s)
- James L McLellan
- Department of Molecular Microbiology and Immunology and STCEID, University of Texas at San Antonio, San Antonio, TX, USA
| | - Kirsten K Hanson
- Department of Molecular Microbiology and Immunology and STCEID, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
34
|
McLellan JL, Morales-Hernandez B, Saeger S, Hanson KK. A high content imaging assay for identification of specific inhibitors of native Plasmodium liver stage protein synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596519. [PMID: 38854116 PMCID: PMC11160711 DOI: 10.1101/2024.05.29.596519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Plasmodium parasite resistance to antimalarial drugs is a serious threat to public health in malaria-endemic areas. Compounds that target core cellular processes like translation are highly desirable, as they should be multistage actives, capable of killing parasites in the liver and blood, regardless of molecular target or mechanism. Assays that can identify these compounds are thus needed. Recently, specific quantification of native Plasmodium berghei liver stage protein synthesis as well as that of the hepatoma cells supporting parasite growth, was achieved via automated confocal feedback microscopy of the o-propargyl puromycin (OPP)-labeled nascent proteome, but this imaging modality is limited in throughput. Here, we developed and validated a miniaturized high content imaging (HCI) version of the OPP assay that increases throughput, before deploying this approach to screen the Pathogen Box. We identified only two hits, both of which are parasite-specific quinoline-4-carboxamides, and analogues of the clinical candidate and known inhibitor of blood and liver stage protein synthesis, DDD107498/cabamiquine. We further show that these compounds have strikingly distinct relationships between their antiplasmodial and translation inhibition efficacies. These results demonstrate the utility and reliability of the P. berghei liver stage OPP HCI assay for specific, single-well quantification of Plasmodium and human protein synthesis in the native cellular context, allowing identification of selective Plasmodium translation inhibitors with the highest potential for multistage activity.
Collapse
Affiliation(s)
- James L. McLellan
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Beatriz Morales-Hernandez
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Sarah Saeger
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Kirsten K. Hanson
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
35
|
Creek D, Giannangelo C, Challis M, Siddiqui G, Edgar R, Malcolm T, Webb C, Drinkwater N, Vinh N, MacRaild C, Counihan N, Duffy S, Wittlin S, Devine S, Avery V, de Koning-Ward T, Scammells P, McGowan S. Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as an antimalarial strategy. RESEARCH SQUARE 2024:rs.3.rs-3251230. [PMID: 38746424 PMCID: PMC11092810 DOI: 10.21203/rs.3.rs-3251230/v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum ( Pf A-M1) and Plasmodium vivax ( Pv A-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets Pf A-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on Pf A-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of Pf A-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.
Collapse
|
36
|
Thiele PJ, Mela-Lopez R, Blandin SA, Klug D. Let it glow: genetically encoded fluorescent reporters in Plasmodium. Malar J 2024; 23:114. [PMID: 38643106 PMCID: PMC11032601 DOI: 10.1186/s12936-024-04936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/06/2024] [Indexed: 04/22/2024] Open
Abstract
The use of fluorescent proteins (FPs) in Plasmodium parasites has been key to understand the biology of this obligate intracellular protozoon. FPs like the green fluorescent protein (GFP) enabled to explore protein localization, promoter activity as well as dynamic processes like protein export and endocytosis. Furthermore, FP biosensors have provided detailed information on physiological parameters at the subcellular level, and fluorescent reporter lines greatly extended the malariology toolbox. Still, in order to achieve optimal results, it is crucial to know exactly the properties of the FP of choice and the genetic scenario in which it will be used. This review highlights advantages and disadvantages of available landing sites and promoters that have been successfully applied for the ectopic expression of FPs in Plasmodium berghei and Plasmodium falciparum. Furthermore, the properties of newly developed FPs beyond DsRed and EGFP, in the visualization of cells and cellular structures as well as in the sensing of small molecules are discussed.
Collapse
Affiliation(s)
- Pia J Thiele
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Raquel Mela-Lopez
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Stéphanie A Blandin
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Dennis Klug
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France.
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
37
|
Wirjanata G, Lin J, Dziekan JM, El Sahili A, Chung Z, Tjia S, Binte Zulkifli NE, Boentoro J, Tham R, Jia LS, Go KD, Yu H, Partridge A, Olsen D, Prabhu N, Sobota RM, Nordlund P, Lescar J, Bozdech Z. Identification of an inhibitory pocket in falcilysin provides a new avenue for malaria drug development. Cell Chem Biol 2024; 31:743-759.e8. [PMID: 38593807 DOI: 10.1016/j.chembiol.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/02/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine. Enzymatic assays showed that these compounds can inhibit FLN proteolytic activity. Their interaction with FLN was explored systematically by isothermal titration calorimetry and X-ray crystallography, revealing a shared hydrophobic pocket in the catalytic chamber of the enzyme. Characterization of transgenic cell lines with lowered FLN expression demonstrated statistically significant increases in susceptibility toward MK-4815, MMV000848, and several quinolines. Importantly, the hydrophobic pocket of FLN appears amenable to inhibition and the structures reported here can guide the development of novel drugs against malaria.
Collapse
Affiliation(s)
- Grennady Wirjanata
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Jianqing Lin
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Infectious Diseases Labs & Singapore Immunology Network, Agency for Science, Technology and Research, 138648 Singapore, Singapore
| | - Jerzy Michal Dziekan
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore
| | - Zara Chung
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - Josephine Boentoro
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Roy Tham
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Lai Si Jia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Ka Diam Go
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - David Olsen
- Merck & Co., Inc., West Point, PA 19486, USA
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 637551, Singapore.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore.
| |
Collapse
|
38
|
Lindblom JR, Zhang X, Lehane AM. A pH Fingerprint Assay to Identify Inhibitors of Multiple Validated and Potential Antimalarial Drug Targets. ACS Infect Dis 2024; 10:1185-1200. [PMID: 38499199 PMCID: PMC11019546 DOI: 10.1021/acsinfecdis.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.
Collapse
Affiliation(s)
| | | | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australian Capital
Territory 2600, Australia
| |
Collapse
|
39
|
Shallangwa GA, Mahmud AW, Uzairu A, Ibrahim MT. 2,4-disubstituted 6-fluoroquinolines as potent antiplasmodial agents: QSAR, homology modeling, molecular docking and ADMET studies. J Taibah Univ Med Sci 2024; 19:233-247. [PMID: 38179257 PMCID: PMC10762476 DOI: 10.1016/j.jtumed.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Abstract
Objective This work was designed to study 2,4-disubstituted 6-fluoroquinolines as antiplasmodial agents by using in silico techniques, to aid in the design of novel analogs with high potency against malaria and high inhibition of Plasmodium falciparum translation elongation factor 2 (PfeEF2), a novel drug target. Methods Quantitative structure-activity relationships (QSAR) of 2,4-disubstituted 6-fluoroquinolines were studied with the genetic function approximation technique in Material Studio software. The 3D structure of PfeEF2 was modeled in the SWISS-MODEL workspace through homology modeling. A molecular docking study of the modeled PfeEF2 and 2,4-disubstituted 6-fluoroquinolines was conducted with Autodock Vina in Pyrx software. Furthermore, the in silico pharmacokinetic properties of selected compounds were investigated. Results A robust, reliable and predictive QSAR model was developed that related the chemical structures of 2,4-disubstituted 6-fluoroquinolines to their antiplasmodium activities. The model had an internal squared correlation coefficient R2 of 0.921, adjusted squared correlation coefficient R2adj of 0.878, leave-one-out cross-validation coefficient Q2cv of 0.801 and predictive squared correlation coefficient R2pred of 0.901. The antiplasmodium activity of 6-fluoroquinolines was found to depend on the n5Ring, GGI9, TDB7u, TDB8u and RDF75i physicochemical properties: n5Ring, TDB8u and RDF75i were positively associated, whereas GGI9 and TDB7u were negatively associated, with the antiplasmodium activity of the compounds. Stable complexes formed between the compounds and modeled PfeEF2, with binding affinity ranging from -8.200 to -10.700 kcal/mol. Compounds 5, 11, 16, 22 and 24 had better binding affinities than quinoline-4-carboxamide (DDD107498), as well as good pharmacokinetic properties, and therefore may be better inhibitors of this novel target. Conclusion QSAR and docking studies provided insight into designing novel 2,4-disubstituted 6-fluoroquinolines with high antiplasmodial activity and good structural properties for inhibiting a novel antimalarial drug target.
Collapse
Affiliation(s)
| | - Aliyu W. Mahmud
- Department of Applied Chemistry, Kaduna Polytechnic, P.M.B 2021, Kaduna, Nigeria
| | - Adamu Uzairu
- Chemistry Department, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
40
|
Greyling N, van der Watt M, Gwarinda H, van Heerden A, Greenhouse B, Leroy D, Niemand J, Birkholtz LM. Genetic complexity alters drug susceptibility of asexual and gametocyte stages of Plasmodium falciparum to antimalarial candidates. Antimicrob Agents Chemother 2024; 68:e0129123. [PMID: 38259087 PMCID: PMC10916389 DOI: 10.1128/aac.01291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Malaria elimination requires interventions able to target both the asexual blood stage (ABS) parasites and transmissible gametocyte stages of Plasmodium falciparum. Lead antimalarial candidates are evaluated against clinical isolates to address key concerns regarding efficacy and to confirm that the current, circulating parasites from endemic regions lack resistance against these candidates. While this has largely been performed on ABS parasites, limited data are available on the transmission-blocking efficacy of compounds with multistage activity. Here, we evaluated the efficacy of lead antimalarial candidates against both ABS parasites and late-stage gametocytes side-by-side, against clinical P. falciparum isolates from southern Africa. We additionally correlated drug efficacy to the genetic diversity of the clinical isolates as determined with a panel of well-characterized, genome-spanning microsatellite markers. Our data indicate varying sensitivities of the isolates to key antimalarial candidates, both for ABS parasites and gametocyte stages. While ABS parasites were efficiently killed, irrespective of genetic complexity, antimalarial candidates lost some gametocytocidal efficacy when the gametocytes originated from genetically complex, multiple-clone infections. This suggests a fitness benefit to multiclone isolates to sustain transmission and reduce drug susceptibility. In conclusion, this is the first study to investigate the efficacy of antimalarial candidates on both ABS parasites and gametocytes from P. falciparum clinical isolates where the influence of parasite genetic complexity is highlighted, ultimately aiding the malaria elimination agenda.
Collapse
Affiliation(s)
- Nicola Greyling
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Mariëtte van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Hazel Gwarinda
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Bryan Greenhouse
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
41
|
Gruber FS, Richardson A, Johnston ZC, Myles R, Norcross NR, Day DP, Georgiou I, Sesma-Sanz L, Wilson C, Read KD, Martins da Silva S, Barratt CLR, Gilbert IH, Swedlow JR. Sperm Toolbox-A selection of small molecules to study human spermatozoa. PLoS One 2024; 19:e0297666. [PMID: 38377053 PMCID: PMC10878532 DOI: 10.1371/journal.pone.0297666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Male contraceptive options and infertility treatments are limited, and almost all innovation has been limited to updates to medically assisted reproduction protocols and methods. To accelerate the development of drugs that can either improve or inhibit fertility, we established a small molecule library as a toolbox for assay development and screening campaigns using human spermatozoa. We have profiled all compounds in the Sperm Toolbox in several automated high-throughput assays that measure stimulation or inhibition of sperm motility or the acrosome reaction. We have assayed motility under non-capacitating and capacitating conditions to distinguish between pathways operating under these different physiological states. We also assayed cell viability to ensure any effects on sperm function are specific. A key advantage of our studies is that all compounds are assayed together in the same experimental conditions, which allows quantitative comparisons of their effects in complementary functional assays. We have combined the resulting datasets to generate fingerprints of the Sperm Toolbox compounds on sperm function. The data are included in an on-line R-based app for convenient querying.
Collapse
Affiliation(s)
- Franz S. Gruber
- Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Anthony Richardson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Zoe C. Johnston
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rachel Myles
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Neil R. Norcross
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David P. Day
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Irene Georgiou
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Laura Sesma-Sanz
- Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Caroline Wilson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kevin D. Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sarah Martins da Silva
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Christopher L. R. Barratt
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Ian H. Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jason R. Swedlow
- Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
42
|
Zhang J, Shahbaz M, Ijaz M, Zhang H. Bibliometric analysis of antimalarial drug resistance. Front Cell Infect Microbiol 2024; 14:1270060. [PMID: 38410722 PMCID: PMC10895045 DOI: 10.3389/fcimb.2024.1270060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024] Open
Abstract
Background Malaria has always been a serious infectious disease prevalent in the world. Antimalarial drugs such as chloroquine and artemisinin have been the main compounds used to treat malaria. However, the massive use of this type of drugs accelerates the evolution and spread of malaria parasites, leading to the development of resistance. A large number of related data have been published by researchers in recent years. CiteSpace software has gained popularity among us researchers in recent years, because of its ability to help us obtain the core information we want in a mass of articles. In order to analyze the hotspots and develop trends in this field through visual analysis, this study used CiteSpace software to summarize the available data in the literature to provide insights. Method Relevant literature was collected from the Web of Science Core Collection (WOSCC) from 1 January 2015 to 29 March 2023. CiteSpace software and Microsoft Excel were used to analyze and present the data, respectively. Results A total of 2,561 literatures were retrieved and 2,559 literatures were included in the analysis after the removal of duplicates. An irrefutable witness of the ever-growing interest in the topic of antimalarial drug resistance could be expressed by the exponentially increased number of publications and related citations from 2015 to 2022, and its sustained growth trend by 2023. During the past 7 years, USA, Oxford University, and David A Fidock are the country, institution, and author with the most publications in this field of research, respectively. We focused on the references and keywords from literature and found that the research and development of new drugs is the newest hotspot in this field. A growing number of scientists are devoted to finding new antimalarial drugs. Conclusion This study is the first visual metrological analysis of antimalarial drug resistance, using bibliometric methods. As a baseline information, it is important to analyze research output published globally on antimalarial drug resistance. In order to better understand the current research situation and future research plan agenda, such baseline data are needed accordingly.
Collapse
Affiliation(s)
- Jialu Zhang
- Shandong University of Traditional Chinese Medicine, College of Pharmacy, Jinan, China
- Shandong Academy of Chinese Medicine, Institute of Chinese medicine analysis, Jinan, China
| | - Muhammad Shahbaz
- Shandong Academy of Chinese Medicine, Institute of Chinese medicine analysis, Jinan, China
- Department of Radiology, Qilu Hospital Affiliated to Shandong University, Jinan, China
- Research Center for Sectional and Imaging Anatomy, Digital Human Institute, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Muhammad Ijaz
- The Faculty of Medicine, Qilu Institute of Technology, Jinan, China
- Department of Pharmacology, School of Pharmaceutical Science, Shandong University, Jinan, China
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine, Institute of Chinese medicine analysis, Jinan, China
| |
Collapse
|
43
|
Schäfer TM, Pessanha de Carvalho L, Inoue J, Kreidenweiss A, Held J. The problem of antimalarial resistance and its implications for drug discovery. Expert Opin Drug Discov 2024; 19:209-224. [PMID: 38108082 DOI: 10.1080/17460441.2023.2284820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Malaria remains a devastating infectious disease with hundreds of thousands of casualties each year. Antimalarial drug resistance has been a threat to malaria control and elimination for many decades and is still of concern today. Despite the continued effectiveness of current first-line treatments, namely artemisinin-based combination therapies, the emergence of drug-resistant parasites in Southeast Asia and even more alarmingly the occurrence of resistance mutations in Africa is of great concern and requires immediate attention. AREAS COVERED A comprehensive overview of the mechanisms underlying the acquisition of drug resistance in Plasmodium falciparum is given. Understanding these processes provides valuable insights that can be harnessed for the development and selection of novel antimalarials with reduced resistance potential. Additionally, strategies to mitigate resistance to antimalarial compounds on the short term by using approved drugs are discussed. EXPERT OPINION While employing strategies that utilize already approved drugs may offer a prompt and cost-effective approach to counter antimalarial drug resistance, it is crucial to recognize that only continuous efforts into the development of novel antimalarial drugs can ensure the successful treatment of malaria in the future. Incorporating resistance propensity assessment during this developmental process will increase the likelihood of effective and enduring malaria treatments.
Collapse
Affiliation(s)
| | | | - Juliana Inoue
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| |
Collapse
|
44
|
Cheuka PM, Njaria P, Mayoka G, Funjika E. Emerging Drug Targets for Antimalarial Drug Discovery: Validation and Insights into Molecular Mechanisms of Function. J Med Chem 2024; 67:838-863. [PMID: 38198596 DOI: 10.1021/acs.jmedchem.3c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Approximately 619,000 malaria deaths were reported in 2021, and resistance to recommended drugs, including artemisinin-combination therapies (ACTs), threatens malaria control. Treatment failure with ACTs has been found to be as high as 93% in northeastern Thailand, and parasite mutations responsible for artemisinin resistance have already been reported in some African countries. Therefore, there is an urgent need to identify alternative treatments with novel targets. In this Perspective, we discuss some promising antimalarial drug targets, including enzymes involved in proteolysis, DNA and RNA metabolism, protein synthesis, and isoprenoid metabolism. Other targets discussed are transporters, Plasmodium falciparum acetyl-coenzyme A synthetase, N-myristoyltransferase, and the cyclic guanosine monophosphate-dependent protein kinase G. We have outlined mechanistic details, where these are understood, underpinning the biological roles and hence druggability of such targets. We believe that having a clear understanding of the underlying chemical interactions is valuable to medicinal chemists in their quest to design appropriate inhibitors.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Paul Njaria
- Department of Pharmacognosy and Pharmaceutical Chemistry, Kenyatta University, P.O. Box 14548-00400, Nairobi 00100, Kenya
| | - Godfrey Mayoka
- Department of Pharmacology and Pharmacognosy, School of Pharmacy, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi 00100, Kenya
| | - Evelyn Funjika
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| |
Collapse
|
45
|
Jiao R, Ren X, Li X, Sun S, Zhu H, Lin B, Hua H, Li D, He X. Divergent Synthesis of Quinolines: Exploiting the Duality of Free Radicals. Org Lett 2024; 26:51-56. [PMID: 38078673 DOI: 10.1021/acs.orglett.3c03490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Herein, we present a green scheme for the divergent synthesis of two polysubstituted quinolines from a singular substrate via exploiting free-radical duality. Photocatalytically generated imine radicals produce 3,4-disubstituted quinolines via a novel rearrangement in the presence of an inorganic base. Alternatively, they react in the presence of an organic base to furnish 2,3-disubstituted quinolines. Mechanism studies support the hypothesis that the electrophilic/nucleophilic bias of free radicals can be adjusted by altering the reaction conditions.
Collapse
Affiliation(s)
- Runwei Jiao
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Beijing Institute of Pharmacology and Toxicology, Haidian District, Beijing 100850, China
| | - Xuhong Ren
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiheng Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Beijing Institute of Pharmacology and Toxicology, Haidian District, Beijing 100850, China
| | - Shitao Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Zhu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiming Hua
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dahong Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinhua He
- Beijing Institute of Pharmacology and Toxicology, Haidian District, Beijing 100850, China
| |
Collapse
|
46
|
Mi Y, Ding W, Xu L, Lu M, Yan R, Li X, Song X. Protective Efficacy Induced by the Common Eimeria Antigen Elongation Factor 2 against Challenge with Three Eimeria Species in Chickens. Vaccines (Basel) 2023; 12:18. [PMID: 38250831 PMCID: PMC10819859 DOI: 10.3390/vaccines12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Avian coccidiosis arises from co-infection involving multiple Eimeria species, which could give rise to substantial economic losses in the global poultry industry. As a result, multivalent anticoccidial vaccines containing common Eimeria antigens offer considerable promise for controlling co-infection in clinical practice. In our previous study, Elongation factor 2 (EF2) was deemed as an immunogenic common antigen across various Eimeria species. This current investigation aimed to further assess the immunogenicity and protective efficacy of EF2 in recombinant subunit vaccine format against three Eimeria species. The EF2 gene cloned from Eimeria maxima (E. maxima) cDNA was designated as EF2 of E. maxima (EmEF2). The immunogenicity of the recombinant protein EmEF2 (rEmEF2) was assessed through Western blot analysis. The evaluation of the vaccine-induced immune response encompassed the determination of T lymphocyte subset proportions, cytokine mRNA transcription levels, and specific IgY concentrations in rEmEF2-vaccinated chickens using flow cytometry, quantitative real-time PCR (qPCR), and indirect enzyme-linked immunosorbent assay (ELISA). Subsequently, the protective efficacy of rEmEF2 was evaluated through vaccination and challenge experiments. The findings demonstrated that rEmEF2 was effectively recognized by the His-tag monoclonal antibody and E. maxima chicken antiserum. Vaccination with rEmEF2 increased the proportions of CD4+ and CD8+ T lymphocytes, elevated IL-4 and IFN-γ mRNA transcription levels, and enhanced IgY antibody levels compared to the control groups. Moreover, compared to the control groups, vaccination with rEmEF2 led to decreased weight loss, reduced oocyst outputs, and alleviated enteric lesions. Furthermore, in the rEmEF2-immunized groups, challenges with E. maxima and E. acervulina resulted in anticoccidial index (ACI) scores of 166.35 and 185.08, showing moderate-to-excellent protective efficacy. Nevertheless, challenges with E. tenella and mixed Eimeria resulted in ACI scores of 144.01 and 127.94, showing low protective efficacy. In conclusion, EmEF2, a common antigen across Eimeria species, demonstrated the capacity to induce a significant cellular and humoral immune response, as well as partial protection against E. maxima, E. acervulina, and E. tenella. These results highlight EmEF2 as a promising candidate antigen for the development of multivalent vaccines targeting mixed infections by Eimeria species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.M.); (W.D.); (L.X.); (M.L.); (R.Y.); (X.L.)
| |
Collapse
|
47
|
McLellan JL, Sausman W, Reers AB, Bunnik EM, Hanson KK. Single-cell quantitative bioimaging of P. berghei liver stage translation. mSphere 2023; 8:e0054423. [PMID: 37909773 PMCID: PMC10732057 DOI: 10.1128/msphere.00544-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Plasmodium parasites cause malaria in humans. New multistage active antimalarial drugs are needed, and a promising class of drugs targets the core cellular process of translation, which has many potential molecular targets. During the obligate liver stage, Plasmodium parasites grow in metabolically active hepatocytes, making it challenging to study core cellular processes common to both host cells and parasites, as the signal from the host typically overwhelms that of the parasite. Here, we present and validate a flexible assay to quantify Plasmodium liver stage translation using a technique to fluorescently label the newly synthesized proteins of both host and parasite followed by computational separation of their respective nascent proteomes in confocal image sets. We use the assay to determine whether a test set of known compounds are direct or indirect liver stage translation inhibitors and show that the assay can also predict the mode of action for novel antimalarial compounds.
Collapse
Affiliation(s)
- James L. McLellan
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - William Sausman
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Ashley B. Reers
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Kirsten K. Hanson
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
48
|
Courlet P, Wilkins JJ, Oeuvray C, Gao W, Khandelwal A. Semi-mechanistic population pharmacokinetic/pharmacodynamic modeling of a Plasmodium elongation factor 2 inhibitor cabamiquine for prevention and cure of malaria. Antimicrob Agents Chemother 2023; 67:e0089123. [PMID: 37966273 PMCID: PMC10720512 DOI: 10.1128/aac.00891-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/23/2023] [Indexed: 11/16/2023] Open
Abstract
Cabamiquine is a novel antimalarial agent that demonstrates the potential for chemoprevention and treatment of malaria. In this article, the dose-exposure-response relationship of cabamiquine was characterized using a population pharmacokinetic (PK)/pharmacodynamic (PD) model, incorporating the effects of cabamiquine on parasite dynamics at the liver and blood stages of malaria infection. Modeling was performed sequentially. First, a three-compartmental population PK model was developed, comprising linear elimination, a transit absorption model in combination with first-order absorption, and a recirculation model. Second, this model was expanded into a PK/PD model using parasitemia data from an induced blood stage malaria (IBSM) human challenge model. To describe the parasite growth and killing in the blood, a turnover model was used. Finally, the liver stage parasite dynamics were characterized using data from a sporozoite challenge model (SpzCh), and system parameters were fixed based on biological plausibility. Cabamiquine concentration in the central compartment was used to drive parasite killing at the blood and liver stages. Blood stage minimum inhibitory concentrations (MICb) were estimated at 7.12 ng/mL [95% confidence interval (CI95%): 6.26-7.88 ng/mL] and 1.28 ng/mL (CI95%: 1.12-1.43 ng/mL) for IBSM and SpzCh populations, respectively, while liver stage MICl was lower (0.61 ng/mL; CI95%: 0.24-0.96 ng/mL). In conclusion, a population PK/PD model was developed by incorporating parasite dynamics and drug activity at the blood and liver stages based on clinical data and biological knowledge. This model can potentially facilitate antimalarial agent development by supporting the efficient selection of the optimal dosing regimen.
Collapse
Affiliation(s)
- Perrine Courlet
- Merck Institute for Pharmacometrics, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
| | | | - Claude Oeuvray
- The Global Health Institute of Merck (an affiliate of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland
| | - Wei Gao
- EMD Serono Research and Development Institute, Inc., Billerica, Massachusetts, USA
| | | |
Collapse
|
49
|
Simwela NV, Guiguemde WA, Straimer J, Regnault C, Stokes BH, Tavernelli LE, Yokokawa F, Taft B, Diagana TT, Barrett MP, Waters AP. A conserved metabolic signature associated with response to fast-acting anti-malarial agents. Microbiol Spectr 2023; 11:e0397622. [PMID: 37800971 PMCID: PMC10714989 DOI: 10.1128/spectrum.03976-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/27/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE In malaria drug discovery, understanding the mode of action of lead compounds is important as it helps in predicting the potential emergence of drug resistance in the field when these drugs are eventually deployed. In this study, we have employed metabolomics technologies to characterize the potential targets of anti-malarial drug candidates in the developmental pipeline at NITD. We show that NITD fast-acting leads belonging to spiroindolone and imidazothiadiazole class induce a common biochemical theme in drug-exposed malaria parasites which is similar to another fast-acting, clinically available drug, DHA. These biochemical features which are absent in a slower acting NITD lead (GNF17) point to hemoglobin digestion and inhibition of the pyrimidine pathway as potential action points for these drugs. These biochemical themes can be used to identify and inform on the mode of action of fast drug candidates of similar profiles in future drug discovery programs.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | | | - Judith Straimer
- Novartis Institute for Tropical Diseases, Emeryville, California, USA
| | - Clement Regnault
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Barbara H. Stokes
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Luis E. Tavernelli
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Fumiaki Yokokawa
- Novartis Institute for Tropical Diseases, Emeryville, California, USA
| | - Benjamin Taft
- Novartis Institute for Tropical Diseases, Emeryville, California, USA
| | | | - Michael P. Barrett
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew P. Waters
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
50
|
McLellan JL, Hanson KK. Translation inhibition efficacy does not determine the Plasmodium berghei liver stage antiplasmodial efficacy of protein synthesis inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570699. [PMID: 38106175 PMCID: PMC10723475 DOI: 10.1101/2023.12.07.570699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Protein synthesis is a core cellular process, necessary throughout the complex lifecycle of Plasmodium parasites, thus specific translation inhibitors would be a valuable class of antimalarial drugs, capable of both treating symptomatic infections in the blood and providing chemoprotection by targeting the initial parasite population in the liver, preventing both human disease and parasite transmission back to the mosquito host. As increasing numbers of antiplasmodial compounds are identified that converge mechanistically at inhibition of cytoplasmic translation, regardless of molecular target or mechanism, it would be useful to gain deeper understanding of how their effectiveness as liver stage translation inhibitors relates to their chemoprotective potential. Here, we probed that relationship using the P. berghei-HepG2 liver stage infection model. Using o-propargyl puromycin-based labeling of the nascent proteome in P. berghei-infected HepG2 monolayers coupled with automated confocal feedback microscopy to generate unbiased, single parasite image sets of P. berghei liver stage translation, we determined translation inhibition EC50s for five compounds, encompassing parasite-specific aminoacyl tRNA synthetase inhibitors, compounds targeting the ribosome in both host and parasite, as well as DDD107498, which targets Plasmodium eEF2, and is a leading antimalarial candidate compound being clinically developed as cabamiquine. Compounds were then tested at equivalent effective concentrations to compare the parasite response to, and recovery from, a brief period of translation inhibition in early schizogony, with parasites followed up to 120 hours post-infection to assess liver stage antiplasmodial effects of the treatment. Our data conclusively show that translation inhibition efficacy per se does not determine a translation inhibitor's antiplasmodial efficacy. DDD107498 was the least effective translation inhibitor, yet exerted the strongest antimalarial effects at both 5x- and 10x EC50 concentrations. We show compound-specific heterogeneity in single parasite and population responses to translation inhibitor treatment, with no single metric strongly correlated to release of hepatic merozoites for all compound, demonstrate that DDD107498 is capable of exerting antiplasmodial effects on translationally arrested liver stage parasites, and uncover unexpected growth dynamics during the liver stage. Our results demonstrate that translation inhibition efficacy cannot function as a proxy for antiplasmodial effectiveness, and highlight the importance of exploring the ultimate, as well as proximate, mechanisms of action of these compounds on liver stage parasites.
Collapse
Affiliation(s)
- James L. McLellan
- University of Texas at San Antonio, Department of Molecular Microbiology and Immunology and STCEID, San Antonio TX, USA
| | - Kirsten K. Hanson
- University of Texas at San Antonio, Department of Molecular Microbiology and Immunology and STCEID, San Antonio TX, USA
| |
Collapse
|