1
|
Vadasz B, Zak T, Aldinger J, Sukhanova M, Gao J, Wolniak KL, Chen YH, Chen QC, Ma S, Tariq H. "Accelerated" chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL): unraveling the biological gray zone of CLL/SLL in the era of novel therapies. Virchows Arch 2025; 486:739-750. [PMID: 39243299 DOI: 10.1007/s00428-024-03920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Accelerated chronic lymphocytic leukemia/small lymphocytic lymphoma (A-CLL/SLL) is a histologically aggressive subtype of CLL/SLL that lies in between conventional CLL/SLL (C-CLL/SLL) and Richter transformation (RT) on the biological spectrum. Although the histologic criteria for A-CLL/SLL were defined 14 years ago, the clinical and genetic characteristics and survival outcomes of these patients have yet to be studied in the era of novel therapies. We retrospectively analyzed the clinicopathologic, genetic, and survival characteristics of 34 patients with confirmed tissue diagnosis of A-CLL/SLL and compared them with 120 patients with C-CLL/SLL. Patients with A-CLL/SLL had significantly higher frequencies of B-symptoms, anemia and thrombocytopenia, splenomegaly, higher LDH, and more advanced Rai stages. A-CLL/SLL showed a significantly higher frequency of TP53 mutations (55.0% vs. 11.5%;p < 0.0001) and deletions (38.2% vs. 8.3%;p < 0.0001), lower isolated del(13q) (5.8% vs. 27.5%;p < 0.0001), and increased incidence of RT (11.76% vs. 0.83%;p = 0.0025). The overall survival of patients with A-CLL/SLL was significantly lower than C-CLL/SLL (median survival: 6.17 years vs. not reached; 2 and 5-year survival rates: 75.5% vs. 94.7% and 53.3% vs. 93.7%, respectively; p < 0.0001); however, novel agents have improved the outcomes dramatically compared to the previously published data in the pre-BTKi era. Our results support the categorization of A-CLL/SLL as a distinct biologically aggressive subtype of CLL/SLL and highlight the need to revise the diagnostic criteria utilizing a multifaceted approach that integrates the overall pathobiological profile of the disease, in addition to the histology.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Female
- Aged
- Middle Aged
- Retrospective Studies
- Aged, 80 and over
- Adult
- Mutation
Collapse
Affiliation(s)
- Brian Vadasz
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 251 E. Huron St. 7-213F, Chicago, IL, 60611, USA
| | - Taylor Zak
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 251 E. Huron St. 7-213F, Chicago, IL, 60611, USA
| | - Jonathan Aldinger
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 251 E. Huron St. 7-213F, Chicago, IL, 60611, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 251 E. Huron St. 7-213F, Chicago, IL, 60611, USA
| | - Juehua Gao
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 251 E. Huron St. 7-213F, Chicago, IL, 60611, USA
| | - Kristy Lucile Wolniak
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 251 E. Huron St. 7-213F, Chicago, IL, 60611, USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 251 E. Huron St. 7-213F, Chicago, IL, 60611, USA
| | - Qing Ching Chen
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 251 E. Huron St. 7-213F, Chicago, IL, 60611, USA
| | - Shuo Ma
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, 675 N St Clair, Chicago, IL, 60611, USA
| | - Hamza Tariq
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 251 E. Huron St. 7-213F, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Rodríguez-Sánchez A, Quijada-Álamo M, Pérez-Carretero C, Herrero AB, Arroyo-Barea A, Dávila-Valls J, Rubio A, García de Coca A, Benito-Sánchez R, Rodríguez-Vicente AE, Hernández-Rivas JM, Hernández-Sánchez M. SAMHD1 dysfunction impairs DNA damage response and increases sensitivity to PARP inhibition in chronic lymphocytic leukemia. Sci Rep 2025; 15:10446. [PMID: 40140468 PMCID: PMC11947222 DOI: 10.1038/s41598-025-93629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a clinically and genetically heterogenous disease. Recent next-generation sequencing (NGS) studies have uncovered numerous low-frequency mutated genes in CLL patients, with SAMHD1 emerging as a candidate driver gene. However, the biological and clinical implications of SAMHD1 mutations remain unclear. Using CRISPR/Cas9, we generated CLL models to investigate the impact of SAMHD1 deficiency on pathogenesis and explore therapeutic strategies. Moreover, we performed NGS in treatment-naïve CLL patients to characterize SAMHD1 mutations and employed RNA-sequencing to evaluate their clinical significance. Our study shows that SAMHD1 inactivation impairs the DNA damage response by reducing homologous recombination efficiency through BRCA1 and RAD51 dysregulation. Importantly, SAMHD1 colocalizes with BRCA1 at DNA damage sites in CLL cells. This research also identifies that SAMHD1-mutated cells are more sensitive to PARP inhibition. Clinically, SAMHD1 dysfunction negatively impacts clinical outcome of CLL cases: SAMHD1 mutations reduce failure-free survival (median 46 vs 57 months, p = 0.033), while low SAMHD1 expression associates with shorter time to first treatment (median 47 vs 77 months; p = 0.00073). Overall, this study elucidates that SAMHD1 dysfunction compromises DNA damage response mechanisms, potentially contributing to unfavorable clinical outcomes in CLL, and proposes PARP-inhibitors as a potential therapeutic approach for SAMHD1-mutated CLL cells.
Collapse
MESH Headings
- SAM Domain and HD Domain-Containing Protein 1/metabolism
- SAM Domain and HD Domain-Containing Protein 1/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Humans
- DNA Damage
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Mutation
- Cell Line, Tumor
- BRCA1 Protein/genetics
- BRCA1 Protein/metabolism
- Female
- Animals
- Male
- Mice
Collapse
Affiliation(s)
- Alberto Rodríguez-Sánchez
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Miguel Quijada-Álamo
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Pérez-Carretero
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ana B Herrero
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Departamento de Medicina, Unidad de Medicina Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Andrés Arroyo-Barea
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Dávila-Valls
- Servicio de Hematología, Hospital Nuestra Señora de Sonsoles, SACYL, Ávila, Spain
| | - Araceli Rubio
- Servicio de Hematología, Hospital Miguel Servet, SERGAS, Zaragoza, Spain
| | | | - Rocío Benito-Sánchez
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ana E Rodríguez-Vicente
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Jesús María Hernández-Rivas
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - María Hernández-Sánchez
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Rompietti C, Adamo FM, Sorcini D, De Falco F, Stella A, Martino G, Bigerna B, Dorillo E, Silva Barcelos EC, Esposito A, Geraci C, Arcaleni R, Bordini J, Scarfò L, Rosati E, Ghia P, Falini B, Sportoletti P. Bcor loss promotes Richter transformation of chronic lymphocytic leukemia associated with Notch1 activation in mice. Leukemia 2025:10.1038/s41375-025-02557-y. [PMID: 40113912 DOI: 10.1038/s41375-025-02557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/04/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
Richter's transformation (RT) is an aggressive lymphoma occurring upon progression from chronic lymphocytic leukemia (CLL). Despite advances in deciphering the RT genetic architecture, the mechanisms driving this disease remain unknown. BCOR disruptive mutations were found in CLL and frequently associated with NOTCH1 aberrations, a common feature in CLL and RT. We engineered mice to knock-out Bcor in B and CLL cells of Eμ-TCL1 mice. Bcor loss resulted in alterations of the B cell compartment and favored CLL transformation into an aggressive lymphoma with reduced survival in Eμ-TCL1 mice. RNA-sequencing demonstrated a molecular signature reminiscent of human RT and implied the involvement of the T cell tumour microenvironment in the disease onset. Bcor deficiency was associated with Notch1 activation in splenic CD19 + CD5+ cells to accelerate Eμ-TCL1 mice lymphoproliferation. Notch1 inhibition progressively reduced circulating CD19+ CD5+ and RT cells infiltrating the spleen of diseased mice with concomitant reduction of PD-1 expressing T cells and improved survival. Our data demonstrated an interplay between the tumour suppressor activity of Bcor and Notch1 in RT pathogenesis with potential for tumour targeting. This model represented a new platform to uncover promising alternatives for this incurable tumour.
Collapse
Affiliation(s)
- Chiara Rompietti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Francesco Maria Adamo
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Daniele Sorcini
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Arianna Stella
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Giovanni Martino
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Barbara Bigerna
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Erica Dorillo
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Estevão Carlos Silva Barcelos
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Angela Esposito
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Clelia Geraci
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Roberta Arcaleni
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Jessica Bordini
- IRCCS Ospedale San Raffaele, Università Vita Salute San Raffaele, Milan, Italy
| | - Lydia Scarfò
- IRCCS Ospedale San Raffaele, Università Vita Salute San Raffaele, Milan, Italy
| | - Emanuela Rosati
- Department of Medicine and Surgery, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - Paolo Ghia
- IRCCS Ospedale San Raffaele, Università Vita Salute San Raffaele, Milan, Italy
| | - Brunangelo Falini
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato- Oncology Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy.
| |
Collapse
|
4
|
Enkhbayar B, Lu SC, Tsai HY, Liang SY, Wu SJ, Lin KI, Angata T. Insights into the transcriptional regulation of CD22 in B cell chronic lymphocytic leukemia. J Biol Chem 2025; 301:108386. [PMID: 40054694 PMCID: PMC11999274 DOI: 10.1016/j.jbc.2025.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
CD22 (also known as Siglec-2) is a member of the Siglec family of glycan-recognition proteins and functions as a negative regulator of the B-cell receptor-mediated calcium signaling. Although the low level of CD22 expression on the B cells in patients with chronic lymphocytic leukemia (CLL) has been documented, CD22's role and its downregulation mechanism in CLL are yet to be fully studied. In this study, we confirmed that the surface CD22 protein and its mRNA are downregulated in the B cells of CLL patients. We analyzed a public transcriptomic dataset and found that the CD22 mRNA level is negatively associated with the prognosis of patients with CLL. To investigate the mechanism of CD22 downregulation, we characterized the minimal promoter of the human CD22 gene required for its transcriptional activation in B cell lines. We employed an unbiased proteomic approach to identify several transcription factors binding to the minimal CD22 promoter, including PU.1, Spi-B, and IRF4. The chromatin immunoprecipitation-quantitative PCR revealed that PU.1 was enriched in a CD22-high cell line, while IRF4 was enriched in a CD22-low cell line. We then conducted overexpression/knockout/knockdown experiments, which validated that PU.1 and Spi-B positively, and IRF4 negatively, regulate CD22 transcription. Our study thus provides insights into the transcriptional regulation of CD22 and the mechanism by which CD22 expression is downregulated in the B cells of patients with CLL.
Collapse
Affiliation(s)
- Bayarmaa Enkhbayar
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Shao-Chia Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ho-Yang Tsai
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Suh-Yuen Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shang-Ju Wu
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-I Lin
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
Hallek M. Chronic Lymphocytic Leukemia: 2025 Update on the Epidemiology, Pathogenesis, Diagnosis, and Therapy. Am J Hematol 2025; 100:450-480. [PMID: 39871707 PMCID: PMC11803567 DOI: 10.1002/ajh.27546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/29/2025]
Abstract
DISEASE OVERVIEW Chronic lymphocytic leukemia (CLL) is the most frequent type of leukemia. It typically occurs in older patients and has a highly variable clinical course. Leukemic transformation is initiated by specific genomic alterations that interfere with the regulation of proliferation and apoptosis in clonal B-cells. DIAGNOSIS The diagnosis is established by blood counts, blood smears, and immunophenotyping of circulating B-lymphocytes, which identify a clonal B-cell population carrying the CD5 antigen as well as typical B-cell markers. PROGNOSIS AND STAGING Two clinical staging systems, Rai and Binet, provide prognostic information by using the results of physical examination and blood counts. Various biological and genetic markers provide additional prognostic information. Deletions of the short arm of chromosome 17 (del(17p)) and/or mutations of the TP53 gene predict a shorter time to progression with most targeted therapies. The CLL international prognostic index (CLL-IPI) integrates genetic, biological, and clinical variables to identify distinct risk groups of patients with CLL. The CLL-IPI retains its significance in the era of targeted agents, but the overall prognosis of CLL patients with high-risk stages has improved. THERAPY Only patients with active or symptomatic disease or with advanced Binet or Rai stages require therapy. When treatment is indicated, several therapeutic options exist: combinations of the BCL2 inhibitor venetoclax with obinutuzumab, or venetoclax with ibrutinib, or monotherapy with one of the inhibitors of Bruton tyrosine kinase (BTK). At relapse, the initial treatment may be repeated if the treatment-free interval exceeds 3 years. If the leukemia relapses earlier, therapy should be changed using an alternative regimen. FUTURE CHALLENGES Combinations of targeted agents now provide efficient therapies with a fixed duration that generate deep and durable remissions. These fixed-duration therapies have gained territory in the management of CLL, as they are cost-effective, avoid the emergence of resistance, and offer treatment free time to the patient. The cure rate of these novel combination regimens is unknown. Moreover, the optimal sequencing of targeted therapies remains to be determined. A medical challenge is to treat patients who are double-refractory to both BTK and BCL2 inhibitors. These patients need to be treated within experimental protocols using novel drugs.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Humans
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Prognosis
- Neoplasm Staging
- Sulfonamides/therapeutic use
- Piperidines/therapeutic use
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Chromosomes, Human, Pair 17/genetics
- Chromosome Deletion
- Antibodies, Monoclonal, Humanized
Collapse
Affiliation(s)
- Michael Hallek
- Department I of Internal Medicine and Medical FacultyUniversity of CologneKölnGermany
- Center for Integrated Oncology Aachen Bonn Köln DüsseldorfKölnGermany
- Center of Excellence on “Cellular Stress Responses in Aging‐Associated Diseases,” University of CologneKölnGermany
- Center of Cancer Research Cologne EssenKölnGermany
- National Center for Tumor Diseases (NCT) WestKölnGermany
| |
Collapse
|
6
|
Sadeghi L, Merrien M, Björkholm M, Österborg A, Sander B, Claesson HE, Wright APH. Targeting Tumor Microenvironment Interactions in Chronic Lymphocytic Leukemia Using Leukotriene Inhibitors. Int J Mol Sci 2025; 26:2209. [PMID: 40076826 PMCID: PMC11899779 DOI: 10.3390/ijms26052209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells depend on microenvironment niches for proliferation and survival. The adhesion of tumor cells to stromal cells in such niches triggers the activation of signaling pathways crucial for their survival, including B-cell receptor (BCR) signaling. While inhibitors of Bruton's tyrosine kinase (BTKi) have shown efficacy in patients with CLL by disrupting these interactions, acquired resistance and toxicity remain a challenge during long-term therapy. Thus, identifying additional therapeutic modalities is important. Previously, we demonstrated that 5-lipoxygenase (5-LOX) pathway inhibitors reduced mantle cell lymphoma (MCL) cell adhesion to stromal cells, motivating us to investigate their potential in the context of CLL. We employed an ex vivo co-culture model to study CLL cell adhesion to stromal cells in the absence and presence of 5-LOX pathway inhibitors (zileuton and MK886) as well as the BTKi ibrutinib that was included for comparative purposes. Our findings demonstrated that different CLL samples adhere to stromal cells differentially. We observed a variable decrease in CLL cell adhesion to stromal cells following the inhibition of the 5-LOX pathway across a spectrum of patient samples that was distinct to the spectrum for ibrutinib. Positive and negative correlations were shown between the clinical and genetic features of the CLL samples and their level of adherence to stromal cells in both the absence and presence of the tested inhibitors. These results suggest the 5-LOX pathway as a candidate for assessment as a new therapeutic target in CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Tumor Microenvironment/drug effects
- Cell Adhesion/drug effects
- Stromal Cells/metabolism
- Stromal Cells/drug effects
- Coculture Techniques
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Leukotriene Antagonists/pharmacology
- Hydroxyurea/pharmacology
- Hydroxyurea/analogs & derivatives
- Piperidines/pharmacology
- Female
- Male
- Aged
- Middle Aged
- Lipoxygenase Inhibitors/pharmacology
- Signal Transduction/drug effects
- Aged, 80 and over
- Pyrimidines/pharmacology
- Arachidonate 5-Lipoxygenase/metabolism
Collapse
Affiliation(s)
- Laia Sadeghi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Magali Merrien
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 17177 Stockholm, Sweden; (M.M.); (B.S.)
| | - Magnus Björkholm
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden; (M.B.); (H.-E.C.)
| | - Anders Österborg
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden;
- Department of Hematology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 17177 Stockholm, Sweden; (M.M.); (B.S.)
| | - Hans-Erik Claesson
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden; (M.B.); (H.-E.C.)
| | - Anthony P. H. Wright
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| |
Collapse
|
7
|
Bonolo de Campos C, McCabe CE, Bruins LA, O'Brien DR, Brown S, Tschumper RC, Allmer C, Zhu YX, Rabe KG, Parikh SA, Kay NE, Yan H, Cerhan JR, Allan JN, Furman RR, Weinberg JB, Brander DM, Jelinek DF, Chesi M, Slager SL, Braggio E. Genomic characterization of chronic lymphocytic leukemia in patients of African ancestry. Blood Cancer J 2025; 15:14. [PMID: 39910036 PMCID: PMC11799526 DOI: 10.1038/s41408-024-01207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025] Open
Abstract
Despite the considerable effort to characterize the genomic landscape of chronic lymphocytic leukemia (CLL), published data have been almost exclusively derived from patients of European Ancestry (EA), with significant underrepresentation of minorities, including patients of African Ancestry (AA). To begin to address this gap, we evaluated whether differences exist in the genetic and transcriptomic features of 157 AA and 440 EA individuals diagnosed with CLL. We sequenced 59 putative driver genes and found an increased frequency of high-impact mutations in AA CLL, including genes of the DNA damage repair (DDR) pathway. Telomere erosion was also increased in AA CLL, amplifying the notion of increased genomic instability in AA CLL. Furthermore, we found transcription enrichment of the Tumor Necrosis Factor-alpha (TNFα) Signaling via NF-κB pathway in AA CLL compared to EA CLL, suggesting that tumor promoting inflammation plays an important role in AA CLL. In summary, these results suggest that genomic instability and NF-kB activation is more prevalent in AA CLL than EA CLL.
Collapse
Affiliation(s)
| | - Chantal E McCabe
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Laura A Bruins
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Daniel R O'Brien
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Sochilt Brown
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Cristine Allmer
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Yuan Xiao Zhu
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Kari G Rabe
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | | | - Neil E Kay
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Huihuang Yan
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - James R Cerhan
- Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - John N Allan
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Richard R Furman
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA
| | - J Brice Weinberg
- Divisions of Hematology and Hematologic Malignancies & Cellular Therapy & VA Medical Center, Durham, NC, USA
| | - Danielle M Brander
- Division of Hematologic Malignancy and Cellular Therapy, Duke Cancer Institute, Durham, NC, USA
| | | | - Marta Chesi
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Susan L Slager
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| | - Esteban Braggio
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA.
| |
Collapse
|
8
|
Mamidi MK, Sinha S, Mendez MT, Sanyal T, Mahmud H, Kay NE, Gupta M, Xu C, Vesely SK, Mukherjee P, Chakrabarty JH, Ghosh AK. Aberrantly Expressed Mitochondrial Lipid Kinase, AGK, Activates JAK2-Histone H3 Axis and BCR Signal: A Mechanistic Study with Implication in CLL Therapy. Clin Cancer Res 2025; 31:588-602. [PMID: 39636206 PMCID: PMC11790368 DOI: 10.1158/1078-0432.ccr-24-1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/26/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Although the B-cell receptor (BCR) signal plays a critical role in chronic lymphocytic leukemia (CLL) cell survival and a target of current therapies (ibrutinib targets Bruton's tyrosine kinase; idelalisib targets PI3Kδ), contribution of the cytokine-driven JAK2 pathway to the "CLL cell-survival signaling network" is largely undefined. EXPERIMENTAL DESIGN Patients with CLL were enrolled to investigate expression/activation of JAK2 and acylglycerol kinase (AGK), and their functional implication in primary CLL cell survival. A series of biochemical and molecular biology assays were employed to uncover the underlying mechanism. RESULTS We detected that compared with normal B cells, CLL cells aberrantly express constitutively active JAK2. Mechanistically, HSP90 forms a chaperoning complex with JAK2, resulting in its aberrant accumulation in CLL cells. We also discovered aberrant upregulation of a novel mitochondrial lipid kinase, AGK, which remains complexed with HSP90 in CLL cells activating JAK2. Although AGK is typically mitochondrial, we detected its nuclear localization in association with JAK2 in some CLL cells. Functionally, JAK2 phosphorylates its noncanonical substrate, histone H3(Y41), but not STAT3, activating transcription of diverse sets of genes in a patient-specific manner. Additionally, JAK2 activates the BCR signal in CLL cells via LYN/Bruton's tyrosine kinase axis. Targeted inhibition of JAK2 as monotherapy, or in combination with the BCR inhibitors or venetoclax (a BCL2 inhibitor), induced apoptosis synergistically in CLL cells. CONCLUSIONS These findings suggest that aberrantly expressed AGK activates JAK2, independent of cytokine, leading to activation of diverse sets of gene transcription in CLL cells. Combined targeting of JAK2 and BCR signals or BCL2 may be effective in some patients with CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Janus Kinase 2/metabolism
- Janus Kinase 2/genetics
- Signal Transduction/drug effects
- Receptors, Antigen, B-Cell/metabolism
- HSP90 Heat-Shock Proteins/metabolism
- HSP90 Heat-Shock Proteins/genetics
- Sulfonamides/pharmacology
- Histones/metabolism
- Mitochondria/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Survival/drug effects
- Pyrimidines/pharmacology
- Apoptosis
Collapse
Affiliation(s)
- Murali K. Mamidi
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sutapa Sinha
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Mariana T. Mendez
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Tapojyoti Sanyal
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Hasan Mahmud
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | - Mamta Gupta
- Department of Biochemistry and Molecular Medicine, GW Cancer Center, George Washington University, Washington DC
| | - Chao Xu
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sara K Vesely
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Priyabrata Mukherjee
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | - Asish K. Ghosh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
9
|
Ostrand LM, Rempel LA, Keel BN, Snelling WM, Schmidt TB, Psota ET, Mote BE, Rohrer GA. Genomic analysis of mobility measures on 5-month-old gilts associated with structural soundness. J Anim Sci 2025; 103:skaf001. [PMID: 39774702 PMCID: PMC11912832 DOI: 10.1093/jas/skaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Sow lameness results in premature culling, causing economic loss and well-being issues. A study, utilizing a pressure-sensing mat (GAIT4) and video monitoring system (NUtrack), was conducted to identify objective measurements on gilts that are predictive of future lameness. Gilts (N = 3,656) were categorized to describe their lifetime soundness: SOUND, retained for breeding with no detected mobility issues; LAME_SOW, retained for breeding and detected lame as a sow; CULL_STR, not retained due to poor leg structure; LAME_GILT, not retained due to visible signs of lameness; and CULL, not retained due to reasons other than leg structure. The GAIT4 system creates a series of measurements for each hoof and a lameness score (GLS) while NUtrack records animal movement and posture durations each day. To determine if measurements from the GAIT4 and NUtrack systems were associated with lifetime soundness, mixed model analyses were conducted in R including fixed effects of breed of sire, contemporary group and lifetime soundness score, and random effect of animal. A second mixed model was run without lifetime soundness score and estimates of animal effects were then used to conduct ssGBLUP analyses using three generations of pedigree and genotypes from ~50k SNP on > 60% of phenotyped animals. Genomic heritabilities were estimated, SNP effects were back-solved and significance was based on Bonferroni-corrected permutation tests. GAIT4 traits indicative of lameness (LAME_GILT and CULL_STR vs. SOUND; P < 0.05) were the standard deviation of GLS, average stride length, and average stance time, while significant NUtrack measurements were eating, standing, lateral lying, total lying, speed, distance, and rotations. In addition, rotations differed (P < 0.05) between SOUND vs. LAME_SOW and distance tended to be different (P < 0.10). Estimates of heritability for predictive NUtrack traits were ~0.3 and GAIT4 traits were ~0.2. There were 382 significant SNP effects in 47 genomic regions, four regions on chromosomes 1, 4, 11, and 14 accounted for over 60% of the associations. Genome-level imputed genotypes linked several regions with possible causative genes. Objective measurements from the GAIT4 and NUtrack systems at 5 mo of age were heritable, able to detect unsound animals, and were associated with lifetime soundness.
Collapse
Affiliation(s)
- Lexi M Ostrand
- Department of Animal Sciences, University of Nebraska, Lincoln, NE 68588
| | - Lea A Rempel
- U.S. Meat Animal Research Center (USMARC), USDA-Agricultural Research Service, Clay Center, NE 68933
| | - Brittney N Keel
- U.S. Meat Animal Research Center (USMARC), USDA-Agricultural Research Service, Clay Center, NE 68933
| | - Warren M Snelling
- U.S. Meat Animal Research Center (USMARC), USDA-Agricultural Research Service, Clay Center, NE 68933
| | - Ty B Schmidt
- Department of Animal Sciences, University of Nebraska, Lincoln, NE 68588
| | - Eric T Psota
- Department of Animal Sciences, University of Nebraska, Lincoln, NE 68588
| | - Benny E Mote
- Department of Animal Sciences, University of Nebraska, Lincoln, NE 68588
| | - Gary A Rohrer
- U.S. Meat Animal Research Center (USMARC), USDA-Agricultural Research Service, Clay Center, NE 68933
| |
Collapse
|
10
|
Subramanian S, Phongbunchoo Y, Cauchy P, Ramamoorthy S. Comparative Profiling of Regulatory Modules as a Tool for Identifying the Transcription Factor Network Linked to Leukemogenesis. Methods Mol Biol 2025; 2909:179-209. [PMID: 40029523 DOI: 10.1007/978-1-0716-4442-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The dynamic gene expression program of hematopoiesis is controlled by a complex network of regulatory modules consisting of transcription factors, chromatin modifiers, and genomic organizers. Genetic abnormalities or changes in the levels of these factors can disrupt normal development and often lead to malignant transformation into leukemic cells. Open chromatin regions are hallmarks of regulatory elements that can be profiled by their susceptibility to DNase I and Tn5 transposase. Genome-wide comparative profiling of open chromatin regions of normal and malignant cells can identify differentially induced regulatory elements and their associated regulatory modules in disease development. We provide an optimized bioinformatics pipeline for the processing of assay for transposase-accessible chromatin sequencing (ATAC-seq) and comparative profiling of open chromatin regions. The identified differentially induced open chromatin regions are used to investigate the changes in molecular networks that drive disease development through integrative analysis with other multi-OMICS data. Here, we demonstrate the robust application of this methodology to compare murine B-cell acute lymphoblastic leukemia cells with wild-type control, which can be applied to any two biological conditions. This integrative computational methodology can also be used for comparative profiling of genome-wide functional element screening methods such as DNaseI hypersensitive sites seq (DNase-seq) and chromatin immunoprecipitation seq (ChIP-seq).
Collapse
Affiliation(s)
- Swetha Subramanian
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yutthaphong Phongbunchoo
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pierre Cauchy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Lin J, Mu Y, Liu L, Meng Y, Chen T, Fan X, Yuan J, Shen M, Pan J, Ren Y, Yu S, Chen Y. Machine learning based on multiplatform tests assists in subtype classification of mature B-cell neoplasms. Br J Haematol 2025; 206:224-234. [PMID: 39627967 DOI: 10.1111/bjh.19934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/19/2024] [Indexed: 01/19/2025]
Abstract
Mature B-cell neoplasms (MBNs) are clonal proliferative diseases encompassing over 40 subtypes. The WHO classification (morphology, immunology, cytogenetics and molecular biology) provides comprehensive diagnostic understandings. However, MBN subtyping relies heavily on the expertise of clinicians and pathologists, and differences in clinical experience can lead to variations in subtyping efficiency and consistency. Additionally, due to the diversity in genetic backgrounds, machine learning (ML) models constructed based on Western populations may not be suitable for Chinese MBN patients. To construct a highly accurate classification model suitable for Chinese MBN patients, we first developed an ML model based on next-generation sequencing (NGS) from Chinese MBN patients, with an accuracy of 0.719, which decreased to 0.707 after model feature selection. Another ML model based on NGS and tumour cell size had an accuracy of 0.715, which increased to 0.763 after model feature selection. Both models were more accurate than models constructed using Western MBN patient databases. Furthermore, by adding flow cytometry for CD5 and CD10, the accuracy reached 0.864, which further improved to 0.872 after model feature selection. These models are accessible via an open-access website. Overall, ML models incorporating multiplatform tests can serve as practical auxiliary tools for MBN subtype classification.
Collapse
MESH Headings
- Lymphoma, B-Cell/classification
- Lymphoma, B-Cell/diagnosis
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, Follicular/classification
- Lymphoma, Follicular/diagnosis
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/classification
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Hairy Cell/classification
- Leukemia, Hairy Cell/diagnosis
- Leukemia, Hairy Cell/genetics
- Leukemia, Hairy Cell/pathology
- Waldenstrom Macroglobulinemia/classification
- Waldenstrom Macroglobulinemia/diagnosis
- Waldenstrom Macroglobulinemia/genetics
- Waldenstrom Macroglobulinemia/pathology
- Lymphoma, Mantle-Cell/classification
- Lymphoma, Mantle-Cell/diagnosis
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Machine Learning
- High-Throughput Nucleotide Sequencing
- Flow Cytometry
- CD5 Antigens/analysis
- Neprilysin/analysis
- Humans
- Immunohistochemistry
- Bone Marrow/pathology
- Mutation
- East Asian People/genetics
- Retrospective Studies
Collapse
Affiliation(s)
- Junwei Lin
- Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yafei Mu
- Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Lingling Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University and Sun Yat-sen Institute of Hematology, Guangzhou, China
| | - Yuhuan Meng
- Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Tao Chen
- Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Xijie Fan
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Jiecheng Yuan
- Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Maoting Shen
- Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Jianhua Pan
- Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, China
| | - Yuxia Ren
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Shihui Yu
- Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, China
| | - Yuxin Chen
- Guangzhou Medical University, Guangzhou, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| |
Collapse
|
12
|
Sobczyńska-Konefał A, Jasek M, Karabon L, Jaskuła E. Insights into genetic aberrations and signalling pathway interactions in chronic lymphocytic leukemia: from pathogenesis to treatment strategies. Biomark Res 2024; 12:162. [PMID: 39732734 DOI: 10.1186/s40364-024-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is prevalent in adults and is characterized by the accumulation of mature B cells in the blood, bone marrow, lymph nodes, and spleens. Recent progress in therapy and the introduction of targeted treatments [inhibitors of Bruton's tyrosine kinase (BTKi) or inhibitor of anti-apoptotic B-cell lymphoma-2 (Bcl-2i) protein (venetoclax)] in place of chemoimmunotherapy have significantly improved the outcomes of patients with CLL. These advancements have shifted the importance of traditional predictive markers, leading to a greater focus on resistance genes and reducing the significance of mutations, such as TP53 and del(17p). Despite the significant progress in CLL treatment, some patients still experience disease relapse. This is due to the substantial heterogeneity of CLL as well as the interconnected genetic resistance mechanisms and pathway adaptive resistance mechanisms to targeted therapies in CLL. Although the knowledge of the pathomechanism of CLL has expanded significantly in recent years, the precise origins of CLL and the interplay between various genetic factors remain incompletely understood, necessitating further research. This review enhances the molecular understanding of CLL by describing how BCR signalling, NF-κB PI3K/AKT, and ROR1 pathways sustain CLL cell survival, proliferation, and resistance to apoptosis. It also presents genetic and pathway-adaptive resistance mechanisms in CLL. Identifying B-cell receptor (BCR) signalling as a pivotal driver of CLL progression, the findings advocate personalized treatment strategies based on molecular profiling, emphasizing the need for further research to unravel the complex interplay between BCR signalling and its associated pathways to improve patient outcomes.
Collapse
Affiliation(s)
- Anna Sobczyńska-Konefał
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland
| | - Monika Jasek
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Lidia Karabon
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Emilia Jaskuła
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland.
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland.
| |
Collapse
|
13
|
Charalampopoulou S, Chapiro E, Nadeu F, Zenz T, Beà S, Martínez-Farran A, Aymerich M, Rozman M, Roos-Weil D, Bernard O, Susin SA, Parker H, Walewska R, Oakes CC, Strefford JC, Campo E, Matutes E, Duran-Ferrer M, Nguyen-Khac F, Martín-Subero JI. Epigenetic features support the diagnosis of B-cell prolymphocytic leukemia and identify 2 clinicobiological subtypes. Blood Adv 2024; 8:6297-6307. [PMID: 39471431 DOI: 10.1182/bloodadvances.2024013327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024] Open
Abstract
ABSTRACT The recognition of B-cell prolymphocytic leukemia (B-PLL) as a separate entity is controversial based on the current classification systems. Here, we analyzed the DNA methylome of a cohort of 20 B-PLL cases diagnosed according to the guidelines of the International Consensus Classification/Fourth revised edition of the World Health Organization Classification, and compared them with chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), splenic marginal zone lymphoma (SMZL), and normal B-cell subpopulations. Unsupervised principal component analyses suggest that B-PLL is epigenetically distinct from CLL, MCL, and SMZL, which is further supported by robust differential methylation signatures in B-PLL. We also observe that B-PLL can be segregated into 2 epitypes with differential clinicobiological characteristics. B-PLL epitype 1 carries lower immunoglobulin heavy variable somatic hypermutation and a less profound germinal center-related DNA methylation imprint than epitype 2. Furthermore, epitype 1 is significantly enriched in mutations affecting MYC and SF3B1, and displays DNA hypomethylation and gene upregulation signatures enriched in MYC targets. Despite the low sample size, patients from epitype 1 have an inferior overall survival than those of epitype 2. This study provides relevant insights into the biology and differential diagnosis of B-PLL, and potentially identifies 2 subgroups with distinct biological and clinical features.
Collapse
MESH Headings
- Humans
- Epigenesis, Genetic
- DNA Methylation
- Leukemia, Prolymphocytic, B-Cell/diagnosis
- Leukemia, Prolymphocytic, B-Cell/genetics
- Male
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Female
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/diagnosis
- Lymphoma, Mantle-Cell/mortality
- Aged
Collapse
Affiliation(s)
| | - Elise Chapiro
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, INSERM UMRS 1138, Drug Resistance in Hematological Malignancies Team, Paris, France
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zurich, Switzerland
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Pathology Department, Hematopathology Section, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | - Marta Aymerich
- Pathology Department, Hematopathology Section, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria Rozman
- Pathology Department, Hematopathology Section, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Damien Roos-Weil
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, INSERM UMRS 1138, Drug Resistance in Hematological Malignancies Team, Paris, France
| | | | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, INSERM UMRS 1138, Drug Resistance in Hematological Malignancies Team, Paris, France
| | - Helen Parker
- Cancer Genomics, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, Bournemouth, United Kingdom
| | | | - Jonathan C Strefford
- Cancer Genomics, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Pathology Department, Hematopathology Section, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Estela Matutes
- Pathology Department, Hematopathology Section, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Florence Nguyen-Khac
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, INSERM UMRS 1138, Drug Resistance in Hematological Malignancies Team, Paris, France
| | - José I Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
14
|
Pula AE, Robak T. The discovery of the RCC1::IRF4 Fusion in CLL patients with t(1;6)(p35.3;p25.2) chromosomal translocation. Br J Haematol 2024; 205:2125-2127. [PMID: 39410709 DOI: 10.1111/bjh.19821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 12/14/2024]
Abstract
Jayne et al. provide a molecular characterization of the t(1;6)(p35.3;p25.2) chromosomal translocation in patients with chronic lymphocytic leukaemia. They indicate that this translocation involves the gene encoding interferon regulatory factor 4 (IRF4) on chromosome 6p25.2 with the regulator of chromosome condensation 1 (RCC1) gene on chromosome 1p35.3. This translocations may have important prognostic value. Commentary on: Jayne et al. The chromosomal translocation t(1;6)(p35.3;p25.2), recurrent in chronic lymphocytic leukaemia leads to RCC1::IRF4 fusion. Br J Haematol 2024; 205:2321-2326.
Collapse
Affiliation(s)
- Anna E Pula
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, USA
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Sergio I, Varricchio C, Squillante F, Cantale Aeo NM, Campese AF, Felli MP. Notch Inhibitors and BH3 Mimetics in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:12839. [PMID: 39684550 DOI: 10.3390/ijms252312839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with poor response to conventional therapy, derived from hematopoietic progenitors committed to T-cell lineage. Relapsed/Refractory patients account for nearly 20% of childhood and 45% of adult cases. Aberrant Notch signaling plays a critical role in T-ALL pathogenesis and therapy resistance. Notch inhibition is a promising therapeutic target for personalized medicine, and a variety of strategies to prevent Notch activation, including γ-secretase (GS) inhibitors (GSIs) and antibodies neutralizing Notch receptors or ligands, have been developed. Disruption of apoptosis is pivotal in cancer development and progression. Different reports evidenced the interplay between Notch and the anti-apoptotic Bcl-2 family proteins in T-ALL. Although based on early research data, this review discusses recent advances in directly targeting Notch receptors and the use of validated BH3 mimetics for the treatment of T-ALL and their combined action in light of current evidence of their use.
Collapse
Affiliation(s)
- Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudia Varricchio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Squillante
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | | | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
16
|
Hubmann R, Hilgarth M, Löwenstern T, Lienhard A, Sima F, Reisinger M, Hobel-Kleisch C, Porpaczy E, Haferlach T, Hoermann G, Laccone F, Jungbauer C, Valent P, Staber PB, Shehata M, Jäger U. Somatic Recombination Between an Ancient and a Recent NOTCH2 Gene Variant Is Associated with the NOTCH2 Gain-of-Function Phenotype in Chronic Lymphocytic Leukemia. Int J Mol Sci 2024; 25:12581. [PMID: 39684291 DOI: 10.3390/ijms252312581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Constitutively active NOTCH2 signaling is a hallmark in chronic lymphocytic leukemia (CLL). The precise underlying defect remains obscure. Here we show that the mRNA sequence coding for the NOTCH2 negative regulatory region (NRR) is consistently deleted in CLL cells. The most common NOTCH2ΔNRR-DEL2 deletion is associated with two intronic single nucleotide variations (SNVs) which either create (CTTAT, G>A for rs2453058) or destroy (CTCGT, A>G for rs5025718) a putative splicing branch point sequence (BPS). Phylogenetic analysis demonstrates that rs2453058 is part of an ancient NOTCH2 gene variant (*1A01) which is associated with type 2 diabetes mellitus (T2DM) and is two times more frequent in Europeans than in East Asians, resembling the differences in CLL incidence. In contrast, rs5025718 belongs to a recent NOTCH2 variant (*1a4) that dominates the world outside Africa. Nanopore sequencing indicates that somatic reciprocal crossing over between rs2453058 (*1A01) and rs5025718 (*1a4) leads to recombined NOTCH2 alleles with altered BPS patterns in NOTCH2*1A01/*1a4 CLL cases. This would explain the loss of the NRR domain by aberrant pre-mRNA splicing and consequently the NOTCH2 gain-of-function phenotype. Together, our findings suggest that somatic recombination of inherited NOTCH2 variants might be relevant to CLL etiology and may at least partly explain its geographical clustering.
Collapse
Affiliation(s)
- Rainer Hubmann
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Martin Hilgarth
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tamara Löwenstern
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Lienhard
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Filip Sima
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Manuel Reisinger
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Claudia Hobel-Kleisch
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Edit Porpaczy
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Gregor Hoermann
- MLL Munich Leukemia Laboratory, 81377 Munich, Germany
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Philipp B Staber
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Medhat Shehata
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Veyhe SR, Cédile O, Dahlmann SK, Krejcik J, Abildgaard N, Høyer T, Møller MB, Thomassen M, Juul-Jensen K, Frederiksen H, Dybkær K, Hansen MH, Nyvold CG. Molecular Composition and Kinetics of B Cells During Ibrutinib Treatment in Patients with Chronic Lymphocytic Leukemia. Int J Mol Sci 2024; 25:12569. [PMID: 39684282 DOI: 10.3390/ijms252312569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of B cells due to constitutive B-cell receptor (BCR) signaling, leading to apoptosis resistance and increased proliferation. This study evaluates the effects of the Bruton Tyrosine Kinase (BTK) inhibitor ibrutinib on the molecular composition, clonality, and kinetics of B cells during treatment in CLL patients. Employing a multi-omics approach of up to 3.2 years of follow-up, we analyzed data from 24 CLL patients, specifically focusing on nine patients treated with ibrutinib monotherapy. In this study, clonal stability was observed within the ibrutinib-treated group following an effective initial clinical response, where clonotype frequencies of residual CLL cells remained high and stable, ranging from 74.9% at 1.5 years to 87.7% at approximately 3 years. In contrast, patients treated with the B-cell lymphoma 2 (BCL2) inhibitor venetoclax exhibited substantial reductions in clonal frequencies, approaching molecular eradication. Deep whole-exome sequencing revealed minimal genomic progression in the ibrutinib group, maintaining somatic drivers and variant allele frequencies (VAF) above 0.2 throughout treatment. At the single-cell level, the NF-κB pathway inhibition and apoptotic signals were detected or even augmented during treatment in ibrutinib-treated patients. These findings may corroborate the role of ibrutinib in stabilizing the genomic landscape of CLL cells, preventing significant genomic evolution despite maintaining a high clonal burden within the residual B-cell compartment.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Piperidines/therapeutic use
- Piperidines/pharmacology
- B-Lymphocytes/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Aged
- Female
- Male
- Middle Aged
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Pyrimidines/therapeutic use
- Pyrimidines/pharmacology
- Pyrazoles/therapeutic use
- Pyrazoles/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Aged, 80 and over
- Sulfonamides/therapeutic use
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Kinetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Exome Sequencing
Collapse
Affiliation(s)
- Sólja Remisdóttir Veyhe
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
| | - Oriane Cédile
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Odense Patient Data Explorative Network (OPEN), Odense University Hospital, 5000 Odense, Denmark
| | - Sara Kamuk Dahlmann
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
| | - Jakub Krejcik
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
| | - Niels Abildgaard
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
| | - Thor Høyer
- Department of Hematology, Aalborg University Hospital, 9000 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Michael Boe Møller
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Karen Juul-Jensen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
| | - Henrik Frederiksen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
| | - Karen Dybkær
- Department of Hematology, Aalborg University Hospital, 9000 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Marcus Høy Hansen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Odense Patient Data Explorative Network (OPEN), Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
18
|
Varghese AM, Munir T. SOHO State of the Art Updates and Next Questions | Impact of Biologic Markers on Outcomes With Novel Therapy in Chronic Lymphocytic Leukaemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)02400-5. [PMID: 39674706 DOI: 10.1016/j.clml.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/16/2024]
Abstract
Treatment of CLL has changed remarkably in the last decade and novel agents are the standard therapy in various jurisdictions. However, the biology of CLL still plays an important part in the treatment choice and disease outcomes. In this post chemo-immunotherapy era for CLL, number of biological factors have lost their clinical significance and most patients will benefit from continuous or time-limited therapy. However, TP53 and IGHV mutation status still retains clinical significance in determining outcomes with various therapeutic approaches. New emerging biological markers including drug-specific mutations are adding to the complexity of decision making in relapsed CLL. End of treatment minimal residual disease analysis (MRD) adds prognostic information to the outcomes with time-limited therapy. MRD-guided duration of treatment may improve further outcomes, but longer clinical follow-up is needed before this approach is incorporated in clinical guidelines. The review gives an update on the impact of biological markers on outcomes with novel agents.
Collapse
|
19
|
Piñeyroa JA, López-Oreja I, Nadeu F, Martínez-Farran A, Aróstegui JI, López-Guerra M, Correa JG, Fabregat A, Villamor N, Monge-Escatín I, Albiol N, Costa D, Aymerich M, Beà S, Campo E, Delgado J, Colomer D, Mozas P. Association of Genomic Alterations with the Presence of Serum Monoclonal Proteins in Chronic Lymphocytic Leukemia. Cells 2024; 13:1839. [PMID: 39594588 PMCID: PMC11592641 DOI: 10.3390/cells13221839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
The presence of a monoclonal protein detected by serum immunofixation electrophoresis (sIFE) has been reported as an adverse prognostic factor in chronic lymphocytic leukemia (CLL). However, the genetic underpinning of this finding has not been studied. We retrospectively studied 97 CLL patients with simultaneous information on sIFE and genetic alterations detected by next-generation sequencing. sIFE was positive in 49 patients. The most common isotypes were IgG κ (27%) and bi/triclonal (25%). A +sIFE was associated with a higher number of mutated genes [median 2 (range 0-3) vs. 0 (range 0-2), p = 0.006], and a higher frequency of unmutated IGHV status (60 vs. 29%, p = 0.004). An IgM monoclonal protein was associated with TP53 mutations (36% in IgM +sIFE vs. 12% in non-IgM +sIFE or -sIFE, p = 0.04), and bi/triclonal proteins with NOTCH1 mutations (33% in bi/triclonal vs. 9% in monoclonal +sIFE or -sIFE, p = 0.04). These data suggest an association between a +sIFE and a higher mutational burden, and some monoclonal isotypes with specific mutations.
Collapse
Affiliation(s)
- Juan A. Piñeyroa
- Department of Hematology, Hospital Clínic, 08036 Barcelona, Spain; (J.A.P.); (J.G.C.); (N.A.); (J.D.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Facultat de Medicina i Ciènces de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Irene López-Oreja
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic, 08036 Barcelona, Spain
| | - Ferran Nadeu
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ares Martínez-Farran
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
| | - Juan Ignacio Aróstegui
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Department of Immunology, Hospital Clínic, 08036 Barcelona, Spain
| | - Mónica López-Guerra
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic, 08036 Barcelona, Spain
| | - Juan Gonzalo Correa
- Department of Hematology, Hospital Clínic, 08036 Barcelona, Spain; (J.A.P.); (J.G.C.); (N.A.); (J.D.)
| | - Aleix Fabregat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, 08036 Barcelona, Spain
| | - Neus Villamor
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic, 08036 Barcelona, Spain
| | | | - Nil Albiol
- Department of Hematology, Hospital Clínic, 08036 Barcelona, Spain; (J.A.P.); (J.G.C.); (N.A.); (J.D.)
| | - Dolors Costa
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic, 08036 Barcelona, Spain
| | - Marta Aymerich
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic, 08036 Barcelona, Spain
| | - Sílvia Beà
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Facultat de Medicina i Ciènces de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic, 08036 Barcelona, Spain
| | - Elías Campo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Facultat de Medicina i Ciènces de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic, 08036 Barcelona, Spain
| | - Julio Delgado
- Department of Hematology, Hospital Clínic, 08036 Barcelona, Spain; (J.A.P.); (J.G.C.); (N.A.); (J.D.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Facultat de Medicina i Ciènces de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Dolors Colomer
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
- Facultat de Medicina i Ciènces de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic, 08036 Barcelona, Spain
| | - Pablo Mozas
- Department of Hematology, Hospital Clínic, 08036 Barcelona, Spain; (J.A.P.); (J.G.C.); (N.A.); (J.D.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (F.N.); (A.M.-F.); (J.I.A.); (M.L.-G.); (A.F.); (N.V.); (D.C.); (M.A.); (S.B.); (E.C.)
| |
Collapse
|
20
|
Hägerstrand D, Oder B, Cortese D, Qu Y, Binzer-Panchal A, Österholm C, Del Peso Santos T, Rabbani L, Asl HF, Skaftason A, Ljungström V, Lundholm A, Koutroumani M, Haider Z, Jylhä C, Mollstedt J, Mansouri L, Plevova K, Agathangelidis A, Scarfò L, Armand M, Muggen AF, Kay NE, Shanafelt T, Rossi D, Orre LM, Pospisilova S, Barylyuk K, Davi F, Vesterlund M, Langerak AW, Lehtiö J, Ghia P, Stamatopoulos K, Sutton LA, Rosenquist R. The non-canonical BAF chromatin remodeling complex is a novel target of spliceosome dysregulation in SF3B1-mutated chronic lymphocytic leukemia. Leukemia 2024; 38:2429-2442. [PMID: 39261602 PMCID: PMC11518989 DOI: 10.1038/s41375-024-02379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
SF3B1 mutations are recurrent in chronic lymphocytic leukemia (CLL), particularly enriched in clinically aggressive stereotyped subset #2. To investigate their impact, we conducted RNA-sequencing of 18 SF3B1MUT and 17 SF3B1WT subset #2 cases and identified 80 significant alternative splicing events (ASEs). Notable ASEs concerned exon inclusion in the non-canonical BAF (ncBAF) chromatin remodeling complex subunit, BRD9, and splice variants in eight additional ncBAF complex interactors. Long-read RNA-sequencing confirmed the presence of splice variants, and extended analysis of 139 CLL cases corroborated their association with SF3B1 mutations. Overexpression of SF3B1K700E induced exon inclusion in BRD9, resulting in a novel splice isoform with an alternative C-terminus. Protein interactome analysis of the BRD9 splice isoform revealed augmented ncBAF complex interaction, while exhibiting decreased binding of auxiliary proteins, including SPEN, BRCA2, and CHD9. Additionally, integrative multi-omics analysis identified a ncBAF complex-bound gene quartet on chromosome 1 with higher expression levels and more accessible chromatin in SF3B1MUT CLL. Finally, Cancer Dependency Map analysis and BRD9 inhibition displayed BRD9 dependency and sensitivity in cell lines and primary CLL cells. In conclusion, spliceosome dysregulation caused by SF3B1 mutations leads to multiple ASEs and an altered ncBAF complex interactome, highlighting a novel pathobiological mechanism in SF3B1MUT CLL.
Collapse
Affiliation(s)
- Daniel Hägerstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Blaž Oder
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Diego Cortese
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ying Qu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Amrei Binzer-Panchal
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Leily Rabbani
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hassan Foroughi Asl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - August Lundholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Maria Koutroumani
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Zahra Haider
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - John Mollstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Karla Plevova
- Department of Internal Medicine - Hematology and Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andreas Agathangelidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Lydia Scarfò
- Università Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology, IRCCS, Ospedale San Raffaele, Milan, Italy
| | - Marine Armand
- Department of Hematology, Hospital Pitie-Salpetriere, Sorbonne University, Paris, France
| | - Alice F Muggen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Neil E Kay
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, USA
| | - Tait Shanafelt
- Division of Hematology, Department of Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Davide Rossi
- Department of Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland
| | - Lukas M Orre
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sarka Pospisilova
- Department of Internal Medicine - Hematology and Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Konstantin Barylyuk
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Frederic Davi
- Department of Hematology, Hospital Pitie-Salpetriere, Sorbonne University, Paris, France
| | - Mattias Vesterlund
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology, IRCCS, Ospedale San Raffaele, Milan, Italy
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Lesley-Ann Sutton
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Clinical Genetics and Genomics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
21
|
Rodriguez BN, Huang H, Chia JJ, Hoffmann A. The noncanonical NFκB pathway: Regulatory mechanisms in health and disease. WIREs Mech Dis 2024; 16:e1646. [PMID: 38634218 PMCID: PMC11486840 DOI: 10.1002/wsbm.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
The noncanonical NFκB signaling pathway mediates the biological functions of diverse cell survival, growth, maturation, and differentiation factors that are important for the development and maintenance of hematopoietic cells and immune organs. Its dysregulation is associated with a number of immune pathologies and malignancies. Originally described as the signaling pathway that controls the NFκB family member RelB, we now know that noncanonical signaling also controls NFκB RelA and cRel. Here, we aim to clarify our understanding of the molecular network that mediates noncanonical NFκB signaling and review the human diseases that result from a deficient or hyper-active noncanonical NFκB pathway. It turns out that dysregulation of RelA and cRel, not RelB, is often implicated in mediating the resulting pathology. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Cancer > Molecular and Cellular Physiology Immune System Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Benancio N. Rodriguez
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, CA
| | - Helen Huang
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Institute for Quantitative and Computational Biosciences, Los Angeles, CA
| | - Jennifer J. Chia
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, Calif; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics; Molecular Biology Institute; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
22
|
Pudjihartono M, Pudjihartono N, O'Sullivan JM, Schierding W. Melanoma-specific mutation hotspots in distal, non-coding, promoter-interacting regions implicate novel candidate driver genes. Br J Cancer 2024; 131:1644-1655. [PMID: 39367275 PMCID: PMC11555344 DOI: 10.1038/s41416-024-02870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND To develop targeted treatments, it is crucial to identify the full spectrum of genetic drivers in melanoma, including those in non-coding regions. However, recent efforts to explore non-coding regions have primarily focused on gene-adjacent elements such as promoters and non-coding RNAs, leaving intergenic distal regulatory elements largely unexplored. METHODS We used Hi-C chromatin contact data from melanoma cells to map distal, non-coding, promoter-interacting regulatory elements genome-wide in melanoma. Using this "promoter-interaction network", alongside whole-genome sequence and gene expression data from the Pan Cancer Analysis of Whole Genomes, we developed multivariate linear regression models to identify distal somatic mutation hotspots that affect promoter activity. RESULTS We identified eight recurrently mutated hotspots that are novel, melanoma-specific, located in promoter-interacting distal regulatory elements, alter transcription factor binding motifs, and affect the expression of genes (e.g., HSPB7, CLDN1, ADCY9 and FDXR) previously implicated as tumour suppressors/oncogenes in various cancers. CONCLUSIONS Our study suggests additional non-coding drivers beyond the well-characterised TERT promoter in melanoma, offering new insights into the disruption of complex regulatory networks by non-coding mutations that may contribute to melanoma development. Furthermore, our study provides a framework for integrating multiple levels of biological data to uncover cancer-specific non-coding drivers.
Collapse
Affiliation(s)
- Michael Pudjihartono
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | | | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
23
|
Arcari A, Morello L, Borotti E, Ronda E, Rossi A, Vallisa D. Recent Advances in the Molecular Biology of Chronic Lymphocytic Leukemia: How to Define Prognosis and Guide Treatment. Cancers (Basel) 2024; 16:3483. [PMID: 39456577 PMCID: PMC11505876 DOI: 10.3390/cancers16203483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is the most frequent type of leukemia in Western countries. In recent years, there have been important advances in the knowledge of molecular alterations that underlie the disease's pathogenesis. Very heterogeneous prognostic subgroups have been identified by the mutational status of immunoglobulin heavy variable genes (IGVH), FISH analysis and molecular evaluation of TP53 mutations. Next-generation sequencing (NGS) technologies have provided a deeper characterization of the genomic and epigenomic landscape of CLL. New therapeutic targets have led to a progressive reduction of traditional chemoimmunotherapy in favor of specific biological agents. Furthermore, in the latest clinical trials, the minimal residual disease (MRD) has emerged as a potent marker of outcome and a guide to treatment duration. This review focuses on recent insights into the understanding of CLL biology. We also consider the translation of these findings into the development of risk-adapted and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Annalisa Arcari
- Hematology Unit, Ospedale Guglielmo da Saliceto, Azienda USL di Piacenza, 29100 Piacenza, Italy; (L.M.); (D.V.)
| | - Lucia Morello
- Hematology Unit, Ospedale Guglielmo da Saliceto, Azienda USL di Piacenza, 29100 Piacenza, Italy; (L.M.); (D.V.)
| | - Elena Borotti
- Bone Marrow Transplant Laboratory, Molecular Diagnostic and Stem Cells Manipulation, Ospedale Guglielmo da Saliceto, Azienda USL di Piacenza, 29100 Piacenza, Italy; (E.B.); (E.R.); (A.R.)
| | - Elena Ronda
- Bone Marrow Transplant Laboratory, Molecular Diagnostic and Stem Cells Manipulation, Ospedale Guglielmo da Saliceto, Azienda USL di Piacenza, 29100 Piacenza, Italy; (E.B.); (E.R.); (A.R.)
| | - Angela Rossi
- Bone Marrow Transplant Laboratory, Molecular Diagnostic and Stem Cells Manipulation, Ospedale Guglielmo da Saliceto, Azienda USL di Piacenza, 29100 Piacenza, Italy; (E.B.); (E.R.); (A.R.)
| | - Daniele Vallisa
- Hematology Unit, Ospedale Guglielmo da Saliceto, Azienda USL di Piacenza, 29100 Piacenza, Italy; (L.M.); (D.V.)
| |
Collapse
|
24
|
Huang YJ, Lim JQ, Hsu JS, Kuo MC, Wang PN, Kao HW, Wu JH, Chen CC, Tsai SF, Ong CK, Shih LY. Next-Generation Integrated Sequencing Identifies Poor Prognostic Factors in Patients with MYD88-Mutated Chronic Lymphocytic Leukemia in Taiwan. Pathobiology 2024; 92:77-89. [PMID: 39357512 PMCID: PMC11965870 DOI: 10.1159/000541709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in the Western countries and is very rare in Asia. METHODS Peripheral blood or bone marrow mononuclear cells obtained at initial diagnosis from 215 patients with CLL were analyzed by using next-generation sequencing to investigate the ethnic differences in genetic abnormalities. RESULTS Whole-genome sequencing and whole-exome sequencing analyses on 30 cases showed that 9 genes, including IGLL5, MYD88, TCHH, DSCAM, AXDND1, BICRA, KMT2D, MYT1L, and RBM43, were more frequently mutated in our Taiwanese cohort compared with those of the Western cohorts. IGLL5, MYD88, and KMT2D genes were further analyzed by targeted sequencing in another 185 CLL patients, unraveling frequencies of 29.3%, 20.9%, and 15.0%, respectively. The most frequent positional mutation of MYD88 was V217F (26/45, 57.8%), followed by L265P (9/45, 20.0%). MYD88 mutations were significantly associated with IGLL5 mutations (p = 0.0004), mutated IGHV (p < 0.0001) and 13q deletion (p = 0.0164). CLL patients with co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations were associated with a significantly inferior survival compared to those with MYD88 mutation alone (not reached vs. 131.8 months, p = 0.007). In multivariate analysis, MYD88 mutation without KMT2D or IGLL5 mutations was an independently favorable predictor. CONCLUSIONS IGLL5, MYD88, and KMT2D mutations were enriched in Taiwanese CLL, and co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations was associated with a poorer prognosis. INTRODUCTION Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in the Western countries and is very rare in Asia. METHODS Peripheral blood or bone marrow mononuclear cells obtained at initial diagnosis from 215 patients with CLL were analyzed by using next-generation sequencing to investigate the ethnic differences in genetic abnormalities. RESULTS Whole-genome sequencing and whole-exome sequencing analyses on 30 cases showed that 9 genes, including IGLL5, MYD88, TCHH, DSCAM, AXDND1, BICRA, KMT2D, MYT1L, and RBM43, were more frequently mutated in our Taiwanese cohort compared with those of the Western cohorts. IGLL5, MYD88, and KMT2D genes were further analyzed by targeted sequencing in another 185 CLL patients, unraveling frequencies of 29.3%, 20.9%, and 15.0%, respectively. The most frequent positional mutation of MYD88 was V217F (26/45, 57.8%), followed by L265P (9/45, 20.0%). MYD88 mutations were significantly associated with IGLL5 mutations (p = 0.0004), mutated IGHV (p < 0.0001) and 13q deletion (p = 0.0164). CLL patients with co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations were associated with a significantly inferior survival compared to those with MYD88 mutation alone (not reached vs. 131.8 months, p = 0.007). In multivariate analysis, MYD88 mutation without KMT2D or IGLL5 mutations was an independently favorable predictor. CONCLUSIONS IGLL5, MYD88, and KMT2D mutations were enriched in Taiwanese CLL, and co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations was associated with a poorer prognosis.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- ONCO-ACP, Duke-NUS Medical School, Singapore, Singapore
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Nan Wang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiao-Wen Kao
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jin-Hou Wu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiu-Chen Chen
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
25
|
Kurucova T, Reblova K, Janovska P, Porc JP, Navrkalova V, Pavlova S, Malcikova J, Plevova K, Tichy B, Doubek M, Bryja V, Kotaskova J, Pospisilova S. Unveiling the dynamics and molecular landscape of a rare chronic lymphocytic leukemia subpopulation driving refractoriness: insights from single-cell RNA sequencing. Mol Oncol 2024; 18:2541-2553. [PMID: 38770541 PMCID: PMC11459043 DOI: 10.1002/1878-0261.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Early identification of resistant cancer cells is currently a major challenge, as their expansion leads to refractoriness. To capture the dynamics of these cells, we made a comprehensive analysis of disease progression and treatment response in a chronic lymphocytic leukemia (CLL) patient using a combination of single-cell and bulk genomic methods. At diagnosis, the patient presented with unfavorable genetic markers, including notch receptor 1 (NOTCH1) mutation and loss(11q). The initial and subsequent treatment lines did not lead to a durable response and the patient developed refractory disease. Refractory CLL cells featured substantial dysregulation in B-cell phenotypic markers such as human leukocyte antigen (HLA) genes, immunoglobulin (IG) genes, CD19 molecule (CD19), membrane spanning 4-domains A1 (MS4A1; previously known as CD20), CD79a molecule (CD79A) and paired box 5 (PAX5), indicating B-cell de-differentiation and disease transformation. We described the clonal evolution and characterized in detail two cell populations that emerged during the refractory disease phase, differing in the presence of high genomic complexity. In addition, we successfully tracked the cells with high genomic complexity back to the time before treatment, where they formed a rare subpopulation. We have confirmed that single-cell RNA sequencing enables the characterization of refractory cells and the monitoring of their development over time.
Collapse
Affiliation(s)
- Terezia Kurucova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Kamila Reblova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Pavlina Janovska
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Jakub Pawel Porc
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Veronika Navrkalova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Sarka Pavlova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Jitka Malcikova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Karla Plevova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Boris Tichy
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Michael Doubek
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Jana Kotaskova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| |
Collapse
|
26
|
Rivas‐Delgado A, López C, Clot G, Nadeu F, Grau M, Frigola G, Bosch‐Schips J, Radke J, Ishaque N, Alcoceba M, Tapia G, Luizaga L, Barcena C, Kelleher N, Villamor N, Baumann T, Muntañola A, Sancho‐Cia JM, García‐Sancho AM, Gonzalez‐Barca E, Matutes E, Brito JA, Karube K, Salaverria I, Enjuanes A, Wiemann S, Heppner FL, Siebert R, Climent F, Campo E, Giné E, López‐Guillermo A, Beà S. Testicular large B-cell lymphoma is genetically similar to PCNSL and distinct from nodal DLBCL. Hemasphere 2024; 8:e70024. [PMID: 39380845 PMCID: PMC11456803 DOI: 10.1002/hem3.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024] Open
Abstract
Testicular large B-cell lymphoma (TLBCL) is an infrequent and aggressive lymphoma arising in an immune-privileged site and has recently been recognized as a distinct entity from diffuse large B-cell lymphoma (DLBCL). We describe the genetic features of TLBCL and compare them with published series of nodal DLBCL and primary large B-cell lymphomas of the CNS (PCNSL). We collected 61 patients with TLBCL. We performed targeted next-generation sequencing, copy number arrays, and fluorescent in situ hybridization to assess chromosomal rearrangements in 40 cases with available material. Seventy percent of the cases showed localized stages. BCL6 rearrangements were detected in 36% of cases, and no concomitant BCL2 and MYC rearrangements were found. TLBCL had fewer copy number alterations (p < 0.04) but more somatic variants (p < 0.02) than nodal DLBCL and had more frequent 18q21.32-q23 (BCL2) gains and 6q and 9p21.3 (CDKN2A/B) deletions. PIM1, MYD88 L265P , CD79B, TBL1XR1, MEF2B, CIITA, EP300, and ETV6 mutations were more frequent in TLBCL, and BCL10 mutations in nodal DLBCL. There were no major genetic differences between TLBCL and PCNSL. Localized or disseminated TLBCL displayed similar genomic profiles. Using LymphGen, the majority of cases were classified as MCD. However, we observed a subgroup of patients classified as BN2, both in localized and disseminated TLBCL, suggesting a degree of genetic heterogeneity in the TLBCL genetic profile. TLBCL has a distinctive genetic profile similar to PCNSL, supporting its recognition as a separate entity from DLBCL and might provide information to devise targeted therapeutic approaches.
Collapse
Affiliation(s)
- Alfredo Rivas‐Delgado
- Department of HematologyHospital ClínicBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
| | - Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departament de Fonaments ClínicsUniversitat de BarcelonaBarcelonaSpain
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Marta Grau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Gerard Frigola
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| | - Jan Bosch‐Schips
- Department of PathologyHospital Universitari de Bellvitge, IDIBELLHospitalet de LlobregatSpain
| | - Josefine Radke
- Department of NeuropathologyCharité‐Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- Institute of Pathology, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Naveed Ishaque
- Berlin Institute of Health (BIH) at CharitéUniversitätsmedizin Berlin, Center for Digital HealthBerlinGermany
| | - Miguel Alcoceba
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of HematologyHospital Universitario de Salamanca, IBSALSalamancaSpain
- Department of HematologyCentro de Investigación del Cáncer‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Gustavo Tapia
- Departments of Hematology and Pathology, Institut Català d'OncologiaHospital Universitari Germans Trias i PujolBadalonaSpain
- Departament de Ciències MorfològiquesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Luis Luizaga
- Departments of Hematology and PathologyHospital Universitari Mutua de TerrassaTerrassaSpain
| | - Carmen Barcena
- Departments of Hematology and PathologyHospital Universitario 12 de OctubreMadridSpain
| | - Nicholas Kelleher
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Department of HematologyInstitut Català d'Oncologia‐Hospital Universitari de Girona Doctor Josep TruetaGironaSpain
| | - Neus Villamor
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| | - Tycho Baumann
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Departments of Hematology and PathologyHospital Universitario 12 de OctubreMadridSpain
| | - Ana Muntañola
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Departments of Hematology and PathologyHospital Universitari Mutua de TerrassaTerrassaSpain
| | - Juan M. Sancho‐Cia
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Departments of Hematology and Pathology, Institut Català d'OncologiaHospital Universitari Germans Trias i PujolBadalonaSpain
| | - Alejandro M. García‐Sancho
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of HematologyHospital Universitario de Salamanca, IBSALSalamancaSpain
- Department of HematologyCentro de Investigación del Cáncer‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Eva Gonzalez‐Barca
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Departament de Fonaments ClínicsUniversitat de BarcelonaBarcelonaSpain
- Department of HematologyInstitut Català d'Oncologia‐Hospital Duran i Reynals, Hospitalet de Lobregat, IDIBELLSpain
| | - Estella Matutes
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| | | | - Kennosuke Karube
- Department of Pathology and Laboratory MedicineNagoya University HospitalNagoyaJapan
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Anna Enjuanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Stefan Wiemann
- Division of Molecular Genome AnalysisGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)Partner Site Charité BerlinBerlinGermany
| | - Frank L. Heppner
- Department of NeuropathologyCharité‐Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- German Cancer Consortium (DKTK)Partner Site Charité BerlinBerlinGermany
| | - Reiner Siebert
- Institute of Human GeneticsUlm University & Ulm University Medical CenterUlmGermany
| | - Fina Climent
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Department of PathologyHospital Universitari de Bellvitge, IDIBELLHospitalet de LlobregatSpain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departament de Fonaments ClínicsUniversitat de BarcelonaBarcelonaSpain
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| | - Eva Giné
- Department of HematologyHospital ClínicBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Armando López‐Guillermo
- Department of HematologyHospital ClínicBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departament de MedicinaUniversitat de BarcelonaBarcelonaSpain
| | - Silvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departament de Fonaments ClínicsUniversitat de BarcelonaBarcelonaSpain
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| |
Collapse
|
27
|
Zhong J, O’Brien A, Patel M, Eiser D, Mobaraki M, Collins I, Wang L, Guo K, TruongVo T, Jermusyk A, O’Neill M, Dill CD, Wells AD, Leonard ME, Pippin JA, Grant SF, Zhang T, Andresson T, Connelly KE, Shi J, Arda HE, Hoskins JW, Amundadottir LT. Large-scale multi-omic analysis identifies noncoding somatic driver mutations and nominates ZFP36L2 as a driver gene for pancreatic ductal adenocarcinoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.22.24314165. [PMID: 39371173 PMCID: PMC11451821 DOI: 10.1101/2024.09.22.24314165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Identification of somatic driver mutations in the noncoding genome remains challenging. To comprehensively characterize noncoding driver mutations for pancreatic ductal adenocarcinoma (PDAC), we first created genome-scale maps of accessible chromatin regions (ACRs) and histone modification marks (HMMs) in pancreatic cell lines and purified pancreatic acinar and duct cells. Integration with whole-genome mutation calls from 506 PDACs revealed 314 ACRs/HMMs significantly enriched with 3,614 noncoding somatic mutations (NCSMs). Functional assessment using massively parallel reporter assays (MPRA) identified 178 NCSMs impacting reporter activity (19.45% of those tested). Focused luciferase validation confirmed negative effects on gene regulatory activity for NCSMs near CDKN2A and ZFP36L2. For the latter, CRISPR interference (CRISPRi) further identified ZFP36L2 as a target gene (16.0 - 24.0% reduced expression, P = 0.023-0.0047) with disrupted KLF9 binding likely mediating the effect. Our integrative approach provides a catalog of potentially functional noncoding driver mutations and nominates ZFP36L2 as a PDAC driver gene.
Collapse
Affiliation(s)
- Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aidan O’Brien
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, UK
| | - Minal Patel
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Daina Eiser
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael Mobaraki
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Li Wang
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Konnie Guo
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - ThucNhi TruongVo
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Maura O’Neill
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Courtney D. Dill
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michelle E. Leonard
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F.A. Grant
- Division of Human Genetics and Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA; Department of Genetics, Department of Pediatrics, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, Philadelphia, PA, USA
| | - Tongwu Zhang
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Katelyn E. Connelly
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jianxin Shi
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - H. Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
28
|
Mustafa A, Shabbir M, Badshah Y, Khan K, Abid F, Trembley JH, Afsar T, Almajwal A, Razak S. Genetic polymorphism in untranslated regions of PRKCZ influences mRNA structure, stability and binding sites. BMC Cancer 2024; 24:1147. [PMID: 39272077 PMCID: PMC11401371 DOI: 10.1186/s12885-024-12900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Variations in untranslated regions (UTR) alter regulatory pathways impacting phenotype, disease onset, and course of disease. Protein kinase C Zeta (PRKCZ), a serine-threonine kinase, is implicated in cardiovascular, neurological and oncological disorders. Due to limited research on PRKCZ, this study aimed to investigate the impact of UTR genetic variants' on binding sites for transcription factors and miRNA. RNA secondary structure, eQTLs, and variation tolerance analysis were also part of the study. METHODS The data related to PRKCZ gene variants was downloaded from the Ensembl genome browser, COSMIC and gnomAD. The RegulomeDB database was used to assess the functional impact of 5' UTR and 3'UTR variants. The analysis of the transcription binding sites (TFBS) was done through the Alibaba tool, and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) was employed to identify pathways associated with PRKCZ. To predict the effect of variants on microRNA binding sites, PolymiRTS was utilized for 3' UTR variants, and the SNPinfo tool was used for 5' UTR variants. RESULTS The results obtained indicated that a total of 24 variants present in the 3' UTR and 25 variants present in the 5' UTR were most detrimental. TFBS analysis revealed that 5' UTR variants added YY1, repressor, and Oct1, whereas 3' UTR variants added AP-2alpha, AhR, Da, GR, and USF binding sites. The study predicted TFs that influenced PRKCZ expression. RNA secondary structure analysis showed that eight 5' UTR and six 3' UTR altered the RNA structure by either removal or addition of the stem-loop. The microRNA binding site analysis highlighted that seven 3' UTR and one 5' UTR variant altered the conserved site and also created new binding sites. eQTLs analysis showed that one variant was associated with PRKCZ expression in the lung and thyroid. The variation tolerance analysis revealed that PRKCZ was an intolerant gene. CONCLUSION This study laid the groundwork for future studies aimed at targeting PRKCZ as a therapeutic target.
Collapse
Affiliation(s)
- Aneela Mustafa
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Maria Shabbir
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
| | - Yasmin Badshah
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | | | - Fizzah Abid
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
29
|
Meriranta L, Sorri S, Huse K, Liu X, Spasevska I, Zafar S, Chowdhury I, Dufva O, Sahlberg E, Tandarić L, Karjalainen-Lindsberg ML, Hyytiäinen M, Varjosalo M, Myklebust JH, Leppä S. Disruption of KLHL6 Fuels Oncogenic Antigen Receptor Signaling in B-Cell Lymphoma. Blood Cancer Discov 2024; 5:331-352. [PMID: 38630892 PMCID: PMC11369598 DOI: 10.1158/2643-3230.bcd-23-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Pathomechanisms that activate oncogenic B-cell receptor (BCR) signaling in diffuse large B-cell lymphoma (DLBCL) are largely unknown. Kelch-like family member 6 (KLHL6) encoding a substrate-adapter for Cullin-3-RING E3 ubiquitin ligase with poorly established targets is recurrently mutated in DLBCL. By applying high-throughput protein interactome screens and functional characterization, we discovered that KLHL6 regulates BCR by targeting its signaling subunits CD79A and CD79B. Loss of physiologic KLHL6 expression pattern was frequent among the MCD/C5-like activated B-cell DLBCLs and was associated with higher CD79B levels and dismal outcome. Mutations in the bric-a-brac tramtrack broad domain of KLHL6 disrupted its localization and heterodimerization and increased surface BCR levels and signaling, whereas Kelch domain mutants had the opposite effect. Malfunctions of KLHL6 mutants extended beyond proximal BCR signaling with distinct phenotypes from KLHL6 silencing. Collectively, our findings uncover how recurrent mutations in KLHL6 alter BCR signaling and induce actionable phenotypic characteristics in DLBCL. Significance: Oncogenic BCR signaling sustains DLBCL cells. We discovered that Cullin-3-RING E3 ubiquitin ligase substrate-adapter KLHL6 targets BCR heterodimer (CD79A/CD79B) for ubiquitin-mediated degradation. Recurrent somatic mutations in the KLHL6 gene cause corrupt BCR signaling by disrupting surface BCR homeostasis. Loss of KLHL6 expression and mutant-induced phenotypes associate with targetable disease characteristics in B-cell lymphoma. See related commentary by Leveille et al. See related commentary by Corcoran et al.
Collapse
MESH Headings
- Humans
- Signal Transduction
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- CD79 Antigens/genetics
- CD79 Antigens/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Mutation
- Cell Line, Tumor
- Carrier Proteins
Collapse
Affiliation(s)
- Leo Meriranta
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Selma Sorri
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Xiaonan Liu
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Ivana Spasevska
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sadia Zafar
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Iftekhar Chowdhury
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| | - Eerika Sahlberg
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Luka Tandarić
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | | | - Marko Hyytiäinen
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - June H. Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sirpa Leppä
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
30
|
Ramalho S, Dopler A, Faller W. Ribosome specialization in cancer: a spotlight on ribosomal proteins. NAR Cancer 2024; 6:zcae029. [PMID: 38989007 PMCID: PMC11231584 DOI: 10.1093/narcan/zcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
In the past few decades, our view of ribosomes has changed substantially. Rather than passive machines without significant variability, it is now acknowledged that they are heterogeneous, and have direct regulatory capacity. This 'ribosome heterogeneity' comes in many flavors, including in both the RNA and protein components of ribosomes, so there are many paths through which ribosome specialization could arise. It is easy to imagine that specialized ribosomes could have wide physiological roles, through the translation of specific mRNA populations, and there is now evidence for this in several contexts. Translation is highly dysregulated in cancer, needed to support oncogenic phenotypes and to overcome cellular stress. However, the role of ribosome specialization in this is not clear. In this review we focus on specialized ribosomes in cancer. Specifically, we assess the impact that post-translational modifications and differential ribosome incorporation of ribosomal proteins (RPs) have in this disease. We focus on studies that have shown a ribosome-mediated change in translation of specific mRNA populations, and hypothesize how such a process could be driving other phenotypes. We review the impact of RP-mediated heterogeneity in both intrinsic and extrinsic oncogenic processes, and consider how this knowledge could be leveraged to benefit patients.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anna Dopler
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
31
|
Nano E, Reggiani F, Amaro AA, Monti P, Colombo M, Bertola N, Ferrero F, Fais F, Bruzzese A, Martino EA, Vigna E, Puccio N, Pistoni M, Torricelli F, D’Arrigo G, Greco G, Tripepi G, Adornetto C, Gentile M, Ferrarini M, Negrini M, Morabito F, Neri A, Cutrona G. MicroRNA Profiling as a Predictive Indicator for Time to First Treatment in Chronic Lymphocytic Leukemia: Insights from the O-CLL1 Prospective Study. Noncoding RNA 2024; 10:46. [PMID: 39311383 PMCID: PMC11417859 DOI: 10.3390/ncrna10050046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
A "watch and wait" strategy, delaying treatment until active disease manifests, is adopted for most CLL cases; however, prognostic models incorporating biomarkers have shown to be useful to predict treatment requirement. In our prospective O-CLL1 study including 224 patients, we investigated the predictive role of 513 microRNAs (miRNAs) on time to first treatment (TTFT). In the context of this study, six well-established variables (i.e., Rai stage, beta-2-microglobulin levels, IGVH mutational status, del11q, del17p, and NOTCH1 mutations) maintained significant associations with TTFT in a basic multivariable model, collectively yielding a Harrell's C-index of 75% and explaining 45.4% of the variance in the prediction of TTFT. Concerning miRNAs, 73 out of 513 were significantly associated with TTFT in a univariable model; of these, 16 retained an independent relationship with the outcome in a multivariable analysis. For 8 of these (i.e., miR-582-3p, miR-33a-3p, miR-516a-5p, miR-99a-5p, and miR-296-3p, miR-502-5p, miR-625-5p, and miR-29c-3p), a lower expression correlated with a shorter TTFT, whereas in the remaining eight (i.e., miR-150-5p, miR-148a-3p, miR-28-5p, miR-144-5p, miR-671-5p, miR-1-3p, miR-193a-3p, and miR-124-3p), the higher expression was associated with shorter TTFT. Integrating these miRNAs into the basic model significantly enhanced predictive accuracy, raising the Harrell's C-index to 81.1% and the explained variation in TTFT to 63.3%. Moreover, the inclusion of the miRNA scores enhanced the integrated discrimination improvement (IDI) and the net reclassification index (NRI), underscoring the potential of miRNAs to refine CLL prognostic models and providing insights for clinical decision-making. In silico analyses on the differently expressed miRNAs revealed their potential regulatory functions of several pathways, including those involved in the therapeutic responses. To add a biological context to the clinical evidence, an miRNA-mRNA correlation analysis revealed at least one significant negative correlation between 15 of the identified miRNAs and a set of 50 artificial intelligence (AI)-selected genes, previously identified by us as relevant for TTFT prediction in the same cohort of CLL patients. In conclusion, the identification of specific miRNAs as predictors of TTFT holds promise for enhancing risk stratification in CLL to predict therapeutic needs. However, further validation studies and in-depth functional analyses are required to confirm the robustness of these observations and to facilitate their translation into meaningful clinical utility.
Collapse
Affiliation(s)
- Ennio Nano
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (E.N.); (M.C.); (N.B.); (F.F.); (F.F.); (G.C.)
| | - Francesco Reggiani
- SSD Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Adriana Agnese Amaro
- SSD Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Monica Colombo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (E.N.); (M.C.); (N.B.); (F.F.); (F.F.); (G.C.)
| | - Nadia Bertola
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (E.N.); (M.C.); (N.B.); (F.F.); (F.F.); (G.C.)
| | - Fabiana Ferrero
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (E.N.); (M.C.); (N.B.); (F.F.); (F.F.); (G.C.)
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (E.N.); (M.C.); (N.B.); (F.F.); (F.F.); (G.C.)
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Antonella Bruzzese
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliera Annunziata, 87100 Cosenza, Italy; (A.B.); (E.A.M.); (E.V.); (M.G.)
| | - Enrica Antonia Martino
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliera Annunziata, 87100 Cosenza, Italy; (A.B.); (E.A.M.); (E.V.); (M.G.)
| | - Ernesto Vigna
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliera Annunziata, 87100 Cosenza, Italy; (A.B.); (E.A.M.); (E.V.); (M.G.)
| | - Noemi Puccio
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (N.P.); (M.P.); (F.T.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (N.P.); (M.P.); (F.T.)
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (N.P.); (M.P.); (F.T.)
| | - Graziella D’Arrigo
- Institute of Clinical Physiology (IFC-CNR), Section of Reggio Calabria, 89124 Reggio Calabria, Italy; (G.D.); (G.T.)
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, 87100 Cosenza, Italy; (G.G.); (C.A.)
| | - Giovanni Tripepi
- Institute of Clinical Physiology (IFC-CNR), Section of Reggio Calabria, 89124 Reggio Calabria, Italy; (G.D.); (G.T.)
| | - Carlo Adornetto
- Department of Mathematics and Computer Science, University of Calabria, 87100 Cosenza, Italy; (G.G.); (C.A.)
| | - Massimo Gentile
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliera Annunziata, 87100 Cosenza, Italy; (A.B.); (E.A.M.); (E.V.); (M.G.)
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Massimo Negrini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Fortunato Morabito
- Gruppo Amici Dell’Ematologia Foundation-GrADE, 42122 Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (E.N.); (M.C.); (N.B.); (F.F.); (F.F.); (G.C.)
| |
Collapse
|
32
|
Abdelrahim S, Thai GH, Burke J, O'Brien T, Ansari MQ, Zhao C, Sakr H. CD4+ chronic lymphocytic leukemia in an 86-year-old male veteran: A case report. EJHAEM 2024; 5:845-850. [PMID: 39157606 PMCID: PMC11327761 DOI: 10.1002/jha2.958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 08/20/2024]
Abstract
CD4+ chronic lymphocytic leukemia (CLL) represents an extremely rare example of phenotypic aberrancy within CLL. We present a case of an 86-year-old male veteran with a history of multiple comorbidities who was incidentally diagnosed with CD4+ CLL during a routine peripheral blood workup. This case highlights the diagnostic challenges and characteristic features of CD4+ CLL, including flow cytometric analysis, molecular, and fluorescence in situ hybridization findings. The patient was classified as asymptomatic CLL Rai stage 0, warranting regular monitoring without a need for treatment intervention.
Collapse
Affiliation(s)
- Sara Abdelrahim
- Department of PathologyLouis Stokes Veterans Affairs Medical CenterClevelandOhioUSA
| | - Glory H. Thai
- School of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Juanita Burke
- Department of PathologyLouis Stokes Veterans Affairs Medical CenterClevelandOhioUSA
| | - Timothy O'Brien
- Department of Medicine, Hematology sectionLouis Stokes Veterans Affairs Medical CenterClevelandOhioUSA
| | - Mohammad Q. Ansari
- Department of PathologyLouis Stokes Veterans Affairs Medical CenterClevelandOhioUSA
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| | - Chen Zhao
- Department of PathologyLouis Stokes Veterans Affairs Medical CenterClevelandOhioUSA
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| | - Hany Sakr
- Department of PathologyLouis Stokes Veterans Affairs Medical CenterClevelandOhioUSA
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
33
|
Wang W, Sang Q, Wang L. Genetic factors of oocyte maturation arrest: an important cause for recurrent IVF/ICSI failures. J Assist Reprod Genet 2024; 41:1951-1953. [PMID: 38980564 PMCID: PMC11339007 DOI: 10.1007/s10815-024-03195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Oocyte maturation arrest (OMA) is a common phenotype observed in IVF/ICSI cycles, characterized by the production of immature oocytes which lead to infertility. Previous studies have demonstrated that genetic factors play an important role in OMA, but the genetic mechanisms underlying a group of patients remain to be elucidated. In the recent issue of Journal of Assisted Reproduction and Genetics, Hu et al. and Wan et al. identified novel PATL2 or ZFP36L2 variants in OMA patients, respectively. By conducting in vitro experiments, they demonstrated the destructive effect of the variants on protein function. These findings expand the mutational spectrum of PATL2 and ZFP36L2, and provide precise reference for genetic counseling of OMA patients.
Collapse
Affiliation(s)
- Weijie Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lei Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
34
|
Nguyen-Khac F, Baron M, Guièze R, Feugier P, Fayault A, Raynaud S, Troussard X, Droin N, Damm F, Smagghe L, Susin S, Leblond V, Dartigeas C, Van den Neste E, Leprêtre S, Bernard OA, Roos-Weil D. Prognostic impact of genetic abnormalities in 536 first-line chronic lymphocytic leukaemia patients without 17p deletion treated with chemoimmunotherapy in two prospective trials: Focus on IGHV-mutated subgroups (a FILO study). Br J Haematol 2024; 205:495-502. [PMID: 38654616 DOI: 10.1111/bjh.19459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
The potential prognostic influence of genetic aberrations on chronic lymphocytic leukaemia (CLL) can vary based on various factors, such as the immunoglobulin heavy variable (IGHV) status. We conducted an integrative analysis on genetic abnormalities identified through cytogenetics and targeted next-generation sequencing in 536 CLL patients receiving first-line chemo(immuno)therapies (CIT) as part of two prospective trials. We evaluated the prognostic implications of the main abnormalities, with specific attention to their relative impact according to IGHV status. In the entire cohort, unmutated (UM)-IGHV, complex karyotype, del(11q) and ATM mutations correlated significantly with shorter progression-free survival (PFS). Focusing on the subset of mutated IGHV (M-IGHV) patients, univariate analysis showed that complex karyotype, del(11q), SF3B1 and SAMHD1 mutations were associated with significant lower PFS. The prognostic influence varied based on the patient's IGHV status, as these abnormalities did not affect outcomes in the UM-IGHV subgroup. TP53 mutations had no significant impact on outcomes in the M-IGHV subgroup. Our findings highlight the diverse prognostic influence of genetic aberrations depending on the IGHV status in symptomatic CLL patients receiving first-line CIT. The prognosis of gene mutations and cytogenetic abnormalities needs to be investigated with a compartmentalized methodology, taking into account the IGVH status of patients receiving first-line BTK and/or BCL2 inhibitors.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Female
- Humans
- Male
- Middle Aged
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Chromosome Deletion
- Chromosomes, Human, Pair 17/genetics
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Mutation
- Prognosis
- Prospective Studies
Collapse
Affiliation(s)
- Florence Nguyen-Khac
- Unité de Cytogénétique, Hôpital Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Marine Baron
- Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
| | - Romain Guièze
- Hematology Department, Clermont-Ferrand University Hospital, Clermont Auvergne University, Clermont-Ferrand, France
| | - Pierre Feugier
- Department of Hematology, University Hospital of Nancy, Nancy, France
| | | | - Sophie Raynaud
- Laboratory of Hematology, University Hospital of Nice, Nice, France
| | | | - Nathalie Droin
- Inserm U1287, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Frederik Damm
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Luce Smagghe
- Unité de Cytogénétique, Hôpital Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
| | - Santos Susin
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Véronique Leblond
- Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
| | | | - Eric Van den Neste
- Department of Hematology, Cliniques Universitaires Université Catholique de Louvain Saint-Luc, Bruxelles, Belgium
| | - Stéphane Leprêtre
- Department of Clinical Hematology, Centre Henri Becquerel, Rouen, France
| | - Olivier A Bernard
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Damien Roos-Weil
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
- Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
| |
Collapse
|
35
|
Roessner PM, Seufert I, Chapaprieta V, Jayabalan R, Briesch H, Massoni-Badosa R, Boskovic P, Benckendorff J, Roider T, Arseni L, Coelho M, Chakraborty S, Vaca AM, Sivina M, Muckenhuber M, Rodriguez-Rodriguez S, Bonato A, Herbst SA, Zapatka M, Sun C, Kretzmer H, Naake T, Bruch PM, Czernilofsky F, ten Hacken E, Schneider M, Helm D, Yosifov DY, Kauer J, Danilov AV, Bewarder M, Heyne K, Schneider C, Stilgenbauer S, Wiestner A, Mallm JP, Burger JA, Efremov DG, Lichter P, Dietrich S, Martin-Subero JI, Rippe K, Seiffert M. T-bet suppresses proliferation of malignant B cells in chronic lymphocytic leukemia. Blood 2024; 144:510-524. [PMID: 38684038 PMCID: PMC11307267 DOI: 10.1182/blood.2023021990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
ABSTRACT The T-box transcription factor T-bet is known as a master regulator of the T-cell response but its role in malignant B cells has not been sufficiently explored. Here, we conducted single-cell resolved multi-omics analyses of malignant B cells from patients with chronic lymphocytic leukemia (CLL) and studied a CLL mouse model with a genetic knockout of Tbx21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing their proliferation rate. NF-κB activity, induced by inflammatory signals provided by the microenvironment, triggered T-bet expression, which affected promoter-proximal and distal chromatin coaccessibility and controlled a specific gene signature by mainly suppressing transcription. Gene set enrichment analysis identified a positive regulation of interferon signaling and negative control of proliferation by T-bet. In line, we showed that T-bet represses cell cycling and is associated with longer overall survival of patients with CLL. Our study uncovered a novel tumor suppressive role of T-bet in malignant B cells via its regulation of inflammatory processes and cell cycling, which has implications for the stratification and therapy of patients with CLL. Linking T-bet activity to inflammation explains the good prognostic role of genetic alterations in the inflammatory signaling pathways in CLL.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- Animals
- Humans
- Cell Proliferation
- Mice
- B-Lymphocytes/pathology
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Mice, Knockout
- Gene Expression Regulation, Leukemic
- NF-kappa B/metabolism
Collapse
Affiliation(s)
- Philipp M. Roessner
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Isabelle Seufert
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | | | - Ruparoshni Jayabalan
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Hannah Briesch
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ramon Massoni-Badosa
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Single Cell Genomics, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pavle Boskovic
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | | | - Tobias Roider
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Mariana Coelho
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Supriya Chakraborty
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alicia M. Vaca
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mariela Sivina
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Markus Muckenhuber
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | | | - Alice Bonato
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Sophie A. Herbst
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Clare Sun
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas Naake
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peter-Martin Bruch
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Felix Czernilofsky
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | | | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Deyan Y. Yosifov
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University, Ulm, Germany
- Cooperation Unit Mechanisms of Leukemogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Joseph Kauer
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Alexey V. Danilov
- Department of Hematology, City of Hope National Medical Center, Duarte, CA
| | - Moritz Bewarder
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| | - Kristina Heyne
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar, Germany
| | - Christof Schneider
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Stephan Stilgenbauer
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Adrian Wiestner
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Jan A. Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dimitar G. Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Sascha Dietrich
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - José I. Martin-Subero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
36
|
Iyer P, Zhang B, Liu T, Jin M, Hart K, Zhang J, Siegert V, Remke M, Wang X, Yu L, Song J, Venkataraman G, Chan WC, Jia Z, Buchner M, Siddiqi T, Rosen ST, Danilov A, Wang L. MGA deletion leads to Richter's transformation by modulating mitochondrial OXPHOS. Sci Transl Med 2024; 16:eadg7915. [PMID: 39083585 DOI: 10.1126/scitranslmed.adg7915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Richter's transformation (RT) is a progression of chronic lymphocytic leukemia (CLL) to aggressive lymphoma. MGA (Max gene associated), a functional MYC suppressor, is mutated at 3% in CLL and 36% in RT. However, genetic models and molecular mechanisms of MGA deletion that drive CLL to RT remain elusive. We established an RT mouse model by knockout of Mga in the Sf3b1/Mdr CLL model using CRISPR-Cas9 to determine the role of Mga in RT. Murine RT cells exhibited mitochondrial aberrations with elevated oxidative phosphorylation (OXPHOS). Through RNA sequencing and functional characterization, we identified Nme1 (nucleoside diphosphate kinase) as an Mga target, which drives RT by modulating OXPHOS. Given that NME1 is also a known MYC target without targetable compounds, we found that concurrent inhibition of MYC and electron transport chain complex II substantially prolongs the survival of RT mice in vivo. Our results suggest that the Mga-Nme1 axis drives murine CLL-to-RT transition via modulating OXPHOS, highlighting a potential therapeutic avenue for RT.
Collapse
MESH Headings
- Animals
- Oxidative Phosphorylation
- Mitochondria/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mice
- Gene Deletion
- Humans
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Disease Models, Animal
Collapse
Affiliation(s)
- Prajish Iyer
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91016, USA
| | - Bo Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91016, USA
| | - Tingting Liu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Meiling Jin
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91016, USA
| | - Kevyn Hart
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91016, USA
| | - Jibin Zhang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Viola Siegert
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- Central Institute for Translational Cancer Research, Technische Universität München, Munich 81675, Germany
| | - Marianne Remke
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Xuesong Wang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92507, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA 92507, USA
| | - Lei Yu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92507, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA 92507, USA
| | - Joo Song
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Wing C Chan
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92507, USA
| | - Maike Buchner
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- Central Institute for Translational Cancer Research, Technische Universität München, Munich 81675, Germany
| | - Tanya Siddiqi
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Steven T Rosen
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Alexey Danilov
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91016, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
37
|
Qiu Z, Khalife J, Ethiraj P, Jaafar C, Lin AP, Holder KN, Ritter JP, Chiou L, Huelgas-Morales G, Aslam S, Zhang Z, Liu Z, Arya S, Gupta YK, Dahia PLM, Aguiar RC. IRF8-mutant B cell lymphoma evades immunity through a CD74-dependent deregulation of antigen processing and presentation in MHCII complexes. SCIENCE ADVANCES 2024; 10:eadk2091. [PMID: 38996030 PMCID: PMC11244530 DOI: 10.1126/sciadv.adk2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
The mechanism by which interferon regulatory factor 8 (IRF8) mutation contributes to lymphomagenesis is unknown. We modeled IRF8 variants in B cell lymphomas and found that they affected the expression of regulators of antigen presentation. Expression of IRF8 mutants in murine B cell lymphomas suppressed CD4, but not CD8, activation elicited by antigen presentation and downmodulated CD74 and human leukocyte antigen (HLA) DM, intracellular regulators of antigen peptide processing/loading in the major histocompatibility complex (MHC) II. Concordantly, mutant IRF8 bound less efficiently to the promoters of these genes. Mice harboring IRF8 mutant lymphomas displayed higher tumor burden and remodeling of the tumor microenvironment, typified by depletion of CD4, CD8, and natural killer cells, increase in regulatory T cells and T follicular helper cells. Deconvolution of bulk RNA sequencing data from IRF8-mutant human diffuse large B cell lymphoma (DLBCL) recapitulated part of the immune remodeling detected in mice. We concluded that IRF8 mutations contribute to DLBCL biology by facilitating immune escape.
Collapse
MESH Headings
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- Animals
- Antigen Presentation/immunology
- Antigen Presentation/genetics
- Humans
- Mice
- Mutation
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Tumor Microenvironment/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Cell Line, Tumor
- Tumor Escape/genetics
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Zhijun Qiu
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Jihane Khalife
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Purushoth Ethiraj
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Carine Jaafar
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - An-Ping Lin
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Kenneth N. Holder
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Jacob P. Ritter
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Lilly Chiou
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Gabriela Huelgas-Morales
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Sadia Aslam
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Shailee Arya
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Yogesh K. Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Patricia L. M. Dahia
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Ricardo C.T. Aguiar
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- South Texas Veterans Health Care System, Audie Murphy VA Hospital, San Antonio, TX 78229, USA
| |
Collapse
|
38
|
Stamatopoulos K, Pavlova S, Al‐Sawaf O, Chatzikonstantinou T, Karamanidou C, Gaidano G, Cymbalista F, Kater AP, Rawstron A, Scarfò L, Ghia P, Rosenquist R. Realizing precision medicine in chronic lymphocytic leukemia: Remaining challenges and potential opportunities. Hemasphere 2024; 8:e113. [PMID: 39035106 PMCID: PMC11260284 DOI: 10.1002/hem3.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) exhibit diverse clinical outcomes. An expanding array of genetic tests is now employed to facilitate the identification of patients with high-risk disease and inform treatment decisions. These tests encompass molecular cytogenetic analysis, focusing on recurrent chromosomal alterations, particularly del(17p). Additionally, sequencing is utilized to identify TP53 mutations and to determine the somatic hypermutation status of the immunoglobulin heavy variable gene. Concurrently, a swift advancement of targeted treatment has led to the implementation of novel strategies for patients with CLL, including kinase and BCL2 inhibitors. This review explores both current and emerging diagnostic tests aimed at identifying high-risk patients who should benefit from targeted therapies. We outline existing treatment paradigms, emphasizing the importance of matching the right treatment to the right patient beyond genetic stratification, considering the crucial balance between safety and efficacy. We also take into consideration the practical and logistical issues when choosing a management strategy for each individual patient. Furthermore, we delve into the mechanisms underlying therapy resistance and stress the relevance of monitoring measurable residual disease to guide treatment decisions. Finally, we underscore the necessity of aggregating real-world data, adopting a global perspective, and ensuring patient engagement. Taken together, we argue that precision medicine is not the mere application of precision diagnostics and accessibility of precision therapies in CLL but encompasses various aspects of the patient journey (e.g., lifestyle exposures and comorbidities) and their preferences toward achieving true personalized medicine for patients with CLL.
Collapse
Affiliation(s)
- Kostas Stamatopoulos
- Centre for Research and Technology HellasInstitute of Applied BiosciencesThessalonikiGreece
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Sarka Pavlova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and GenomicsUniversity Hospital Brno and Medical Faculty, Masaryk UniversityBrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Othman Al‐Sawaf
- Department I of Internal Medicine and German CLL Study Group, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)University of Cologne, Faculty of Medicine and University Hospital of CologneCologneGermany
- Francis Crick Institute LondonLondonUK
- Cancer Institute, University College LondonLondonUK
| | | | - Christina Karamanidou
- Centre for Research and Technology HellasInstitute of Applied BiosciencesThessalonikiGreece
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational MedicineUniversity of Eastern PiedmontNovaraItaly
| | | | - Arnon P. Kater
- Department of Hematology, Cancer Center AmsterdamAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Andy Rawstron
- Haematological Malignancy Diagnostic ServiceLeeds Teaching Hospitals TrustLeedsUK
| | - Lydia Scarfò
- Medical SchoolUniversità Vita Salute San RaffaeleMilanoItaly
- Strategic Research Program on CLLIRCCS Ospedale San RaffaeleMilanoItaly
| | - Paolo Ghia
- Medical SchoolUniversità Vita Salute San RaffaeleMilanoItaly
- Strategic Research Program on CLLIRCCS Ospedale San RaffaeleMilanoItaly
| | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Clinical GeneticsKarolinska University HospitalStockholmSweden
| |
Collapse
|
39
|
Turk A, Čeh E, Calin GA, Kunej T. Multiple omics levels of chronic lymphocytic leukemia. Cell Death Discov 2024; 10:293. [PMID: 38906881 PMCID: PMC11192936 DOI: 10.1038/s41420-024-02068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by the proliferation of functionally mature but incompetent B cells. It is the most prevalent type of leukemia in Western populations, accounting for approximately 25% of new leukemia cases. While recent advances, such as ibrutinib and venetoclax treatment have improved patient outlook, aggressive forms of CLL such as Richter transformation still pose a significant challenge. This discrepancy may be due to the heterogeneity of factors contributing to CLL development at multiple -omics levels. However, information on the omics of CLL is fragmented, hindering multi-omics-based research into potential treatment options. To address this, we aggregated and presented a selection of important aspects of various omics levels of the disease in this review. The purpose of the present literature analysis is to portray examples of CLL studies from different omics levels, including genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, epiproteomics, metabolomics, glycomics and lipidomics, as well as those identified by multi-omics approaches. The review includes the list of 102 CLL-associated genes with relevant genomics information. While single-omics studies yield substantial and useful data, they omit a significant level of complex biological interplay present in the disease. As multi-omics studies integrate several different layers of data, they may be better suited for complex diseases such as CLL and have thus far yielded promising results. Future multi-omics studies may assist clinicians in improved treatment choices based on CLL subtypes as well as allow the identification of novel biomarkers and targets for treatments.
Collapse
Grants
- P4-0220 Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- Dr. Calin is the Felix L. Haas Endowed Professor in Basic Science. Work in G.A.C.’s laboratory is supported by NCI grants 1R01 CA182905-01 and 1R01CA222007-01A1, NIGMS grant 1R01GM122775-01, DoD Idea Award W81XWH-21-1-0030, a Team DOD grant in Gastric Cancer W81XWH-21-1-0715, a Chronic Lymphocytic Leukemia Moonshot Flagship project, a CLL Global Research Foundation 2019 grant, a CLL Global Research Foundation 2020 grant, a CLL Global Research Foundation 2022 grant, The G. Harold & Leila Y. Mathers Foundation, two grants from Torrey Coast Foundation, an Institutional Research Grant and Development Grant associated with the Brain SPORE 2P50CA127001.
Collapse
Affiliation(s)
- Aleksander Turk
- Clinical Institute of Genomic Medicine, University Clinical Centre Ljubljana, Ljubljana, Slovenia
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Čeh
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA.
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
40
|
Bertilaccio MTS, Chen SS. Mouse models of chronic lymphocytic leukemia and Richter transformation: what we have learnt and what we are missing. Front Immunol 2024; 15:1376660. [PMID: 38903501 PMCID: PMC11186982 DOI: 10.3389/fimmu.2024.1376660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Although the chronic lymphocytic leukemia (CLL) treatment landscape has changed dramatically, unmet clinical needs are emerging, as CLL in many patients does not respond, becomes resistant to treatment, relapses during treatment, or transforms into Richter. In the majority of cases, transformation evolves the original leukemia clone into a diffuse large B-cell lymphoma (DLBCL). Richter transformation (RT) represents a dreadful clinical challenge with limited therapeutic opportunities and scarce preclinical tools. CLL cells are well known to highly depend on survival signals provided by the tumor microenvironment (TME). These signals enhance the frequency of immunosuppressive cells with protumor function, including regulatory CD4+ T cells and tumor-associated macrophages. T cells, on the other hand, exhibit features of exhaustion and profound functional defects. Overall immune dysfunction and immunosuppression are common features of patients with CLL. The interaction between malignant cells and TME cells can occur during different phases of CLL development and transformation. A better understanding of in vivo CLL and RT biology and the availability of adequate mouse models that faithfully recapitulate the progression of CLL and RT within their microenvironments are "conditio sine qua non" to develop successful therapeutic strategies. In this review, we describe the xenograft and genetic-engineered mouse models of CLL and RT, how they helped to elucidate the pathophysiology of the disease progression and transformation, and how they have been and might be instrumental in developing innovative therapeutic approaches to finally eradicate these malignancies.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Animals
- Tumor Microenvironment/immunology
- Humans
- Mice
- Disease Models, Animal
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
Collapse
Affiliation(s)
| | - Shih-Shih Chen
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
41
|
Chen SS. Mouse models of CLL: In vivo modeling of disease initiation, progression, and transformation. Semin Hematol 2024; 61:201-207. [PMID: 38755077 DOI: 10.1053/j.seminhematol.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/18/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is a highly complex disease characterized by the proliferation of CD5+ B cells in lymphoid tissues. Current modern treatments have brought significant clinical benefits to CLL patients. However, there are still unmet needs. Patients relapse on Bruton's tyrosine kinase inhibitors and BCL2 inhibitors and often develop more aggressive diseases including Richter transformation (RT), an incurable complication of up to ∼10% patients. This evidence underscores the need for improved immunotherapies, combination treatment strategies, and predictive biomarkers. A mouse model that can recapitulate human CLL disease and certain components of the tumor immune microenvironment represents a promising preclinical tool for such purposes. In this review, we provide an overview of CRISPR-engineered and xenograft mouse models utilizing either cell lines, or primary CLL cells suitable for studies of key events driving the disease onset, progression and transformation of CLL. We also review how CRISPR/Cas9 established mouse models carrying loss-of-function lesions allow one to study key mutations driving disease progression. Finally, we discuss how next generation humanized mice might improve to generation of faithful xenograft mouse models of human CLL.
Collapse
MESH Headings
- Animals
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Humans
- Mice
- Disease Models, Animal
- Disease Progression
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Tumor Microenvironment/immunology
- CRISPR-Cas Systems
Collapse
Affiliation(s)
- Shih-Shih Chen
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York.
| |
Collapse
|
42
|
Bayraktar R, Fontana B, Calin GA, Nemeth K. miRNA Biology in Chronic Lymphocytic Leukemia. Semin Hematol 2024; 61:181-193. [PMID: 38724414 DOI: 10.1053/j.seminhematol.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 07/13/2024]
Abstract
microRNAs (miRNAs) are a class of small non-coding RNAs that play a crucial regulatory role in fundamental biological processes and have been implicated in various diseases, including cancer. The first evidence of the cancer-related function of miRNAs was discovered in chronic lymphocytic leukemia (CLL) in the early 2000s. Alterations in miRNA expression have since been shown to strongly influence the clinical course, prognosis, and response to treatment in patients with CLL. Therefore, the identification of specific miRNA alterations not only enhances our understanding of the molecular mechanisms underlying CLL but also holds promise for the development of novel diagnostic and therapeutic strategies. This review aims to provide a comprehensive summary of the current knowledge and recent insights into miRNA dysregulation in CLL, emphasizing its pivotal roles in disease progression, including the development of the lethal Richter syndrome, and to provide an update on the latest translational research in this field.
Collapse
Affiliation(s)
- Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Beatrice Fontana
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX; The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
43
|
Maiques-Diaz A, Martin-Subero JI. Biological, prognostic, and therapeutic impact of the epigenome in CLL. Semin Hematol 2024; 61:172-180. [PMID: 38151379 DOI: 10.1053/j.seminhematol.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by widespread alterations in the genetic and epigenetic landscapes which seem to underlie the variable clinical manifestations observed in patients. Over the last decade, epigenomic studies have described the whole-genome maps of DNA methylation and chromatin features of CLL and normal B cells, identifying distinct epigenetic mechanisms operating in tumoral cells. DNA methylation analyses have identified that the CLL methylome contains imprints of the cell of origin, as well as of the proliferative history of the tumor cells, with both being strong independent prognostic predictors. Moreover, single-cell analysis revealed a higher degree of DNA methylation noise in CLL cells, which associates with transcriptional plasticity and disease aggressiveness. Integrative analysis of chromatin has uncovered chromatin signatures, as well as regulatory regions specifically active in each CLL subtype or in Richter transformed samples. Unique transcription factor (TF) binding motifs are overrepresented on those regions, suggesting that altered TF networks operate from disease initiation to progression as nongenetic factors mediating the oncogenic transcriptional profiles. Multiomics analysis has identified that response to treatment is modulated by an epigenetic imprint, and that treatments affect chromatin through the activity of particular set of TFs. Additionally, the epigenome is an axis of therapeutic vulnerability in CLL, as it can be targeted by inhibitors of histone modifying enzymes, that have shown promising preclinical results. Altogether, this review aims at summarizing the major findings derived from published literature to distill how altered epigenomic mechanisms contribute to CLL origin, evolution, clinical behavior, and response to treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Prognosis
- Epigenesis, Genetic
- Epigenome
- DNA Methylation/genetics
- Epigenomics
- Chromatin/genetics
- Chromatin/metabolism
Collapse
Affiliation(s)
- Alba Maiques-Diaz
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Jose Ignacio Martin-Subero
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
44
|
Bottardi S, Layne T, Ramòn AC, Quansah N, Wurtele H, Affar EB, Milot E. MNDA, a PYHIN factor involved in transcriptional regulation and apoptosis control in leukocytes. Front Immunol 2024; 15:1395035. [PMID: 38680493 PMCID: PMC11045911 DOI: 10.3389/fimmu.2024.1395035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammation control is critical during the innate immune response. Such response is triggered by the detection of molecules originating from pathogens or damaged host cells by pattern-recognition receptors (PRRs). PRRs subsequently initiate intra-cellular signalling through different pathways, resulting in i) the production of inflammatory cytokines, including type I interferon (IFN), and ii) the initiation of a cascade of events that promote both immediate host responses as well as adaptive immune responses. All human PYRIN and HIN-200 domains (PYHIN) protein family members were initially proposed to be PRRs, although this view has been challenged by reports that revealed their impact on other cellular mechanisms. Of relevance here, the human PYHIN factor myeloid nuclear differentiation antigen (MNDA) has recently been shown to directly control the transcription of genes encoding factors that regulate programmed cell death and inflammation. While MNDA is mainly found in the nucleus of leukocytes of both myeloid (neutrophils and monocytes) and lymphoid (B-cell) origin, its subcellular localization has been shown to be modulated in response to genotoxic agents that induce apoptosis and by bacterial constituents, mediators of inflammation. Prior studies have noted the importance of MNDA as a marker for certain forms of lymphoma, and as a clinical prognostic factor for hematopoietic diseases characterized by defective regulation of apoptosis. Abnormal expression of MNDA has also been associated with altered levels of cytokines and other inflammatory mediators. Refining our comprehension of the regulatory mechanisms governing the expression of MNDA and other PYHIN proteins, as well as enhancing our definition of their molecular functions, could significantly influence the management and treatment strategies of numerous human diseases. Here, we review the current state of knowledge regarding PYHIN proteins and their role in innate and adaptive immune responses. Emphasis will be placed on the regulation, function, and relevance of MNDA expression in the control of gene transcription and RNA stability during cell death and inflammation.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Taylorjade Layne
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Ailyn C. Ramòn
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
45
|
Guo T, Miao C, Liu Z, Duan J, Ma Y, Zhang X, Yang W, Xue M, Deng Q, Guo P, Xi Y, Yang X, Huang X, Ge W. Impaired dNKAP function drives genome instability and tumorigenic growth in Drosophila epithelia. J Mol Cell Biol 2024; 15:mjad078. [PMID: 38059855 PMCID: PMC11070879 DOI: 10.1093/jmcb/mjad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Mutations or dysregulated expression of NF-kappaB-activating protein (NKAP) family genes have been found in human cancers. How NKAP family gene mutations promote tumor initiation and progression remains to be determined. Here, we characterized dNKAP, the Drosophila homolog of NKAP, and showed that impaired dNKAP function causes genome instability and tumorigenic growth in a Drosophila epithelial tumor model. dNKAP-knockdown wing imaginal discs exhibit tumorigenic characteristics, including tissue overgrowth, cell-invasive behavior, abnormal cell polarity, and cell adhesion defects. dNKAP knockdown causes both R-loop accumulation and DNA damage, indicating the disruption of genome integrity. Further analysis showed that dNKAP knockdown induces c-Jun N-terminal kinase (JNK)-dependent apoptosis and causes aberrant cell proliferation in distinct cell populations. Activation of the Notch and JAK/STAT signaling pathways contributes to the tumorigenic growth of dNKAP-knockdown tissues. Furthermore, JNK signaling is essential for dNKAP depletion-mediated cell invasion. Transcriptome analysis of dNKAP-knockdown tissues confirmed the misregulation of signaling pathways involved in promoting tumorigenesis and revealed abnormal regulation of metabolic pathways. dNKAP knockdown and oncogenic Ras, Notch, or Yki mutations show synergies in driving tumorigenesis, further supporting the tumor-suppressive role of dNKAP. In summary, this study demonstrates that dNKAP plays a tumor-suppressive role by preventing genome instability in Drosophila epithelia and thus provides novel insights into the roles of human NKAP family genes in tumor initiation and progression.
Collapse
Affiliation(s)
- Ting Guo
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chen Miao
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zhonghua Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingwei Duan
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yanbin Ma
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Zhang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weiwei Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Maoguang Xue
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiannan Deng
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pengfei Guo
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
46
|
Sud A, Parry EM, Wu CJ. The molecular map of CLL and Richter's syndrome. Semin Hematol 2024; 61:73-82. [PMID: 38368146 PMCID: PMC11653080 DOI: 10.1053/j.seminhematol.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Clonal expansion of B-cells, from the early stages of monoclonal B-cell lymphocytosis through to chronic lymphocytic leukemia (CLL), and then in some cases to Richter's syndrome (RS) provides a comprehensive model of cancer evolution, notable for the marked morphological transformation and distinct clinical phenotypes. High-throughput sequencing of large cohorts of patients and single-cell studies have generated a molecular map of CLL and more recently, of RS, yielding fundamental insights into these diseases and of clonal evolution. A selection of CLL driver genes have been functionally interrogated to yield novel insights into the biology of CLL. Such findings have the potential to impact patient care through risk stratification, treatment selection and drug discovery. However, this molecular map remains incomplete, with extant questions concerning the origin of the B-cell clone, the role of the TME, inter- and intra-compartmental heterogeneity and of therapeutic resistance mechanisms. Through the application of multi-modal single-cell technologies across tissues, disease states and clinical contexts, these questions can now be addressed with the answers holding great promise of generating translatable knowledge to improve patient care.
Collapse
Affiliation(s)
- Amit Sud
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Erin M Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
47
|
Xue X, Wen Z, Zhang X, Yang Y, Li Y, Liao R, Zheng Q, Fu Y, Liu Y, Liao H. CXCR4 overexpression in chronic lymphocytic leukemia associates with poorer prognosis: A prospective, single-center, observational study. Genes Immun 2024; 25:117-123. [PMID: 38366101 DOI: 10.1038/s41435-024-00258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Controversial data have been reported on the prognostic value of C-X-C motif chemokine receptor 4 (CXCR4) in chronic lymphocytic leukemia (CLL). This prospective, single-center, observational study aimed to evaluate the role of CXCR4 in the pathophysiology of CLL and its prognostic role. A total of 158 patients of CLL were enrolled, and CXCR4 expression on CLL cells was detected by flow cytometry (FCM) at initial diagnosis. The patients were divided into 2 groups according to the CXCR4 mean fluorescence intensity (MFI) median. Also, four patient specimens from the CXCR4low and CXCR4high groups were selected for RNASeq analysis. The progression-free survival (PFS) of CLL patients in the CXCR4high group was significantly shorter than the CXCR4low group, with a median follow-up time of 27 months (log-rank P < 0.001). Moreover, CXCR4 overexpression (MFI > 3376) was an independent marker of poor PFS in CLL patients (P < 0.001). Analysis of RNASeq results revealed that CXCR4 plays an important role in the migration of CLL. Collectively, CXCR4 expression levels on leukemia cells can be detected rapidly by FCM. CXCR4 overexpression was significantly associated with poorer prognosis in CLL patients within a shorter follow-up time.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Prospective Studies
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Signal Transduction
- Prognosis
Collapse
Affiliation(s)
- Xinran Xue
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihao Wen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruoxi Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Zheng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Fu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
48
|
Leeman-Neill RJ, Bhagat G, Basu U. AID in non-Hodgkin B-cell lymphomas: The consequences of on- and off-target activity. Adv Immunol 2024; 161:127-164. [PMID: 38763700 DOI: 10.1016/bs.ai.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Activation induced cytidine deaminase (AID) is a key element of the adaptive immune system, required for immunoglobulin isotype switching and affinity maturation of B-cells as they undergo the germinal center (GC) reaction in peripheral lymphoid tissue. The inherent DNA damaging activity of this enzyme can also have off-target effects in B-cells, producing lymphomagenic chromosomal translocations that are characteristic features of various classes of non-Hodgkin B-cell lymphoma (B-NHL), and generating oncogenic mutations, so-called aberrant somatic hypermutation (aSHM). Additionally, AID has been found to affect gene expression through demethylation as well as altered interactions between gene regulatory elements. These changes have been most thoroughly studied in B-NHL arising from GC B-cells. Here, we describe the most common classes of GC-derived B-NHL and explore the consequences of on- and off-target AID activity in B and plasma cell neoplasms. The relationships between AID expression, including effects of infection and other exposures/agents, mutagenic activity and lymphoma biology are also discussed.
Collapse
Affiliation(s)
- Rebecca J Leeman-Neill
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
49
|
Playa-Albinyana H, Arenas F, Royo R, Giró A, López-Oreja I, Aymerich M, López-Guerra M, Frigola G, Beà S, Delgado J, Garcia-Roves PM, Campo E, Nadeu F, Colomer D. Chronic lymphocytic leukemia patient-derived xenografts recapitulate clonal evolution to Richter transformation. Leukemia 2024; 38:557-569. [PMID: 38017105 PMCID: PMC10912031 DOI: 10.1038/s41375-023-02095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell neoplasm with a heterogeneous clinical behavior. In 5-10% of patients the disease transforms into a diffuse large-B cell lymphoma known as Richter transformation (RT), which is associated with dismal prognosis. Here, we aimed to establish patient-derived xenograft (PDX) models to study the molecular features and evolution of CLL and RT. We generated two PDXs by injecting CLL (PDX12) and RT (PDX19) cells into immunocompromised NSG mice. Both PDXs were morphologically and phenotypically similar to RT. Whole-genome sequencing analysis at different time points of the PDX evolution revealed a genomic landscape similar to RT tumors from both patients and uncovered an unprecedented RT subclonal heterogeneity and clonal evolution during PDX generation. In PDX12, the transformed cells expanded from a very small subclone already present at the CLL stage. Transcriptomic analysis of PDXs showed a high oxidative phosphorylation (OXPHOS) and low B-cell receptor (BCR) signaling similar to the RT in the patients. IACS-010759, an OXPHOS inhibitor, reduced proliferation, and circumvented resistance to venetoclax. In summary, we have generated new RT-PDX models, one of them from CLL cells that mimicked the evolution of CLL to RT uncovering intrinsic features of RT cells of therapeutical value.
Collapse
MESH Headings
- Humans
- Animals
- Mice
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Heterografts
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Clonal Evolution/genetics
- Prognosis
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
Collapse
Affiliation(s)
- Heribert Playa-Albinyana
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Fabian Arenas
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Ariadna Giró
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irene López-Oreja
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
| | - Marta Aymerich
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
| | - Mònica López-Guerra
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
| | - Gerard Frigola
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
- Molecular Pathology of Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sílvia Beà
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
- Molecular Pathology of Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Julio Delgado
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
- Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo M Garcia-Roves
- University of Barcelona, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Elías Campo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain
- Molecular Pathology of Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ferran Nadeu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
- Molecular Pathology of Lymphoid Neoplasms Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- Hematopathology Section, Pathology Department, Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
50
|
Carbo-Meix A, Guijarro F, Wang L, Grau M, Royo R, Frigola G, Playa-Albinyana H, Buhler MM, Clot G, Duran-Ferrer M, Lu J, Granada I, Baptista MJ, Navarro JT, Espinet B, Puiggros A, Tapia G, Bandiera L, De Canal G, Bonoldi E, Climent F, Ribera-Cortada I, Fernandez-Caballero M, De la Banda E, Do Nascimento J, Pineda A, Vela D, Rozman M, Aymerich M, Syrykh C, Brousset P, Perera M, Yanez L, Ortin JX, Tuset E, Zenz T, Cook JR, Swerdlow SH, Martin-Subero JI, Colomer D, Matutes E, Bea S, Costa D, Nadeu F, Campo E. BCL3 rearrangements in B-cell lymphoid neoplasms occur in two breakpoint clusters associated with different diseases. Haematologica 2024; 109:493-508. [PMID: 37560801 PMCID: PMC10828791 DOI: 10.3324/haematol.2023.283209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The t(14;19)(q32;q13) often juxtaposes BCL3 with immunoglobulin heavy chain (IGH) resulting in overexpression of the gene. In contrast to other oncogenic translocations, BCL3 rearrangement (BCL3-R) has been associated with a broad spectrum of lymphoid neoplasms. Here we report an integrative whole-genome sequence, transcriptomic, and DNA methylation analysis of 13 lymphoid neoplasms with BCL3-R. The resolution of the breakpoints at single base-pair revealed that they occur in two clusters at 5' (n=9) and 3' (n=4) regions of BCL3 associated with two different biological and clinical entities. Both breakpoints were mediated by aberrant class switch recombination of the IGH locus. However, the 5' breakpoints (upstream) juxtaposed BCL3 next to an IGH enhancer leading to overexpression of the gene whereas the 3' breakpoints (downstream) positioned BCL3 outside the influence of the IGH and were not associated with its expression. Upstream BCL3-R tumors had unmutated IGHV, trisomy 12, and mutated genes frequently seen in chronic lymphocytic leukemia (CLL) but had an atypical CLL morphology, immunophenotype, DNA methylome, and expression profile that differ from conventional CLL. In contrast, downstream BCL3-R neoplasms were atypical splenic or nodal marginal zone lymphomas (MZL) with mutated IGHV, complex karyotypes and mutated genes typical of MZL. Two of the latter four tumors transformed to a large B-cell lymphoma. We designed a novel fluorescence in situ hybridization assay that recognizes the two different breakpoints and validated these findings in 17 independent tumors. Overall, upstream or downstream breakpoints of BCL3-R are mainly associated with two subtypes of lymphoid neoplasms with different (epi)genomic, expression, and clinicopathological features resembling atypical CLL and MZL, respectively.
Collapse
Affiliation(s)
- Anna Carbo-Meix
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Francesca Guijarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Luojun Wang
- Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Marta Grau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Barcelona
| | - Gerard Frigola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Heribert Playa-Albinyana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Marco M Buhler
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Marti Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Junyan Lu
- European Molecular Biology Laboratory, Heidelberg
| | - Isabel Granada
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Maria-Joao Baptista
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Jose-Tomas Navarro
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain and Translational Research on Hematological Neoplasms Group (GRETNHE) - Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain and Translational Research on Hematological Neoplasms Group (GRETNHE) - Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona
| | - Gustavo Tapia
- Department of Pathology, Hospital Germans Trias i Pujol, Badalona
| | - Laura Bandiera
- Anatomia Istologia Patologica e Citogenetica, Dipartimento Ematologia, Oncologia e Medicina Molecolare, Niguarda Cancer Center, Milano
| | - Gabriella De Canal
- Anatomia Istologia Patologica e Citogenetica, Dipartimento Ematologia, Oncologia e Medicina Molecolare, Niguarda Cancer Center, Milano
| | - Emanuela Bonoldi
- Anatomia Istologia Patologica e Citogenetica, Dipartimento Ematologia, Oncologia e Medicina Molecolare, Niguarda Cancer Center, Milano
| | - Fina Climent
- Department o f Pathology, H ospital Universitari d e Bellvitge, I nstitut d'Investigació B iomèdica d e Bellvitge (IDIBELL), L'Hospitalet De Llobregat
| | | | - Mariana Fernandez-Caballero
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Esmeralda De la Banda
- Laboratory of Hematology, Hospital Universitari Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet De Llobregat
| | | | | | - Dolors Vela
- Hematologia Clínica, Hospital General de Granollers, Granollers
| | - Maria Rozman
- Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Marta Aymerich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Charlotte Syrykh
- Department of Pathology, Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse CEDEX 9
| | - Pierre Brousset
- Department of Pathology, Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse CEDEX 9, France; INSERM UMR1037 Cancer Research Center of Toulouse (CRCT), ERL 5294 National Center for Scientific Research (CNRS), University of Toulouse III Paul-Sabatier, Toulouse, France; Institut Carnot Lymphome CALYM, Laboratoire d'Excellence 'TOUCAN', Toulouse
| | - Miguel Perera
- Hematology Department, Hospital Dr Negrín, Las Palmas de Gran Canaria
| | - Lucrecia Yanez
- Hematology Department, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Valdecilla (IDIVAL), Santander
| | | | - Esperanza Tuset
- Hematology Department, Institut Català d'Oncologia, Hospital Dr. Josep Trueta, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zurich
| | - James R Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Steven H Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona
| | - Estella Matutes
- Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Silvia Bea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona
| | - Dolors Costa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona.
| |
Collapse
|