1
|
Gretzinger J, Gibbon VE, Penske SE, Sealy JC, Rohrlach AB, Salazar-García DC, Krause J, Schiffels S. 9,000 years of genetic continuity in southernmost Africa demonstrated at Oakhurst rockshelter. Nat Ecol Evol 2024; 8:2121-2134. [PMID: 39300260 PMCID: PMC11541196 DOI: 10.1038/s41559-024-02532-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024]
Abstract
Southern Africa has one of the longest records of fossil hominins and harbours the largest human genetic diversity in the world. Yet, despite its relevance for human origins and spread around the globe, the formation and processes of its gene pool in the past are still largely unknown. Here, we present a time transect of genome-wide sequences from nine individuals recovered from a single site in South Africa, Oakhurst Rockshelter. Spanning the whole Holocene, the ancient DNA of these individuals allows us to reconstruct the demographic trajectories of the indigenous San population and their ancestors during the last 10,000 years. We show that, in contrast to most regions around the world, the population history of southernmost Africa was not characterized by several waves of migration, replacement and admixture but by long-lasting genetic continuity from the early Holocene to the end of the Later Stone Age. Although the advent of pastoralism and farming substantially transformed the gene pool in most parts of southern Africa after 1,300 BP, we demonstrate using allele-frequency and identity-by-descent segment-based methods that the ‡Khomani San and Karretjiemense from South Africa still show direct signs of relatedness to the Oakhurst hunter-gatherers, a pattern obscured by recent, extensive non-Southern African admixture. Yet, some southern San in South Africa still preserve this ancient, Pleistocene-derived genetic signature, extending the period of genetic continuity until today.
Collapse
Affiliation(s)
- Joscha Gretzinger
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Victoria E Gibbon
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa.
| | - Sandra E Penske
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Judith C Sealy
- Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Adam B Rohrlach
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Domingo C Salazar-García
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Stephan Schiffels
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany.
| |
Collapse
|
2
|
Kaptan D, Atağ G, Vural KB, Morell Miranda P, Akbaba A, Yüncü E, Buluktaev A, Abazari MF, Yorulmaz S, Kazancı DD, Küçükakdağ Doğu A, Çakan YG, Özbal R, Gerritsen F, De Cupere B, Duru R, Umurtak G, Arbuckle BS, Baird D, Çevik Ö, Bıçakçı E, Gündem CY, Pişkin E, Hachem L, Canpolat K, Fakhari Z, Ochir-Goryaeva M, Kukanova V, Valipour HR, Hoseinzadeh J, Küçük Baloğlu F, Götherström A, Hadjisterkotis E, Grange T, Geigl EM, Togan İZ, Günther T, Somel M, Özer F. The Population History of Domestic Sheep Revealed by Paleogenomes. Mol Biol Evol 2024; 41:msae158. [PMID: 39437846 PMCID: PMC11495565 DOI: 10.1093/molbev/msae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/17/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
Sheep was one of the first domesticated animals in Neolithic West Eurasia. The zooarchaeological record suggests that domestication first took place in Southwest Asia, although much remains unresolved about the precise location(s) and timing(s) of earliest domestication, or the post-domestication history of sheep. Here, we present 24 new partial sheep paleogenomes, including a 13,000-year-old Epipaleolithic Central Anatolian wild sheep, as well as 14 domestic sheep from Neolithic Anatolia, two from Neolithic Iran, two from Neolithic Iberia, three from Neolithic France, and one each from Late Neolithic/Bronze Age Baltic and South Russia, in addition to five present-day Central Anatolian Mouflons and two present-day Cyprian Mouflons. We find that Neolithic European, as well as domestic sheep breeds, are genetically closer to the Anatolian Epipaleolithic sheep and the present-day Anatolian and Cyprian Mouflon than to the Iranian Mouflon. This supports a Central Anatolian source for domestication, presenting strong evidence for a domestication event in SW Asia outside the Fertile Crescent, although we cannot rule out multiple domestication events also within the Neolithic Fertile Crescent. We further find evidence for multiple admixture and replacement events, including one that parallels the Pontic Steppe-related ancestry expansion in Europe, as well as a post-Bronze Age event that appears to have further spread Asia-related alleles across global sheep breeds. Our findings mark the dynamism of past domestic sheep populations in their potential for dispersal and admixture, sometimes being paralleled by their shepherds and in other cases not.
Collapse
Affiliation(s)
- Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Pedro Morell Miranda
- Human Evolution Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Ali Akbaba
- Selçuklu ve Malazgirt Araştırma ve Uygulama Merkezi, Muş Alparslan Üniversitesi, Muş, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Aleksey Buluktaev
- Department of Archaeology, Ethnology and History, Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russia
| | - Mohammad Foad Abazari
- Division of Medical Sciences, Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Sevgi Yorulmaz
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Duygu Deniz Kazancı
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Ayça Küçükakdağ Doğu
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | | | - Rana Özbal
- Department of Archaeology and History of Art, Koç University, Istanbul, Turkey
| | - Fokke Gerritsen
- Netherlands Institute in Turkey, Istanbul, Turkey
- Leiden Institute for Area Studies, Leiden University, Leiden, Netherlands
| | - Bea De Cupere
- Operational Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Refik Duru
- Faculty of Letters, Department of Archaeology, İstanbul University, Laleli, Istanbul, Turkey
| | - Gülsün Umurtak
- Faculty of Letters, Department of Archaeology, İstanbul University, Laleli, Istanbul, Turkey
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas Baird
- Department of Archaeology, Classics, and Egyptology, University of Liverpool, Liverpool, UK
| | - Özlem Çevik
- Department of Archaeology, Trakya University, Edirne, Turkey
| | - Erhan Bıçakçı
- Department of Prehistory, Istanbul University, Laleli, Istanbul, Turkey
| | | | - Evangelia Pişkin
- Department of Settlement Archaeology, Middle East Technical University, Ankara, Turkey
| | - Lamys Hachem
- Institut National de Recherches Archéologiques Préventives (Inrap), UMR 8215 Trajectoires, Paris, France
| | - Kayra Canpolat
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Zohre Fakhari
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Maria Ochir-Goryaeva
- Department of Archaeology, Ethnology and History, Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russia
- Khalikov Institute of Archaeology, Academy of Sciences of Tatarstan, Kazan, The Republic of Tatarstan, Russia
| | - Viktoria Kukanova
- Department of Archaeology, Ethnology and History, Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russia
| | - Hamid Reza Valipour
- Department of Archaeology, Faculty of Letters and Human Sciences, Shahid Beheshti University, Tehran, Iran
| | | | - Fatma Küçük Baloğlu
- Department of Biology, Giresun University, Giresun, Turkey
- Human-G Laboratory, Department of Anthropology, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Anders Götherström
- Center for Paleogenetics, Stockholm, Sweden
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, University of Stockholm, Stockholm, Sweden
| | | | - Thierry Grange
- Université de Paris, Institut Jacques Monod, CNRS, Paris, France
| | - Eva-Maria Geigl
- Université de Paris, Institut Jacques Monod, CNRS, Paris, France
| | - İnci Z Togan
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Torsten Günther
- Human Evolution Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
3
|
Barragan AC, Latorre SM, Malmgren A, Harant A, Win J, Sugihara Y, Burbano HA, Kamoun S, Langner T. Multiple Horizontal Mini-chromosome Transfers Drive Genome Evolution of Clonal Blast Fungus Lineages. Mol Biol Evol 2024; 41:msae164. [PMID: 39107250 PMCID: PMC11346369 DOI: 10.1093/molbev/msae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024] Open
Abstract
Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.
Collapse
Affiliation(s)
- Ana Cristina Barragan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sergio M Latorre
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Angus Malmgren
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hernán A Burbano
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
4
|
Chakraborty S, Wang MG, Wong MCS. Coupling and decoupling of ancestral linkages and current cross-border economic activities: Genetics and policy. ECONOMICS AND HUMAN BIOLOGY 2024; 54:101410. [PMID: 38908266 DOI: 10.1016/j.ehb.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
This paper studies the potential link between the biological evolution of populations and present-day economic interactions by estimating the correlation of shared ancestry among populations with cross-border capital and human flows. To this end, we employ the new concept of genetic distance, based on (dis)similarity of neutral gene alleles, to quantify shared ancestry. We then incorporate the genetic distance measure into an augmented gravity model, traditionally used to analyze the effect of geographical distance on bilateral exchange. Our analysis focuses on bilateral foreign direct investment (FDI) and migration across 135 countries and we use both linear regression techniques as well as the Poisson Pseudo-Maximum Likelihood Estimator to account for any non-linearities in the model. Our results show that a 1% increase in genetic distance reduces FDI flows by 0.08% while controlling for other distance constructs and factors associated with global capital and human movement. Genetic distance also has a negative effect on migration, where a 1% increase in genetic distance reduces migration flows by 0.22%, with all other things remaining constant. Our study, therefore, links shared ancestry with economic behavior, showing how historical connections are associated with current economic exchanges among nations. Additionally, recognizing that ancestral ties are outside human control, we examine policy measures that help nations overcome such distance barriers. Our findings show that strengthening a nation's institutional quality and adherence to the rule of law can effectively mitigate any negative correlation of distance constructs with economic exchanges. These insights suggest that prudent policies to foster a stable business environment are essential for any nation to attract FDI and human capital, even from geographically or genetically distant nations.
Collapse
Affiliation(s)
- Suparna Chakraborty
- Department of Economics, University of San Francisco, 2130 Fulton Street, San Francisco, 94117, CA, USA
| | - Miao Grace Wang
- Department of Economics, College of Business Administration, Marquette University, 1530 W Wisconsin Avenue, Milwaukee, 53233, WI, USA
| | - M C Sunny Wong
- Hobby School of Public Affairs, University of Houston, 4104 Martin Luther King Boulevard, Suite 104, Houston, 77204, TX, USA.
| |
Collapse
|
5
|
Özkan M, Gürün K, Yüncü E, Vural KB, Atağ G, Akbaba A, Fidan FR, Sağlıcan E, Altınışık EN, Koptekin D, Pawłowska K, Hodder I, Adcock SE, Arbuckle BS, Steadman SR, McMahon G, Erdal YS, Bilgin CC, Togan İ, Geigl EM, Götherström A, Grange T, Özer F, Somel M. The first complete genome of the extinct European wild ass (Equus hemionus hydruntinus). Mol Ecol 2024; 33:e17440. [PMID: 38946459 DOI: 10.1111/mec.17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
We present palaeogenomes of three morphologically unidentified Anatolian equids dating to the first millennium BCE, sequenced to a coverage of 0.6-6.4×. Mitochondrial DNA haplotypes of the Anatolian individuals clustered with those of Equus hydruntinus (or Equus hemionus hydruntinus), the extinct European wild ass, secular name 'hydruntine'. Further, the Anatolian wild ass whole genome profiles fell outside the genomic diversity of other extant and past Asiatic wild ass (E. hemionus) lineages. These observations suggest that the three Anatolian wild asses represent hydruntines, making them the latest recorded survivors of this lineage, about a millennium later than the latest observations in the zooarchaeological record. Our mitogenomic and genomic analyses indicate that E. h. hydruntinus was a clade belonging to ancient and present-day E. hemionus lineages that radiated possibly between 0.6 and 0.8 Mya. We also find evidence consistent with recent gene flow between hydruntines and Middle Eastern wild asses. Analyses of genome-wide heterozygosity and runs of homozygosity suggest that the Anatolian wild ass population may have lost genetic diversity by the mid-first millennium BCE, a possible sign of its eventual demise.
Collapse
Affiliation(s)
- Mustafa Özkan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kanat Gürün
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ali Akbaba
- Department of Anthropology, Ankara University, Ankara, Turkey
- Alparslan University, Muş, Turkey
| | - Fatma Rabia Fidan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Ekin Sağlıcan
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Ezgi N Altınışık
- Department of Anthropology, Human_G Laboratory, Hacettepe University, Ankara, Turkey
| | - Dilek Koptekin
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Kamilla Pawłowska
- Department of Palaeoenvironmental Research, Adam Mickiewicz University, Poznań, Poland
| | - Ian Hodder
- Department of Anthropology, Stanford University, Stanford, California, USA
| | - Sarah E Adcock
- Institute for the Study of the Ancient World, New York University, New York, New York, USA
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sharon R Steadman
- Department of Sociology/Anthropology, SUNY Cortland, Cortland, New York, USA
| | - Gregory McMahon
- Classics, Humanities and Italian Studies Department, University of New Hampshire, Durham, New Hampshire, USA
| | - Yılmaz Selim Erdal
- Department of Anthropology, Human_G Laboratory, Hacettepe University, Ankara, Turkey
| | - C Can Bilgin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - İnci Togan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eva-Maria Geigl
- Institut Jacques Monod, CNRS, Université de Paris, Paris, France
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Thierry Grange
- Institut Jacques Monod, CNRS, Université de Paris, Paris, France
| | - Füsun Özer
- Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
6
|
Larsson MNA, Morell Miranda P, Pan L, Başak Vural K, Kaptan D, Rodrigues Soares AE, Kivikero H, Kantanen J, Somel M, Özer F, Johansson AM, Storå J, Günther T. Ancient Sheep Genomes Reveal Four Millennia of North European Short-Tailed Sheep in the Baltic Sea Region. Genome Biol Evol 2024; 16:evae114. [PMID: 38795367 PMCID: PMC11162877 DOI: 10.1093/gbe/evae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 05/27/2024] Open
Abstract
Sheep are among the earliest domesticated livestock species, with a wide variety of breeds present today. However, it remains unclear how far back this diversity goes, with formal documentation only dating back a few centuries. North European short-tailed (NEST) breeds are often assumed to be among the oldest domestic sheep populations, even thought to represent relicts of the earliest sheep expansions during the Neolithic period reaching Scandinavia <6,000 years ago. This study sequenced the genomes (up to 11.6X) of five sheep remains from the Baltic islands of Gotland and Åland, dating from the Late Neolithic (∼4,100 cal BP) to historical times (∼1,600 CE). Our findings indicate that these ancient sheep largely possessed the genetic characteristics of modern NEST breeds, suggesting a substantial degree of long-term continuity of this sheep type in the Baltic Sea region. Despite the wide temporal spread, population genetic analyses show high levels of affinity between the ancient genomes and they also exhibit relatively high genetic diversity when compared to modern NEST breeds, implying a loss of diversity in most breeds during the last centuries associated with breed formation and recent bottlenecks. Our results shed light on the development of breeds in Northern Europe specifically as well as the development of genetic diversity in sheep breeds, and their expansion from the domestication center in general.
Collapse
Affiliation(s)
- Martin N A Larsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Li Pan
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | | - Hanna Kivikero
- Department of Culture, University of Helsinki, Helsinki, Finland
| | - Juha Kantanen
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Anna M Johansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Storå
- Osteoarchaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Hermansyah D, Firsty NN, Siagian RHN, Dwinda NN. Intercontinental Comparison of Immunohistochemical Subtypes Among Individuals With Breast Cancer in South-East Asia and South America: A Scoping Systematic Review and Meta-Analysis of Observational Studies. World J Oncol 2024; 15:355-371. [PMID: 38751698 PMCID: PMC11092420 DOI: 10.14740/wjon1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Background Breast cancer (BC) remains a significant global concern, particularly among developing countries in South-East Asia (SEA) and South America (SA). The socioeconomic burdens of oncologic care in those countries were often originated from limited accessibility on attainable therapeutic options and reliability on identifying essential information of cancer cells, i.e., immunohistochemical (IHC) subtyping to determine suitable approaches. The triple-negative breast cancer (TNBC) is among the most aggressive category in breast malignancy, therefore, requiring more specific molecular pathway blocking to exhaust the cells. However, large-scale epidemiological investigation on its rate among BC remains unavailable to date. This study aimed to describe the prevalence of TNBC in the SEA and SA continents since it may guide the future direction of oncologic research and trials. Methods This review focuses on observational studies from the SEA and SA continents from the last decade. Each study represents its country or cities, period of observation, population size, and the TNBC-BC rate as the main outcomes. Therefore, we may also limit the reporting bias originated from same-patient data on the specific occasions. The analysis will be derived to SEA-SA comparison, plus SEA/SA-specific session as processed in Comprehensive Meta-Analysis (CMA) version 3.0. The statistical analysis will be performed in random effects model (REM) within 95% confidence interval (CI). Results From 46 studies included in the final analysis with a total enlisted population of 34,346 unique individuals with BC, the TNBC rate was higher in the SEA compared to the SA region (19.3% vs. 15.7%; P < 0.05 in 95% CI), with the highest prevalence observed in Vietnam (22.4%) and Peru (17.8%), if it was restricted on countries with two or more studies. Interestingly, both Laos and Argentina possessed significant differences compared to other countries within their respective continents, with the highest and lowest TNBC rates (P < 0.05). Conclusions The IHC characteristics in SEA differ from those in the SA continent as mainly represented by TNBC prevalence, possibly shaping the course of future trials in the respective region based on IHC expressivity status.
Collapse
Affiliation(s)
- Dedy Hermansyah
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Naufal Nandita Firsty
- Graduate Program in Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Putri Hijau Level II Military Hospital, Medan, Indonesia
| | - Ruth Hasian Nami Siagian
- Graduate Program in Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Datu Sanggul Rantau Public Hospital, Tapin, Indonesia
| | - Najwa Nandita Dwinda
- Undergraduate Program in Public Health, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
8
|
Vilà-Valls L, Abdeli A, Lucas-Sánchez M, Bekada A, Calafell F, Benhassine T, Comas D. Understanding the genomic heterogeneity of North African Imazighen: from broad to microgeographical perspectives. Sci Rep 2024; 14:9979. [PMID: 38693301 PMCID: PMC11063056 DOI: 10.1038/s41598-024-60568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
The strategic location of North Africa has led to cultural and demographic shifts, shaping its genetic structure. Historical migrations brought different genetic components that are evident in present-day North African genomes, along with autochthonous components. The Imazighen (plural of Amazigh) are believed to be the descendants of autochthonous North Africans and speak various Amazigh languages, which belong to the Afro-Asiatic language family. However, the arrival of different human groups, especially during the Arab conquest, caused cultural and linguistic changes in local populations, increasing their heterogeneity. We aim to characterize the genetic structure of the region, using the largest Amazigh dataset to date and other reference samples. Our findings indicate microgeographical genetic heterogeneity among Amazigh populations, modeled by various admixture waves and different effective population sizes. A first admixture wave is detected group-wide around the twelfth century, whereas a second wave appears in some Amazigh groups around the nineteenth century. These events involved populations with higher genetic ancestry from south of the Sahara compared to the current North Africans. A plausible explanation would be the historical trans-Saharan slave trade, which lasted from the Roman times to the nineteenth century. Furthermore, our investigation shows that assortative mating in North Africa has been rare.
Collapse
Affiliation(s)
- Laura Vilà-Valls
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Amine Abdeli
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté Des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Marcel Lucas-Sánchez
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Francesc Calafell
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Traki Benhassine
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté Des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - David Comas
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
9
|
de Smith AJ, Wahlster L, Jeon S, Kachuri L, Black S, Langie J, Cato LD, Nakatsuka N, Chan TF, Xia G, Mazumder S, Yang W, Gazal S, Eng C, Hu D, Burchard EG, Ziv E, Metayer C, Mancuso N, Yang JJ, Ma X, Wiemels JL, Yu F, Chiang CWK, Sankaran VG. A noncoding regulatory variant in IKZF1 increases acute lymphoblastic leukemia risk in Hispanic/Latino children. CELL GENOMICS 2024; 4:100526. [PMID: 38537633 PMCID: PMC11019360 DOI: 10.1016/j.xgen.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.33-1.55) and a risk allele frequency of ∼18% in Hispanic/Latino populations and <0.5% in European populations. This risk allele was positively associated with Indigenous American ancestry, showed evidence of selection in human history, and was associated with reduced IKZF1 expression. We identified a putative causal variant in a downstream enhancer that is most active in pro-B cells and interacts with the IKZF1 promoter. This variant disrupts IKZF1 autoregulation at this enhancer and results in reduced enhancer activity in B cell progenitors. Our study reveals a genetic basis for the increased ALL risk in Hispanic/Latino children.
Collapse
Affiliation(s)
- Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Soyoung Jeon
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan Black
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jalen Langie
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tsz-Fung Chan
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Guangze Xia
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Soumyaa Mazumder
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Celeste Eng
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donglei Hu
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Esteban González Burchard
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaomei Ma
- Yale School of Public Health, New Haven, CT 06520, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
10
|
Rider DF, Wolf ACE, Murray J, de Flamingh A, dos Santos ALC, Lanoë F, Zedeño MN, DeGiorgio M, Lindo J, Malhi RS. Genomic analyses correspond with deep persistence of peoples of Blackfoot Confederacy from glacial times. SCIENCE ADVANCES 2024; 10:eadl6595. [PMID: 38569022 PMCID: PMC10990285 DOI: 10.1126/sciadv.adl6595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Mutually beneficial partnerships between genomics researchers and North American Indigenous Nations are rare yet becoming more common. Here, we present one such partnership that provides insight into the peopling of the Americas and furnishes another line of evidence that can be used to further treaty and Indigenous rights. We show that the genomics of sampled individuals from the Blackfoot Confederacy belong to a previously undescribed ancient lineage that diverged from other genomic lineages in the Americas in Late Pleistocene times. Using multiple complementary forms of knowledge, we provide a scenario for Blackfoot population history that fits with oral tradition and provides a plausible model for the evolutionary process of the peopling of the Americas.
Collapse
Affiliation(s)
| | | | - John Murray
- Blackfeet Tribal Historic Preservation Office, Browning, MT 59417, USA
| | - Alida de Flamingh
- Center for Indigenous Science, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | | | - François Lanoë
- Bureau of Applied Research in Anthropology, School of Anthropology, The University of Arizona, Tucson, AZ 85721, USA
| | - Maria N. Zedeño
- Bureau of Applied Research in Anthropology, School of Anthropology, The University of Arizona, Tucson, AZ 85721, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - John Lindo
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Ripan S. Malhi
- Center for Indigenous Science, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Sirak K, Jansen Van Rensburg J, Brielle E, Chen B, Lazaridis I, Ringbauer H, Mah M, Mallick S, Micco A, Rohland N, Callan K, Curtis E, Kearns A, Lawson AM, Workman JN, Zalzala F, Ahmed Al-Orqbi AS, Ahmed Salem EM, Salem Hasan AM, Britton DC, Reich D. Medieval DNA from Soqotra points to Eurasian origins of an isolated population at the crossroads of Africa and Arabia. Nat Ecol Evol 2024; 8:817-829. [PMID: 38332026 PMCID: PMC11009077 DOI: 10.1038/s41559-024-02322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024]
Abstract
Soqotra, an island situated at the mouth of the Gulf of Aden in the northwest Indian Ocean between Africa and Arabia, is home to ~60,000 people subsisting through fishing and semi-nomadic pastoralism who speak a Modern South Arabian language. Most of what is known about Soqotri history derives from writings of foreign travellers who provided little detail about local people, and the geographic origins and genetic affinities of early Soqotri people has not yet been investigated directly. Here we report genome-wide data from 39 individuals who lived between ~650 and 1750 CE at six locations across the island and document strong genetic connections between Soqotra and the similarly isolated Hadramawt region of coastal South Arabia that likely reflects a source for the peopling of Soqotra. Medieval Soqotri can be modelled as deriving ~86% of their ancestry from a population such as that found in the Hadramawt today, with the remaining ~14% best proxied by an Iranian-related source with up to 2% ancestry from the Indian sub-continent, possibly reflecting genetic exchanges that occurred along with archaeologically documented trade from these regions. In contrast to all other genotyped populations of the Arabian Peninsula, genome-level analysis of the medieval Soqotri is consistent with no sub-Saharan African admixture dating to the Holocene. The deep ancestry of people from medieval Soqotra and the Hadramawt is also unique in deriving less from early Holocene Levantine farmers and more from groups such as Late Pleistocene hunter-gatherers from the Levant (Natufians) than other mainland Arabians. This attests to migrations by early farmers having less impact in southernmost Arabia and Soqotra and provides compelling evidence that there has not been complete population replacement between the Pleistocene and Holocene throughout the Arabian Peninsula. Medieval Soqotra harboured a small population that showed qualitatively different marriage practices from modern Soqotri, with first-cousin unions occurring significantly less frequently than today.
Collapse
Affiliation(s)
- Kendra Sirak
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | | - Esther Brielle
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Bowen Chen
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew Mah
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Swapan Mallick
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Curtis
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - J Noah Workman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
12
|
Nichols J. Founder effects identify languages of the earliest Americans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024:e24923. [PMID: 38554027 DOI: 10.1002/ajpa.24923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 04/01/2024]
Abstract
The known languages of the Americas comprise nearly half of the world's language families and a wide range of structural types, a level of diversity that required considerable time to develop. This paper proposes a model of settlement and expansion designed to integrate current linguistic analysis with other prehistoric research on the earliest episodes in the peopling of the Americas. Diagnostic structural features from phonology and morphology are compared across 60 North American languages chosen for coverage of geography and language families and adequacy of description. Frequency comparison and graphic cluster analysis are applied to assess the fit of linguistic types and families with late Pleistocene time windows when entry from Siberia to North America was possible. The linguistic evidence is consistent with two population strata defined by early coastal entries ~24,000 and ~15,000 years ago, then an inland entry stream beginning ~14,000 ff. and mixed coastal/inland ~12,000 ff. The dominant structural properties among the founder languages are still reflected in the modern linguistic populations. The modern linguistic geography is still shaped by the extent of glaciation during the entry windows. Structural profiles imply that two linguistically distinct and internally diverse ancient Siberian linguistic populations provided the founding American populations. OBJECTIVES Describe early North American linguistic population structure and chronology; align distribution of structural types with archeological and paleoclimatological evidence on the earliest settlements. Propose an improved model of early settlement and expansion and pose some priority research questions. MATERIALS AND METHODS Classification of languages based on a tripartite geolinguistic division based on geographical and linguistic evidence. Survey of phonological and morphological patterns of 60 languages representing the structural, geographical, and genealogical diversity of North America. Survey of 16 morphological and phonological features of known or likely high stability and family-identifying value across those languages. Frequency comparison and cluster analysis to elucidate the tripartite analysis and compare to the chronology and geolinguistics implied by paleoclimatological and archeological work. RESULTS There is enough evidence (linguistic, archeological, genetic, and geological) to indicate four glacial-age openings allowing entries to North America: coastal c. 24,000 and 15,000 years ago; inland c. 14,000 years ago and continuing; and coastal c. 12,000 years ago and continuing. Geographical distribution of modern languages reflects the geography and chronology of the openings and the two human and linguistic population strata they formed, and plausibly also the structural types of the founding languages. DISCUSSION Improved model of North American settlement (two chronological strata, four entries); comparison to other proposed models. Further questions and research issues for linguistic, genetic, and archeological research.
Collapse
Affiliation(s)
- Johanna Nichols
- University of California, Berkeley, USA
- HSE University, Moscow, Russia
| |
Collapse
|
13
|
Vallini L, Zampieri C, Shoaee MJ, Bortolini E, Marciani G, Aneli S, Pievani T, Benazzi S, Barausse A, Mezzavilla M, Petraglia MD, Pagani L. The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal. Nat Commun 2024; 15:1882. [PMID: 38528002 DOI: 10.1038/s41467-024-46161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
A combination of evidence, based on genetic, fossil and archaeological findings, indicates that Homo sapiens spread out of Africa between ~70-60 thousand years ago (kya). However, it appears that once outside of Africa, human populations did not expand across all of Eurasia until ~45 kya. The geographic whereabouts of these early settlers in the timeframe between ~70-60 to 45 kya has been difficult to reconcile. Here we combine genetic evidence and palaeoecological models to infer the geographic location that acted as the Hub for our species during the early phases of colonisation of Eurasia. Leveraging on available genomic evidence we show that populations from the Persian Plateau carry an ancestry component that closely matches the population that settled the Hub outside Africa. With the paleoclimatic data available to date, we built ecological models showing that the Persian Plateau was suitable for human occupation and that it could sustain a larger population compared to other West Asian regions, strengthening this claim.
Collapse
Affiliation(s)
| | - Carlo Zampieri
- Department of Biology, University of Padova, Padova, Italy
| | - Mohamed Javad Shoaee
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Giulia Marciani
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Serena Aneli
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Telmo Pievani
- Department of Biology, University of Padova, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Alberto Barausse
- Department of Biology, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | | | - Michael D Petraglia
- Human Origins Program, Smithsonian Institution, Washington, DC, 20560, USA
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
14
|
Simões LG, Peyroteo-Stjerna R, Marchand G, Bernhardsson C, Vialet A, Chetty D, Alaçamlı E, Edlund H, Bouquin D, Dina C, Garmond N, Günther T, Jakobsson M. Genomic ancestry and social dynamics of the last hunter-gatherers of Atlantic France. Proc Natl Acad Sci U S A 2024; 121:e2310545121. [PMID: 38408241 DOI: 10.1073/pnas.2310545121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024] Open
Abstract
Since the early Holocene, western and central Europe was inhabited by a genetically distinct group of Western Hunter-Gatherers (WHGs). This group was eventually replaced and assimilated by the incoming Neolithic farmers. The western Atlantic façade was home to some of the last Mesolithic sites of mainland Europe, represented by the iconic open-air sites at Hoedic and Téviec in southern Brittany, France. These sites are known for the unusually well-preserved and rich burials. Genomic studies of Mesolithic European hunter-gatherers have been limited to single or a few individuals per site and our understanding of the social dynamics of the last Mesolithic hunter-gatherers of Europe and their interactions with incoming farmers is limited. We sequenced and analyzed the complete genomes of 10 individuals from the Late Mesolithic sites of Hoedic, Téviec, and Champigny, in France, four of which sequenced to between 23- and 8-times genome coverage. The analysis of genomic, chronological and dietary data revealed that the Late Mesolithic populations in Brittany maintained distinct social units within a network of exchanging mates. This resulted in low intra-group biological relatedness that prevented consanguineous mating, despite the small population size of the Late Mesolithic groups. We found no genetic ancestry from Neolithic farmers in the analyzed hunter-gatherers, even though some of them may have coexisted with the first farming groups in neighboring regions. Hence, contrary to previous conclusions based on stable isotope data from the same sites, the Late Mesolithic forager community was limited in mate-exchange to neighboring hunter-gatherer groups, to the exclusion of Neolithic farmers.
Collapse
Affiliation(s)
- Luciana G Simões
- Human Evolution, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Rita Peyroteo-Stjerna
- Human Evolution, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
- Department of Historical Studies, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Cultural Sciences, Linnaeus University, 351 95 Växjö, Sweden
- Centre for Archaeology, School of Arts and Humanities, University of Lisbon, 1600-214 Lisbon, Portugal
| | - Grégor Marchand
- Centre de Recherche en Archéologie, Archéosciences, Histoire, Université de Rennes, Rennes, CNRS 35065, France
| | - Carolina Bernhardsson
- Human Evolution, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Amélie Vialet
- Muséum national d'Histoire naturelle, UMR7194, Université Perpignan Via Domitia, Department "Homme et Environnement", Paris 75013, France
| | - Darshan Chetty
- Human Evolution, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Erkin Alaçamlı
- Human Evolution, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Hanna Edlund
- Human Evolution, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
- Forensic Section, Regional Investigation Unit, Swedish Police Authority, 753 32 Uppsala, Sweden
| | - Denis Bouquin
- UMR 6298, ARTEHIS, Université de Bourgogne-CNRS, Bâtiment Sciences Gabriel, 21000 Dijon, France
- Service Archéologique du Grand Reims, 51100 Reims, France
| | - Christian Dina
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | | | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| |
Collapse
|
15
|
Simon A, Coop G. The contribution of gene flow, selection, and genetic drift to five thousand years of human allele frequency change. Proc Natl Acad Sci U S A 2024; 121:e2312377121. [PMID: 38363870 PMCID: PMC10907250 DOI: 10.1073/pnas.2312377121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/09/2024] [Indexed: 02/18/2024] Open
Abstract
Genomic time series from experimental evolution studies and ancient DNA datasets offer us a chance to directly observe the interplay of various evolutionary forces. We show how the genome-wide variance in allele frequency change between two time points can be decomposed into the contributions of gene flow, genetic drift, and linked selection. In closed populations, the contribution of linked selection is identifiable because it creates covariances between time intervals, and genetic drift does not. However, repeated gene flow between populations can also produce directionality in allele frequency change, creating covariances. We show how to accurately separate the fraction of variance in allele frequency change due to admixture and linked selection in a population receiving gene flow. We use two human ancient DNA datasets, spanning around 5,000 y, as time transects to quantify the contributions to the genome-wide variance in allele frequency change. We find that a large fraction of genome-wide change is due to gene flow. In both cases, after correcting for known major gene flow events, we do not observe a signal of genome-wide linked selection. Thus despite the known role of selection in shaping long-term polymorphism levels, and an increasing number of examples of strong selection on single loci and polygenic scores from ancient DNA, it appears to be gene flow and drift, and not selection, that are the main determinants of recent genome-wide allele frequency change. Our approach should be applicable to the growing number of contemporary and ancient temporal population genomics datasets.
Collapse
Affiliation(s)
- Alexis Simon
- Center for Population Biology, University of California, Davis, CA95616
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Graham Coop
- Center for Population Biology, University of California, Davis, CA95616
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
16
|
Specht AG, Ginese M, Kurtz SL, Elkins KL, Specht H, Beamer G. Host Genetic Background Influences BCG-Induced Antibodies Cross-Reactive to SARS-CoV-2 Spike Protein. Vaccines (Basel) 2024; 12:242. [PMID: 38543876 PMCID: PMC10975245 DOI: 10.3390/vaccines12030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/01/2024] Open
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG) protects against childhood tuberculosis; and unlike most vaccines, BCG broadly impacts immunity to other pathogens and even some cancers. Early in the COVID-19 pandemic, epidemiological studies identified a protective association between BCG vaccination and outcomes of SARS-CoV-2, but the associations in later studies were inconsistent. We sought possible reasons and noticed the study populations often lived in the same country. Since individuals from the same regions can share common ancestors, we hypothesized that genetic background could influence associations between BCG and SARS-CoV-2. To explore this hypothesis in a controlled environment, we performed a pilot study using Diversity Outbred mice. First, we identified amino acid sequences shared by BCG and SARS-CoV-2 spike protein. Next, we tested for IgG reactive to spike protein from BCG-vaccinated mice. Sera from some, but not all, BCG-vaccinated Diversity Outbred mice contained higher levels of IgG cross-reactive to SARS-CoV-2 spike protein than sera from BCG-vaccinated C57BL/6J inbred mice and unvaccinated mice. Although larger experimental studies are needed to obtain mechanistic insight, these findings suggest that genetic background may be an important variable contributing to different associations observed in human randomized clinical trials evaluating BCG vaccination on SARS-CoV-2 and COVID-19.
Collapse
Affiliation(s)
- Aubrey G. Specht
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (A.G.S.); (M.G.)
| | - Melanie Ginese
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (A.G.S.); (M.G.)
| | - Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (S.L.K.); (K.L.E.)
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (S.L.K.); (K.L.E.)
| | - Harrison Specht
- Department of Bioengineering and Barnett Institute, Northeastern University, Boston, MA 02115, USA;
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
17
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
18
|
Peyrégne S, Slon V, Kelso J. More than a decade of genetic research on the Denisovans. Nat Rev Genet 2024; 25:83-103. [PMID: 37723347 DOI: 10.1038/s41576-023-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 09/20/2023]
Abstract
Denisovans, a group of now extinct humans who lived in Eastern Eurasia in the Middle and Late Pleistocene, were first identified from DNA sequences just over a decade ago. Only ten fragmentary remains from two sites have been attributed to Denisovans based entirely on molecular information. Nevertheless, there has been great interest in using genetic data to understand Denisovans and their place in human history. From the reconstruction of a single high-quality genome, it has been possible to infer their population history, including events of admixture with other human groups. Additionally, the identification of Denisovan DNA in the genomes of present-day individuals has provided insights into the timing and routes of dispersal of ancient modern humans into Asia and Oceania, as well as the contributions of archaic DNA to the physiology of present-day people. In this Review, we synthesize more than a decade of research on Denisovans, reconcile controversies and summarize insights into their population history and phenotype. We also highlight how our growing knowledge about Denisovans has provided insights into our own evolutionary history.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Viviane Slon
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Janet Kelso
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
19
|
Simon A, Coop G. The contribution of gene flow, selection, and genetic drift to five thousand years of human allele frequency change. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.11.548607. [PMID: 37503227 PMCID: PMC10370008 DOI: 10.1101/2023.07.11.548607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Genomic time series from experimental evolution studies and ancient DNA datasets offer us a chance to directly observe the interplay of various evolutionary forces. We show how the genome-wide variance in allele frequency change between two time points can be decomposed into the contributions of gene flow, genetic drift, and linked selection. In closed populations, the contribution of linked selection is identifiable because it creates covariances between time intervals, and genetic drift does not. However, repeated gene flow between populations can also produce directionality in allele frequency change, creating covariances. We show how to accurately separate the fraction of variance in allele frequency change due to admixture and linked selection in a population receiving gene flow. We use two human ancient DNA datasets, spanning around 5,000 years, as time transects to quantify the contributions to the genome-wide variance in allele frequency change. We find that a large fraction of genome-wide change is due to gene flow. In both cases, after correcting for known major gene flow events, we do not observe a signal of genome-wide linked selection. Thus despite the known role of selection in shaping long-term polymorphism levels, and an increasing number of examples of strong selection on single loci and polygenic scores from ancient DNA, it appears to be gene flow and drift, and not selection, that are the main determinants of recent genome-wide allele frequency change. Our approach should be applicable to the growing number of contemporary and ancient temporal population genomics datasets.
Collapse
Affiliation(s)
- Alexis Simon
- Center for Population Biology, University of California, Davis, CA 95616
- Department of Evolution and Ecology, University of California, Davis, CA 95616
| | - Graham Coop
- Center for Population Biology, University of California, Davis, CA 95616
- Department of Evolution and Ecology, University of California, Davis, CA 95616
| |
Collapse
|
20
|
Silva M, Booth T, Moore J, Anastasiadou K, Walker D, Gilardet A, Barrington C, Kelly M, Williams M, Henderson M, Smith A, Bowsher D, Montgomery J, Skoglund P. An individual with Sarmatian-related ancestry in Roman Britain. Curr Biol 2024; 34:204-212.e6. [PMID: 38118448 DOI: 10.1016/j.cub.2023.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
In the second century CE the Roman Empire had increasing contact with Sarmatians, nomadic Iranian speakers occupying an area stretching from the Pontic-Caspian steppe to the Carpathian mountains, both in the Caucasus and in the Danubian borders of the empire.1,2,3 In 175 CE, following their defeat in the Marcomannic Wars, emperor Marcus Aurelius drafted Sarmatian cavalry into Roman legions and deployed 5,500 Sarmatian soldiers to Britain, as recorded by contemporary historian Cassius Dio.4,5 Little is known about where the Sarmatian cavalry were stationed, and no individuals connected with this historically attested event have been identified to date, leaving its impact on Britain largely unknown. Here we document Caucasus- and Sarmatian-related ancestry in the whole genome of a Roman-period individual (126-228 calibrated [cal.] CE)-an outlier without traceable ancestry related to local populations in Britain-recovered from a farmstead site in present-day Cambridgeshire, UK. Stable isotopes support a life history of mobility during childhood. Although several scenarios are possible, the historical deployment of Sarmatians to Britain provides a parsimonious explanation for this individual's extraordinary life history. Regardless of the factors behind his migrations, these results highlight how long-range mobility facilitated by the Roman Empire impacted provincial locations outside of urban centers.
Collapse
Affiliation(s)
- Marina Silva
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Thomas Booth
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joanna Moore
- Department of Archaeology, Durham University, Lower Mountjoy, South Rd, DH1 3LE, Durham, United Kingdom
| | - Kyriaki Anastasiadou
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Don Walker
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Alexandre Gilardet
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher Barrington
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Monica Kelly
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mia Williams
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Henderson
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Alex Smith
- Headland Archaeology, 13 Jane Street, Edinburgh EH6 5HE, UK
| | - David Bowsher
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Janet Montgomery
- Department of Archaeology, Durham University, Lower Mountjoy, South Rd, DH1 3LE, Durham, United Kingdom.
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
21
|
Xu T, Chai X, Chen C, Watanabe HK, Sun J, Xiao Y, Wang Y, Chen J, Qiu JW, Qian PY. Genetic divergence and migration patterns of a galatheoid squat lobster highlight the need for deep-sea conservation. Mol Ecol 2024; 33:e17200. [PMID: 37985390 DOI: 10.1111/mec.17200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Information on genetic divergence and migration patterns of vent- and seep-endemic macrobenthos can help delimit biogeographical provinces and provide scientific guidelines for deep-sea conservation under the growing threats of anthropogenic disturbances. Nevertheless, related studies are still scarce, impeding the informed conservation of these hotspots of deep-sea biodiversity. To bridge this knowledge gap, we conducted a population connectivity study on the galatheoid squat lobster Shinkaia crosnieri - a deep-sea foundation species widely distributed in vent and seep ecosystems in the Northwest Pacific. With the application of an interdisciplinary methodology involving population genomics and oceanographic approaches, we unveiled two semi-isolated lineages of S. crosnieri with limited and asymmetrical gene flow potentially shaped by the geographic settings, habitat types, and ocean currents - one comprising vent populations in the Okinawa Trough, with those inhabiting the southern trough area likely serving as the source; the other being the Jiaolong (JR) seep population in the South China Sea. The latter might have recently experienced a pronounced demographic contraction and exhibited genetic introgression from the Okinawa Trough lineage, potentially mediated by the intrusion of the North Pacific Intermediate Water. We then compared the biogeographic patterns between S. crosnieri and two other representative and co-occurring vent- and seep-endemic species using published data. Based on their biogeographical subdivisions and source-sink dynamics, we highlighted the southern Okinawa Trough vents and the JR seep warrant imperative conservation efforts to sustain the deep-sea biodiversity in the Northwest Pacific.
Collapse
Affiliation(s)
- Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xia Chai
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | | - Jin Sun
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yao Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yan Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Junlin Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Wen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
22
|
Olalde I, Carrión P, Mikić I, Rohland N, Mallick S, Lazaridis I, Mah M, Korać M, Golubović S, Petković S, Miladinović-Radmilović N, Vulović D, Alihodžić T, Ash A, Baeta M, Bartík J, Bedić Ž, Bilić M, Bonsall C, Bunčić M, Bužanić D, Carić M, Čataj L, Cvetko M, Drnić I, Dugonjić A, Đukić A, Đukić K, Farkaš Z, Jelínek P, Jovanovic M, Kaić I, Kalafatić H, Krmpotić M, Krznar S, Leleković T, M de Pancorbo M, Matijević V, Milošević Zakić B, Osterholtz AJ, Paige JM, Tresić Pavičić D, Premužić Z, Rajić Šikanjić P, Rapan Papeša A, Paraman L, Sanader M, Radovanović I, Roksandic M, Šefčáková A, Stefanović S, Teschler-Nicola M, Tončinić D, Zagorc B, Callan K, Candilio F, Cheronet O, Fernandes D, Kearns A, Lawson AM, Mandl K, Wagner A, Zalzala F, Zettl A, Tomanović Ž, Keckarević D, Novak M, Harper K, McCormick M, Pinhasi R, Grbić M, Lalueza-Fox C, Reich D. A genetic history of the Balkans from Roman frontier to Slavic migrations. Cell 2023; 186:5472-5485.e9. [PMID: 38065079 PMCID: PMC10752003 DOI: 10.1016/j.cell.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
The rise and fall of the Roman Empire was a socio-political process with enormous ramifications for human history. The Middle Danube was a crucial frontier and a crossroads for population and cultural movement. Here, we present genome-wide data from 136 Balkan individuals dated to the 1st millennium CE. Despite extensive militarization and cultural influence, we find little ancestry contribution from peoples of Italic descent. However, we trace a large-scale influx of people of Anatolian ancestry during the Imperial period. Between ∼250 and 550 CE, we detect migrants with ancestry from Central/Northern Europe and the Steppe, confirming that "barbarian" migrations were propelled by ethnically diverse confederations. Following the end of Roman control, we detect the large-scale arrival of individuals who were genetically similar to modern Eastern European Slavic-speaking populations, who contributed 30%-60% of the ancestry of Balkan people, representing one of the largest permanent demographic changes anywhere in Europe during the Migration Period.
Collapse
Affiliation(s)
- Iñigo Olalde
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Ikerbasque-Basque Foundation of Science, Bilbao, Spain; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - Pablo Carrión
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | | | - Abigail Ash
- Department of Archaeology, Durham University, Durham, UK
| | - Miriam Baeta
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Juraj Bartík
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | - Željka Bedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | | | - Clive Bonsall
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh, UK
| | - Maja Bunčić
- Archaeological Museum in Zagreb, Zagreb, Croatia
| | - Domagoj Bužanić
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Mario Carić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Lea Čataj
- Division for Archaeological Heritage, Croatian Conservation Institute, Zagreb, Croatia
| | - Mirna Cvetko
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Ivan Drnić
- Archaeological Museum in Zagreb, Zagreb, Croatia
| | | | - Ana Đukić
- Archaeological Museum in Zagreb, Zagreb, Croatia
| | - Ksenija Đukić
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zdeněk Farkaš
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | - Pavol Jelínek
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | | | - Iva Kaić
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Marijana Krmpotić
- Department for Archaeology, Croatian Conservation Institute, Zagreb, Croatia
| | | | - Tino Leleković
- Archaeology Division, Croatian Academy of Sciences and Arts, Zagreb, Croatia
| | - Marian M de Pancorbo
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Vinka Matijević
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Anna J Osterholtz
- Department of Anthropology and Middle Eastern Cultures, Mississippi State University, Starkville, MS, USA
| | - Julianne M Paige
- Department of Anthropology, University of Nevada, Las Vegas, NV, USA
| | | | | | - Petra Rajić Šikanjić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | | | | | - Mirjana Sanader
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Mirjana Roksandic
- Department of Anthropology, University of Winnipeg, Winnipeg, MB, Canada
| | - Alena Šefčáková
- Department of Anthropology, Slovak National Museum-Natural History Museum, Bratislava, Slovak Republic
| | - Sofia Stefanović
- Laboratory for Bioarchaeology, Faculty of Philosophy, University of Belgrade, Belgrade, Serbia
| | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Domagoj Tončinić
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Kim Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Daniel Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Anna Wagner
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Anna Zettl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Željko Tomanović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | | | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Kyle Harper
- Department of Classics and Letters, University of Oklahoma, Norman, OK, USA; Santa Fe Institute, Santa Fe, NM, USA
| | - Michael McCormick
- Department of History, Harvard University, Cambridge, MA, USA; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Harvard University, Cambridge, MA, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Miodrag Grbić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia; Department of Biology, University of Western Ontario, London, ON, Canada; Department of Agriculture and Food, Universidad de La Rioja, Logroño, Spain
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain; Museu de Ciències Naturals de Barcelona, Barcelona, Spain.
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
23
|
Nakatsuka N, Holguin B, Sedig J, Langenwalter PE, Carpenter J, Culleton BJ, García-Moreno C, Harper TK, Martin D, Martínez-Ramírez J, Porcayo-Michelini A, Tiesler V, Villapando-Canchola ME, Valdes Herrera A, Callan K, Curtis E, Kearns A, Iliev L, Lawson AM, Mah M, Mallick S, Micco A, Michel M, Workman JN, Oppenheimer J, Qiu L, Zalzala F, Rohland N, Punzo Diaz JL, Johnson JR, Reich D. Genetic continuity and change among the Indigenous peoples of California. Nature 2023; 624:122-129. [PMID: 37993721 PMCID: PMC10872549 DOI: 10.1038/s41586-023-06771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Before the colonial period, California harboured more language variation than all of Europe, and linguistic and archaeological analyses have led to many hypotheses to explain this diversity1. We report genome-wide data from 79 ancient individuals from California and 40 ancient individuals from Northern Mexico dating to 7,400-200 years before present (BP). Our analyses document long-term genetic continuity between people living on the Northern Channel Islands of California and the adjacent Santa Barbara mainland coast from 7,400 years BP to modern Chumash groups represented by individuals who lived around 200 years BP. The distinctive genetic lineages that characterize present-day and ancient people from Northwest Mexico increased in frequency in Southern and Central California by 5,200 years BP, providing evidence for northward migrations that are candidates for spreading Uto-Aztecan languages before the dispersal of maize agriculture from Mexico2-4. Individuals from Baja California share more alleles with the earliest individual from Central California in the dataset than with later individuals from Central California, potentially reflecting an earlier linguistic substrate, whose impact on local ancestry was diluted by later migrations from inland regions1,5. After 1,600 years BP, ancient individuals from the Channel Islands lived in communities with effective sizes similar to those in pre-agricultural Caribbean and Patagonia, and smaller than those on the California mainland and in sampled regions of Mexico.
Collapse
Affiliation(s)
- Nathan Nakatsuka
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA.
| | - Brian Holguin
- Department of Anthropology, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Jakob Sedig
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - John Carpenter
- Instituto Nacional de Antropología e Historia, Sonora, Hermosillo, México
| | - Brendan J Culleton
- Institute of Energy and the Environment, The Pennsylvania State University, University Park, PA, USA
| | | | - Thomas K Harper
- Institute of Energy and the Environment, The Pennsylvania State University, University Park, PA, USA
| | - Debra Martin
- Department of Anthropology, University of Nevada, Las Vegas, NV, USA
| | | | | | - Vera Tiesler
- Universidad Autónoma de Yucatán, Facultad de Ciencias Antropológicas, Mérida, México
| | | | | | - Kim Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Curtis
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lora Iliev
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Megan Michel
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - J Noah Workman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Lijun Qiu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - John R Johnson
- Santa Barbara Museum of Natural History, Santa Barbara, CA, USA.
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
24
|
Scott GR, Navega D, Vlemincq-Mendieta T, Dern LL, O'Rourke DH, Hlusko LJ, Hoffecker JF. Peopling of the Americas: A new approach to assessing dental morphological variation in Asian and Native American populations. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 38018312 DOI: 10.1002/ajpa.24878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVES Through biodistance analyses, anthropologists have used dental morphology to elucidate how people moved into and throughout the Americas. Here, we apply a method that focuses on individuals rather than sample frequencies through the application rASUDAS2, based on a naïve Bayes' algorithm. MATERIALS AND METHODS Using the database of C.G. Turner II, we calculated the probability that an individual could be assigned to one of seven biogeographic groups (American Arctic, North & South America, East Asia, Southeast Asia & Polynesia, Australo-Melanesia, Western Eurasia, & Sub-Saharan Africa) through rASUDAS2. The frequency of classifications for each biogeographic group was determined for 1418 individuals from six regions across Asia and the Americas. RESULTS Southeast Asians show mixed assignments but rarely to American Arctic or "American Indian." East Asians are assigned to East Asia half the time while 30% are assigned as Native American. People from the American Arctic and North & South America are assigned to Arctic America or non-Arctic America 75%-80% of the time, with 10%-15% classified as East Asian. DISCUSSION All Native American groups have a similar degree of morphological affinity to East Asia, as 10%-15% are classified as East Asian. East Asians are classified as Native American in 30% of cases. Individuals in the Western Hemisphere are decreasingly classified as Arctic the farther south they are located. Equivalent levels of classification as East Asian across all Native American groups suggests one divergence between East Asians and the population ancestral to all Native Americans. Non-arctic Native American groups are derived from the Arctic population, which represents the Native American founder group.
Collapse
Affiliation(s)
- G Richard Scott
- Department of Anthropology, University of Nevada Reno, Reno, Nevada, USA
| | - David Navega
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Laresa L Dern
- Department of Anthropology, University of Nevada Reno, Reno, Nevada, USA
| | - Dennis H O'Rourke
- Department of Anthropology, University of Kansas, Lawrence, Kansas, USA
| | | | - John F Hoffecker
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
25
|
Peng MS, Liu YH, Shen QK, Zhang XH, Dong J, Li JX, Zhao H, Zhang H, Zhang X, He Y, Shi H, Cui C, Ouzhuluobu, Wu TY, Liu SM, Gonggalanzi, Baimakangzhuo, Bai C, Duojizhuoma, Liu T, Dai SS, Murphy RW, Qi XB, Dong G, Su B, Zhang YP. Genetic and cultural adaptations underlie the establishment of dairy pastoralism in the Tibetan Plateau. BMC Biol 2023; 21:208. [PMID: 37798721 PMCID: PMC10557253 DOI: 10.1186/s12915-023-01707-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Domestication and introduction of dairy animals facilitated the permanent human occupation of the Tibetan Plateau. Yet the history of dairy pastoralism in the Tibetan Plateau remains poorly understood. Little is known how Tibetans adapted to milk and dairy products. RESULTS We integrated archeological evidence and genetic analysis to show the picture that the dairy ruminants, together with dogs, were introduced from West Eurasia into the Tibetan Plateau since ~ 3600 years ago. The genetic admixture between the exotic and indigenous dogs enriched the candidate lactase persistence (LP) allele 10974A > G of West Eurasian origin in Tibetan dogs. In vitro experiments demonstrate that - 13838G > A functions as a LP allele in Tibetans. Unlike multiple LP alleles presenting selective signatures in West Eurasians and South Asians, the de novo origin of Tibetan-specific LP allele - 13838G > A with low frequency (~ 6-7%) and absence of selection corresponds - 13910C > T in pastoralists across eastern Eurasia steppe. CONCLUSIONS Results depict a novel scenario of genetic and cultural adaptations to diet and expand current understanding of the establishment of dairy pastoralism in the Tibetan Plateau.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hua Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
- Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College, Kunming, 650118, China
| | - Jiajia Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Xiu Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Hui Zhang
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Tian-Yi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Shi-Ming Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Gonggalanzi
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Caijuan Bai
- The First People's Hospital of Gansu Province, Lanzhou, 730000, China
| | - Duojizhuoma
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ti Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | - Xue-Bin Qi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China.
- Tibetan Fukang Hospital, Lhasa, 850000, China.
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
26
|
Yang C, Zhou Y, Song Y, Wu D, Zeng Y, Nie L, Liu P, Zhang S, Chen G, Xu J, Zhou H, Zhou L, Qian X, Liu C, Tan S, Zhou C, Dai W, Xu M, Qi Y, Wang X, Guo L, Fan G, Wang A, Deng Y, Zhang Y, Jin J, He Y, Guo C, Guo G, Zhou Q, Xu X, Yang H, Wang J, Xu S, Mao Y, Jin X, Ruan J, Zhang G. The complete and fully-phased diploid genome of a male Han Chinese. Cell Res 2023; 33:745-761. [PMID: 37452091 PMCID: PMC10542383 DOI: 10.1038/s41422-023-00849-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Since the release of the complete human genome, the priority of human genomic study has now been shifting towards closing gaps in ethnic diversity. Here, we present a fully phased and well-annotated diploid human genome from a Han Chinese male individual (CN1), in which the assemblies of both haploids achieve the telomere-to-telomere (T2T) level. Comparison of this diploid genome with the CHM13 haploid T2T genome revealed significant variations in the centromere. Outside the centromere, we discovered 11,413 structural variations, including numerous novel ones. We also detected thousands of CN1 alleles that have accumulated high substitution rates and a few that have been under positive selection in the East Asian population. Further, we found that CN1 outperforms CHM13 as a reference genome in mapping and variant calling for the East Asian population owing to the distinct structural variants of the two references. Comparison of SNP calling for a large cohort of 8869 Chinese genomes using CN1 and CHM13 as reference respectively showed that the reference bias profoundly impacts rare SNP calling, with nearly 2 million rare SNPs miss-called with different reference genomes. Finally, applying the CN1 as a reference, we discovered 5.80 Mb and 4.21 Mb putative introgression sequences from Neanderthal and Denisovan, respectively, including many East Asian specific ones undetected using CHM13 as the reference. Our analyses reveal the advances of using CN1 as a reference for population genomic studies and paleo-genomic studies. This complete genome will serve as an alternative reference for future genomic studies on the East Asian population.
Collapse
Affiliation(s)
- Chentao Yang
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Center for Evolutionary & Organismal Biology, & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yang Zhou
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI Research-Wuhan, BGI, Wuhan, Hubei, China
| | - Yanni Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Dongya Wu
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Center for Evolutionary & Organismal Biology, & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Zeng
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Lei Nie
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Guangji Chen
- BGI-Shenzhen, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Hongling Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Long Zhou
- Center for Evolutionary & Organismal Biology, & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaobo Qian
- BGI-Shenzhen, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chenlu Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | - Wei Dai
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Mengyang Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Yanwei Qi
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Xiaobo Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lidong Guo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Aijun Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Yuan Deng
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yong Zhang
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Yunqiu He
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Center for Evolutionary & Organismal Biology, & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunxue Guo
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI-Hangzhou, Hangzhou, Zhejiang, China
| | - Guoji Guo
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Jian Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, International Joint Center of Genomics of Jiangsu Province School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Guojie Zhang
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Center for Evolutionary & Organismal Biology, & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
27
|
Serrano JG, Ordóñez AC, Santana J, Sánchez-Cañadillas E, Arnay M, Rodríguez-Rodríguez A, Morales J, Velasco-Vázquez J, Alberto-Barroso V, Delgado-Darias T, de Mercadal MCC, Hernández JC, Moreno-Benítez MA, Pais J, Ringbauer H, Sikora M, McColl H, Pino-Yanes M, Ferrer MH, Bustamante CD, Fregel R. The genomic history of the indigenous people of the Canary Islands. Nat Commun 2023; 14:4641. [PMID: 37582830 PMCID: PMC10427657 DOI: 10.1038/s41467-023-40198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
The indigenous population of the Canary Islands, which colonized the archipelago around the 3rd century CE, provides both a window into the past of North Africa and a unique model to explore the effects of insularity. We generate genome-wide data from 40 individuals from the seven islands, dated between the 3rd-16rd centuries CE. Along with components already present in Moroccan Neolithic populations, the Canarian natives show signatures related to Bronze Age expansions in Eurasia and trans-Saharan migrations. The lack of gene flow between islands and constant or decreasing effective population sizes suggest that populations were isolated. While some island populations maintained relatively high genetic diversity, with the only detected bottleneck coinciding with the colonization time, other islands with fewer natural resources show the effects of insularity and isolation. Finally, consistent genetic differentiation between eastern and western islands points to a more complex colonization process than previously thought.
Collapse
Affiliation(s)
- Javier G Serrano
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Alejandra C Ordóñez
- Tarha Group, Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Jonathan Santana
- Tarha Group, Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Elías Sánchez-Cañadillas
- Tarha Group, Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Matilde Arnay
- Bioanthropology: Paleopathology, Diet and Nutrition in Ancient Populations Group, Department of Prehistory, Anthropology and Ancient History, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Amelia Rodríguez-Rodríguez
- Tarha Group, Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Jacob Morales
- Tarha Group, Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Javier Velasco-Vázquez
- Servicio de Patrimonio Histórico, Cabildo de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | | | | | | | - Juan Carlos Hernández
- Museo Arqueológico de La Gomera, San Sebastián de La Gomera, Santa Cruz de Tenerife, Spain
| | | | - Jorge Pais
- Museo Arqueológico Benahoarita, Los Llanos de Aridane, Santa Cruz de Tenerife, Spain
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano Hernández Ferrer
- Molecular Genetics and Biodiversity Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Rosa Fregel
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Ferraz T, Suarez Villagran X, Nägele K, Radzevičiūtė R, Barbosa Lemes R, Salazar-García DC, Wesolowski V, Lopes Alves M, Bastos M, Rapp Py-Daniel A, Pinto Lima H, Mendes Cardoso J, Estevam R, Liryo A, Guimarães GM, Figuti L, Eggers S, Plens CR, Azevedo Erler DM, Valadares Costa HA, da Silva Erler I, Koole E, Henriques G, Solari A, Martin G, Serafim Monteiro da Silva SF, Kipnis R, Müller LM, Ferreira M, Carvalho Resende J, Chim E, da Silva CA, Borella AC, Tomé T, Müller Plumm Gomes L, Barros Fonseca D, Santos da Rosa C, de Moura Saldanha JD, Costa Leite L, Cunha CMS, Viana SA, Ozorio Almeida F, Klokler D, Fernandes HLA, Talamo S, DeBlasis P, Mendonça de Souza S, de Paula Moraes C, Elias Oliveira R, Hünemeier T, Strauss A, Posth C. Genomic history of coastal societies from eastern South America. Nat Ecol Evol 2023; 7:1315-1330. [PMID: 37524799 PMCID: PMC10406606 DOI: 10.1038/s41559-023-02114-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 06/08/2023] [Indexed: 08/02/2023]
Abstract
Sambaqui (shellmound) societies are among the most intriguing archaeological phenomena in pre-colonial South America, extending from approximately 8,000 to 1,000 years before present (yr BP) across 3,000 km on the Atlantic coast. However, little is known about their connection to early Holocene hunter-gatherers, how this may have contributed to different historical pathways and the processes through which late Holocene ceramists came to rule the coast shortly before European contact. To contribute to our understanding of the population history of indigenous societies on the eastern coast of South America, we produced genome-wide data from 34 ancient individuals as early as 10,000 yr BP from four different regions in Brazil. Early Holocene hunter-gatherers were found to lack shared genetic drift among themselves and with later populations from eastern South America, suggesting that they derived from a common radiation and did not contribute substantially to later coastal groups. Our analyses show genetic heterogeneity among contemporaneous Sambaqui groups from the southeastern and southern Brazilian coast, contrary to the similarity expressed in the archaeological record. The complex history of intercultural contact between inland horticulturists and coastal populations becomes genetically evident during the final horizon of Sambaqui societies, from around 2,200 yr BP, corroborating evidence of cultural change.
Collapse
Affiliation(s)
- Tiago Ferraz
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rita Radzevičiūtė
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Renan Barbosa Lemes
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil
| | - Domingo C Salazar-García
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - Verônica Wesolowski
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | - Marcony Lopes Alves
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | - Murilo Bastos
- Departamento de Antropologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Jéssica Mendes Cardoso
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
- Géosciences Environnement Toulouse, Observatoire Midi Pyrénées, UMR 5563, CNRS, Toulouse, France
| | - Renata Estevam
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | - Andersen Liryo
- National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geovan M Guimarães
- Grupo de Pesquisa em Educação Patrimonial e Arqueologia (Grupep), Universidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Levy Figuti
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | - Cláudia R Plens
- Laboratory of Archaeological Studies, Department of History, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Ana Solari
- Fundação Museu do Homem Americano, Piauí, Brazil
| | | | | | | | - Letícia Morgana Müller
- Scientia Consultoria Científica, São Paulo, Brazil
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Mariane Ferreira
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
- Scientia Consultoria Científica, São Paulo, Brazil
| | - Janine Carvalho Resende
- Instituto Goiano de Pré-história e Arqueologia, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Eliane Chim
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | - Ana Claudia Borella
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | - Tiago Tomé
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lisiane Müller Plumm Gomes
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | | | - João Darcy de Moura Saldanha
- Universidade de Évora, Évora, Portugal
- Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá (IEPA), Macapá, Brazil
| | - Lúcio Costa Leite
- Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá (IEPA), Macapá, Brazil
| | - Claudia M S Cunha
- Federal University of Piauí, Piauí, Brazil
- Centro de Investigação em Antropologia e Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Sibeli Aparecida Viana
- Instituto Goiano de Pré-história e Arqueologia, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Fernando Ozorio Almeida
- Programa de Pós-Graduação em Arqueologia, Universidade Federal de Sergipe, Sergipe, Brazil
- Departamento de Arqueologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Klokler
- Programa de Pós-Graduação em Arqueologia, Universidade Federal de Sergipe, Sergipe, Brazil
- Departamento de Antropologia e Arqueologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Henry Luydy Abraham Fernandes
- Programa de Pós-Graduação em Arqueologia e Patrimônio Cultural, Universidade Federal do Recôncavo da Bahia, Bahia, Brazil
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paulo DeBlasis
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | | | - Rodrigo Elias Oliveira
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil
| | - Tábita Hünemeier
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil.
- Institut de Biologia Evolutiva, CSIC/Universitat Pompeu Fabra, Barcelona, Spain.
| | - André Strauss
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil.
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
29
|
Teterina AA, Willis JH, Lukac M, Jovelin R, Cutter AD, Phillips PC. Genomic diversity landscapes in outcrossing and selfing Caenorhabditis nematodes. PLoS Genet 2023; 19:e1010879. [PMID: 37585484 PMCID: PMC10461856 DOI: 10.1371/journal.pgen.1010879] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/28/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Caenorhabditis nematodes form an excellent model for studying how the mode of reproduction affects genetic diversity, as some species reproduce via outcrossing whereas others can self-fertilize. Currently, chromosome-level patterns of diversity and recombination are only available for self-reproducing Caenorhabditis, making the generality of genomic patterns across the genus unclear given the profound potential influence of reproductive mode. Here we present a whole-genome diversity landscape, coupled with a new genetic map, for the outcrossing nematode C. remanei. We demonstrate that the genomic distribution of recombination in C. remanei, like the model nematode C. elegans, shows high recombination rates on chromosome arms and low rates toward the central regions. Patterns of genetic variation across the genome are also similar between these species, but differ dramatically in scale, being tenfold greater for C. remanei. Historical reconstructions of variation in effective population size over the past million generations echo this difference in polymorphism. Evolutionary simulations demonstrate how selection, recombination, mutation, and selfing shape variation along the genome, and that multiple drivers can produce patterns similar to those observed in natural populations. The results illustrate how genome organization and selection play a crucial role in shaping the genomic pattern of diversity whereas demographic processes scale the level of diversity across the genome as a whole.
Collapse
Affiliation(s)
- Anastasia A. Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Matt Lukac
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
30
|
Carlo Colonese A, McGrath K. Genetic insights into Brazil's ancient shell mound builders. Nat Ecol Evol 2023; 7:1179-1180. [PMID: 37524798 DOI: 10.1038/s41559-023-02134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Affiliation(s)
- André Carlo Colonese
- Institute of Environmental Science and Technology (ICTA-UAB), ICTA-ICP, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Prehistory, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Krista McGrath
- Institute of Environmental Science and Technology (ICTA-UAB), ICTA-ICP, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Prehistory, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
31
|
Salazar L, Burger R, Forst J, Barquera R, Nesbitt J, Calero J, Washburn E, Verano J, Zhu K, Sop K, Kassadjikova K, Ibarra Asencios B, Davidson R, Bradley B, Krause J, Fehren-Schmitz L. Insights into the genetic histories and lifeways of Machu Picchu's occupants. SCIENCE ADVANCES 2023; 9:eadg3377. [PMID: 37494435 PMCID: PMC11318671 DOI: 10.1126/sciadv.adg3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Machu Picchu originally functioned as a palace within the estate of the Inca emperor Pachacuti between ~1420 and 1532 CE. Before this study, little was known about the people who lived and died there, where they came from or how they were related to the inhabitants of the Inca capital of Cusco. We generated genome-wide data for 34 individuals buried at Machu Picchu who are believed to have been retainers or attendants assigned to serve the Inca royal family, as well as 34 individuals from Cusco for comparative purposes. When the ancient DNA results are contextualized using historical and archaeological data, we conclude that the retainer population at Machu Picchu was highly heterogeneous with individuals exhibiting genetic ancestries associated with groups from throughout the Inca Empire and Amazonia. The results suggest a diverse retainer community at Machu Picchu in which people of different genetic backgrounds lived, reproduced, and were interred together.
Collapse
Affiliation(s)
- Lucy Salazar
- Department of Anthropology, Yale University, New Haven, CT 06511-3707, USA
- Department of Archaeology, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08006, Peru
| | - Richard Burger
- Department of Anthropology, Yale University, New Haven, CT 06511-3707, USA
| | - Janine Forst
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Jason Nesbitt
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
| | - Jorge Calero
- Department of Archaeology, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08006, Peru
| | - Eden Washburn
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John Verano
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
| | - Kimberly Zhu
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Korey Sop
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kalina Kassadjikova
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bebel Ibarra Asencios
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
- Department of Archaeology, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz 02002, Peru
| | - Roberta Davidson
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, Adelaide University, Adelaide, SA 5005, Australia
| | - Brenda Bradley
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
32
|
Tuncay IO, DeVries D, Gogate A, Kaur K, Kumar A, Xing C, Goodspeed K, Seyoum-Tesfa L, Chahrour MH. The genetics of autism spectrum disorder in an East African familial cohort. CELL GENOMICS 2023; 3:100322. [PMID: 37492102 PMCID: PMC10363748 DOI: 10.1016/j.xgen.2023.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/09/2023] [Accepted: 04/16/2023] [Indexed: 07/27/2023]
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental conditions affecting communication and social interaction in 2.3% of children. Studies that demonstrated its complex genetic architecture have been mainly performed in populations of European ancestry. We investigate the genetics of ASD in an East African cohort (129 individuals) from a population with higher prevalence (5%). Whole-genome sequencing identified 2.13 million private variants in the cohort and potentially pathogenic variants in known ASD genes (including CACNA1C, CHD7, FMR1, and TCF7L2). Admixture analysis demonstrated that the cohort comprises two ancestral populations, African and Eurasian. Admixture mapping discovered 10 regions that confer ASD risk on the African haplotypes, containing several known ASD genes. The increased ASD prevalence in this population suggests decreased heterogeneity in the underlying genetic etiology, enabling risk allele identification. Our approach emphasizes the power of African genetic variation and admixture analysis to inform the architecture of complex disorders.
Collapse
Affiliation(s)
- Islam Oguz Tuncay
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darlene DeVries
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashlesha Gogate
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kiran Kaur
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kimberly Goodspeed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Maria H Chahrour
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Fleskes RE, Owsley DW, Bruwelheide KS, Barca KG, Griffith DR, Cabana GS, Schurr TG. Historical genomes elucidate European settlement and the African diaspora in Delaware. Curr Biol 2023; 33:2350-2358.e7. [PMID: 37207647 DOI: 10.1016/j.cub.2023.04.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
The 17th-century colonization of North America brought thousands of Europeans to Indigenous lands in the Delaware region, which comprises the eastern boundary of the Chesapeake Bay in what is now the Mid-Atlantic region of the United States.1 The demographic features of these initial colonial migrations are not uniformly characterized, with Europeans and European-Americans migrating to the Delaware area from other countries and neighboring colonies as single persons or in family units of free persons, indentured servants, or tenant farmers.2 European colonizers also instituted a system of racialized slavery through which they forcibly transported thousands of Africans to the Chesapeake region. Historical information about African-descended individuals in the Delaware region is limited, with a population estimate of less than 500 persons by 1700 CE.3,4 To shed light on the population histories of this period, we analyzed low-coverage genomes of 11 individuals from the Avery's Rest archaeological site (circa 1675-1725 CE), located in Delaware. Previous osteological and mitochondrial DNA (mtDNA) sequence analyses showed a southern group of eight individuals of European maternal descent, buried 15-20 feet from a northern group of three individuals of African maternal descent.5 Autosomal results further illuminate genomic similarities to Northwestern European reference populations or West and West-Central African reference populations, respectively. We also identify three generations of maternal kin of European ancestry and a paternal parent-offspring relationship between an adult and child of African ancestry. These findings expand our understanding of the origins and familial relationships in late 17th and early 18th century North America.
Collapse
Affiliation(s)
- Raquel E Fleskes
- Department of Anthropology, University of Connecticut, Storrs, CT 06269, USA; Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Douglas W Owsley
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| | - Karin S Bruwelheide
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Kathryn G Barca
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | | | - Graciela S Cabana
- Department of Anthropology, University of Tennessee, Knoxville, TN 37996, USA; Molecular Anthropology Laboratories, University of Tennessee, Knoxville, TN 37996, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Arango-Isaza E, Capodiferro MR, Aninao MJ, Babiker H, Aeschbacher S, Achilli A, Posth C, Campbell R, Martínez FI, Heggarty P, Sadowsky S, Shimizu KK, Barbieri C. The genetic history of the Southern Andes from present-day Mapuche ancestry. Curr Biol 2023:S0960-9822(23)00607-3. [PMID: 37279753 DOI: 10.1016/j.cub.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/01/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023]
Abstract
The southernmost regions of South America harbor some of the earliest evidence of human presence in the Americas. However, connections with the rest of the continent and the contextualization of present-day indigenous ancestries remain poorly resolved. In this study, we analyze the genetic ancestry of one of the largest indigenous groups in South America: the Mapuche. We generate genome-wide data from 64 participants from three Mapuche populations in Southern Chile: Pehuenche, Lafkenche, and Huilliche. Broadly, we describe three main ancestry blocks with a common origin, which characterize the Southern Cone, the Central Andes, and Amazonia. Within the Southern Cone, ancestors of the Mapuche lineages differentiated from those of the Far South during the Middle Holocene and did not experience further migration waves from the north. We find that the deep genetic split between the Central and Southern Andes is followed by instances of gene flow, which may have accompanied the southward spread of cultural traits from the Central Andes, including crops and loanwords from Quechua into Mapudungun (the language of the Mapuche). Finally, we report close genetic relatedness between the three populations analyzed, with the Huilliche characterized additionally by intense recent exchanges with the Far South. Our findings add new perspectives on the genetic (pre)history of South America, from the first settlement through to the present-day indigenous presence. Follow-up fieldwork took these results back to the indigenous communities to contextualize the genetic narrative alongside indigenous knowledge and perspectives.
Collapse
Affiliation(s)
- Epifanía Arango-Isaza
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland; Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich 8050, Switzerland.
| | - Marco Rosario Capodiferro
- Trinity College Dublin, Dublin 2, Ireland; Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | | | - Hiba Babiker
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Simon Aeschbacher
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Cosimo Posth
- Institute for Archaeological Sciences, Archaeo, and Palaeogenetics, University of Tübingen, Tübingen 72074, Germany; Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen 72074, Germany
| | - Roberto Campbell
- Escuela de Antropología, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile
| | - Felipe I Martínez
- Escuela de Antropología, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile; Center for Intercultural and Indigenous Research, Santiago 7820436, Chile
| | - Paul Heggarty
- "Waves" ERC Group, Department of Human Behavior, Evolution and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Scott Sadowsky
- Department of Linguistics and Literature, Universidad de Cartagena, Cartagena 130001, Colombia
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland; Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich 8050, Switzerland
| | - Chiara Barbieri
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland; Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich 8050, Switzerland; Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany.
| |
Collapse
|
35
|
Simões LG, Günther T, Martínez-Sánchez RM, Vera-Rodríguez JC, Iriarte E, Rodríguez-Varela R, Bokbot Y, Valdiosera C, Jakobsson M. Northwest African Neolithic initiated by migrants from Iberia and Levant. Nature 2023; 618:550-556. [PMID: 37286608 PMCID: PMC10266975 DOI: 10.1038/s41586-023-06166-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
In northwestern Africa, lifestyle transitioned from foraging to food production around 7,400 years ago but what sparked that change remains unclear. Archaeological data support conflicting views: (1) that migrant European Neolithic farmers brought the new way of life to North Africa1-3 or (2) that local hunter-gatherers adopted technological innovations4,5. The latter view is also supported by archaeogenetic data6. Here we fill key chronological and archaeogenetic gaps for the Maghreb, from Epipalaeolithic to Middle Neolithic, by sequencing the genomes of nine individuals (to between 45.8- and 0.2-fold genome coverage). Notably, we trace 8,000 years of population continuity and isolation from the Upper Palaeolithic, via the Epipaleolithic, to some Maghrebi Neolithic farming groups. However, remains from the earliest Neolithic contexts showed mostly European Neolithic ancestry. We suggest that farming was introduced by European migrants and was then rapidly adopted by local groups. During the Middle Neolithic a new ancestry from the Levant appears in the Maghreb, coinciding with the arrival of pastoralism in the region, and all three ancestries blend together during the Late Neolithic. Our results show ancestry shifts in the Neolithization of northwestern Africa that probably mirrored a heterogeneous economic and cultural landscape, in a more multifaceted process than observed in other regions.
Collapse
Affiliation(s)
- Luciana G Simões
- Human Evolution, Department of Organismal Biology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | | | - Juan Carlos Vera-Rodríguez
- Área de Prehistoria, Departamento de Historia, Geografía y Antropología, Centro de Investigación en Patrimonio Histórico, Cultural y Natural, Facultad de Humanidades, Universidad de Huelva, Huelva, Spain
| | - Eneko Iriarte
- Universidad de Burgos, Departamento de Historia, Geografía y Comunicaciones, Burgos, Spain
| | - Ricardo Rodríguez-Varela
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Youssef Bokbot
- Institut National des Sciences de l'Archéologie et du Patrimoine, Rabat, Morocco
| | - Cristina Valdiosera
- Universidad de Burgos, Departamento de Historia, Geografía y Comunicaciones, Burgos, Spain.
- Department of History and Archaeology, La Trobe University, Melbourne, Victoria, Australia.
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.
| |
Collapse
|
36
|
Li YC, Gao ZL, Liu KJ, Tian JY, Yang BY, Rahman ZU, Yang LQ, Zhang SH, Li CT, Achilli A, Semino O, Torroni A, Kong QP. Mitogenome evidence shows two radiation events and dispersals of matrilineal ancestry from northern coastal China to the Americas and Japan. Cell Rep 2023:112413. [PMID: 37164007 DOI: 10.1016/j.celrep.2023.112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Although it is widely recognized that the ancestors of Native Americans (NAs) primarily came from Siberia, the link between mitochondrial DNA (mtDNA) lineage D4h3a (typical of NAs) and D4h3b (found so far only in East China and Thailand) raises the possibility that the ancestral sources for early NAs were more variegated than hypothesized. Here, we analyze 216 contemporary (including 106 newly sequenced) D4h mitogenomes and 39 previously reported ancient D4h data. The results reveal two radiation events of D4h in northern coastal China, one during the Last Glacial Maximum and the other within the last deglaciation, which facilitated the dispersals of D4h sub-branches to different areas including the Americas and the Japanese archipelago. The coastal distributions of the NA (D4h3a) and Japanese lineages (D4h1a and D4h2), in combination with the Paleolithic archaeological similarities among Northern China, the Americas, and Japan, lend support to the coastal dispersal scenario of early NAs.
Collapse
Affiliation(s)
- Yu-Chun Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Zong-Liang Gao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Kai-Jun Liu
- Chengdu 23Mofang Biotechnology Co., Ltd., Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Jiao-Yang Tian
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Bin-Yu Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Zia Ur Rahman
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Su-Hua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Cheng-Tao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China.
| |
Collapse
|
37
|
Davy T, Ju D, Mathieson I, Skoglund P. Hunter-gatherer admixture facilitated natural selection in Neolithic European farmers. Curr Biol 2023; 33:1365-1371.e3. [PMID: 36963383 PMCID: PMC10153476 DOI: 10.1016/j.cub.2023.02.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/26/2023]
Abstract
Ancient DNA has revealed multiple episodes of admixture in human prehistory during geographic expansions associated with cultural innovations. One important example is the expansion of Neolithic agricultural groups out of the Near East into Europe and their consequent admixture with Mesolithic hunter-gatherers.1,2,3,4 Ancient genomes from this period provide an opportunity to study the role of admixture in providing new genetic variation for selection to act upon, and also to identify genomic regions that resisted hunter-gatherer introgression and may thus have contributed to agricultural adaptations. We used genome-wide DNA from 677 individuals spanning Mesolithic and Neolithic Europe to infer ancestry deviations in the genomes of admixed individuals and to test for natural selection after admixture by testing for deviations from a genome-wide null distribution. We find that the region around the pigmentation-associated gene SLC24A5 shows the greatest overrepresentation of Neolithic local ancestry in the genome (|Z| = 3.46). In contrast, we find the greatest overrepresentation of Mesolithic ancestry across the major histocompatibility complex (MHC; |Z| = 4.21), a major immunity locus, which also shows allele frequency deviations indicative of selection following admixture (p = 1 × 10-56). This could reflect negative frequency-dependent selection on MHC alleles common in Neolithic populations or that Mesolithic alleles were positively selected for and facilitated adaptation in Neolithic populations to pathogens or other environmental factors. Our study extends previous results that highlight immune function and pigmentation as targets of adaptation in more recent populations to selection processes in the Stone Age.
Collapse
Affiliation(s)
- Tom Davy
- Ancient Genomics Laboratory, Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| | - Dan Ju
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| |
Collapse
|
38
|
dos Santos ALC, Sullasi HSL, Gokcumen O, Lindo J, DeGiorgio M. Spatiotemporal fluctuations of population structure in the Americas revealed by a meta-analysis of the first decade of archaeogenomes. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:703-714. [PMID: 39081397 PMCID: PMC11288623 DOI: 10.1002/ajpa.24673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/15/2022] [Indexed: 08/02/2024]
Abstract
Objectives Since 2010, genome-wide data from hundreds of ancient Native Americans have contributed to the understanding of Americas' prehistory. However, these samples have never been studied as a single dataset, and distinct relationships among themselves and with present-day populations may have never come to light. Here, we reassess genomic diversity and population structure of 223 ancient Native Americans published between 2010 and 2019. Materials and Methods The genomic data from ancient Americas was merged with a worldwide reference panel of 278 present-day genomes from the Simons Genome Diversity Project and then analyzed through ADMIXTURE, D-statistics, PCA, t-SNE, and UMAP. Results We find largely similar population structures in ancient and present-day Americas. However, the population structure of contemporary Native Americans, traced here to at least 10,000 years before present, is noticeably less diverse than their ancient counterparts, a possible outcome of the European contact. Additionally, in the past there were greater levels of population structure in North than in South America, except for ancient Brazil, which harbors comparatively high degrees of structure. Moreover, we find a component of genetic ancestry in the ancient dataset that is closely related to that of present-day Oceanic populations but does not correspond to the previously reported Australasian signal. Lastly, we report an expansion of the Ancient Beringian ancestry, previously reported for only one sample. Discussion Overall, our findings support a complex scenario for the settlement of the Americas, accommodating the occurrence of founder effects and the emergence of ancestral mixing events at the regional level.
Collapse
Affiliation(s)
- Andre Luiz Campelo dos Santos
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA
- Department of Archaeology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - John Lindo
- Department of Anthropology, Emory University, Atlanta, Georgia, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
39
|
Capodiferro MR, Chero Osorio AM, Rambaldi Migliore N, Tineo Tineo DH, Raveane A, Xavier C, Bodner M, Simão F, Ongaro L, Montinaro F, Lindo J, Huerta-Sanchez E, Politis G, Barbieri C, Parson W, Gusmão L, Achilli A. The multifaceted genomic history of Ashaninka from Amazonian Peru. Curr Biol 2023; 33:1573-1581.e5. [PMID: 36931272 DOI: 10.1016/j.cub.2023.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Despite its crucial location, the western side of Amazonia between the Andes and the source(s) of the Amazon River is still understudied from a genomic and archaeogenomic point of view, albeit possibly harboring essential information to clarify the complex genetic history of local Indigenous groups and their interactions with nearby regions,1,2,3,4,5,6,7,8 including central America and the Caribbean.9,10,11,12 Focusing on this key region, we analyzed the genome-wide profiles of 51 Ashaninka individuals from Amazonian Peru, observing an unexpected extent of genomic variation. We identified at least two Ashaninka subgroups with distinctive genomic makeups, which were differentially shaped by the degree and timing of external admixtures, especially with the Indigenous groups from the Andes and the Pacific coast. On a continental scale, Ashaninka ancestors probably derived from a south-north migration of Indigenous groups moving into the Amazonian rainforest from a southeastern area with contributions from the Southern Cone and the Atlantic coast. These ancestral populations diversified in the variegated geographic regions of interior South America, on the eastern side of the Andes, differentially interacting with surrounding coastal groups. In this complex scenario, we also revealed strict connections between the ancestors of present-day Ashaninka, who belong to the Arawakan language family,13 and those Indigenous groups that moved further north into the Caribbean, contributing to the early Ceramic (Saladoid) tradition in the islands.14,15.
Collapse
Affiliation(s)
- Marco Rosario Capodiferro
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy; Smurfit Institute of Genetics, Trinity College Dublin, D02 CX56 Dublin 2, Ireland.
| | - Ana María Chero Osorio
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Dean Herman Tineo Tineo
- Laboratorio de Biología Forense, Instituto de Medicina Legal y Ciencias Forenses, Ministerio Público, Lima 15033, Perú
| | | | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Filipa Simão
- Laboratório de Diagnóstico por DNA (LDD), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 23968-000, Brazil
| | - Linda Ongaro
- Smurfit Institute of Genetics, Trinity College Dublin, D02 CX56 Dublin 2, Ireland
| | - Francesco Montinaro
- Department of Biology-Genetics, University of Bari, 70125 Bari, Italy; Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - John Lindo
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Emilia Huerta-Sanchez
- Smurfit Institute of Genetics, Trinity College Dublin, D02 CX56 Dublin 2, Ireland; Ecology and Evolutionary Biology and Center for Computational and Molecular Biology, Brown University, Providence, RI 02906, USA
| | - Gustavo Politis
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría 7400, Argentina
| | - Chiara Barbieri
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland; Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; Forensic Science Program, Pennsylvania State University, State College, PA 16801, USA
| | - Leonor Gusmão
- Laboratório de Diagnóstico por DNA (LDD), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 23968-000, Brazil
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
40
|
Couto-Silva CM, Nunes K, Venturini G, Araújo Castro e Silva M, Pereira LV, Comas D, Pereira A, Hünemeier T. Indigenous people from Amazon show genetic signatures of pathogen-driven selection. SCIENCE ADVANCES 2023; 9:eabo0234. [PMID: 36888716 PMCID: PMC9995071 DOI: 10.1126/sciadv.abo0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Ecological conditions in the Amazon rainforests are historically favorable for the transmission of numerous tropical diseases, especially vector-borne diseases. The high diversity of pathogens likely contributes to the strong selective pressures for human survival and reproduction in this region. However, the genetic basis of human adaptation to this complex ecosystem remains unclear. This study investigates the possible footprints of genetic adaptation to the Amazon rainforest environment by analyzing the genomic data of 19 native populations. The results based on genomic and functional analysis showed an intense signal of natural selection in a set of genes related to Trypanosoma cruzi infection, which is the pathogen responsible for Chagas disease, a neglected tropical parasitic disease native to the Americas that is currently spreading worldwide.
Collapse
Affiliation(s)
- Cainã M. Couto-Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
| | - Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
| | - Gabriela Venturini
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marcos Araújo Castro e Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
- Institut de Biologia Evolutiva, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Lygia V. Pereira
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
| | - David Comas
- Institut de Biologia Evolutiva, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Alexandre Pereira
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508090, Brazil
- Institut de Biologia Evolutiva (CSIC/Universitat Pompeu Fabra), Barcelona 08003, Spain
| |
Collapse
|
41
|
Fleskes RE, Cabana GS, Gilmore JK, Juarez C, Karcher E, Oubré L, Mishoe G, Ofunniyin AA, Schurr TG. Community-engaged ancient DNA project reveals diverse origins of 18th-century African descendants in Charleston, South Carolina. Proc Natl Acad Sci U S A 2023; 120:e2201620120. [PMID: 36623185 PMCID: PMC9934026 DOI: 10.1073/pnas.2201620120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/18/2022] [Indexed: 01/11/2023] Open
Abstract
In this study, we present the results of community-engaged ancient DNA research initiated after the remains of 36 African-descended individuals dating to the late 18th century were unearthed in the port city of Charleston, South Carolina. The Gullah Society of Charleston, along with other Charleston community members, initiated a collaborative genomic study of these ancestors of presumed enslaved status, in an effort to visibilize their histories. We generated 18 low-coverage genomes and 31 uniparental haplotypes to assess their genetic origins and interrelatedness. Our results indicate that they have predominantly West and West-Central African genomic ancestry, with one individual exhibiting some genomic affiliation with populations in the Americas. Most were assessed as genetic males, and no autosomal kin were identified among them. Overall, this study expands our understanding of the colonial histories of African descendant populations in the US South.
Collapse
Affiliation(s)
- Raquel E. Fleskes
- Department of Anthropology, University of Connecticut, Storrs, CT06269
- The Anson Street African Burial Ground Project, Mount Pleasant, SC29492
| | | | - Joanna K. Gilmore
- The Anson Street African Burial Ground Project, Mount Pleasant, SC29492
- Department of Sociology and Anthropology, The College of Charleston, Charleston, SC29424
| | - Chelsey Juarez
- Department of Anthropology, California State University, Fresno, CA93740
| | - Emilee Karcher
- Department of Anthropology, University of California, Davis, CA95616
| | - La’Sheia Oubré
- The Anson Street African Burial Ground Project, Mount Pleasant, SC29492
| | - Grant Mishoe
- The Anson Street African Burial Ground Project, Mount Pleasant, SC29492
| | - Ade A. Ofunniyin
- The Anson Street African Burial Ground Project, Mount Pleasant, SC29492
- Department of Sociology and Anthropology, The College of Charleston, Charleston, SC29424
| | - Theodore G. Schurr
- The Anson Street African Burial Ground Project, Mount Pleasant, SC29492
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
42
|
Campelo dos Santos AL, Owings A, Sullasi HSL, Gokcumen O, DeGiorgio M, Lindo J. Genomic evidence for ancient human migration routes along South America's Atlantic coast. Proc Biol Sci 2022; 289:20221078. [PMID: 36322514 PMCID: PMC9629774 DOI: 10.1098/rspb.2022.1078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An increasing body of archaeological and genomic evidence has hinted at a complex settlement process of the Americas by humans. This is especially true for South America, where unexpected ancestral signals have raised perplexing scenarios for the early migrations into different regions of the continent. Here, we present ancient human genomes from the archaeologically rich Northeast Brazil and compare them to ancient and present-day genomic data. We find a distinct relationship between ancient genomes from Northeast Brazil, Lagoa Santa, Uruguay and Panama, representing evidence for ancient migration routes along South America's Atlantic coast. To further add to the existing complexity, we also detect greater Denisovan than Neanderthal ancestry in ancient Uruguay and Panama individuals. Moreover, we find a strong Australasian signal in an ancient genome from Panama. This work sheds light on the deep demographic history of eastern South America and presents a starting point for future fine-scale investigations on the regional level.
Collapse
Affiliation(s)
- Andre Luiz Campelo dos Santos
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA,Department of Archaeology, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Amanda Owings
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | | | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - John Lindo
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
43
|
Feng X, Merilä J, Löytynoja A. Complex population history affects admixture analyses in nine-spined sticklebacks. Mol Ecol 2022; 31:5386-5401. [PMID: 35962788 PMCID: PMC9828525 DOI: 10.1111/mec.16651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 01/12/2023]
Abstract
Introgressive hybridization is an important process in evolution but challenging to identify, undermining the efforts to understand its role and significance. On the contrary, many analytical methods assume direct descent from a single common ancestor, and admixture among populations can violate their assumptions and lead to seriously biased results. A detailed analysis of 888 whole-genome sequences of nine-spined sticklebacks (Pungitius pungitius) revealed a complex pattern of population ancestry involving multiple waves of gene flow and introgression across northern Europe. The two recognized lineages were found to have drastically different histories, and their secondary contact zone was wider than anticipated, displaying a smooth gradient of foreign ancestry with some curious deviations from the expected pattern. Interestingly, the freshwater isolates provided peeks into the past and helped to understand the intermediate states of evolutionary processes. Our analyses and findings paint a detailed picture of the complex colonization history of northern Europe and provide backdrop against which introgression and its role in evolution can be investigated. However, they also expose the challenges in analyses of admixed populations and demonstrate how hidden admixture and colonization history misleads the estimation of admixture proportions and population split times.
Collapse
Affiliation(s)
- Xueyun Feng
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Area of Ecology and Biodiversity, Kadoorie Science Building, The University of Hong Kong, Hong Kong, SAR, China
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Wang Q, Lan T, Li H, Sahu SK, Shi M, Zhu Y, Han L, Yang S, Li Q, Zhang L, Deng Z, Liu H, Hua Y. Whole-genome resequencing of Chinese pangolins reveals a population structure and provides insights into their conservation. Commun Biol 2022; 5:821. [PMID: 36008681 PMCID: PMC9411537 DOI: 10.1038/s42003-022-03757-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Poaching and trafficking have a substantial negative impact on the population growth and range expansion of the Chinese pangolin (Manis pentadactyla). However, recently reported activities of Chinese pangolins in several sites of Guangdong province in China indicate a promising sign for the recovery of this threatened species. Here, we re-sequence genomes of 15 individuals and perform comprehensive population genomics analyses with previously published 22 individuals. These Chinese pangolins are found to be divided into three distinct populations. Multiple lines of evidence indicate the existence of a newly discovered population (CPA) comprises entirely of individuals from Guangdong province. The other two populations (CPB and CPC) have previously been documented. The genetic differentiation of the CPA and CPC is extremely large (FST = 0.541), which is larger than many subspecies-level differentiations. Even for the closer CPA and CPB, their differentiation (FST = 0.101) is still comparable with the population-level differentiation of many endangered species. Further analysis reveals that the CPA and CPB populations separate 2.5-4.0 thousand years ago (kya), and on the other hand, CPA and CPC diverge around 25-40 kya. The CPA population harbors more runs of homozygosity (ROHs) than the CPB and CPC populations, indicating that inbreeding is more prevalent in the CPA population. Although the CPC population has less mutational load than CPA and CPB populations, we predict that several Loss of Function (LoF) mutations will be translocated into the CPA or CPB populations by using the CPC as a donor population for genetic rescue. Our findings imply that the conservation of Chinese pangolins is challenging, and implementing genetic rescue among the three groups should be done with extreme caution.
Collapse
Affiliation(s)
- Qing Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Tianming Lan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China.
| | - Haimeng Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Minhui Shi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yixin Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shangchen Yang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Le Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhangwen Deng
- Guangxi Forest Inventory and Planning Institute, Nanning, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China.
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
| |
Collapse
|
45
|
Silva MACE, Ferraz T, Hünemeier T. A genomic perspective on South American human history. Genet Mol Biol 2022; 45:e20220078. [PMID: 35925590 PMCID: PMC9351327 DOI: 10.1590/1678-4685-gmb-2022-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
It has generally been accepted that the current indigenous peoples of the Americas are derived from ancestors from northeastern Asia. The latter were believed to have spread into the American continent by the end of the Last Glacial Maximum. In this sense, a joint and in-depth study of the earliest settlement of East Asia and the Americas is required to elucidate these events accurately. The first Americans underwent an adaptation process to the Americas' vast environmental diversity, mediated by biological and cultural evolution and niche construction, resulting in enormous cultural diversity, a wealth of domesticated species, and extensive landscape modifications. Afterward, in the Late Holocene, the advent of intensive agricultural food production systems, sedentism, and climate change significantly reshaped genetic and cultural diversity across the continent, particularly in the Andes and Amazonia. Furthermore, starting around the end of the 15th century, European colonization resulted in massive extermination of indigenous peoples and extensive admixture. Thus, the present review aims to create a comprehensive picture of the main events involved in the formation of contemporary South American indigenous populations and the dynamics responsible for shaping their genetic diversity by integrating current genetic data with evidence from archeology, linguistics and other disciplines.
Collapse
Affiliation(s)
- Marcos Araújo Castro E Silva
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Tiago Ferraz
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Tábita Hünemeier
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| |
Collapse
|
46
|
Collen EJ, Johar AS, Teixeira JC, Llamas B. The immunogenetic impact of European colonization in the Americas. Front Genet 2022; 13:918227. [PMID: 35991555 PMCID: PMC9388791 DOI: 10.3389/fgene.2022.918227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The introduction of pathogens originating from Eurasia into the Americas during early European contact has been associated with high mortality rates among Indigenous peoples, likely contributing to their historical and precipitous population decline. However, the biological impacts of imported infectious diseases and resulting epidemics, especially in terms of pathogenic effects on the Indigenous immunity, remain poorly understood and highly contentious to this day. Here, we examine multidisciplinary evidence underpinning colonization-related immune genetic change, providing contextualization from anthropological studies, paleomicrobiological evidence of contrasting host-pathogen coevolutionary histories, and the timings of disease emergence. We further summarize current studies examining genetic signals reflecting post-contact Indigenous population bottlenecks, admixture with European and other populations, and the putative effects of natural selection, with a focus on ancient DNA studies and immunity-related findings. Considering current genetic evidence, together with a population genetics theoretical approach, we show that post-contact Indigenous immune adaptation, possibly influenced by selection exerted by introduced pathogens, is highly complex and likely to be affected by multifactorial causes. Disentangling putative adaptive signals from those of genetic drift thus remains a significant challenge, highlighting the need for the implementation of population genetic approaches that model the short time spans and complex demographic histories under consideration. This review adds to current understandings of post-contact immunity evolution in Indigenous peoples of America, with important implications for bettering our understanding of human adaptation in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Evelyn Jane Collen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Angad Singh Johar
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Culture History and Language, The Australian National University, Canberra, ACT, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Telethon Kids Institute, Indigenous Genomics Research Group, Adelaide, SA, Australia
| |
Collapse
|
47
|
Neumann GU, Skourtanioti E, Burri M, Nelson EA, Michel M, Hiss AN, McGeorge PJP, Betancourt PP, Spyrou MA, Krause J, Stockhammer PW. Ancient Yersinia pestis and Salmonella enterica genomes from Bronze Age Crete. Curr Biol 2022; 32:3641-3649.e8. [PMID: 35882233 DOI: 10.1016/j.cub.2022.06.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
During the late 3rd millennium BCE, the Eastern Mediterranean and Near East witnessed societal changes in many regions, which are usually explained with a combination of social and climatic factors.1-4 However, recent archaeogenetic research forces us to rethink models regarding the role of infectious diseases in past societal trajectories.5 The plague bacterium Yersinia pestis, which was involved in some of the most destructive historical pandemics,5-8 circulated across Eurasia at least from the onset of the 3rd millennium BCE,9-13 but the challenging preservation of ancient DNA in warmer climates has restricted the identification of Y.pestis from this period to temperate climatic regions. As such, evidence from culturally prominent regions such as the Eastern Mediterranean is currently lacking. Here, we present genetic evidence for the presence of Y. pestis and Salmonella enterica, the causative agent of typhoid/enteric fever, from this period of transformation in Crete, detected at the cave site Hagios Charalambos. We reconstructed one Y. pestis genome that forms part of a now-extinct lineage of Y. pestis strains from the Late Neolithic and Bronze Age that were likely not yet adapted for transmission via fleas. Furthermore, we reconstructed two ancient S. enterica genomes from the Para C lineage, which cluster with contemporary strains that were likely not yet fully host adapted to humans. The occurrence of these two virulent pathogens at the end of the Early Minoan period in Crete emphasizes the necessity to re-introduce infectious diseases as an additional factor possibly contributing to the transformation of early complex societies in the Aegean and beyond.
Collapse
Affiliation(s)
- Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Marta Burri
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Elizabeth A Nelson
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Department of Anthropology, University of Connecticut, 354 Mansfield Road, Storrs, CT 06269, USA
| | - Megan Michel
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Human Evolutionary Biology, Harvard University, 10 Divinity Avenue, Cambridge, MA 02138, USA
| | - Alina N Hiss
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | | | - Philip P Betancourt
- Department of Art History and Archaeology, Temple University, 2001 N. 13(th) St., Philadelphia, PA 19122, USA
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University, Geschwister-Scholl-Platz 1, 80799 München, Germany.
| |
Collapse
|
48
|
Rowe TB, Stafford TW, Fisher DC, Enghild JJ, Quigg JM, Ketcham RA, Sagebiel JC, Hanna R, Colbert MW. Human Occupation of the North American Colorado Plateau ∼37,000 Years Ago. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.903795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calibrating human population dispersals across Earth’s surface is fundamental to assessing rates and timing of anthropogenic impacts and distinguishing ecological phenomena influenced by humans from those that were not. Here, we describe the Hartley mammoth locality, which dates to 38,900–36,250 cal BP by AMS 14C analysis of hydroxyproline from bone collagen. We accept the standard view that elaborate stone technology of the Eurasian Upper Paleolithic was introduced into the Americas by arrival of the Native American clade ∼16,000 cal BP. It follows that if older cultural sites exist in the Americas, they might only be diagnosed using nuanced taphonomic approaches. We employed computed tomography (CT and μCT) and other state-of-the-art methods that had not previously been applied to investigating ancient American sites. This revealed multiple lines of taphonomic evidence suggesting that two mammoths were butchered using expedient lithic and bone technology, along with evidence diagnostic of controlled (domestic) fire. That this may be an ancient cultural site is corroborated by independent genetic evidence of two founding populations for humans in the Americas, which has already raised the possibility of a dispersal into the Americas by people of East Asian ancestry that preceded the Native American clade by millennia. The Hartley mammoth locality thus provides a new deep point of chronologic reference for occupation of the Americas and the attainment by humans of a near-global distribution.
Collapse
|
49
|
Liu YC, Hunter-Anderson R, Cheronet O, Eakin J, Camacho F, Pietrusewsky M, Rohland N, Ioannidis A, Athens JS, Douglas MT, Ikehara-Quebral RM, Bernardos R, Culleton BJ, Mah M, Adamski N, Broomandkhoshbacht N, Callan K, Lawson AM, Mandl K, Michel M, Oppenheimer J, Stewardson K, Zalzala F, Kidd K, Kidd J, Schurr TG, Auckland K, Hill AVS, Mentzer AJ, Quinto-Cortés CD, Robson K, Kennett DJ, Patterson N, Bustamante CD, Moreno-Estrada A, Spriggs M, Vilar M, Lipson M, Pinhasi R, Reich D. Ancient DNA reveals five streams of migration into Micronesia and matrilocality in early Pacific seafarers. Science 2022; 377:72-79. [PMID: 35771911 PMCID: PMC9983687 DOI: 10.1126/science.abm6536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Micronesia began to be peopled earlier than other parts of Remote Oceania, but the origins of its inhabitants remain unclear. We generated genome-wide data from 164 ancient and 112 modern individuals. Analysis reveals five migratory streams into Micronesia. Three are East Asian related, one is Polynesian, and a fifth is a Papuan source related to mainland New Guineans that is different from the New Britain-related Papuan source for southwest Pacific populations but is similarly derived from male migrants ~2500 to 2000 years ago. People of the Mariana Archipelago may derive all of their precolonial ancestry from East Asian sources, making them the only Remote Oceanians without Papuan ancestry. Female-inherited mitochondrial DNA was highly differentiated across early Remote Oceanian communities but homogeneous within, implying matrilocal practices whereby women almost never raised their children in communities different from the ones in which they grew up.
Collapse
Affiliation(s)
- Yue-Chen Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1030, Austria
| | - Joanne Eakin
- Independent Researcher, Albuquerque, NM 87107, USA
| | - Frank Camacho
- Department of Biology, University of Guam, Mangilao 96923, Guam
| | - Michael Pietrusewsky
- Department of Anthropology, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander Ioannidis
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.,Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - J. Stephen Athens
- International Archaeological Research Institute, Inc., Honolulu, HI 96826, USA
| | | | | | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brendan J. Culleton
- Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1030, Austria
| | - Megan Michel
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth Kidd
- Department of Genetics, Yale Medical School, New Haven, CT 06520, USA
| | - Judith Kidd
- Department of Genetics, Yale Medical School, New Haven, CT 06520, USA
| | - Theodore G. Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn Auckland
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Adrian V. S. Hill
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK,The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Alexander J. Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Consuelo D. Quinto-Cortés
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato 36821, Mexico
| | - Kathryn Robson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Douglas J. Kennett
- Department of Anthropology, University of California, Santa Barbara, CA 93106, USA
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carlos D. Bustamante
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.,Center for Computational, Evolutionary and Human Genomics (CEHG), Stanford University, Stanford, CA 94305, USA,Current Address: Galatea Bio, Inc. 975 W 22nd St. Hialeah, FL 33010, USA
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato 36821, Mexico
| | - Matthew Spriggs
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT 2601, Australia,Vanuatu National Museum, Vanuatu Culture Centre, P.O. Box 184, Port Vila, Vanuatu
| | - Miguel Vilar
- Department of Anthropology, University of Maryland, College Park, MD 20742, USA
| | - Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1030, Austria,Human Evolution and Archaeological Sciences, University of Vienna, Vienna 1030, Austria
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
50
|
Huang X, Xia ZY, Bin X, He G, Guo J, Adnan A, Yin L, Huang Y, Zhao J, Yang Y, Ma F, Li Y, Hu R, Yang T, Wei LH, Wang CC. Genomic Insights Into the Demographic History of the Southern Chinese. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.853391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Southern China is the birthplace of rice-cultivating agriculture and different language families and has also witnessed various human migrations that facilitated cultural diffusions. The fine-scale demographic history in situ that forms present-day local populations, however, remains unclear. To comprehensively cover the genetic diversity in East and Southeast Asia, we generated genome-wide SNP data from 211 present-day Southern Chinese and co-analyzed them with ∼1,200 ancient and modern genomes. In Southern China, language classification is significantly associated with genetic variation but with a different extent of predictability, and there is strong evidence for recent shared genetic history particularly in Hmong–Mien and Austronesian speakers. A geography-related genetic sub-structure that represents the major genetic variation in Southern East Asians is established pre-Holocene and its extremes are represented by Neolithic Fujianese and First Farmers in Mainland Southeast Asia. This sub-structure is largely reduced by admixture in ancient Southern Chinese since > ∼2,000 BP, which forms a “Southern Chinese Cluster” with a high level of genetic homogeneity. Further admixture characterizes the demographic history of the majority of Hmong–Mien speakers and some Kra-Dai speakers in Southwest China happened ∼1,500–1,000 BP, coeval to the reigns of local chiefdoms. In Yellow River Basin, we identify a connection of local populations to genetic sub-structure in Southern China with geographical correspondence appearing > ∼9,000 BP, while the gene flow likely closely related to “Southern Chinese Cluster” since the Longshan period (∼5,000–4,000 BP) forms ancestry profile of Han Chinese Cline.
Collapse
|