1
|
Braun M, Piasecka D, Sadej R, Romanska HM. FGFR4-driven plasticity in breast cancer progression and resistance to therapy. Br J Cancer 2024; 131:11-22. [PMID: 38627607 PMCID: PMC11231301 DOI: 10.1038/s41416-024-02658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 07/10/2024] Open
Abstract
Breast cancer (BCa) is a complex and heterogeneous disease, with different intrinsic molecular subtypes that have distinct clinical outcomes and responses to therapy. Although intrinsic subtyping provides guidance for treatment decisions, it is now widely recognised that, in some cases, the switch of the BCa intrinsic subtype (which embodies cellular plasticity), may be responsible for therapy failure and disease progression. Aberrant FGFR4 signalling has been implicated in various cancers, including BCa, where it had been shown to be associated with aggressive subtypes, such as HER2-enriched BCa, and poor prognosis. More importantly, FGFR4 is also emerging as a potential driver of BCa intrinsic subtype switching, and an essential promoter of brain metastases, particularly in the HER2-positive BCa. Although the available data are still limited, the findings may have far-reaching clinical implications. Here, we provide an updated summary of the existing both pre- and clinical studies of the role of FGFR4 in BCa, with a special focus on its contribution to subtype switching during metastatic spread and/or induced by therapy. We also discuss a potential clinical benefit of targeting FGFR4 in the development of new treatment strategies.
Collapse
Affiliation(s)
- Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Dominika Piasecka
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | - Rafal Sadej
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland.
| | - Hanna M Romanska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
2
|
Ottaiano A, Santorsola M, Ianniello M, Ceccarelli A, Casillo M, Sabbatino F, Petrillo N, Cascella M, Caraglia F, Picone C, Perri F, Sirica R, Zappavigna S, Nasti G, Savarese G, Caraglia M. Predictive significance of FGFR4 p.G388R polymorphism in metastatic colorectal cancer patients receiving trifluridine/tipiracil (TAS-102) treatment. J Transl Med 2024; 22:379. [PMID: 38650006 PMCID: PMC11036552 DOI: 10.1186/s12967-024-05184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND TAS-102 (Lonsurf®) is an oral fluoropyrimidine consisting of a combination of trifluridine (a thymidine analog) and tipiracil (a thymidine phosphorylation inhibitor). The drug is effective in metastatic colorectal cancer (mCRC) patients refractory to fluorouracil, irinotecan and oxaliplatin. This study is a real-world analysis, investigating the interplay of genotype/phenotype in relation to TAS-102 sensitivity. METHODS Forty-seven consecutive mCRC patients were treated with TAS-102 at the National Cancer Institute of Naples from March 2019 to March 2021, at a dosage of 35 mg/m2, twice a day, in cycles of 28 days (from day 1 to 5 and from day 8 to 12). Clinical-pathological parameters were described. Activity was evaluated with RECIST criteria (v1.1) and toxicity with NCI-CTC (v5.0). Survival was depicted through the Kaplan-Meyer curves. Genetic features of patients were evaluated with Next Generation Sequencing (NGS) through the Illumina NovaSeq 6000 platform and TruSigt™Oncology 500 kit. RESULTS Median age of patients was 65 years (range: 46-77). Forty-one patients had 2 or more metastatic sites and 38 patients underwent to more than 2 previous lines of therapies. ECOG (Eastern Cooperative Oncology Group) Performance Status (PS) was 2 in 19 patients. The median number of TAS-102 cycles was 4 (range: 2-12). The most frequent toxic event was neutropenia (G3/G4 in 16 patients). There were no severe (> 3) non-haematological toxicities or treatment-related deaths. Twenty-six patients experienced progressive disease (PD), 21 stable disease (SD). Three patients with long-lasting disease control (DC: complete, partial responses or stable disease) shared an FGFR4 (p.Gly388Arg) mutation. Patients experiencing DC had more frequently a low tumour growth rate (P = 0.0306) and an FGFR4 p.G388R variant (P < 0.0001). The FGFR4 Arg388 genotype was associated with better survival (median: 6.4 months) compared to the Gly388 genotype (median: 4 months); the HR was 0.25 (95% CI 0.12- 0.51; P = 0.0001 at Log-Rank test). CONCLUSIONS This phenotype/genotype investigation suggests that the FGFR4 p.G388R variant may serve as a new marker for identifying patients who are responsive to TAS-102. A mechanistic hypothesis is proposed to interpret these findings.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori Di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy.
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori Di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Monica Ianniello
- Centro Polidiagnostico Strumentale Srl, AMES, 80013, Naples, Italy
| | - Anna Ceccarelli
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marika Casillo
- Centro Polidiagnostico Strumentale Srl, AMES, 80013, Naples, Italy
| | - Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081, Baronissi, Italy
| | - Nadia Petrillo
- Centro Polidiagnostico Strumentale Srl, AMES, 80013, Naples, Italy
| | - Marco Cascella
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081, Baronissi, Italy
| | - Francesco Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. de Crecchio, 7, 80138, Naples, Italy
| | - Carmine Picone
- Istituto Nazionale Tumori Di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori Di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Roberto Sirica
- Centro Polidiagnostico Strumentale Srl, AMES, 80013, Naples, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. de Crecchio, 7, 80138, Naples, Italy
- Laboratory of Precision and Molecular Oncology, Institute of Genetic Research, Biogem Scarl, Ariano Irpino, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori Di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | | | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. de Crecchio, 7, 80138, Naples, Italy.
- Laboratory of Precision and Molecular Oncology, Institute of Genetic Research, Biogem Scarl, Ariano Irpino, Italy.
| |
Collapse
|
3
|
Rock A, Uche A, Yoon J, Agulnik M, Chow W, Millis S. Bioinformatic Analysis of Recurrent Genomic Alterations and Corresponding Pathway Alterations in Ewing Sarcoma. J Pers Med 2023; 13:1499. [PMID: 37888109 PMCID: PMC10608227 DOI: 10.3390/jpm13101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Ewing Sarcoma (ES) is an aggressive, mesenchymal malignancy associated with a poor prognosis in the recurrent or metastatic setting with an estimated overall survival (OS) of <30% at 5 years. ES is characterized by a balanced, reciprocal chromosomal translocation involving the EWSR1 RNA-binding protein and ETS transcription factor gene (EWS-FLI being the most common). Interestingly, murine ES models have failed to produce tumors phenotypically representative of ES. Genomic alterations (GA) in ES are infrequent and may work synergistically with EWS-ETS translocations to promote oncogenesis. Aberrations in fibroblast growth factor receptor (FGFR4), a receptor tyrosine kinase (RTK) have been shown to contribute to carcinogenesis. Mouse embryonic fibroblasts (MEFs) derived from knock-in strain of homologous Fgfr4G385R mice display a transformed phenotype with enhanced TGF-induced mammary carcinogenesis. The association between the FGFRG388R SNV in high-grade soft tissue sarcomas has previously been demonstrated conferring a statistically significant association with poorer OS. How the FGFR4G388R SNV specifically relates to ES has not previously been delineated. To further define the genomic landscape and corresponding pathway alterations in ES, comprehensive genomic profiling (CGP) was performed on the tumors of 189 ES patients. The FGFR4G388R SNV was identified in a significant proportion of the evaluable cases (n = 97, 51%). In line with previous analyses, TP53 (n = 36, 19%), CDK2NA/B (n = 33, 17%), and STAG2 (n = 22, 11.6%) represented the most frequent alterations in our cohort. Co-occurrence of CDK2NA and STAG2 alterations was observed (n = 5, 3%). Notably, we identified a higher proportion of TP53 mutations than previously observed. The most frequent pathway alterations affected MAPK (n = 89, 24% of pathological samples), HRR (n = 75, 25%), Notch1 (n = 69, 23%), Histone/Chromatin remodeling (n = 57, 24%), and PI3K (n = 64, 20%). These findings help to further elucidate the genomic landscape of ES with a novel investigation of the FGFR4G388R SNV revealing frequent aberration.
Collapse
Affiliation(s)
- Adam Rock
- City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (J.Y.); (M.A.)
| | - An Uche
- Alameda Health System, 1411 E. 31st St., Oakland, CA 94602, USA;
| | - Janet Yoon
- City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (J.Y.); (M.A.)
| | - Mark Agulnik
- City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (J.Y.); (M.A.)
| | - Warren Chow
- UCI Health, 101 The City Drive, South Orange, CA 92868, USA;
| | - Sherri Millis
- Foundation Medicine, Inc., 150 Second St., Cambridge, MA 02141, USA;
| |
Collapse
|
4
|
Targeting FGFR Pathway Is Not an Effective Therapeutic Strategy in Patients with Unselected Metastatic Esophagogastric Cancer Resistant to Trastuzumab. J Pers Med 2023; 13:jpm13030508. [PMID: 36983691 PMCID: PMC10051335 DOI: 10.3390/jpm13030508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Trastuzumab plus chemotherapy is the standard of care for the first-line treatment of patients with HER2+ advanced esophagogastric (EG) cancer. Nevertheless, patients frequently develop resistance. In preclinical models, we identified the overexpression of Fibroblast Growth Factor Receptor (FGFR) 3 as a mechanism potentially involved in trastuzumab-acquired resistance. FGFR inhibition could be a potential mechanism as a second-line treatment. In this Simon’s two-stage phase 2, single arm study, patients with advanced EG cancer refractory to trastuzumab-containing therapies received pemigatinib, an inhibitor of FGFR. The primary end point was the 12-week progression-free survival rate. Translational analyses were performed on tissue and plasma samples. Eight patients were enrolled in the first stage. Although the 6-week disease control rate was 25%, only one patient achieved a stable disease after 12 weeks of treatment. The trial was discontinued before the second stage. Two out of six evaluable tumor samples expressed FGFR3. No FGFRs amplification was detected. HER2 amplification was lost in three out of eight patients. Three patients had an high Tumor Mutational Burden, and two of them are significantly long-term survivors. These results do not support the therapeutic efficacy of targeting FGFR in unselected patients with advanced EG cancer, who are refractory to trastuzumab-containing therapies.
Collapse
|
5
|
van der Lugt NM, Weerts MJA, Veenma DCM, Lincke CR, Gischler SJ, Alders M, van Ierland Y. 5q35 duplication syndrome: Narrowing the critical region on the distal side and further evidence of intrafamilial variability and expression. Am J Med Genet A 2023; 191:835-841. [PMID: 36458506 DOI: 10.1002/ajmg.a.63068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The key features of patients with a microduplication 5q35.2q35.3 (including the NSD1 gene) are short stature, microcephaly, mild developmental delay, behavioral problems, digital anomalies and congenital anomalies of internal organs. This core phenotype can be viewed as the reversed phenotype of Sotos syndrome, which is caused by a microdeletion in the same chromosomal region or a pathogenic variant in the NSD1 gene, and includes tall stature and macrocephaly, developmental delay, and epilepsy. Here, we report on a patient and his mother, both with a 5q35.2q35.3 duplication, adding a fifth family to the recently published overview of 39 patients of Quintero-Rivera et al. Our patient had several congenital anomalies, intrauterine growth restriction with a persisting short stature, while his mother was only mildly affected with decreased growth parameters. In addition, he had hemophagogocytic lymphohistiocytosis (HLH) triggered by Haemophilus influenzae and was recently diagnosed with Ewing sarcoma. Our cases carry the smallest duplication published (ca 332 kb, arr[hg19] 5q35.2q35.3(176493106-176824785)x3) further narrowing the distal side of the critical region of the 5q35.2q35.3 duplication. Besides broadening the clinical phenotypic spectrum, our report indicates that the 5q35.2q35.3 microduplication also shows a large intra-familial variability and expression.
Collapse
Affiliation(s)
| | | | | | - Carsten R Lincke
- Department of Pediatrics, Erasmus MC Sophia, Rotterdam, The Netherlands
| | - Saskia J Gischler
- Department of Pediatric Surgery, Erasmus MC Sophia, Rotterdam, The Netherlands
| | - Marielle Alders
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Koprulu M, Carrasco-Zanini J, Wheeler E, Lockhart S, Kerrison ND, Wareham NJ, Pietzner M, Langenberg C. Proteogenomic links to human metabolic diseases. Nat Metab 2023; 5:516-528. [PMID: 36823471 PMCID: PMC7614946 DOI: 10.1038/s42255-023-00753-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Studying the plasma proteome as the intermediate layer between the genome and the phenome has the potential to identify new disease processes. Here, we conducted a cis-focused proteogenomic analysis of 2,923 plasma proteins measured in 1,180 individuals using antibody-based assays. We (1) identify 256 unreported protein quantitative trait loci (pQTL); (2) demonstrate shared genetic regulation of 224 cis-pQTLs with 575 specific health outcomes, revealing examples for notable metabolic diseases (such as gastrin-releasing peptide as a potential therapeutic target for type 2 diabetes); (3) improve causal gene assignment at 40% (n = 192) of overlapping risk loci; and (4) observe convergence of phenotypic consequences of cis-pQTLs and rare loss-of-function gene burden for 12 proteins, such as TIMD4 for lipoprotein metabolism. Our findings demonstrate the value of integrating complementary proteomic technologies with genomics even at moderate scale to identify new mediators of metabolic diseases with the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Julia Carrasco-Zanini
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Sam Lockhart
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Nicola D Kerrison
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK.
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Ulaganathan VK, Vasileva MH. A strategy for uncovering germline variants altering anti-tumor CD8 T cell response. J Genet Genomics 2023; 50:353-361. [PMID: 36690075 DOI: 10.1016/j.jgg.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Among many factors known to alter the outcomes of T cell receptor (TCR)-induced proximal signaling, the role of human germline variants in dictating the individuality of the anti-tumor CD8 T cell response has remained challenging to address. Here, we describe a convenient strategy for molecular and functional characterization of phosphotyrosine-altering non-synonymous single nucleotide variations (pTyr-SNVs) that directly impact TCR-induced proximal phosphotyrosine motif-based signaling pathways. We devised an experimental co-cultivation set-up comprising a C57BL/6 mouse-derived metastatic melanoma cell line engineered to constitutively present ovalbumin (OVA) antigens and retrovirally engineered syngeneic major histocompatibility complex (MHC) Class I restricted OVA TCR-transgenic CD8 T cells (OT-I). Using the synthetic version of pTyr-SNV rs1178800678-G/T, encoding integrin alpha 4 (ITGA4) p.S1027I variant as a prototype, which generates a membrane-proximal immunoreceptor tyrosine activation motif (ITAM), we show that under identical TCR stimulation conditions, genetically determined membrane-proximal ITAM elevates tyrosine phosphorylation of proximal signaling molecule 70 kDa zeta-chain-associated protein (ZAP70) and the levels of cytotoxic effector molecule granzyme B (GZMB), thereby contributing to enhanced cytotoxic activity against metastatic melanoma cell line. This strategy paves the way for rapid molecular and functional characterization of anti-tumor immune response-linked germline pTyr-SNVs so as to improve our understanding of the genetic basis of individual-to-individual differences in anti-tumor CD8 T cell response.
Collapse
Affiliation(s)
- Vijay Kumar Ulaganathan
- Klinik für Dermatologie & Allergology, Universitätsmedizin Göttingen, Göttingen 37075, Germany; Institut für Multiple Sklerose Forschung, Neuroimmunologie, Universitätsmedizin Göttingen, Göttingen 37075, Germany; University of Lorraine, NGERE Unit, Faculté de Médecine, 9 Avenue de La Forêt de Haye, Vandoeuvre-lès-Nancy 54505, France.
| | - Martina H Vasileva
- Klinik für Dermatologie & Allergology, Universitätsmedizin Göttingen, Göttingen 37075, Germany
| |
Collapse
|
8
|
Bao YT, Wang C, Huang W, Yao LQ, Yuan L. A rare case of highly differentiated follicular carcinoma in ovary with FGFR4 Gly388Arg polymorphism: a case report and literature review. J Ovarian Res 2022; 15:71. [PMID: 35701820 PMCID: PMC9195278 DOI: 10.1186/s13048-022-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Highly differentiated follicular carcinoma (HDFCO) is a rare form of struma-derived thyroid-type carcinoma in ovary, defined as ovarian struma spreading beyond ovary but consisting of benign thyroid tissues. No more than 30 cases of HDFCO have been reported since it was first recognized in 2008. The clinicopathologic and molecular features of HDFCO remain unclear up till now. CASE PRESENTATION A 38-year-old, para 1 gravida 5 woman has a long history of recurrent right ovarian cysts. Histological evaluation showed the tumor progressed from ovarian mature cystic teratoma (OMCT) to highly differentiated follicular carcinoma (HDFCO) during three relapses. Whole-exome sequencing revealed the germline FGFR4 Gly388Arg polymorphism. Repeated operations were performed to remove lesions for the first two relapses. On the third recurrence, the patient received radical surgery with subsequent thyroidectomy and radioactive iodine ablation. No evidence of disease was observed by February 2022 (8 months). CONCLUSIONS The germline FGFR4 Gly388Arg polymorphism may accelerate the malignant transformation of HDFCO, probably by working as a second hit in the developing spectrum.
Collapse
Affiliation(s)
- Yi-Ting Bao
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chao Wang
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wu Huang
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Liang-Qing Yao
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Lei Yuan
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Inaba Y, Yamamoto M, Urai S, Suzuki M, Nishikage S, Kanzawa M, Aoyama Y, Kanda T, Shigemura K, Bando H, Iguchi G, Nakamura Y, Fujisawa M, Imagawa A, Fukuoka H, Ogawa W. Bilateral adrenal uptake of 123I MIBG scintigraphy with mild catecholamine elevation, the diagnostic dilemma, and its characteristics. Sci Rep 2022; 12:9276. [PMID: 35660748 PMCID: PMC9166707 DOI: 10.1038/s41598-022-13132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
Cases in which bilateral adrenal 123I-Metaiodobenzylguanidine (123I-MIBG) scintigraphy accumulation is sometimes shown, with mildly elevated catecholamine (CA) or metanephrine (MN) levels (within 3 times the upper reference limit) are diagnostic dilemmas. We experienced 3 cases of adrenal incidentalomas with this dilemma in the differential diagnosis. The clinical diagnosis was subclinical Cushing's syndrome in 2 cases, and primary aldosteronism in 1. Despite suspected CA excess in clinical symptoms and imaging findings, the pathological findings of all these tumors were revealed to be cytochrome P450 family 11 subfamily B member 1 (CYP11B1) positive adrenocortical adenomas. Interestingly, adrenal medullary hyperplasia (AMH) was detected in the adrenal parenchyma of all those backgrounds. To clarify the clinical features of such cases, a cross-sectional study was conducted at the Kobe University Hospital from 2014 to 2020. One-hundred sixty-four patients who had undergone 123I-MIBG scintigraphy were recruited. Among them, 10 patients (6.1%) met the above criteria, including the presented 3 cases. Plasma adrenaline, noradrenaline, urinary metanephrine, and normetanephrine had values of 0.05 ± 0.05 ng/mL, 0.63 ± 0.32 ng/mL, 0.22 ± 0.05 mg/day, and 0.35 ± 0.16 mg/day, respectively. Nine cases were complicated with hypertension, and symptoms related to CA excess were observed. Half of them (5 cases) including presented 3 cases had unilateral adrenal tumors. These suggest that in cases of bilateral adrenal uptake on 123I-MIBG, AMH needs to be considered. Adrenocortical adenomas may be associated with AMH and further larger investigation is needed for this pathology.
Collapse
Affiliation(s)
- Yuiko Inaba
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Department of Internal Medicine(I), Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shin Urai
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masaki Suzuki
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Seiji Nishikage
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Maki Kanzawa
- Department of Diagnostic Pathology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yayoi Aoyama
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tomonori Kanda
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Katsumi Shigemura
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Department of Public Health, Kobe University Graduate School of Health Science, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hironori Bando
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Division of Development of Advanced Therapy for Metabolic Disease, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Genzo Iguchi
- Medical Center for Student Health, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.,Department of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan
| | - Masato Fujisawa
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Akihisa Imagawa
- Department of Internal Medicine(I), Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
10
|
Ulaganathan VK. Membrane anchorage-induced (MAGIC) knock-down of non-synonymous point mutations. Chembiochem 2022; 23:e202100637. [PMID: 35352864 DOI: 10.1002/cbic.202100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Indexed: 11/08/2022]
Abstract
The promise of personalized medicine for monogenic and complex polygenic diseases depends on the availability of strategies for targeted inhibition of disease-associated polymorphic protein variants. A large majority of disease-causing genetic alterations are non-synonymous single nucleotide genetic variations (nsSNVs). Yet a general strategy for inhibiting the expression of nsSNVs without editing the human genome is currently lacking. Here, we reveal that upon intracellular delivery of lipid conjugated point mutation-specific monoclonal antibodies, a target-specific knockdown of gene expression at both mRNA and protein levels is observed. By harnessing the phenomenon of m embrane a nchorage i ndu c ed (MAGIC) knock-down of epitope-containing protein targets, we reveal a novel approach for inhibiting the expression of amino acid-altering point mutations. This approach opens up a new opportunity for the therapeutic inhibition of undruggable protein variants as well as paves the way for interrogating the nsSNVs in the human genome.
Collapse
Key Words
- membrane anchorage-induced knockdown, nsSNV, 18:0-14:0 PC, lipid-anchor, phospholipid-conjugated mAbs, SNP, SNV, genetic variants, allele varaints, rare variants, common variants, pathogenic mutations, point mutation knockdown, mRNA knockdown
Collapse
Affiliation(s)
- Vijay Kumar Ulaganathan
- University of Lorraine: Universite de Lorraine, NGERE Unit, Faculté de Médecine, Bâtiment C - 2ème étage, 54505, Nancy, FRANCE
| |
Collapse
|
11
|
D’Agosto S, Pezzini F, Veghini L, Delfino P, Fiorini C, Temgue Tane GD, Del Curatolo A, Vicentini C, Ferrari G, Pasini D, Andreani S, Lupo F, Fiorini E, Lorenzon G, Lawlor RT, Rusev B, Malinova A, Luchini C, Milella M, Sereni E, Pea A, Bassi C, Bailey P, Scarpa A, Bria E, Corbo V. Loss of FGFR4 promotes the malignant phenotype of PDAC. Oncogene 2022; 41:4371-4384. [PMID: 35963908 PMCID: PMC9481460 DOI: 10.1038/s41388-022-02432-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/29/2023]
Abstract
Transcriptomic analyses of pancreatic ductal adenocarcinoma (PDAC) have identified two major epithelial subtypes with distinct biology and clinical behaviours. Here, we aimed to clarify the role of FGFR1 and FGFR4 in the definition of aggressive PDAC phenotypes. We found that the expression of FGFR4 is exclusively detected in epithelial cells, significantly elevated in the classical PDAC subtype, and associates with better outcomes. In highly aggressive basal-like/squamous PDAC, reduced FGFR4 expression aligns with hypermethylation of the gene and lower levels of histone marks associated with active transcription in its regulatory regions. Conversely, FGFR1 has more promiscuous expression in both normal and malignant pancreatic tissues and is strongly associated with the EMT phenotype but not with the basal-like cell lineage. Regardless of the genetic background, the increased proliferation of FGFR4-depleted PDAC cells correlates with hyperactivation of the mTORC1 pathway both in vitro and in vivo. Downregulation of FGFR4 in classical cell lines invariably leads to the enrichment of basal-like/squamous gene programs and is associated with either partial or full switch of phenotype. In sum, we show that endogenous levels of FGFR4 limit the malignant phenotype of PDAC cells. Finally, we propose FGFR4 as a valuable marker for the stratification of PDAC patients.
Collapse
Affiliation(s)
- Sabrina D’Agosto
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy ,grid.510779.d0000 0004 9414 6915Present Address: Human Technopole, Milan, Italy
| | - Francesco Pezzini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Lisa Veghini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Pietro Delfino
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Claudia Fiorini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Gael D. Temgue Tane
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Anais Del Curatolo
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Caterina Vicentini
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giorgia Ferrari
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Davide Pasini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Silvia Andreani
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Francesca Lupo
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Elena Fiorini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Giulia Lorenzon
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T. Lawlor
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Borislav Rusev
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Antonia Malinova
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Milella
- grid.411475.20000 0004 1756 948XDepartment of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Elisabetta Sereni
- grid.411475.20000 0004 1756 948XDepartment of Surgery, University and Hospital Trust of Verona, “Pancreas Institute”, Verona, Italy
| | - Antonio Pea
- grid.411475.20000 0004 1756 948XDepartment of Surgery, University and Hospital Trust of Verona, “Pancreas Institute”, Verona, Italy
| | - Claudio Bassi
- grid.411475.20000 0004 1756 948XDepartment of Surgery, University and Hospital Trust of Verona, “Pancreas Institute”, Verona, Italy
| | - Peter Bailey
- grid.8756.c0000 0001 2193 314XInstitute of Cancer Sciences, University of Glasgow, Glasgow, UK ,grid.23636.320000 0000 8821 5196Cancer Research UK Beatson Institute, Glasgow, UK ,grid.7700.00000 0001 2190 4373Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Aldo Scarpa
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy ,grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Emilio Bria
- grid.411075.60000 0004 1760 4193Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Section of Medical Oncology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Corbo
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy ,grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
12
|
Sellier AB, Seiler-Mußler S, Emrich IE, Böhm M, Fliser D, Zawada AM, Heine GH. FGFR4 and Klotho Polymorphisms Are Not Associated with Cardiovascular Outcomes in Chronic Kidney Disease. Am J Nephrol 2021; 52:808-816. [PMID: 34673637 DOI: 10.1159/000519274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION High plasma fibroblast growth factor 23 (FGF-23) predicts cardiovascular events in chronic kidney disease (CKD) patients. Experimental evidence suggests FGF receptor 4 (FGFR4) activation by FGF-23, and deficiency of the soluble form of its co-receptor Klotho promotes left-ventricular hypertrophy (LVH). To evaluate the clinical relevance of these findings, a Mendelian randomization study analyzed the association of genetic variants of FGFR4 and Klotho with echocardiographic parameters and cardiac events in CKD patients. METHODS The prospective Cardiovascular and Renal Outcome in CKD 2-4 Patients-The Fourth Homburg Evaluation study recruited CKD G2-G4 patients, of whom 519 consented to SNP genotyping (FGFR4: rs351855; Klotho: rs9536314). Echocardiographic examinations at baseline and 5 years later assessed prevalence of LVH by measurement of left-ventricular mass index (LVMI). Patients were followed for 5.1 ± 2.1 years for the primary endpoints of cardiac decompensation and atherosclerotic cardiovascular disease (ASCVD). RESULTS Carriers of the different alleles did neither differ in baseline LVMI (rs351855: p = 0.861; rs9536314: p = 0.379) nor in LVMI changes between baseline and follow-up (rs351855: p = 0.181; rs9536314: p = 0.995). Hundred and four patients suffered cardiac decompensation, and 144 patients had ASCVD. Time to cardiac decompensation (rs351855: p = 0.316; rs9536314: p = 0.765) and ASCVD (p = 0.508 and p = 0.800, respectively) did not differ between carriers of different alleles. DISCUSSION/CONCLUSION rs351855 and rs9536314 were not associated with LVMI or cardiac events. These findings do not provide evidence for a relevant clinical role of either FGFR4 stimulation or soluble form of Klotho deficiency in LVH development.
Collapse
Affiliation(s)
- Alexander B Sellier
- Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
| | - Sarah Seiler-Mußler
- Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
- Vauban Praxis, Saarlouis, Germany
| | - Insa E Emrich
- Department of Internal Medicine III-Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
| | - Michael Böhm
- Department of Internal Medicine III-Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
| | - Danilo Fliser
- Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
| | - Adam M Zawada
- Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
| | - Gunnar H Heine
- Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
- Department of Internal Medicine II, Agaplesion Markus Krankenhaus, Frankfurt, Germany
| |
Collapse
|
13
|
Liu G, Chen T, Ding Z, Wang Y, Wei Y, Wei X. Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment. Cell Prolif 2021; 54:e13009. [PMID: 33655556 PMCID: PMC8016646 DOI: 10.1111/cpr.13009] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
The sites of targeted therapy are limited and need to be expanded. The FGF‐FGFR signalling plays pivotal roles in the oncogenic process, and FGF/FGFR inhibitors are a promising method to treat FGFR‐altered tumours. The VEGF‐VEGFR signalling is the most crucial pathway to induce angiogenesis, and inhibiting this cascade has already got success in treating tumours. While both their efficacy and antitumour spectrum are limited, combining FGF/FGFR inhibitors with VEGF/VEGFR inhibitors are an excellent way to optimize the curative effect and expand the antitumour range because their combination can target both tumour cells and the tumour microenvironment. In addition, biomarkers need to be developed to predict the efficacy, and combination with immune checkpoint inhibitors is a promising direction in the future. The article will discuss the FGF‐FGFR signalling pathway, the VEGF‐VEGFR signalling pathway, the rationale of combining these two signalling pathways and recent small‐molecule FGFR/VEGFR inhibitors based on clinical trials.
Collapse
Affiliation(s)
- Guihong Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Cardiology Department, Chengdu NO.7 People's Hospital, Chengdu Tumor Hospital, Chengdu, China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Sobhani N, Fassl A, Mondani G, Generali D, Otto T. Targeting Aberrant FGFR Signaling to Overcome CDK4/6 Inhibitor Resistance in Breast Cancer. Cells 2021; 10:293. [PMID: 33535617 PMCID: PMC7912842 DOI: 10.3390/cells10020293] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) is the most common cause of cancer-related death in women worldwide. Therapies targeting molecular pathways altered in BC had significantly enhanced treatment options for BC over the last decades, which ultimately improved the lives of millions of women worldwide. Among various molecular pathways accruing substantial interest for the development of targeted therapies are cyclin-dependent kinases (CDKs)-in particular, the two closely related members CDK4 and CDK6. CDK4/6 inhibitors indirectly trigger the dephosphorylation of retinoblastoma tumor suppressor protein by blocking CDK4/6, thereby blocking the cell cycle transition from the G1 to S phase. Although the CDK4/6 inhibitors abemaciclib, palbociclib, and ribociclib gained FDA approval for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative BC as they significantly improved progression-free survival (PFS) in randomized clinical trials, regrettably, some patients showed resistance to these therapies. Though multiple molecular pathways could be mechanistically responsible for CDK4/6 inhibitor therapy resistance, one of the most predominant ones seems to be the fibroblast growth factor receptor (FGFR) pathway. FGFRs are involved in many aspects of cancer formation, such as cell proliferation, differentiation, and growth. Importantly, FGFRs are frequently mutated in BC, and their overexpression and/or hyperactivation correlates with CDK4/6 inhibitor resistance and shortened PFS in BC. Intriguingly, the inhibition of aberrant FGFR activity is capable of reversing the resistance to CDK4/6 inhibitors. This review summarizes the molecular background of FGFR signaling and discusses the role of aberrant FGFR signaling during cancer development in general and during the development of CDK4/6 inhibitor resistance in BC in particular, together with other possible mechanisms for resistance to CDK4/6 inhibitors. Subsequently, future directions on novel therapeutic strategies targeting FGFR signaling to overcome such resistance during BC treatment will be further debated.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Giuseppina Mondani
- Department Breast Oncoplastic Surgery Royal Cornwall Hospital, Treliske, Truro TR13LJ, UK;
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, 34149 Trieste, Italy;
| | - Tobias Otto
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
15
|
FGFR4 c.1162G > A (p.Gly388Arg) Polymorphism Analysis in Turkish Patients with Retinoblastoma. JOURNAL OF ONCOLOGY 2021; 2020:9401038. [PMID: 33456465 PMCID: PMC7787726 DOI: 10.1155/2020/9401038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022]
Abstract
Purpose Various molecular variations are known to result in different gene variants in the FGFR4 gene, known for its oncogenic transformation activity. The goal of this study was to investigate the FGFR4 p.Gly388Arg variant that plays role in the progression of cancer and retinal growth and may be an effective candidate variant in the Turkish population in retinoblastoma patients with no RB1 gene mutation. Methods Using the Sanger sequencing methods, the FGFR4 p.Gly388Arg variant was bidirectionally sequenced in 49 patients with non-RB1 gene mutation in retinoblastoma patients and 13 healthy first-degree relatives and 146 individuals matched by sex and age in the control group. Results In Turkish population-specific study, the FGFR4 p.Gly388Arg variant was found in 27 (55.1 percent) of 49 patients; mutation was found in 7 (53.8 percent) of these patients' 13 healthy relatives screened. When FGFR4 p.Gly388Arg mutation status is evaluated in terms of 146 healthy controls, in 70 (47.9 percent) individuals, mutation was observed. Our analysis showed that the FGFR4 p.Gly388Arg allele frequency, which according to different databases is seen as 30 percent in the general population, is 50 percent common in the Turkish population. Conclusions In patients with advanced retinoblastoma who were diagnosed with retinoblastoma prior to 24 months, the FGFR4 p.Gly388Arg allele was found to be significantly higher. As a result, these results indicate that the polymorphism of FGFR4 p.Gly388Arg may play a role in both the development of tumors and the progression of aggressive tumors.
Collapse
|
16
|
Xu B, Amallraja A, Swaminathan P, Elsey R, Davis C, Theel S, Viet S, Petersen J, Krie A, Davies G, Williams CB, Ehli E, Meißner T. Case report: 16-yr life history and genomic evolution of an ER + HER2 - breast cancer. Cold Spring Harb Mol Case Stud 2020; 6:a005629. [PMID: 33008833 PMCID: PMC7784492 DOI: 10.1101/mcs.a005629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Metastatic breast cancer is one of the leading causes of cancer-related death in women. Limited studies have been done on the genomic evolution between primary and metastatic breast cancer. We reconstructed the genomic evolution through the 16-yr history of an ER+ HER2- breast cancer patient to investigate molecular mechanisms of disease relapse and treatment resistance after long-term exposure to hormonal therapy. Genomic and transcriptome profiling was performed on primary breast tumor (2002), initial recurrence (2012), and liver metastasis (2015) samples. Cell-free DNA analysis was performed at 11 time points (2015-2017). Mutational analysis revealed a low mutational burden in the primary tumor that doubled at the time of progression, with driver mutations in PI3K-Akt and RAS-RAF signaling pathways. Phylogenetic analysis showed an early branching off between primary tumor and metastasis. Liquid biopsies, although initially negative, started to detect an ESR1 E380Q mutation in 2016 with increasing allele frequency until the end of 2017. Transcriptome analysis revealed 721 (193 up, 528 down) genes to be differentially expressed between primary tumor and first relapse. The most significantly down-regulated genes were TFF1 and PGR, indicating resistance to aromatase inhibitor (AI) therapy. The most up-regulated genes included PTHLH, S100P, and SOX2, promoting tumor growth and metastasis. This phylogenetic reconstruction of the life history of a single patient's cancer as well as monitoring tumor progression through liquid biopsies allowed for uncovering the molecular mechanisms leading to initial relapse, metastatic spread, and treatment resistance.
Collapse
Affiliation(s)
- Bing Xu
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Anu Amallraja
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Padmapriya Swaminathan
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Rachel Elsey
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Christel Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Stephanie Theel
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Sarah Viet
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Jason Petersen
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Amy Krie
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Gareth Davies
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Casey B Williams
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Erik Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Tobias Meißner
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| |
Collapse
|
17
|
Solarte M, Cortes-Urrea C, Franco NR, Barreto G, Moreno PA. Novel mutations in breast cancer patients from southwestern Colombia. Genet Mol Biol 2020; 43:e20190359. [PMID: 33231602 PMCID: PMC7684693 DOI: 10.1590/1678-4685-gmb-2019-0359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 08/29/2020] [Indexed: 11/29/2022] Open
Abstract
Breast cancer is the leading cause of death by cancer among women in less developed regions. In Colombia, few published studies have applied next-generation sequencing technologies to evaluate the genetic factors related to breast cancer. This study characterized the exome of three patients with breast cancer from southwestern Colombia to identify likely pathogenic or disease-related DNA sequence variants in tumor cells. For this, the exomes of three tumor tissue samples from patients with breast cancer were sequenced. The bioinformatics analysis identified two pathogenic variants in Fgfr4 and Nf1 genes, which are highly relevant for this type of cancer. Specifically, variant FGFR4-c.1162G>A predisposes individuals to a significantly accelerated progression of this pathology, while NF1-c.1915C>T negatively alters the encoded protein and should be further investigated to clarify the role of this variant in this neoplasia. Moreover, 27 novel likely pathogenic variants were found and 10 genes showed alterations of pathological interest. These results suggest that the novel variants reported here should be further studied to elucidate their role in breast cancer.
Collapse
Affiliation(s)
- Melissa Solarte
- Universidad del Valle, School of Systems and Computing Engineering, Bioinformatics and Biocomputing Laboratory, Cali, Colombia.,Universidad del Valle, Biology Department, Human molecular Genetic Laboratory, Cali, Colombia
| | - Carolina Cortes-Urrea
- Universidad del Valle, School of Systems and Computing Engineering, Bioinformatics and Biocomputing Laboratory, Cali, Colombia.,Universidad del Valle, Biology Department, Human molecular Genetic Laboratory, Cali, Colombia
| | - Nelson Rivera Franco
- Universidad del Valle, Biology Department, Human molecular Genetic Laboratory, Cali, Colombia
| | - Guillermo Barreto
- Universidad del Valle, Biology Department, Human molecular Genetic Laboratory, Cali, Colombia
| | - Pedro A Moreno
- Universidad del Valle, School of Systems and Computing Engineering, Bioinformatics and Biocomputing Laboratory, Cali, Colombia
| |
Collapse
|
18
|
Santolla MF, Maggiolini M. The FGF/FGFR System in Breast Cancer: Oncogenic Features and Therapeutic Perspectives. Cancers (Basel) 2020; 12:E3029. [PMID: 33081025 PMCID: PMC7603197 DOI: 10.3390/cancers12103029] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
One of the major challenges in the treatment of breast cancer is the heterogeneous nature of the disease. With multiple subtypes of breast cancer identified, there is an unmet clinical need for the development of therapies particularly for the less tractable subtypes. Several transduction mechanisms are involved in the progression of breast cancer, therefore making the assessment of the molecular landscape that characterizes each patient intricate. Over the last decade, numerous studies have focused on the development of tyrosine kinase inhibitors (TKIs) to target the main pathways dysregulated in breast cancer, however their effectiveness is often limited either by resistance to treatments or the appearance of adverse effects. In this context, the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system represents an emerging transduction pathway and therapeutic target to be fully investigated among the diverse anti-cancer settings in breast cancer. Here, we have recapitulated previous studies dealing with FGFR molecular aberrations, such as the gene amplification, point mutations, and chromosomal translocations that occur in breast cancer. Furthermore, alterations in the FGF/FGFR signaling across the different subtypes of breast cancer have been described. Next, we discussed the functional interplay between the FGF/FGFR axis and important components of the breast tumor microenvironment. Lastly, we pointed out the therapeutic usefulness of FGF/FGFR inhibitors, as revealed by preclinical and clinical models of breast cancer.
Collapse
Affiliation(s)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
19
|
Levine KM, Ding K, Chen L, Oesterreich S. FGFR4: A promising therapeutic target for breast cancer and other solid tumors. Pharmacol Ther 2020; 214:107590. [PMID: 32492514 PMCID: PMC7494643 DOI: 10.1016/j.pharmthera.2020.107590] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The fibroblast growth factor receptor (FGFR) signaling pathway has long been known to cancer researchers because of its role in cell survival, proliferation, migration, and angiogenesis. Dysregulation of FGFR signaling is frequently reported in cancer studies, but most of these studies focus on FGFR1-3. However, there is growing evidence implicating an important and unique role of FGFR4 in oncogenesis, tumor progression, and resistance to anti-tumor therapy in multiple types of cancer. Importantly, there are several novel FGFR4-specific inhibitors in clinical trials, making FGFR4 an attractive target for further research. In this review, we focus on assessing the role of FGFR4 in cancer, with an emphasis on breast cancer. First, the structure, physiological functions and downstream signaling pathways of FGFR4 are introduced. Next, different mechanisms reported to cause aberrant FGFR4 activation and their functions in cancer are discussed, including FGFR4 overexpression, FGF ligand overexpression, FGFR4 somatic hotspot mutations, and the FGFR4 G388R single nucleotide polymorphism. Finally, ongoing and recently completed clinical trials targeting FGFRs in cancer are reviewed, highlighting the therapeutic potential of FGFR4 inhibition for the treatment of breast cancer.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Molecular Targeted Therapy
- Mutation
- Polymorphism, Single Nucleotide
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Kevin M Levine
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai Ding
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lyuqin Chen
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
FGFR4 Gene Polymorphism Reduces the Risk of Distant Metastasis in Lung Adenocarcinoma in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165694. [PMID: 32781755 PMCID: PMC7460457 DOI: 10.3390/ijerph17165694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is involved in multiple physiological and pathological processes. Several genetic variants of FGFR4 have been shown to be associated with tumor progression in many cancers. However, its association, such as genetic variants and expression levels, with lung cancer is controversial. The present study examined the relationship between four single-nucleotide polymorphisms (SNPs; rs2011077 T/C, rs351855 G/A, rs7708357 G/A, and rs1966265 A/G) of FGFR4 and the risk of lung adenocarcinoma with the epidermal growth factor receptor (EGFR) mutation status in a Taiwanese cohort. The results demonstrated that FGFR4 rs2011077 (odds ratio (OR) = 0.348, 95% confidence interval (CI) = 0.136–0.891, p = 0.024), and rs351855 (OR = 0.296, 95% CI = 0.116–0.751, p = 0.008) showed an inverse association with distant metastasis in wild-type EGFR lung adenocarcinoma. Furthermore, a database analysis using The Cancer Genome Atlas revealed that the higher FGFR4 expression level was correlated with poor survival rates in wild-type EGFR lung adenocarcinoma. In conclusion, the data suggest that FGFR4 SNPs may help in identifying patient subgroups at low-risk for tumor metastasis, among carriers of lung adenocarcinoma bearing wild-type EGFR.
Collapse
|
21
|
Hong M, Lee S, Clayton J, Yake W, Li J. Genipin suppression of growth and metastasis in hepatocellular carcinoma through blocking activation of STAT-3. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:146. [PMID: 32741371 PMCID: PMC7397684 DOI: 10.1186/s13046-020-01654-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The signal transducer and activator of transcription-3 (STAT-3) can facilitate cancer progression and metastasis by being constitutively active via various signaling. Abundant evidence has indicated that STAT-3 may be a promising molecular target for cancer treatment. METHODS In this study, a dual-luciferase assay-based screening of 537 compounds for STAT-3 inhibitors of hepatocellular carcinoma (HCC) cells was conducted, leading to the identification of genipin. Effects of genipin on HCC were assessed in a patient-derived xenograft nude mice model. Western blotting assay, chromatin immunoprecipitation (ChIP) assay, molecular docking study, tube formation assay, three-dimensional top culture assay, histological examination, and immunofluorescence were utilized to evaluate the regulatory signaling pathway. RESULTS Our research demonstrated that genipin suppresses STAT-3 phosphorylation and nuclear translocation, which may be attributed to the binding capacity of this compound to the Src homology-2 (SH2) domain of STAT-3. In addition, the therapeutic effects of genipin in a patient-derived HCC xenograft nude mice model were also demonstrated. CONCLUSIONS In conclusion, genipin showed therapeutic potential for HCC treatment by interacting with the SH2-STAT-3 domain and suppressing the activity of STAT-3. In the future, further research is planned to explore the potential role of genipin in combination with chemotherapy or radiotherapy for HCC.
Collapse
Affiliation(s)
- Ming Hong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China. .,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China. .,Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA.
| | - Selena Lee
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA
| | - Jacob Clayton
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA
| | - Wildman Yake
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA
| | - Jinke Li
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
22
|
Kanzawa M, Fukuoka H, Yamamoto A, Suda K, Shigemura K, Hara S, Imagawa N, Tsukamoto R, Aoyama Y, Nakamura Y, Fujisawa M, Ogawa W, Takahashi Y, Itoh T. Adrenal Corticomedullary Mixed Tumor Associated With the FGFR4-G388R Variant. J Endocr Soc 2020; 4:bvaa101. [PMID: 32803097 PMCID: PMC7417000 DOI: 10.1210/jendso/bvaa101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Adrenal corticomedullary mixed tumors (CMMTs) are extremely rare; with only 20 cases being reported to date, the pathogenesis has remained elusive. A 31-year-old woman developed gestational hypertension with psychiatric disturbances persistent to postpartum and was diagnosed with pheochromocytoma, for which adrenalectomy was performed. Histological findings showed mixed adrenocortical adenoma and pheochromocytoma. Double immunostaining of inhibin and INSM1 (insulinoma-associated protein 1) showed that the 2 tumor components had distinct functional properties. Exome analysis of peripheral leukocytes and tumor (singular, as anatomically it is only 1 mass) revealed a homozygous germline FGFR4-G388R variant. As a readout of the variant, serine phosphorylation of signal transducer and activator of transcription 3 (STAT3) was detected only in the nucleus of adrenocortical adenoma component but not in the pheochromocytoma component. No tyrosine phosphorylation of STAT3 was detected. We report a case of CMMT with the germline FGFR4-G388R variant. Although additional studies are required, our immunohistochemical analysis suggests that the variant may play a role in the development of the adrenocortical component within the pheochromocytoma, leading to CMMT.
Collapse
Affiliation(s)
- Maki Kanzawa
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
| | - Akane Yamamoto
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
| | - Kentaro Suda
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
| | - Katsumi Shigemura
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shigeo Hara
- Division of Urology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoko Imagawa
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Japan
| | - Ryuko Tsukamoto
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Japan
| | - Yayoi Aoyama
- Department of Diagnostic Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | | | - Masato Fujisawa
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Ogawa
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yutaka Takahashi
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
23
|
Crawford KA, Berlow NE, Tsay J, Lazich M, Mancini M, Noakes C, Huang T, Keller C. Case report for an adolescent with germline RET mutation and alveolar rhabdomyosarcoma. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004853. [PMID: 32532875 PMCID: PMC7304354 DOI: 10.1101/mcs.a004853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/13/2020] [Indexed: 11/25/2022] Open
Abstract
In this case report we evaluate the genetics of and scientific basis of therapeutic options for a 14-yr-old male patient diagnosed with metastatic PAX3–FOXO1 fusion positive alveolar rhabdomyosarcoma. A distinguishing genetic feature of this patient was a germline RET C634F mutation, which is a known driver of multiple endocrine neoplasia type 2A (MEN2A) cancer. Through sequential DNA and RNA sequencing analyses over the patient's clinical course, a set of gene mutations, amplifications, and overexpressed genes were identified and biological hypotheses generated to explore the biology of RET and coexisting signaling pathways in rhabdomyosarcoma. Somatic genetic abnormalities identified include CDK4 amplification and FGFR4 G388R polymorphism. Because of the initial lack of patient-derived primary cell cultures, these hypotheses were evaluated using several approaches including western blot analysis and pharmacological evaluation with molecularly similar alveolar rhabdomyosarcoma cell lines. Once a primary cell culture became available, the RET inhibitor cabozantinib was tested but showed no appreciable efficacy in vitro, affirming with the western blot negative for RET protein expression that RET germline mutation could be only incidental. In parallel, the patient was treated with cabozantinib without definitive clinical benefit. Parallel chemical screens identified PI3K and HSP90 as potential tumor-specific biological features. Inhibitors of PI3K and HSP90 were further validated in drug combination synergy experiments and shown to be synergistic in the patient-derived culture. We also evaluated the use of JAK/STAT pathway inhibitors in the context of rhabdomyosarcomas bearing the FGFR4 G388R coding variant. Although the patient succumbed to his disease, study of the patient's tumor has generated insights into the biology of RET and other targets in rhabdomyosarcoma.
Collapse
Affiliation(s)
- Kenneth A Crawford
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Noah E Berlow
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Jennifer Tsay
- 2016 Pediatric Cancer Nanocourse, Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Michael Lazich
- 2016 Pediatric Cancer Nanocourse, Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Maria Mancini
- Champions Oncology, Hackensack, New Jersey 07601, USA
| | | | - Tannie Huang
- Kaiser Permanente Santa Clara Medical Center, Santa Clara, California 95051, USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| |
Collapse
|
24
|
Chow WA, Yee JK, Tsark W, Wu X, Qin H, Guan M, Ross JS, Ali SM, Millis SZ. Recurrent secondary genomic alterations in desmoplastic small round cell tumors. BMC MEDICAL GENETICS 2020; 21:101. [PMID: 32393201 PMCID: PMC7216377 DOI: 10.1186/s12881-020-01034-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Desmoplastic small round cell tumor (DSRCT) is a rare, highly aggressive, translocation-associated soft-tissue sarcoma that primarily affects children, adolescents, and young adults, with a striking male predominance. It is characterized by t(11;22) generating a novel EWSR1-WT1 fusion gene. Secondary genomic alterations are rarely described. METHODS Tumor tissue from 83 DSRCT patients was assayed by hybrid-capture based comprehensive genomic profiling, FoundationOne® Heme next generation sequencing analysis of 406 genes and RNA sequencing of 265 genes. Tumor mutation burden was calculated from a minimum of 1.4 Mb sequenced DNA. Microsatellite instability status was determined by a novel algorithm analyzing 114 specific loci. RESULTS Comprehensive genomic profiling identified several genomically-defined DSRCT subgroups. Recurrent genomic alterations were most frequently detected in FGFR4, ARID1A, TP53, MSH3, and MLL3 genes. With the exception of FGFR4, where the genomic alterations predicted activation, most of the alterations in the remaining genes predicted gene inactivation. No DSRCT were TMB or MSI high. CONCLUSIONS In summary, recurrent secondary somatic alterations in FGFR4, ARID1A, TP53, MSH3, and MLL3 were detected in 82% of DSRCT, which is significantly greater than previously reported. These alterations may have both prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Warren A Chow
- Department of Medical Oncology & Therapeutics Research, City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| | - Jiing-Kuan Yee
- Department of Translational Research & Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - Walter Tsark
- Center for Comparative Medicine, City of Hope, Duarte, CA, USA
| | - Xiwei Wu
- Integrative Genomics Core of Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Hanjun Qin
- Integrative Genomics Core of Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Min Guan
- Department of Medical Oncology & Therapeutics Research, City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Jeffrey S Ross
- Foundation Medicine, Inc, Cambridge, MA, USA.,Department of Pathology, Upstate Medical University, Syracuse, NY, USA
| | - Siraj M Ali
- Foundation Medicine, Inc, Cambridge, MA, USA
| | | |
Collapse
|
25
|
Liu Y, Cao M, Cai Y, Li X, Zhao C, Cui R. Dissecting the Role of the FGF19-FGFR4 Signaling Pathway in Cancer Development and Progression. Front Cell Dev Biol 2020; 8:95. [PMID: 32154250 PMCID: PMC7044267 DOI: 10.3389/fcell.2020.00095] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor (FGF) receptor 4 (FGFR4) belongs to a family of tyrosine kinase receptor. FGFR4 is highly activated in certain types of cancer and its activation is closely associated with its specific ligand, FGF19. Indeed, FGF19-FGFR4 signaling is implicated in many cellular processes including cell proliferation, migration, metabolism, and differentiation. Since active FGF19-FGFR4 signaling acts as an oncogenic pathway in certain types of cancer, the development and therapeutic evaluation of FGFR4-specific inhibitors in cancer patients is a topic of significant interest. In this review, we aim to provide an updated overview of currently-available FGFR4 inhibitors and their ongoing clinical trials, as well as upcoming potential therapeutics. Further, we examined the possibility of enhancing the therapeutic efficiency of FGFR4 inhibitors in cancer patients. We also discussed the underlying molecular mechanisms of oncogenic activation of FGFR4 by FGF19.
Collapse
Affiliation(s)
- Yanan Liu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meng Cao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chengguang Zhao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
26
|
Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell 2019; 179:543-560.e26. [DOI: 10.1016/j.cell.2019.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022]
|
27
|
Fibroblast Growth Factor Receptor Signaling in Skin Cancers. Cells 2019; 8:cells8060540. [PMID: 31167513 PMCID: PMC6628025 DOI: 10.3390/cells8060540] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor (FGF)/Fibroblast growth factor receptor (FGFR) signaling regulates various cellular processes during the embryonic development and in the adult organism. In the skin, fibroblasts and keratinocytes control proliferation and survival of melanocytes in a paracrine manner via several signaling molecules, including FGFs. FGF/FGFR signaling contributes to the skin surface expansion in childhood or during wound healing, and skin protection from UV light damage. Aberrant FGF/FGFR signaling has been implicated in many disorders, including cancer. In melanoma cells, the FGFR expression is low, probably because of the strong endogenous mutation-driven constitutive activation of the downstream mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signaling pathway. FGFR1 is exceptional as it is expressed in the majority of melanomas at a high level. Melanoma cells that acquired the capacity to synthesize FGFs can influence the neighboring cells in the tumor niche, such as endothelial cells, fibroblasts, or other melanoma cells. In this way, FGF/FGFR signaling contributes to intratumoral angiogenesis, melanoma cell survival, and development of resistance to therapeutics. Therefore, inhibitors of aberrant FGF/FGFR signaling are considered as drugs in combination treatment. The ongoing LOGIC-2 phase II clinical trial aims to find out whether targeting the FGF/FGFR signaling pathway with BGJ398 may be a good therapeutic strategy in melanoma patients who develop resistance to v-Raf murine sarcoma viral oncogene homolog B (BRAF)/MEK inhibitors.
Collapse
|
28
|
Lutz SZ, Hennige AM, Peter A, Kovarova M, Totsikas C, Machann J, Kröber SM, Sperl B, Schleicher E, Schick F, Heni M, Ullrich A, Häring HU, Stefan N. The Gly385(388)Arg Polymorphism of the FGFR4 Receptor Regulates Hepatic Lipogenesis Under Healthy Diet. J Clin Endocrinol Metab 2019; 104:2041-2053. [PMID: 30541128 DOI: 10.1210/jc.2018-01573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
CONTEXT The effect of a lifestyle intervention to reduce liver fat content in nonalcoholic fatty liver disease in humans is influenced by genetics. We hypothesized that the amino acid exchange in human Gly388Arg (mouse homolog: Gly385Arg) in fibroblast growth factor receptor 4 (FGFR4), which regulates bile acid, lipid, and glucose metabolism, could determine hepatic lipid accumulation and insulin sensitivity. Mechanisms of this substitution were studied in mice under normal chow and high-fat diets. DESIGN In humans, the Gly388Arg polymorphism was studied for its relationship with changes in liver fat content and insulin sensitivity during 9 months of a lifestyle intervention. We also studied a knock-in mouse strain with an Arg385 allele introduced into the murine FGFR4 gene under normal chow and high-fat diets. RESULTS In humans, the FGFR4 Arg388 allele was not associated with liver fat content or insulin sensitivity in subjects who were overweight and obese before lifestyle intervention. However, it was associated with less decrease in liver fat content and less increase in insulin sensitivity during the intervention. In mice receiving normal chow, the FGFR4 Arg385 allele was associated with elevated hepatic triglyceride content, altered hepatic lipid composition, and increased hepatic expression of genes inducing de novo lipogenesis and glycolysis. Body fat mass and distribution, glucose tolerance, and insulin sensitivity were unaltered. The FGFR4 Arg385 allele had no effect on glucose or lipid metabolism under the high-fat diet. CONCLUSION Our data indicate that the FGFR4 Arg388(385) allele affects hepatic lipid and glucose metabolism specifically during healthy caloric intake.
Collapse
Affiliation(s)
- Stefan Z Lutz
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Anita M Hennige
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Andreas Peter
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Marketa Kovarova
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Charisis Totsikas
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Stefan M Kröber
- Institute of Pathology, University of Tübingen, Tübingen, Germany
| | - Bianca Sperl
- Department of Molecular Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Erwin Schleicher
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Fritz Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Martin Heni
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Axel Ullrich
- Department of Molecular Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Norbert Stefan
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| |
Collapse
|
29
|
Quintanal-Villalonga A, Ferrer I, Molina-Pinelo S, Paz-Ares L. A patent review of FGFR4 selective inhibition in cancer (2007-2018). Expert Opin Ther Pat 2019; 29:429-438. [DOI: 10.1080/13543776.2019.1624720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Irene Ferrer
- CNIO-H12O Lung Clinical Cancer Research Unit, Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Molina-Pinelo
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Luis Paz-Ares
- CNIO-H12O Lung Clinical Cancer Research Unit, Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Medical School, Universidad Complutense, Madrid, Spain
| |
Collapse
|
30
|
Turunen SP, von Nandelstadh P, Öhman T, Gucciardo E, Seashore-Ludlow B, Martins B, Rantanen V, Li H, Höpfner K, Östling P, Varjosalo M, Lehti K. FGFR4 phosphorylates MST1 to confer breast cancer cells resistance to MST1/2-dependent apoptosis. Cell Death Differ 2019; 26:2577-2593. [PMID: 30903103 PMCID: PMC7224384 DOI: 10.1038/s41418-019-0321-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/18/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
Cancer cells balance with the equilibrium of cell death and growth to expand and metastasize. The activity of mammalian sterile20-like kinases (MST1/2) has been linked to apoptosis and tumor suppression via YAP/Hippo pathway-independent and -dependent mechanisms. Using a kinase substrate screen, we identified here MST1 and MST2 among the top substrates for fibroblast growth factor receptor 4 (FGFR4). In COS-1 cells, MST1 was phosphorylated at Y433 residue in an FGFR4 kinase activity-dependent manner, as assessed by mass spectrometry. Blockade of this phosphorylation by Y433F mutation induced MST1 activation, as indicated by increased threonine phosphorylation of MST1/2, and the downstream substrate MOB1, in FGFR4-overexpressing T47D and MDA-MB-231 breast cancer cells. Importantly, the specific knockdown or short-term inhibition of FGFR4 in endogenous models of human HER2+ breast cancer cells likewise led to increased MST1/2 activation, in conjunction with enhanced MST1 nuclear localization and generation of N-terminal cleaved and autophosphorylated MST1. Unexpectedly, MST2 was also essential for this MST1/N activation and coincident apoptosis induction, although these two kinases, as well as YAP, were differentially regulated in the breast cancer models analyzed. Moreover, pharmacological FGFR4 inhibition specifically sensitized the HER2+ MDA-MB-453 breast cancer cells, not only to HER2/EGFR and AKT/mTOR inhibitors, but also to clinically relevant apoptosis modulators. In TCGA cohort, FGFR4 overexpression correlated with abysmal HER2+ breast carcinoma patient outcome. Therefore, our results uncover a clinically relevant, targetable mechanism of FGFR4 oncogenic activity via suppression of the stress-associated MST1/2-induced apoptosis machinery in tumor cells with prominent HER/ERBB and FGFR4 signaling-driven proliferation.
Collapse
Affiliation(s)
- S Pauliina Turunen
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Pernilla von Nandelstadh
- Research Programs Unit, Genome-Scale Biology, Medicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00014, Finland
| | - Tiina Öhman
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, FI-00014, Finland
| | - Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Medicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00014, Finland
| | - Brinton Seashore-Ludlow
- Department of Oncology and Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Beatriz Martins
- Research Programs Unit, Genome-Scale Biology, Medicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00014, Finland
| | - Ville Rantanen
- Research Programs Unit, Genome-Scale Biology, Medicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00014, Finland
| | - Huini Li
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Katrin Höpfner
- Research Programs Unit, Genome-Scale Biology, Medicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00014, Finland
| | - Päivi Östling
- Department of Oncology and Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, FI-00014, Finland
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-171 77, Sweden. .,Research Programs Unit, Genome-Scale Biology, Medicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00014, Finland.
| |
Collapse
|
31
|
Bastidas Torres AN, Cats D, Mei H, Szuhai K, Willemze R, Vermeer MH, Tensen CP. Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides. Genes Chromosomes Cancer 2018; 57:653-664. [PMID: 30144205 PMCID: PMC6282857 DOI: 10.1002/gcc.22679] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/31/2023] Open
Abstract
Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma (CTCL). Causative genetic alterations in MF are unknown. The low recurrence of pathogenic small-scale mutations (ie, nucleotide substitutions, indels) in the disease, calls for the study of additional aspects of MF genetics. Here, we investigated structural genomic alterations in tumor-stage MF by integrating whole-genome sequencing and RNA-sequencing. Multiple genes with roles in cell physiology (n = 113) and metabolism (n = 92) were found to be impacted by genomic rearrangements, including 47 genes currently implicated in cancer. Fusion transcripts involving genes of interest such as DOT1L, KDM6A, LIFR, TP53, and TP63 were also observed. Additionally, we identified recurrent deletions of genes involved in cell cycle control, chromatin regulation, the JAK-STAT pathway, and the PI-3-K pathway. Remarkably, many of these deletions result from genomic rearrangements. Deletion of tumor suppressors HNRNPK and SOCS1 were the most frequent genetic alterations in MF after deletion of CDKN2A. Notably, SOCS1 deletion could be detected in early-stage MF. In agreement with the observed genomic alterations, transcriptome analysis revealed up-regulation of the cell cycle, JAK-STAT, PI-3-K and developmental pathways. Our results position inactivation of HNRNPK and SOCS1 as potential driver events in MF development.
Collapse
Affiliation(s)
| | - Davy Cats
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Tang S, Hao Y, Yuan Y, Liu R, Chen Q. Role of fibroblast growth factor receptor 4 in cancer. Cancer Sci 2018; 109:3024-3031. [PMID: 30070748 PMCID: PMC6172014 DOI: 10.1111/cas.13759] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor receptors (FGFR) play a significant role in both embryonic development and in adults. Upon binding with ligands, FGFR signaling is activated and triggers various downstream signal cascades that are implicated in diverse biological processes. Aberrant regulations of FGFR signaling are detected in numerous cancers. Although FGFR4 was discovered later than other FGFR, information on the involvement of FGFR4 in cancers has significantly increased in recent years. In this review, the recent findings in FGFR4 structure, signaling transduction, physiological function, aberrant regulations, and effects in cancers as well as its potential applications as an anticancer therapeutic target are summarized.
Collapse
Affiliation(s)
- Shuya Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yilong Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Kogan D, Grabner A, Yanucil C, Faul C, Ulaganathan VK. STAT3-enhancing germline mutations contribute to tumor-extrinsic immune evasion. J Clin Invest 2018; 128:1867-1872. [PMID: 29438108 DOI: 10.1172/jci96708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/08/2018] [Indexed: 01/11/2023] Open
Abstract
Immune evasion and the suppression of antitumor responses during cancer progression are considered hallmarks of cancer and are typically attributed to tumor-derived factors. Although the molecular basis for the crosstalk between tumor and immune cells is an area of active investigation, whether host-specific germline variants can dictate immunosuppressive mechanisms has remained a challenge to address. A commonly occurring germline mutation (c.1162G>A/rs351855 G/A) in the FGFR4 (CD334) gene enhances signal transducer and activator of transcription 3 (STAT3) signaling and is associated with poor prognosis and accelerated progression of multiple cancer types. Here, using rs351855 SNP-knockin transgenic mice and Fgfr4-knockout mice, we reveal the genotype-specific gain of immunological function of suppressing the CD8/CD4+FOXP3+CD25+ regulatory T cell ratio in vivo. Furthermore, using knockin transgenic mouse models for lung and breast cancers, we establish the host-specific, tumor-extrinsic functions of STAT3-enhancing germline variants in impeding the tumor infiltration of CD8 T cells. Thus, STAT3-enhancing germline receptor variants contribute to immune evasion through their pleiotropic functions in immune cells.
Collapse
Affiliation(s)
- Daniel Kogan
- Technische Universität München, Munich, Germany.,Ludwig-Maximilians-Universität, Munich, Germany
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Duke University, Durham, North Carolina, USA
| | - Christopher Yanucil
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
34
|
The FGFR4-388arg Variant Promotes Lung Cancer Progression by N-Cadherin Induction. Sci Rep 2018; 8:2394. [PMID: 29402970 PMCID: PMC5799167 DOI: 10.1038/s41598-018-20570-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
The FGFR4-388Arg variant has been related to poor prognosis in several types of cancer, including lung cancer. The mechanism underlying this association has not been addressed in detail in patients with this pathology. Here, we report that this FGFR4 variant induces MAPK and STAT3 activation and causes pro-oncogenic effects in NSCLC in vitro and in vivo. This variant induces the expression of EMT-related genes, such as N-cadherin, vimentin, Snail1 and Twist1. Indeed, the induction of N-cadherin protein expression by this variant is essential for its pro-tumorigenic role. The presence of the FGFR4-388Arg variant correlates with higher N-cadherin expression levels in clinical NSCLC samples and with poorer outcome in patients with FGFR expression. These results support the prognostic role of this FGFR variant in lung cancer and show that these effects may be mediated by the induction of N-cadherin expression and an EMT phenotype.
Collapse
|
35
|
Identification of BLCAP as a novel STAT3 interaction partner in bladder cancer. PLoS One 2017; 12:e0188827. [PMID: 29190807 PMCID: PMC5708675 DOI: 10.1371/journal.pone.0188827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023] Open
Abstract
Bladder cancer associated protein (Blcap) expression is commonly down-regulated in invasive bladder cancer, and may have prognostic value given that its expression is negatively correlated with patient survival. We have previously investigated the expression patterns and cellular localization of Blcap in bladder cancer, where we found that about 20% of the lesions examined displayed strong nuclear expression of Blcap, and that this phenotype was associated with overall poor disease outcome. Here we report on the analysis of possible functional associations between nuclear expression of Blcap and canonical signaling pathways. We performed serial immunohistochemistry (IHC) analysis of bladder tissue samples, with serial sections stained with phospho-specific antibodies recognizing key signaling intermediates, such as P-Stat3, P-Akt, and P-Erk1/2, among others, in an immunophenotyping approach we have established and reported previously. Using this approach, we found that nuclear localization of Blcap was associated with expression of P-Stat3. A parallel analysis, cytokine profiling of bladder tumor interstitial fluids of samples expressing (or not) Blcap, showed interleukin (IL)-6, IL-8, and monocyte chemotactic protein 1 (MCP-1) to be correlated with nuclear expression of Blcap, independently supporting a role for Stat3 signaling in localization of Blcap. Multiple indirect immunofluorescence analysis of tissue biopsies confirmed that Blcap co-localized with Stat3. Furthermore, we could also demonstrate, using an in situ proximity ligation assay that Blcap and Stat3 are in close physical proximity of each other in bladder tissue, and that Blcap physically interacts with Stat3 as determined by co-immunoprecipitation of these proteins. Our data indicates that Blcap is a novel Stat3 interaction partner and suggests a role for Blcap in the Stat3-mediated progression of precancerous lesions to invasive tumors of the bladder.
Collapse
|
36
|
Deng N, Zhou H, Fan H, Yuan Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017; 8:110635-110649. [PMID: 29299175 PMCID: PMC5746410 DOI: 10.18632/oncotarget.22372] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
A large number of genes associated with various cancer types contain single nucleotide polymorphisms (SNPs). SNPs are located in gene promoters, exons, introns as well as 5'- and 3'- untranslated regions (UTRs) and affect gene expression by different mechanisms. These mechanisms depend on the role of the genetic elements in which the individual SNPs are located. Moreover, alterations in epigenetic regulation due to gene polymorphisms add to the complexity underlying cancer susceptibility related to SNPs. In this systematic review, we discuss the various genetic and epigenetic mechanisms involved in determining cancer susceptibility related to various SNPs located in different genetic elements. We also discuss the diagnostic potential of these SNPs and the focus for future studies.
Collapse
Affiliation(s)
- Na Deng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.,Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Heng Zhou
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Hua Fan
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.,National Clinical Research Center for Digestive Diseases, Xi'an 110001, China
| |
Collapse
|
37
|
Signalling assemblies: the odds of symmetry. Biochem Soc Trans 2017; 45:599-611. [PMID: 28620024 DOI: 10.1042/bst20170009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
The assembly of proteins into complexes is fundamental to nearly all biological signalling processes. Symmetry is a dominant feature of the structures of experimentally determined protein complexes, observed in the vast majority of homomers and many heteromers. However, some asymmetric structures exist, and asymmetry also often forms transiently, intractable to traditional structure determination methods. Here, we explore the role of protein complex symmetry and asymmetry in cellular signalling, focusing on receptors, transcription factors and transmembrane channels, among other signalling assemblies. We highlight a recurrent tendency for asymmetry to be crucial for signalling function, often being associated with activated states. We conclude with a discussion of how consideration of protein complex symmetry and asymmetry has significant potential implications and applications for pharmacology and human disease.
Collapse
|
38
|
Huang YQ, Ling XH, Yuan RQ, Chen ZY, Yang SB, Huang HX, Zhong WD, Qiu SP. miR‑30c suppresses prostate cancer survival by targeting the ASF/SF2 splicing factor oncoprotein. Mol Med Rep 2017; 16:2431-2438. [PMID: 28677791 PMCID: PMC5548014 DOI: 10.3892/mmr.2017.6910] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 04/13/2017] [Indexed: 12/29/2022] Open
Abstract
Our previous study revealed that microRNA (miR) −30c represents a potential tumor suppressor gene, the expression of which is associated with decreased oncogenic potential in prostate cancer (PCa) cell lines. However, the functional role and underlying mechanisms of miR-30c in PCa remain to be fully elucidated. Reverse transcription-quantitative polymerase chain reaction and immunohistochemical analysis were used to detect the expression levels of alternative splicing factor/splicing factor 2 (ASF/SF2) in PCa tissues. A luciferase reporter assay was used to investigate whether ASF/SF2 may be a direct target gene of miR-30c. In addition, the effects of miR-30c on the proliferation and apoptosis of PCa cell lines were examined, following transfection with miR-30c mimics. Furthermore, correlation analysis was performed to investigate the relationship between the expression of miR-30c and ASF/SF2 and various clinicopathological parameters of patients with PCa. The present results demonstrated that PCa tissues exhibited higher levels of alternative splicing factor/splicing factor 2 (ASF/SF2), compared with normal tissues. In addition, miR-30c was revealed to targete the 3′-untranslated region of the ASF/SF2 gene, causing a decrease in the mRNA and protein levels of ASF/SF2. Furthermore, miR-30c was reported to decrease cell proliferation, increase the percentage of cells in the G1 cell cycle phase, and promote apoptosis through the inhibition of ASF/SF2. Following correlation analysis using patient samples, the expression of ASF/SF2 was revealed to be tightly correlated with the pathological stage of PCa and biochemical recurrence (BCR). In addition, patients with PCa exhibiting low expression levels of miR-30c and high expression of ASF/SF2 had significantly lower rates of BCR-free survival. In conclusion, the present study suggested that the tumor suppressor miR-30c may be involved in PCa tumorigenesis, possibly via targeting ASF/SF2. The combined analysis of the expression of ASF/SF2 and miR-30c may be a valuable tool for early prediction of BCR in patients with PCa following radical prostatectomy.
Collapse
Affiliation(s)
- Ya-Qiang Huang
- Department of Urology, Zhongshan Hospital of Sun Yat‑sen University, Zhongshan, Guangdong 528400, P.R. China
| | - Xiao-Hui Ling
- Reproductive Medicine Centre, Huizhou Municipal Central People's Hospital, Huizhou, Guangdong 516001, P.R. China
| | - Run-Qiang Yuan
- Department of Urology, Zhongshan Hospital of Sun Yat‑sen University, Zhongshan, Guangdong 528400, P.R. China
| | - Zhi-Yun Chen
- Reproductive Medicine Centre, Huizhou Municipal Central People's Hospital, Huizhou, Guangdong 516001, P.R. China
| | - Sheng-Bang Yang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Hong-Xing Huang
- Department of Urology, Zhongshan Hospital of Sun Yat‑sen University, Zhongshan, Guangdong 528400, P.R. China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Shao-Peng Qiu
- Department of Urology, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
39
|
Non-cell-autonomous activation of IL-6/STAT3 signaling mediates FGF19-driven hepatocarcinogenesis. Nat Commun 2017; 8:15433. [PMID: 28508871 PMCID: PMC5440856 DOI: 10.1038/ncomms15433] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC), a primary malignancy of the liver, is the second leading cause of cancer mortality worldwide. Fibroblast Growth Factor 19 (FGF19) is one of the most frequently amplified genes in HCC patients. Moreover, mice expressing an FGF19 transgene have been shown to develop HCC. However, the downstream signalling pathways that mediate FGF19-dependent tumorigenesis remain to be deciphered. Here we show that FGF19 triggers a previously unsuspected, non-cell-autonomous program to activate STAT3 signalling in hepatocytes through IL-6 produced in the liver microenvironment. We show that the hepatocyte-specific deletion of Stat3, genetic ablation of Il6, treatment with a neutralizing anti-IL-6 antibody or administration of a small-molecule JAK inhibitor, abolishes FGF19-induced tumorigenesis, while the regulatory functions of FGF19 in bile acid, glucose and energy metabolism remain intact. Collectively, these data reveal a key role for the IL-6/STAT3 axis in potentiating FGF19-driven HCC in mice, a finding which may have translational relevance in HCC pathogenesis. Fibroblast Growth Factor 19 (FGF19) neutralizing antibodies inhibit hepatocellular carcinoma (HCC) growth but have safety issues. Here, the authors show that FGF19 promotes HCC by activating STAT3 signalling via IL-6 production and that targeting IL-6 pathway abolishes FGF19-induced HCC without side effects.
Collapse
|
40
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate numerous cellular processes. Deregulation of FGFR signalling is observed in a subset of many cancers, making activated FGFRs a highly promising potential therapeutic target supported by multiple preclinical studies. However, early-phase clinical trials have produced mixed results with FGFR-targeted cancer therapies, revealing substantial complexity to targeting aberrant FGFR signalling. In this Review, we discuss the increasing understanding of the differences between diverse mechanisms of oncogenic activation of FGFR, and the factors that determine response and resistance to FGFR targeting.
Collapse
Affiliation(s)
- Irina S Babina
- Breast Cancer Now Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Nicholas C Turner
- Breast Cancer Now Research Centre, Institute of Cancer Research, London SW3 6JB, UK
- Breast Unit, The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| |
Collapse
|
41
|
Cho SH, Hong CS, Kim HN, Shin MH, Kim KR, Shim HJ, Hwang JE, Bae WK, Chung IJ. FGFR4 Arg388 Is Correlated with Poor Survival in Resected Colon Cancer Promoting Epithelial to Mesenchymal Transition. Cancer Res Treat 2016; 49:766-777. [PMID: 27857023 PMCID: PMC5512371 DOI: 10.4143/crt.2016.457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/19/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Fibroblast growth factor receptor 4 (FGFR4) plays an important role in cancer progression during tumor proliferation, invasion, and metastasis. This study evaluated the prognostic role of FGFR4 polymorphism in patients with resected colon cancer, including the underlying mechanism. MATERIALS AND METHODS FGFR4 polymorphism was characterized in patientswho received curative resection for stage III colon cancer. FGFR4-dependent signal pathways involving cell proliferation, invasion, and migration according to genotypes were also evaluated in transfected colon cancer cell lines. RESULTS Among a total of 273 patients, the GG of FGFR4 showed significantly better overall survival than the AG or AA, regardless of adjuvant treatment. In the group of AG or AA, combination of folinic acid, fluorouracil, and oxaliplatin (FOLFOX) resulted in better survival than fluorouracil/leucovorin or no adjuvant chemotherapy. However, in GG, there was no difference among treatment regimens. Using multivariate analyses, the Arg388 carriers, together with age, N stage, poor differentiation, absence of a lymphocyte response, and no adjuvant chemotherapy, had a significantly worse OS than patients with the Gly388 allele. In transfected colon cancer cells, overexpression of Arg388 significantly increased cell proliferation and changes in epithelial to mesenchymal transition markers compared with cells overexpressing the Gly388 allele. CONCLUSION The Arg388 allele of FGFR4 may be a biomarker and a candidate target for adjuvant treatment of patients with resected colon cancer.
Collapse
Affiliation(s)
- Sang Hee Cho
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Chang Soo Hong
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hee Nam Kim
- Department of Preventive Medicine, Chonnam National Medical School, Gwangju, Korea
| | - Min Ho Shin
- Department of Preventive Medicine, Chonnam National Medical School, Gwangju, Korea
| | - Ka Rham Kim
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun Jeong Shim
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jun Eul Hwang
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Woo Kyun Bae
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ik Joo Chung
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
42
|
Bharadwaj U, Kasembeli MM, Tweardy DJ. STAT3 Inhibitors in Cancer: A Comprehensive Update. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42949-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Souma N, Isakova T, Lipiszko D, Sacco RL, Elkind MSV, DeRosa JT, Silverberg SJ, Mendez AJ, Dong C, Wright CB, Wolf M. Fibroblast Growth Factor 23 and Cause-Specific Mortality in the General Population: The Northern Manhattan Study. J Clin Endocrinol Metab 2016; 101:3779-3786. [PMID: 27501282 PMCID: PMC5052338 DOI: 10.1210/jc.2016-2215] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/03/2016] [Indexed: 01/04/2023]
Abstract
CONTEXT An elevated fibroblast growth factor (FGF) 23 is an independent risk factor for cardiovascular disease and mortality in patients with kidney disease. The relationship between FGF23 and cause-specific mortality in the general population is unknown. OBJECTIVE To investigate the association of elevated FGF23 with the risk of cause-specific mortality in a racially and ethnically diverse urban general population. DESIGN, SETTING, PARTICIPANTS The Northern Manhattan Study is a population-based prospective cohort study. Residents who were > 39 years old and had no history of stroke were enrolled between 1993 and 2001. Participants with available blood samples for baseline FGF23 testing were included in the current study (n = 2525). MAIN OUTCOME MEASURES Cause-specific death events. RESULTS A total of 1198 deaths (474 vascular, 612 nonvascular, 112 unknown cause) occurred during a median follow-up of 14 years. Compared to participants in the lowest FGF23 quintile, those in the highest quintile had a 2.07-fold higher risk (95% confidence interval [CI], 1.45, 2.94) of vascular death and a 1.64-fold higher risk (95% CI, 1.22, 2.20) of nonvascular death in fully adjusted models. Higher FGF23 was independently associated with increased risk of mortality due to cancer, but only in Hispanic participants (hazard ratio per 1 unit increase in ln FGF23 of 1.87; 95% CI, 1.40, 2.50; P for interaction = .01). CONCLUSIONS Elevated FGF23 was independently associated with increased risk of vascular and nonvascular mortality in a diverse general population and with increased risk of cancer death specifically in Hispanic individuals.
Collapse
Affiliation(s)
- Nao Souma
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine (N.S., T.I., D.L., M.W.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Evelyn F. McKnight Brain Institute (R.L.S., C.D., C.B.W.) and Departments of Neurology (R.L.S., C.B.W.), Public Health Sciences (R.L.S., C.B.W.), Human Genomics (R.L.S.), Medicine (A.J.M.), and the Neuroscience Program (R.L.S., C.B.W.), Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136; and Departments of Neurology (M.S.V.E., J.T.D.) and Medicine (S.J.S.), College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine (N.S., T.I., D.L., M.W.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Evelyn F. McKnight Brain Institute (R.L.S., C.D., C.B.W.) and Departments of Neurology (R.L.S., C.B.W.), Public Health Sciences (R.L.S., C.B.W.), Human Genomics (R.L.S.), Medicine (A.J.M.), and the Neuroscience Program (R.L.S., C.B.W.), Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136; and Departments of Neurology (M.S.V.E., J.T.D.) and Medicine (S.J.S.), College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, New York 10032
| | - David Lipiszko
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine (N.S., T.I., D.L., M.W.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Evelyn F. McKnight Brain Institute (R.L.S., C.D., C.B.W.) and Departments of Neurology (R.L.S., C.B.W.), Public Health Sciences (R.L.S., C.B.W.), Human Genomics (R.L.S.), Medicine (A.J.M.), and the Neuroscience Program (R.L.S., C.B.W.), Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136; and Departments of Neurology (M.S.V.E., J.T.D.) and Medicine (S.J.S.), College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Ralph L Sacco
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine (N.S., T.I., D.L., M.W.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Evelyn F. McKnight Brain Institute (R.L.S., C.D., C.B.W.) and Departments of Neurology (R.L.S., C.B.W.), Public Health Sciences (R.L.S., C.B.W.), Human Genomics (R.L.S.), Medicine (A.J.M.), and the Neuroscience Program (R.L.S., C.B.W.), Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136; and Departments of Neurology (M.S.V.E., J.T.D.) and Medicine (S.J.S.), College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Mitchell S V Elkind
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine (N.S., T.I., D.L., M.W.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Evelyn F. McKnight Brain Institute (R.L.S., C.D., C.B.W.) and Departments of Neurology (R.L.S., C.B.W.), Public Health Sciences (R.L.S., C.B.W.), Human Genomics (R.L.S.), Medicine (A.J.M.), and the Neuroscience Program (R.L.S., C.B.W.), Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136; and Departments of Neurology (M.S.V.E., J.T.D.) and Medicine (S.J.S.), College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Janet T DeRosa
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine (N.S., T.I., D.L., M.W.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Evelyn F. McKnight Brain Institute (R.L.S., C.D., C.B.W.) and Departments of Neurology (R.L.S., C.B.W.), Public Health Sciences (R.L.S., C.B.W.), Human Genomics (R.L.S.), Medicine (A.J.M.), and the Neuroscience Program (R.L.S., C.B.W.), Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136; and Departments of Neurology (M.S.V.E., J.T.D.) and Medicine (S.J.S.), College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Shonni J Silverberg
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine (N.S., T.I., D.L., M.W.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Evelyn F. McKnight Brain Institute (R.L.S., C.D., C.B.W.) and Departments of Neurology (R.L.S., C.B.W.), Public Health Sciences (R.L.S., C.B.W.), Human Genomics (R.L.S.), Medicine (A.J.M.), and the Neuroscience Program (R.L.S., C.B.W.), Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136; and Departments of Neurology (M.S.V.E., J.T.D.) and Medicine (S.J.S.), College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Armando J Mendez
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine (N.S., T.I., D.L., M.W.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Evelyn F. McKnight Brain Institute (R.L.S., C.D., C.B.W.) and Departments of Neurology (R.L.S., C.B.W.), Public Health Sciences (R.L.S., C.B.W.), Human Genomics (R.L.S.), Medicine (A.J.M.), and the Neuroscience Program (R.L.S., C.B.W.), Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136; and Departments of Neurology (M.S.V.E., J.T.D.) and Medicine (S.J.S.), College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Chuanhui Dong
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine (N.S., T.I., D.L., M.W.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Evelyn F. McKnight Brain Institute (R.L.S., C.D., C.B.W.) and Departments of Neurology (R.L.S., C.B.W.), Public Health Sciences (R.L.S., C.B.W.), Human Genomics (R.L.S.), Medicine (A.J.M.), and the Neuroscience Program (R.L.S., C.B.W.), Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136; and Departments of Neurology (M.S.V.E., J.T.D.) and Medicine (S.J.S.), College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Clinton B Wright
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine (N.S., T.I., D.L., M.W.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Evelyn F. McKnight Brain Institute (R.L.S., C.D., C.B.W.) and Departments of Neurology (R.L.S., C.B.W.), Public Health Sciences (R.L.S., C.B.W.), Human Genomics (R.L.S.), Medicine (A.J.M.), and the Neuroscience Program (R.L.S., C.B.W.), Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136; and Departments of Neurology (M.S.V.E., J.T.D.) and Medicine (S.J.S.), College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Myles Wolf
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine (N.S., T.I., D.L., M.W.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Evelyn F. McKnight Brain Institute (R.L.S., C.D., C.B.W.) and Departments of Neurology (R.L.S., C.B.W.), Public Health Sciences (R.L.S., C.B.W.), Human Genomics (R.L.S.), Medicine (A.J.M.), and the Neuroscience Program (R.L.S., C.B.W.), Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136; and Departments of Neurology (M.S.V.E., J.T.D.) and Medicine (S.J.S.), College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, New York 10032
| |
Collapse
|
44
|
Haugsten EM, Sørensen V, Kunova Bosakova M, de Souza GA, Krejci P, Wiedlocha A, Wesche J. Proximity Labeling Reveals Molecular Determinants of FGFR4 Endosomal Transport. J Proteome Res 2016; 15:3841-3855. [DOI: 10.1021/acs.jproteome.6b00652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ellen Margrethe Haugsten
- Department
of Molecular Cell Biology, Institute for Cancer Research, The Norwegian
Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Centre
for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Vigdis Sørensen
- Department
of Molecular Cell Biology, Institute for Cancer Research, The Norwegian
Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Centre
for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Department
of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Michaela Kunova Bosakova
- Department
of Biology, Faculty of Medicine, Masaryk University, Kamenice
5, 625 00 Brno-Bohunice, Czech Republic
| | - Gustavo Antonio de Souza
- Department
of Immunology, Oslo University Hospital−Rikshospitalet and University of Oslo, 0027 Oslo, Norway
- The
Brain Institute, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN 59078, Brazil
| | - Pavel Krejci
- Department
of Biology, Faculty of Medicine, Masaryk University, Kamenice
5, 625 00 Brno-Bohunice, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital, 656
91 Brno, Czech Republic
| | - Antoni Wiedlocha
- Department
of Molecular Cell Biology, Institute for Cancer Research, The Norwegian
Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Centre
for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Jørgen Wesche
- Department
of Molecular Cell Biology, Institute for Cancer Research, The Norwegian
Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Centre
for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| |
Collapse
|
45
|
Chen L, Lei Z, Ma X, Huang Q, Zhang X, Zhang Y, Hao P, Yang M, Zhao X, Chen J, Liu G, Zheng T. Prognostic significance of fibroblast growth factor receptor 4 polymorphisms on biochemical recurrence after radical prostatectomy in a Chinese population. Sci Rep 2016; 6:33604. [PMID: 27640814 PMCID: PMC5027536 DOI: 10.1038/srep33604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane receptor with ligand-induced tyrosine kinase activity and is involved in various biological and pathological processes. Several polymorphisms of FGFR4 are associated with the incidence and mortality of numerous cancers, including prostate cancer. In this study, we investigated whether the polymorphisms of FGFR4 influence the biochemical recurrence of prostate cancer in Chinese men after radical prostatectomy. Three common polymorphisms (rs1966265, rs2011077, and rs351855) of FGFR4 were genotyped from 346 patients with prostate cancer by using the Sequenom MassARRAY system. Kaplan–Meier curves and Cox proportional hazard models were used for survival analysis. Results showed biochemical recurrence (BCR) free survival was significantly affected by the genotypes of rs351855 but not influenced by rs1966265 and rs2011077. After adjusting for other variables in multivariable analysis, patients with rs351855 AA/AG genotypes showed significantly worse BCR-free survival than those with the GG genotype (HR = 1.873; 95% CI, 1.209–2.901; P = 0.005). Hence, FGFR4 rs351855 could be a novel independent prognostic factor of BCR after radical prostatectomy in the Chinese population. This functional polymorphism may also provide a basis for surveillance programs. Additional large-scale studies must be performed to validate the significance of this polymorphism in prostate cancer.
Collapse
Affiliation(s)
- Luyao Chen
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Zhengwei Lei
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Qingbo Huang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Yong Zhang
- Department of Urology, Puai Hospital, Wuhan, China
| | - Peng Hao
- Department of Urology, Puai Hospital, Wuhan, China
| | | | - Xuetao Zhao
- Department of Urology, Puai Hospital, Wuhan, China
| | - Jun Chen
- Department of Urology, Puai Hospital, Wuhan, China
| | - Gongxue Liu
- Department of Urology, Puai Hospital, Wuhan, China
| | - Tao Zheng
- Department of Urology, Puai Hospital, Wuhan, China
| |
Collapse
|
46
|
Abstract
The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo.
Collapse
Affiliation(s)
- J Richard Brewer
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Pierre Mazot
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
47
|
Ulaganathan VK, Ullrich A. Membrane-proximal binding of STAT3 revealed by cancer-associated receptor variants. Mol Cell Oncol 2016; 3:e1145176. [PMID: 27314095 DOI: 10.1080/23723556.2016.1145176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 01/16/2016] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
Abstract
In cancer biology, somatic mutations in the extracellular (ligand binding) and cytosolic (functional/catalytic) domains are pursued with great interest. However, in our recent publication we report that germline mutations in the membrane-proximal region of type I receptors are able to modulate the amplitude of signal transducer and activator of transcription 3 (STAT3) signaling in cells. This unexpected finding has implications for the prognosis of heritable cancer.
Collapse
Affiliation(s)
- Vijay K Ulaganathan
- Max Planck Institute for Biochemistry, Department of Molecular Biology , Martinsried, Germany
| | - Axel Ullrich
- Max Planck Institute for Biochemistry, Department of Molecular Biology , Martinsried, Germany
| |
Collapse
|