1
|
Kunath BJ, De Rudder C, Laczny CC, Letellier E, Wilmes P. The oral-gut microbiome axis in health and disease. Nat Rev Microbiol 2024; 22:791-805. [PMID: 39039286 DOI: 10.1038/s41579-024-01075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Collapse
Affiliation(s)
- Benoit J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Charlotte De Rudder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
2
|
Zhu T, Chen J, Zhang M, Tang Z, Tong J, Hao X, Li H, Xu J, Yang J. Tanshinone IIA Exerts Cardioprotective Effects Through Improving Gut-Brain Axis Post-Myocardial Infarction. Cardiovasc Toxicol 2024; 24:1317-1334. [PMID: 39377990 DOI: 10.1007/s12012-024-09928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024]
Abstract
Myocardial infarction (MI) is a lethal cardiovascular disease worldwide. Emerging evidence has revealed the critical role of gut dysbiosis and impaired gut-brain axis in the pathological progression of MI. Tanshinone IIA (Tan IIA), a traditional Chinese medicine, has been demonstrated to exert therapeutic effects for MI. However, the effects of Tan IIA on gut-brain communication and its potential mechanisms post-MI are still unclear. In this study, we initially found that Tan IIA significantly reduced myocardial inflammation, apoptosis and fibrosis, therefore alleviating hypertrophy and improving cardiac function following MI, suggesting the cardioprotective effect of Tan IIA against MI. Additionally, we observed that Tan IIA improved the gut microbiota as evidenced by changing the α-diversity and β-diversity, and reduced histopathological impairments by decreasing inflammation and permeability in the intestinal tissues, indicating the substantial improvement of Tan IIA in gut function post-MI. Lastly, Tan IIA notably reduced lipopolysaccharides (LPS) level in serum, inflammation responses in paraventricular nucleus (PVN) and sympathetic hyperexcitability following MI, suggesting that restoration of Tan IIA on MI-induced brain alterations. Collectively, these results indicated that the cardioprotective effects of Tan IIA against MI might be associated with improvement in gut-brain axis, and LPS might be the critical factor linking gut and brain. Mechanically, Tan IIA-induced decreased intestinal damage reduced LPS release into serum, and reduced serum LPS contributes to decreased neuroinflammation with PVN and sympathetic inactivation, therefore protecting the myocardium against MI-induced injury.
Collapse
Affiliation(s)
- Tong Zhu
- The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710161, Shaanxi, China
| | - Jie Chen
- The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710161, Shaanxi, China
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Mingxia Zhang
- The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710161, Shaanxi, China
| | - Zheng Tang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Jie Tong
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiuli Hao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hongbao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Jin Xu
- The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710161, Shaanxi, China.
| | - Jinbao Yang
- The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710161, Shaanxi, China.
| |
Collapse
|
3
|
Liu J, Wang X, Huang L, Lin X, Yin W, Chen M. Causal relationships between gut microbiome and aplastic anemia: a Mendelian randomization analysis. Hematology 2024; 29:2399421. [PMID: 39240224 DOI: 10.1080/16078454.2024.2399421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Previous observational studies have hinted at a potential correlation between aplastic anemia (AA) and the gut microbiome. However, the precise nature of this bidirectional causal relationship remains uncertain. METHODS We conducted a bidirectional two-sample Mendelian randomization (MR) study to investigate the potential causal link between the gut microbiome and AA. Statistical analysis of the gut microbiome was based on data from an extensive meta-analysis (genome-wide association study) conducted by the MiBioGen Alliance, involving 18,340 samples. Summary statistical data for AA were obtained from the Integrative Epidemiology Unit database. Single -nucleotide polymorphisms (SNPs) were estimated and summarized using inverse variance weighted (IVW), MR Egger, and weighted median methods in the bidirectional MR analysis. Cochran's Q test, MR Egger intercept test, and sensitivity analysis were employed to assess SNP heterogeneity, horizontal pleiotropy, and stability. RESULTS The IVW analysis revealed a significant correlation between AA and 10 bacterial taxa. However, there is currently insufficient evidence to support a causal relationship between AA and the composition of gut microbiome. CONCLUSION This study suggests a causal connection between the prevalence of specific gut microbiome and AA. Further investigation into the interaction between particular bacterial communities and AA could enhance efforts in prevention, monitoring, and treatment of the condition.
Collapse
Affiliation(s)
- Juan Liu
- Department of Haematology, Suining Central Hospital, Suining, People's Republic of China
| | - Xin Wang
- Department of Haematology, Suining Central Hospital, Suining, People's Republic of China
| | - Liping Huang
- Department of Haematology, Suining Central Hospital, Suining, People's Republic of China
| | - Xinlu Lin
- Department of Haematology, Suining Central Hospital, Suining, People's Republic of China
| | - Wei Yin
- Department of Haematology, Suining Central Hospital, Suining, People's Republic of China
| | - Mingliang Chen
- Department of Hepatobiliary Surgery, Suining Central Hospital, Suining, People's Republic of China
| |
Collapse
|
4
|
Liu YH, Chen J, Chen X, Liu H. Factors of faecal microbiota transplantation applied to cancer management. J Drug Target 2024; 32:101-114. [PMID: 38174845 DOI: 10.1080/1061186x.2023.2299724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 01/05/2024]
Abstract
The homeostasis of the microbiota is essential for human health. In particular, the gut microbiota plays a critical role in the regulation of the immune system. Thus, faecal microbiota transplantation (FMT), a technology that has rapidly developed in the last decade, has specifically been utilised for the treatment of intestinal inflammation and has recently been found to be able to treat tumours in combination with immunotherapy. FMT has become a breakthrough in enhancing the response rate to immunotherapy in cancer patients by altering the composition of the patient's gut microbiota. This review discusses the mechanisms of faecal microorganism effects on tumour development, drug treatment efficacy, and adverse effects and describes the recent clinical research trials on FMT. Moreover, the factors influencing the efficacy and safety of FMT are described. We summarise the possibilities of faecal transplantation in the treatment of tumours and its complications and propose directions to explore the development of FMT.
Collapse
Affiliation(s)
- Yi-Huang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Zhang M, Cui Y, Liu P, Mo R, Wang H, Li Y, Wu Y. Oat β-(1 → 3, 1 → 4)-d-glucan alleviates food allergy-induced colonic injury in mice by increasing Lachnospiraceae abundance and butyrate production. Carbohydr Polym 2024; 344:122535. [PMID: 39218555 DOI: 10.1016/j.carbpol.2024.122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024]
Abstract
Oat β-(1 → 3, 1 → 4)-d-glucan (OBG), a linear polysaccharide primarily found in oat bran, has been demonstrated to possess immunomodulatory properties and regulate gut microbiota. This study aimed to investigate the impact of low molecular weight (Mw) OBG (155.2 kDa) on colonic injury and allergic symptoms induced by food allergy (FA), and to explore its potential mechanism. In Experiment 1, results indicated that oral OBG improved colonic inflammation and epithelial barrier, and significantly relieved allergy symptoms. Importantly, the OBG supplement altered the gut microbiota composition, particularly increasing the abundance of Lachnospiraceae and its genera, and promoted the production of short-chain fatty acids, especially butyrate. However, in Experiment 2, the gut microbial depletion eliminated these protective effects of OBG on the colon in allergic mice. Further, in Experiment 3, fecal microbiota transplantation and sterile fecal filtrate transfer directly validated the role of OBG-mediated gut microbiota and its metabolites in relieving FA and its induced colonic injury. Our findings suggest that low Mw OBG can alleviate FA-induced colonic damage by increasing Lachnospiraceae abundance and butyrate production, and provide novel insights into the health benefits and mechanisms of dietary polysaccharide intervention for FA.
Collapse
Affiliation(s)
- Mingrui Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yingyue Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Pan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ruixia Mo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yingying Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yi Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Kuo CL, Hsin-Hsien Yeh S, Chang TM, I-Chin Wei A, Chen WJ, Chu HF, Tseng AL, Lin PY, Lin ZC, Peng KT, Liu JF. Bacillus coagulans BACO-17 ameliorates in vitro and in vivo progression of Rheumatoid arthritis. Int Immunopharmacol 2024; 141:112863. [PMID: 39146779 DOI: 10.1016/j.intimp.2024.112863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes persistent inflammation involving the joints, cartilage, and synovium. In individuals with RA, alterations in the composition of intestinal bacteria suggest the vital role of gut microbiota in immune dysfunction. Multiple therapies commonly used to treat RA can also alter the diversity of gut microbiota, further suggesting the modulation of gut microbiota as a prevention or treatment for RA. Therefore, a better understanding of the changes in the gut microbiota that accompany RA should facilitate the development of novel therapeutic approaches. In this study, B. coagulans BACO-17 not only significantly reduced paw swelling, arthritis scores, and hind paw and forepaw thicknesses but also protected articular cartilage and the synovium against RA degeneration, with a corresponding downregulation of TNF-α expression. The inhibition or even reversing of RA progression highlights B. coagulans BACO-17 as a novel therapeutic for RA worth investigating.
Collapse
Affiliation(s)
- Chun-Lin Kuo
- Department of Surgery, Tri-Service General Hospital Keelung Branch, Keelung, Taiwan; Department of Orthopedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Skye Hsin-Hsien Yeh
- School of Medicine, National Defense Medical Center, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Tsung-Ming Chang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Augusta I-Chin Wei
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chen
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan; Graduate Institute of Management, Minghsin University of Science and Technology, Hsinchu, Taiwan
| | - Hui-Fang Chu
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan
| | - Ai-Lun Tseng
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan
| | - Pai-Yin Lin
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan.
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
7
|
Chen M, Wang R, Wang T. Gut microbiota and skin pathologies: Mechanism of the gut-skin axis in atopic dermatitis and psoriasis. Int Immunopharmacol 2024; 141:112658. [PMID: 39137625 DOI: 10.1016/j.intimp.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Atopic dermatitis (AD) and psoriasis are chronic skin diseases with a global impact, posing significant challenges to public health systems and severely affecting patients' quality of life. This review delves into the key role of the gut microbiota in these diseases, emphasizing the importance of the gut-skin axis in inflammatory mediators and immune regulation and revealing a complex bidirectional communication system. We comprehensively assessed the pathogenesis, clinical manifestations, and treatment strategies for AD and psoriasis, with a particular focus on how the gut microbiota and their metabolites influence disease progression via the gut-skin axis. In addition, personalized treatment plans based on individual patient microbiome characteristics have been proposed, offering new perspectives for future treatment approaches. We call for enhanced interdisciplinary cooperation to further explore the interactions between gut microbiota and skin diseases and to assess the potential of drugs and natural products in modulating the gut-skin axis, aiming to advance the treatment of skin diseases.
Collapse
Affiliation(s)
- Meng Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Rui Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| | - Ting Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|
8
|
Nishijima S, Stankevic E, Aasmets O, Schmidt TSB, Nagata N, Keller MI, Ferretti P, Juel HB, Fullam A, Robbani SM, Schudoma C, Hansen JK, Holm LA, Israelsen M, Schierwagen R, Torp N, Telzerow A, Hercog R, Kandels S, Hazenbrink DHM, Arumugam M, Bendtsen F, Brøns C, Fonvig CE, Holm JC, Nielsen T, Pedersen JS, Thiele MS, Trebicka J, Org E, Krag A, Hansen T, Kuhn M, Bork P. Fecal microbial load is a major determinant of gut microbiome variation and a confounder for disease associations. Cell 2024:S0092-8674(24)01204-2. [PMID: 39541968 DOI: 10.1016/j.cell.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
The microbiota in individual habitats differ in both relative composition and absolute abundance. While sequencing approaches determine the relative abundances of taxa and genes, they do not provide information on their absolute abundances. Here, we developed a machine-learning approach to predict fecal microbial loads (microbial cells per gram) solely from relative abundance data. Applying our prediction model to a large-scale metagenomic dataset (n = 34,539), we demonstrated that microbial load is the major determinant of gut microbiome variation and is associated with numerous host factors, including age, diet, and medication. We further found that for several diseases, changes in microbial load, rather than the disease condition itself, more strongly explained alterations in patients' gut microbiome. Adjusting for this effect substantially reduced the statistical significance of the majority of disease-associated species. Our analysis reveals that the fecal microbial load is a major confounder in microbiome studies, highlighting its importance for understanding microbiome variation in health and disease.
Collapse
Affiliation(s)
- Suguru Nishijima
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Evelina Stankevic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Aasmets
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Thomas S B Schmidt
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Naoyoshi Nagata
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Marisa Isabell Keller
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pamela Ferretti
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anthony Fullam
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Christian Schudoma
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johanne Kragh Hansen
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - Mads Israelsen
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Robert Schierwagen
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Nikolaj Torp
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Anja Telzerow
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rajna Hercog
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stefanie Kandels
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Diënty H M Hazenbrink
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Charlotte Brøns
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Cilius Esmann Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Medical department, University Hospital Zeeland, Køge, Denmark
| | - Julie Steen Pedersen
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Maja Sofie Thiele
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany; European Foundation for the Study of Chronic Liver Failure, EFCLIF, Barcelona, Spain
| | - Elin Org
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Aleksander Krag
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kuhn
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Peer Bork
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
9
|
Yin T, Zhang X, Xiong Y, Li B, Guo D, Sha Z, Lin X, Wu H. Exploring gut microbial metabolites as key players in inhibition of cancer progression: Mechanisms and therapeutic implications. Microbiol Res 2024; 288:127871. [PMID: 39137590 DOI: 10.1016/j.micres.2024.127871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
The gut microbiota plays a critical role in numerous biochemical processes essential for human health, such as metabolic regulation and immune system modulation. An increasing number of research suggests a strong association between the gut microbiota and carcinogenesis. The diverse metabolites produced by gut microbiota can modulate cellular gene expression, cell cycle dynamics, apoptosis, and immune system functions, thereby exerting a profound influence on cancer development and progression. A healthy gut microbiota promotes substance metabolism, stimulates immune responses, and thereby maintains the long-term homeostasis of the intestinal microenvironment. When the gut microbiota becomes imbalanced and disrupts the homeostasis of the intestinal microenvironment, the risk of various diseases increases. This review aims to elucidate the impact of gut microbial metabolites on cancer initiation and progression, focusing on short-chain fatty acids (SCFAs), polyamines (PAs), hydrogen sulfide (H2S), secondary bile acids (SBAs), and microbial tryptophan catabolites (MTCs). By detailing the roles and molecular mechanisms of these metabolites in cancer pathogenesis and therapy, this article sheds light on dual effects on the host at different concentrations of metabolites and offers new insights into cancer research.
Collapse
Affiliation(s)
- Tianxiang Yin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiang Zhang
- Medical School, Yan'an University, Yan'an 716000, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyuan Lin
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
10
|
Wang C, Feng Q, Shi S, Qin Y, Lu H, Zhang P, Liu J, Chen B. The Rational Engineered Bacteria Based Biohybrid Living System for Tumor Therapy. Adv Healthc Mater 2024; 13:e2401538. [PMID: 39051784 DOI: 10.1002/adhm.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Living therapy based on bacterial cells has gained increasing attention for their applications in tumor treatments. Bacterial cells can naturally target to tumor sites and active the innate immunological responses. The intrinsic advantages of bacteria attribute to the development of biohybrid living carriers for targeting delivery toward hypoxic environments. The rationally engineered bacterial cells integrate various functions to enhance the tumor therapy and reduce toxic side effects. In this review, the antitumor effects of bacteria and their application are discussed as living therapeutic agents across multiple antitumor platforms. The various kinds of bacteria used for cancer therapy are first introduced and demonstrated the mechanism of antitumor effects as well as the immunological effects. Additionally, this study focused on the genetically modified bacteria for the production of antitumor agents as living delivery system to treat cancer. The combination of living bacterial cells with functional nanomaterials is then discussed in the cancer treatments. In brief, the rational design of living therapy based on bacterial cells highlighted a rapid development in tumor therapy and pointed out the potentials in clinical applications.
Collapse
Affiliation(s)
- Chen Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Qiliner Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Si Shi
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yuxuan Qin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Hongli Lu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
11
|
Kabil A, Nayyar N, Brassard J, Li Y, Chopra S, Hughes MR, McNagny KM. Microbial intestinal dysbiosis drives long-term allergic susceptibility by sculpting an ILC2-B1 cell-innate IgE axis. J Allergy Clin Immunol 2024; 154:1260-1276.e9. [PMID: 39134158 DOI: 10.1016/j.jaci.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND The abundance and diversity of intestinal commensal bacteria influence systemic immunity with impact on disease susceptibility and severity. For example, loss of short chain fatty acid (SCFA)-fermenting bacteria in early life (humans and mice) is associated with enhanced type 2 immune responses in peripheral tissues including the lung. OBJECTIVE Our goal was to reveal the microbiome-dependent cellular and molecular mechanisms driving enhanced susceptibility to type 2 allergic lung disease. METHODS We used low-dose vancomycin to selectively deplete SCFA-fermenting bacteria in wild-type mice. We then examined the frequency and activation status of innate and adaptive immune cell lineages with and without SCFA supplementation. Finally, we used ILC2-deficient and signal transducer and activator of transcription 6 (STAT6)-deficient transgenic mouse strains to delineate the cellular and cytokine pathways leading to enhanced allergic disease susceptibility. RESULTS Mice with vancomycin-induced dysbiosis exhibited a 2-fold increase in lung ILC2 primed to produce elevated levels of IL-2, -5, and -13. In addition, upon IL-33 inhalation, mouse lung ILC2 displayed a novel ability to produce high levels of IL-4. These expanded and primed ILC2s drove B1 cell expansion and IL-4-dependent production of IgE that in turn led to exacerbated allergic inflammation. Importantly, these enhanced lung inflammatory phenotypes in mice with vancomycin-induced dysbiosis were reversed by administration of dietary SCFA (specifically butyrate). CONCLUSION SCFAs regulate an ILC2-B1 cell-IgE axis. Early-life administration of vancomycin, an antibiotic known to deplete SCFA-fermenting gut bacteria, primes and amplifies this axis and leads to lifelong enhanced susceptibility to type 2 allergic lung disease.
Collapse
Affiliation(s)
- Ahmed Kabil
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Natalia Nayyar
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julyanne Brassard
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yicong Li
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sameeksha Chopra
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Hughes
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Kelly M McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada; Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Dong Y, Wang Y, Zhang F, Ma J, Li M, Liu W, Yao J, Sun M, Cao Y, Liu Y, Ying L, Yang Y, Yang Y, She G. Polysaccharides from Gaultheria leucocarpa var. yunnanensis (DBZP) alleviates rheumatoid arthritis through ameliorating gut microbiota. Int J Biol Macromol 2024; 281:136250. [PMID: 39482128 DOI: 10.1016/j.ijbiomac.2024.136250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Gaultheria leucocarpa var. yunnanensis (Dianbaizhu) is a traditional Chinese herb for rheumatoid arthritis (RA). However, its macromolecular components have always been overlooked. This study aimed to investigate the chemical composition and effect on improving RA of polysaccharides from Dianbaizhu (DBZP). The results showed the yield of DBZP was 4.07 % ± 0.03 %, and it was composed of Mannose (6.63 %), ribose (1.33 %), rhamnose (4.53 %), glucuronic acid (2.95 %), galacturonic acid (32.29 %), glucose (13.78 %), galactose (22.97 %), xylose (3.94 %) and arabinose (11.59 %), with a large molecular weight distribution range. DBZP treatment could reduce the paws thickness and arthritis scores of collagen-induced arthritis (CIA) mice, and improve inflammatory cell infiltration, synovial hyperplasia, bone erosion, and deterioration. The abundance of several specific bacteria, such as Lactobacillus, Bacteroides, Alistipes, Mucispirillum, and Candidatus_Saccharimonas, and some metabolites in feces or urine, such as 11beta-hydroxytestosterone, pregnanediol 3-O-glucuronide, p-cresol sulfate and several amino acids and peptides, was also altered. The process of DBZP alleviating RA through gut microbiota involves affecting the digestion and metabolism of carbohydrates and protein, altering sex hormones levels, and regulating intestinal immune function, such as the differentiation and signaling of Th17 cells. These findings suggest that DBZP possesses a protective effect on CIA in mice via modulating gut microbiota.
Collapse
Affiliation(s)
- Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yunzi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Letian Ying
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuqing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongqi Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
13
|
Hong Y, Zhang C, Shen K, Dong X, Chen B. Genetically predicted plasma metabolites mediate the causal relationship between gut microbiota and primary immune thrombocytopenia (ITP). Front Microbiol 2024; 15:1447729. [PMID: 39529668 PMCID: PMC11551717 DOI: 10.3389/fmicb.2024.1447729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background Primary immune thrombocytopenia (ITP) is an immune-mediated hematologic disorder characterized by a reduction in platelet count, increasing the risk of bleeding. Recent studies have indicated a close association between alterations in gut microbiota and the development of ITP. However, the mechanisms by which gut microbiota influence the occurrence and progression of ITP through plasma metabolites remain poorly understood. Evidence suggests extensive interactions between gut microbiota and plasma metabolites, implying a potential role for gut microbiota in influencing ITP through alterations in plasma metabolites, which requires further investigation. Methods In this study, summarized GWAS data (including 211 gut microbiota taxa, 1,400 plasma metabolites or ratios, and an ITP patient cohort) were retrieved from the MiBioGen and GWAS Catalog databases. Using a two-sample Mendelian randomization (MR) approach, we screened gut microbiota and plasma metabolites potentially causally related to ITP. We further identified plasma metabolites serving as mediators through which gut microbiota affect ITP and calculated the strength of the mediation effect. To ensure result stability, we primarily used the inverse variance weighted (IVW) method as the main judgment index. We also utilized MR Egger and inverse variance weighted methods to detect heterogeneity in the results, and employed MR-Egger and MR-PRESSO methods to assess the presence of pleiotropy. Results Though two-sample MR analysis, 8 gut microbiota taxa were found to have causal relationships with ITP. After excluding six plasma metabolites with pleiotropy, 39 plasma metabolites were found to be causally related to ITP (P < 0.05). Eleven plasma metabolites were identified as having causal relationships between gut microbiota and plasma metabolites. Finally, using the delta method, it was calculated that Sphingomyelin levels (8.0%, 95%CI: 0.9% to 11.5%, P = 0.047) and Glucose-to-mannose ratio (6.5%, 95%CI: 0.7% to 9.5%, P = 0.039) are intermediates for Intestinimonas influencing ITP, while Bilirubin (Z,Z) to etiocholanolone glucuronide ratio (5.6%, 95%CI: 4.7% to 6.9%, P = 0.043) is an intermediate for Senegalimassilia influencing ITP. Conclusion Gut microbiota can influence the development of ITP through changes in plasma metabolites. Sphingomyelin levels, Glucose-to-mannose ratio, and Bilirubin (Z,Z) to etiocholanolone glucuronide ratio are newly discovered intermediates through which gut microbiota influence ITP, providing potential indicators and targets for clinical diagnosis and treatment. This study highlights the intricate relationship between gut microbiota and plasma metabolites in the context of ITP, suggesting new avenues for clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Xiaoqing Dong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Qiu L, Yan C, Yang Y, Liu K, Yin Y, Zhang Y, Lei Y, Jia X, Li G. Morin alleviates DSS-induced ulcerative colitis in mice via inhibition of inflammation and modulation of intestinal microbiota. Int Immunopharmacol 2024; 140:112846. [PMID: 39121607 DOI: 10.1016/j.intimp.2024.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition with recurrent and challenging symptoms. Effective treatments are lacking, making UC management a critical research area. Morin (MO), a flavonoid from the Moraceae family, shows potential as an anti-UC agent, but its mechanisms are not fully understood. Using a dextran sulfate sodium (DSS)-induced UC mouse model, we employed network pharmacology to predict MO's therapeutic effects. Assessments included changes in body weight, disease activity index (DAI), and colon length. Immunofluorescence, hematoxylin and eosin (H&E), and PAS staining evaluated colon damage. ELISA and western blot analyzed inflammatory factors, tight junction (TJ)-associated proteins (Claudin-3, Occludin, ZO-1), and Mitogen-Activated Protein Kinase (MAPK)/ Nuclear Factor kappa B (NF-κB) pathways. 16S rRNA sequencing assessed gut microbiota diversity, confirmed by MO's modulation via Fecal Microbial Transplantation (FMT). Early MO intervention reduced UC severity by improving weight, DAI scores, and colon length, increasing goblet cells, enhancing barrier function, and inhibiting MAPK/NF-κB pathways. MO enriched gut microbiota, favoring beneficial bacteria like Muribaculaceae and Erysipelotrichaceae while reducing harmful Erysipelotrichaceae and Muribaculaceae. This study highlights MO's potential in UC management through inflammation control, mucosal integrity maintenance, and gut flora modulation.
Collapse
Affiliation(s)
- Li Qiu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chengqiu Yan
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yue Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Kunjian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Yin
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yiwen Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuting Lei
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangwen Jia
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guofeng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Anorectal Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen 518100, China.
| |
Collapse
|
15
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
16
|
Sato H, Taketomi Y, Murase R, Park J, Hosomi K, Sanada TJ, Mizuguchi K, Arita M, Kunisawa J, Murakami M. Group X phospholipase A 2 links colonic lipid homeostasis to systemic metabolism via host-microbiota interaction. Cell Rep 2024; 43:114752. [PMID: 39298315 DOI: 10.1016/j.celrep.2024.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The gut microbiota influences physiological functions of the host, ranging from the maintenance of local gut homeostasis to systemic immunity and metabolism. Secreted phospholipase A2 group X (sPLA2-X) is abundantly expressed in colonic epithelial cells but is barely detectable in metabolic and immune tissues. Despite this distribution, sPLA2-X-deficient (Pla2g10-/-) mice displayed variable obesity-related phenotypes that were abrogated after treatment with antibiotics or cohousing with Pla2g10+/+ mice, suggesting the involvement of the gut microbiota. Under housing conditions where Pla2g10-/- mice showed aggravation of diet-induced obesity and insulin resistance, they displayed increased colonic inflammation and epithelial damage, reduced production of polyunsaturated fatty acids (PUFAs) and lysophospholipids, decreased abundance of several Clostridium species, and reduced levels of short-chain fatty acids (SCFAs). These obesity-related phenotypes in Pla2g10-/- mice were reversed by dietary supplementation with ω3 PUFAs or SCFAs. Thus, colonic sPLA2-X orchestrates ω3 PUFA-SCFA interplay via modulation of the gut microbiota, thereby secondarily affecting systemic metabolism.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Remi Murase
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Jonguk Park
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, Osaka 567-0085, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Takayuki Jujo Sanada
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, Osaka 567-0085, Japan; Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
17
|
Huang Q, Xing J, Tang F, Ren J, Wang C, Xue F. Recombinant Lactiplantibacilllus plantarum modulate gut microbial diversity and function. BMC Microbiol 2024; 24:423. [PMID: 39438791 PMCID: PMC11494753 DOI: 10.1186/s12866-024-03570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gut microbes are important regulators of host health and can also function as disease indicators. Lactiplantibacilllus plantarum(L. plantarum)used as express and delivery vaccines for mucosal immunity have been shown to activate specific immune responses in numerous studies. RESULTS The interaction between recombinant L. plantarum and the gut microbiota was investigated in this study. The results indicated a change in the amount of gut OTU by recombinant L. plantarum. Recombinant L. plantarum dramatically boosted the species diversity of gut bacteria based on the Shannon-Wiener index. Beta diversity analysis showed that microbial structure was changed by recombinant L. plantarum. Furthermore, recombinant NC8 L. plantarum expressing a fusion between the P14.5 protein of the African swine fever virus and IL-33 enhanced the functions of gut bacteria in metabolism and immune regulation. Increased levels of IgG and IgG1 in serum and sIgA in feces, as well as enrichment of CD4+ T cells and IgA+ B cells, indicated that the gut microbiota exerted an immunomodulatory role when mediated by recombinant L. plantarum. CONCLUSIONS These results revealed that recombinant L. plantarum exerted its potential role in the gut microbiota and gut immunity.These fndings contribute to a broader understanding and utilization of L. plantarum bacteria in various therapeutic applications.
Collapse
Affiliation(s)
- Quntao Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhong Xing
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunfeng Wang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
van Gogh M, Louwers JM, Celli A, Gräve S, Viveen MC, Bosch S, de Boer NKH, Verheijden RJ, Suijkerbuijk KPM, Brand EC, Top J, Oldenburg B, de Zoete MR. Next-generation IgA-SEQ allows for high-throughput, anaerobic, and metagenomic assessment of IgA-coated bacteria. MICROBIOME 2024; 12:211. [PMID: 39434178 PMCID: PMC11492651 DOI: 10.1186/s40168-024-01923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The intestinal microbiota plays a significant role in maintaining systemic and intestinal homeostasis, but can also influence diseases such as inflammatory bowel disease (IBD) and cancer. Certain bacterial species within the intestinal tract can chronically activate the immune system, leading to low-grade intestinal inflammation. As a result, plasma cells produce high levels of secretory antigen-specific immunoglobulin A (IgA), which coats the immunostimulatory bacteria. This IgA immune response against intestinal bacteria may be associated with the maintenance of homeostasis and health, as well as disease. Unraveling this dichotomy and identifying the immunostimulatory bacteria is crucial for understanding the relationship between the intestinal microbiota and the immune system, and their role in health and disease. IgA-SEQ technology has successfully identified immunostimulatory, IgA-coated bacteria from fecal material. However, the original technology is time-consuming and has limited downstream applications. In this study, we aimed to develop a next-generation, high-throughput, magnet-based sorting approach (ng-IgA-SEQ) to overcome the limitations of the original IgA-SEQ protocol. RESULTS We show, in various settings of complexity ranging from simple bacterial mixtures to human fecal samples, that our magnetic 96-well plate-based ng-IgA-SEQ protocol is highly efficient at sorting and identifying IgA-coated bacteria in a high-throughput and time efficient manner. Furthermore, we performed a comparative analysis between different IgA-SEQ protocols, highlighting that the original FACS-based IgA-SEQ approach overlooks certain nuances of IgA-coated bacteria, due to the low yield of sorted bacteria. Additionally, magnetic-based ng-IgA-SEQ allows for novel downstream applications. Firstly, as a proof-of-concept, we performed metagenomic shotgun sequencing on 10 human fecal samples to identify IgA-coated bacterial strains and associated pathways and CAZymes. Secondly, we successfully isolated and cultured IgA-coated bacteria by performing the isolation protocol under anaerobic conditions. CONCLUSIONS Our magnetic 96-well plate-based high-throughput next-generation IgA-SEQ technology efficiently identifies a great number of IgA-coated bacteria from fecal samples. This paves the way for analyzing large cohorts as well as novel downstream applications, including shotgun metagenomic sequencing, culturomics, and various functional assays. These downstream applications are essential to unravel the role of immunostimulatory bacteria in health and disease. Video Abstract.
Collapse
Affiliation(s)
- Merel van Gogh
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Jonas M Louwers
- Department of Gastroenterology and Hepatology, UMC Utrecht, Utrecht, The Netherlands
| | - Anna Celli
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Sanne Gräve
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Marco C Viveen
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Sofie Bosch
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rik J Verheijden
- Department of Medical Oncology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Eelco C Brand
- Department of Gastroenterology and Hepatology, UMC Utrecht, Utrecht, The Netherlands
| | - Janetta Top
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, UMC Utrecht, Utrecht, The Netherlands
| | - Marcel R de Zoete
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Al-Rashidi HS, El-Wakil ES. Parasites and Microbiota: Dual Interactions and Therapeutic Perspectives. Microorganisms 2024; 12:2076. [PMID: 39458384 PMCID: PMC11510500 DOI: 10.3390/microorganisms12102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The human gut hosts a diverse and active community of bacteria that symbiotically support the physiology, metabolism, and immunity of the intestinal lining. Nevertheless, a dynamic community of parasites (helminths and protozoa) may share a habitat with gut-dwelling microbiota. Both microbiota and parasites can significantly change the physical and immunological environment of the gut, thus generating several mechanisms of interaction. Studying this field is crucial for understanding the pathogenesis of parasitic diseases. Additionally, intestinal microbiota and gut-dwelling parasites may interact with each other and with the host immunity to alleviate or exacerbate the disease. These interactions can alter the pathogenicity of both parasites and microbiota, thereby changing the infection outcomes and the overall disease profile. Parasites and microbiota interactions occur via several mechanisms, including physical alteration in both the gastrointestinal microenvironment and the adaptive and innate immune responses. By modulating the microbiota, treating parasitic infections and microbiota dysbiosis may be improved through knowing the mechanisms and consequences of the interactions between intestinal parasites and the microbiota. Thus, new biological tools of treatment including probiotics can be introduced, particularly with the emergence of drug resistance and adverse effects.
Collapse
Affiliation(s)
- Hayat S. Al-Rashidi
- Department of Biology, College of Science, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Eman S. El-Wakil
- Department of Parasitology, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| |
Collapse
|
20
|
Dong L, Luo P, Zhang A. Intestinal microbiota dysbiosis contributes to the liver damage in subchronic arsenic-exposed mice. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39394819 DOI: 10.3724/abbs.2024131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024] Open
Abstract
There is an extensive amount of evidence that links changes in the intestinal microbiota structure to the progression and pathophysiology of many liver diseases. However, comprehensive analysis of gut flora dysbiosis in arsenic-induced hepatotoxicity is lacking. Herein, C57BL/6 mice are exposed to arsenic (1, 2, or 4 mg/kg) for 12 weeks, after which fecal microbiota transplantation (FMT) study is conducted to confirm the roles of the intestinal microbiome in pathology. Treatment with arsenic results in pathological and histological changes in the liver, such as inflammatory cell infiltration and decreased levels of TP and CHE but increased levels of ALP, GGT, TBA, AST, and ALT. Arsenic causes an increase in the relative abundance of Escherichia-Shigella, Klebsiella and Blautia, but a decrease in the relative abundance of Muribaculum and Lactobacillus. In arsenic-exposed mice, protein expressions of Occludin, ZO-1, and MUC2 are significantly decreased, but the level of FITC in serum is increased, and FITC fluorescence is extensively dispersed in the intestinal tract. Importantly, FMT experiments show that mice gavaged with stool from arsenic-treated mice exhibit severe inflammatory cell infiltration in liver tissues. Arsenic-manipulated gut microbiota transplantation markedly facilitates gut flora dysbiosis in the recipient mice, including an up-regulation in Escherichia-Shigella and Bacteroides, and a down-regulation in Lactobacillus and Desulfovibrio. In parallel with the intestinal microbiota wreck, protein expressions of Occludin, ZO-1, and MUC2 are decreased. Our findings suggest that subchronic exposure to arsenic can affect the homeostasis of the intestinal microbiota, induce intestinal barrier dysfunction, increase intestinal permeability, and cause damage to liver tissues in mice.
Collapse
|
21
|
Duarte ME, Deng Z, Kim SW. Effects of dietary Lactobacillus postbiotics and bacitracin on the modulation of mucosa-associated microbiota and pattern recognition receptors affecting immunocompetence of jejunal mucosa in pigs challenged with enterotoxigenic F18 + Escherichia coli. J Anim Sci Biotechnol 2024; 15:139. [PMID: 39390608 PMCID: PMC11468193 DOI: 10.1186/s40104-024-01098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (E. coli) is a threat to humans and animals that causes intestinal disorders. Antimicrobial resistance has urged alternatives, including Lactobacillus postbiotics, to mitigate the effects of enterotoxigenic E. coli. METHODS Forty-eight newly weaned pigs were allotted to NC: no challenge/no supplement; PC: F18+ E. coli challenge/no supplement; ATB: F18+ E. coli challenge/bacitracin; and LPB: F18+ E. coli challenge/postbiotics and fed diets for 28 d. On d 7, pigs were orally inoculated with F18+ E. coli. At d 28, the mucosa-associated microbiota, immune and oxidative stress status, intestinal morphology, the gene expression of pattern recognition receptors (PRR), and intestinal barrier function were measured. Data were analyzed using the MIXED procedure in SAS 9.4. RESULTS PC increased (P < 0.05) Helicobacter mastomyrinus whereas reduced (P < 0.05) Prevotella copri and P. stercorea compared to NC. The LPB increased (P < 0.05) P. stercorea and Dialister succinatiphilus compared with PC. The ATB increased (P < 0.05) Propionibacterium acnes, Corynebacterium glutamicum, and Sphingomonas pseudosanguinis compared to PC. The PC tended to reduce (P = 0.054) PGLYRP4 and increased (P < 0.05) TLR4, CD14, MDA, and crypt cell proliferation compared with NC. The ATB reduced (P < 0.05) NOD1 compared with PC. The LPB increased (P < 0.05) PGLYRP4, and interferon-γ and reduced (P < 0.05) NOD1 compared with PC. The ATB and LPB reduced (P < 0.05) TNF-α and MDA compared with PC. CONCLUSIONS The F18+ E. coli challenge compromised intestinal health. Bacitracin increased beneficial bacteria showing a trend towards increasing the intestinal barrier function, possibly by reducing the expression of PRR genes. Lactobacillus postbiotics enhanced the immunocompetence of nursery pigs by increasing the expression of interferon-γ and PGLYRP4, and by reducing TLR4, NOD1, and CD14.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
22
|
Heidari M, Maleki Vareki S, Yaghobi R, Karimi MH. Microbiota activation and regulation of adaptive immunity. Front Immunol 2024; 15:1429436. [PMID: 39445008 PMCID: PMC11496076 DOI: 10.3389/fimmu.2024.1429436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 10/25/2024] Open
Abstract
In the mucosa, T cells and B cells of the immune system are essential for maintaining immune homeostasis by suppressing reactions to harmless antigens and upholding the integrity of intestinal mucosal barrier functions. Host immunity and homeostasis are regulated by metabolites produced by the gut microbiota, which has developed through the long-term coevolution of the host and the gut biome. This is achieved by the immunological system's tolerance for symbiote microbiota, and its ability to generate a proinflammatory response against invasive organisms. The imbalance of the intestinal immune system with commensal organisms is causing a disturbance in the homeostasis of the gut microbiome. The lack of balance results in microbiota dysbiosis, the weakened integrity of the gut barrier, and the development of inflammatory immune reactions toward symbiotic organisms. Researchers may uncover potential therapeutic targets for preventing or regulating inflammatory diseases by understanding the interactions between adaptive immunity and the microbiota. This discussion will explore the connection between adaptive immunity and microbiota.
Collapse
Affiliation(s)
- Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Maleki Vareki
- Department of Oncology, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
23
|
Wang H, Cai Y, Wu W, Zhang M, Dai Y, Wang Q. Exploring the role of gut microbiome in autoimmune diseases: A comprehensive review. Autoimmun Rev 2024; 23:103654. [PMID: 39384149 DOI: 10.1016/j.autrev.2024.103654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
As the industrialized society advances, there has been a gradual increase in the prevalence of autoimmune disorders. A probe into the fundamental causes has disclosed several factors in modern society that have an influence on the gut microbiome. These dramatic shifts in the gut microbiome are likely to be one of the reasons for the disarray in the immune system, and the relationship between the immune system and the gut microbiome emerging as a perennial hot topic of research. This review enumerates the findings from sequencing studies of gut microbiota on seven autoimmune diseases (ADs): Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), Ankylosing Spondylitis (AS), Systemic Sclerosis (SSc), Sjögren's Syndrome (SjS), Juvenile Idiopathic Arthritis (JIA), and Behçet's Disease (BD). It aims to identify commonalities in changes in the gut microbiome within the autoimmune disease cohort and characteristics specific to each disease. The dysregulation of the gut microbiome involves a disruption of the internal balance and the balance between the external environment and the host. This dysregulation impacts the host's immune system, potentially playing a role in the development of ADs. Damage to the gut epithelial barrier allows potential pathogens to translocate to the mucosal layer, contacting epithelial cells, disrupting tight junctions, and being recognized by antigen-presenting cells, which triggers an immune response. Primed T-cells assist B-cells in producing antibodies against pathogens; if antigen mimicry occurs, an immune response is generated in extraintestinal organs during immune cell circulation, clinically manifesting as ADs. However, current research is limited; advancements in sequencing technology, large-scale cohort studies, and fecal microbiota transplantation (FMT) research are expected to propel this field to new peaks.
Collapse
Affiliation(s)
- Hongli Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Yueshu Cai
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Wenqi Wu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Miaomiao Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Yong Dai
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China.
| |
Collapse
|
24
|
Kedmi R, Littman DR. Antigen-presenting cells as specialized drivers of intestinal T cell functions. Immunity 2024; 57:2269-2279. [PMID: 39383844 DOI: 10.1016/j.immuni.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
The immune system recognizes a multitude of innocuous antigens from food and intestinal commensal microbes toward which it orchestrates appropriate, non-inflammatory responses. This process requires antigen-presenting cells (APCs) that induce T cells with either regulatory or effector functions. Compromised APC function disrupts the T cell balance, leading to inflammation and dysbiosis. Although their precise identities continue to be debated, it has become clear that multiple APC lineages direct the differentiation of distinct microbiota-specific CD4+ T cell programs. Here, we review how unique APC subsets instruct T cell differentiation and function in response to microbiota and dietary antigens. These discoveries provide new opportunities to investigate T cell-APC regulatory networks controlling immune homeostasis and perturbations associated with inflammatory and allergic diseases.
Collapse
Affiliation(s)
- Ranit Kedmi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Dan R Littman
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, New York, NY 10016, USA.
| |
Collapse
|
25
|
Chen Y, Yang R, Qi B, Shan Z. Peptidoglycan-Chi3l1 interaction shapes gut microbiota in intestinal mucus layer. eLife 2024; 13:RP92994. [PMID: 39373714 PMCID: PMC11458176 DOI: 10.7554/elife.92994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
The balanced gut microbiota in intestinal mucus layer plays an instrumental role in the health of the host. However, the mechanisms by which the host regulates microbial communities in the mucus layer remain largely unknown. Here, we discovered that the host regulates bacterial colonization in the gut mucus layer by producing a protein called Chitinase 3-like protein 1 (Chi3l1). Intestinal epithelial cells are stimulated by the gut microbiota to express Chi3l1. Once expressed, Chi3l1 is secreted into the mucus layer where it interacts with the gut microbiota, specifically through a component of bacterial cell walls called peptidoglycan. This interaction between Chi3l1 and bacteria is beneficial for the colonization of bacteria in the mucus, particularly for Gram-positive bacteria like Lactobacillus. Moreover, a deficiency of Chi3l1 leads to an imbalance in the gut microbiota, which exacerbates colitis induced by dextran sodium sulfate. By performing fecal microbiota transplantation from Villin-cre mice or replenishing Lactobacillus in IEC∆Chil1 mice, we were able to restore their colitis to the same level as that of Villin-cre mice. In summary, this study shows a 'scaffold model' for microbiota homeostasis by interaction between intestinal Chi3l1 and bacteria cell wall interaction, and it also highlights that an unbalanced gut microbiota in the intestinal mucus contributes to the development of colitis.
Collapse
Affiliation(s)
- Yan Chen
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Ruizhi Yang
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Zhao Shan
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| |
Collapse
|
26
|
Yang W, Cui H, Wang C, Wang X, Yan C, Cheng W. A review of the pathogenesis of epilepsy based on the microbiota-gut-brain-axis theory. Front Mol Neurosci 2024; 17:1454780. [PMID: 39421261 PMCID: PMC11484502 DOI: 10.3389/fnmol.2024.1454780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of epilepsy is related to the microbiota-gut-brain axis, but the mechanism has not been clarified. The microbiota-gut-brain axis is divided into the microbiota-gut-brain axis (upward pathways) and the brain-gut-microbiota axis (downward pathways) according to the direction of conduction. Gut microorganisms are involved in pathological and physiological processes in the human body and participate in epileptogenesis through neurological, immunological, endocrine, and metabolic pathways, as well as through the gut barrier and blood brain barrier mediated upward pathways. After epilepsy, the downward pathway mediated by the HPA axis and autonomic nerves triggers "leaky brain "and "leaky gut," resulting in the formation of microbial structures and enterobacterial metabolites associated with epileptogenicity, re-initiating seizures via the upward pathway. Characteristic changes in microbial and metabolic pathways in the gut of epileptic patients provide new targets for clinical prevention and treatment of epilepsy through the upward pathway. Based on these changes, this review further redescribes the pathogenesis of epilepsy and provides a new direction for its prevention and treatment.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Cui
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaojie Wang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuan Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ciai Yan
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weiping Cheng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
27
|
Wang M, Ma Y, Yu G, Zeng B, Yang W, Huang C, Dong Y, Tang B, Wu Z. Integration of microbiome, metabolomics and transcriptome for in-depth understanding of berberine attenuates AOM/DSS-induced colitis-associated colorectal cancer. Biomed Pharmacother 2024; 179:117292. [PMID: 39151314 DOI: 10.1016/j.biopha.2024.117292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
A type of colorectal cancer (CRC),Colitis-associated colorectal cancer (CAC), is closely associated with chronic inflammation and gut microbiota dysbiosis. Berberine (BBR) has a long history in the treatment of intestinal diseases, which has been reported to inhibit colitis and CRC. However, the mechanism of its action is still unclear. Here, this study aimed to explore the potential protective effects of BBR on azoxymethane (AOM)/dextransulfate sodium (DSS)-induced colitis and tumor mice, and to elucidate its potential molecular mechanisms by microbiota, genes and metabolic alterations. The results showed that BBR inhibited the gut inflammation and improved the function of mucosal barrier to ameliorate AOM/DSS-induced colitis. And BBR treatment significantly reduced intestinal tumor development and ki-67 expression of intestinal tissue along with promoted apoptosis. Through microbiota analysis based on the 16 S rRNA gene, we found that BBR treatment improved intestinal microbiota imbalance in AOM/DSS-induced colitis and tumor mice, which were characterized by an increase of beneficial bacteria, for instance Akkermanisa, Lactobacillus, Bacteroides uniformis and Bacteroides acidifaciens. In addition, transcriptome analysis showed that BBR regulated colonic epithelial signaling pathway in CAC mice particularly by tryptophan metabolism and Wnt signaling pathway. Notably, BBR treatment resulted in the enrichment of amino acids metabolism and microbiota-derived SCFA metabolites. In summary, our research findings suggest that the gut microbiota-amino acid metabolism-Wnt signaling pathway axis plays critical role in maintaining intestinal homeostasis, which may provide new insights into the inhibitory effects of BBR on colitis and colon cancer.
Collapse
Affiliation(s)
- Mengxia Wang
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China; Academician Workstation,NingBo College of Health Sciences, NingBo, China
| | - Yan Ma
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Guodong Yu
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Bao Zeng
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Wenhao Yang
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Cuihong Huang
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Yujuan Dong
- GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China.
| | - Benqin Tang
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China.
| | - Zhengzhi Wu
- Academician Workstation,NingBo College of Health Sciences, NingBo, China; The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China; Shenzhen Institute of Geriatrics, Shenzhen, China.
| |
Collapse
|
28
|
Tonog G, Yu H, Moon SK, Lee S, Jeong H, Kim HS, Kim KB, Suh HJ, Kim H. Garlic Bioconverted by Bacillus subtilis Stimulates the Intestinal Immune System and Modulates Gut Microbiota Composition. Mol Nutr Food Res 2024; 68:e2400504. [PMID: 39358948 DOI: 10.1002/mnfr.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Indexed: 10/04/2024]
Abstract
SCOPE This study evaluates the potential of bioconverted garlic ferments (BGFs) to stimulate the intestinal immune system and modulate cecal microbiota composition. METHODS AND RESULTS In vitro, BGF significantly enhances Peyer's patch (PP)-mediated bone marrow cell proliferation and increases the production of interferon-gamma (IFN-γ), granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-6, and immunoglobulin A (IgA) but not IL-4, IL-5, and immunoglobulin E (IgE). Oral administration of BGF to C3H/HeN mice for 4 weeks significantly increases the GM-CSF (42.1-45.8 pg mL-1) and IFN-γ (6.5-12.1 pg mL-1) levels in PP cells. BGF also significantly elevates the levels of tumor necrosis factor-alpha (TNF-α, 165.0-236.3 pg mg-1), GM-CSF (2.4-3.0 ng mg-1), and IFN-γ (1.5-3.2 ng mg-1) in the small intestinal fluid, and TNF-α (2.2-3.1 pg mL-1) and IFN-γ (10.3-0.21.5 pg mL-1) in the mouse serum. Cecal microbial analysis reveals that BGF increases Bacteroidota and Verrucomicrobiota and decreases Actinobacteria and Bacillota at the phylum level in mice. At the genus level, BGF significantly increases the abundance of Fusimonas (250 mg kg-1 BW-1 day-1), Bacteroides (125 and 250 mg kg-1 BW-1 day-1), and Akkermansia (125 mg kg-1 BW-1 day-1) and decreases that of Bifidobacterium (62.5 and 250 mg kg-1 BW-1 day-1) and Limosilactobacillus (125 and 250 mg kg-1 BW-1 day-1). CONCLUSION This study provides the first evidence of BGF's ability to modulate the intestinal immune system and gut microbiota, supporting its potential as a novel functional material to enhance gut immunity.
Collapse
Affiliation(s)
- Genevieve Tonog
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, South Korea
| | - Hyeonjun Yu
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, South Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, South Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, South Korea
| | | | | | | | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, South Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, South Korea
| |
Collapse
|
29
|
Wang Y, Wu H, Yan C, Huang R, Li K, Du Y, Jin X, Zhu G, Zeng H, Li B. Alterations of the microbiome across body sites in systemic lupus erythematosus: A systematic review and meta-analysis. Lupus 2024; 33:1345-1357. [PMID: 39258896 DOI: 10.1177/09612033241281891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a complex autoimmune disease with unclear etiology. Growing evidence suggests the microbiome plays a role in SLE pathogenesis. However, findings are inconsistent across studies due to factors like small sample sizes and geographical variations. A comprehensive meta-analysis is needed to elucidate microbiome alterations in SLE. OBJECTIVE This study aimed to provide a systematic overview of microbiota dysbiosis across body sites in SLE through a meta-analysis of alpha diversity indices, beta diversity indices, and abundance taxa of microbiome. METHODS A literature search was conducted across four databases to identify relevant studies comparing SLE patients and healthy controls. Extracted data encompassed alpha and beta diversity metrics, as well as bacterial, fungal, and viral abundance across gut, oral, skin, and other microbiota. Study quality was assessed using the Newcastle-Ottawa Scale. Standardized mean differences and pooled effect sizes were calculated through meta-analytical methods. RESULTS The analysis showed reduced alpha diversity and distinct beta diversity in SLE, particularly in the gut microbiota. Taxonomic analysis revealed compositional variations in bacteria from the gut and oral cavity. However, results for fungi, viruses, and bacteria from other sites were inconsistent due to limited studies. CONCLUSIONS This meta-analysis offers a comprehensive perspective on microbiome dysbiosis in SLE patients across diverse body sites and taxa. The observed variations underscore the microbiome's potential role in SLE pathogenesis. Future research should address geographical variations, employ longitudinal designs, and integrate multi-omics approaches.
Collapse
Affiliation(s)
- Yiyu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Chengrui Yan
- Haiheng Community Health Service Center HETDA, Hefei, China
| | - Ronggui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Kaidi Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Yujie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Gaoqi Zhu
- Haiheng Community Health Service Center HETDA, Hefei, China
| | - Hanjun Zeng
- Haiheng Community Health Service Center HETDA, Hefei, China
| | - Baozhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
- The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Wu M, Chen X, Lu Q, Yao X. Fecal microbiota transplantation for the treatment of chronic inflammatory skin diseases. Heliyon 2024; 10:e37432. [PMID: 39309854 PMCID: PMC11416527 DOI: 10.1016/j.heliyon.2024.e37432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
The regulation of immune functions and the maintenance of homeostasis in the internal environment are both integral to human gut microbiota (GM). If GM is disturbed, it can result in a range of autoimmune diseases, including chronic inflammatory skin conditions. Chronic inflammatory skin diseases driven by T or B-cell-mediated immune reactions are complex, including the most prevalent diseases and some rare diseases. Expanding knowledge of GM dysbiosis in chronic inflammatory skin diseases has emerged. The GM has some causal roles in the pathogenesis of these skin conditions. Targeting microbiota treatment, particularly fecal microbiota transplantation (FMT), is considered to be a promising strategy. FMT was commonly used in intestinal diseases by reshaping and balancing GM, serving as a reasonable administration in these skin inflammatory diseases. This paper summarizes the existing knowledge of GM dysbiosis in chronic inflammatory skin diseases and the research data on FMT treatment for such conditions.
Collapse
Affiliation(s)
- Mingyang Wu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xingyu Chen
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
31
|
Ding T, Chen Q, Liu H, Zhang H, Sun Y, Zhao L, Gao Y, Wei Q. Single-cell RNA sequencing analysis reveals the distinct features of colorectal cancer with or without Fusobacterium nucleatum infection in PD-L1 blockade therapy. Heliyon 2024; 10:e37511. [PMID: 39309908 PMCID: PMC11416490 DOI: 10.1016/j.heliyon.2024.e37511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
MSS/pMMR patients are unresponsive to PD-1/PD-L1 blockade in colorectal cancer (CRC), but the mechanisms are unclear. A better understanding of immunotherapy resistance in CRC may lead to more precise treatment and expand the benefit of immunotherapy to patients. In this study, we constructed mouse model of subcutaneous CRC tumor received anti-PD-L1 treatment with or without fusobacterium nucleatum (F. nucleatum) infection. Then we used single-cell RNA sequencing (scRNA-seq) to explore the comprehensive landscape of the tumor microenvironment (TME). Our data delineated the composition, subclonal diversity and putative function of distinct cells, tracked the developmental trajectory of tumor cells and highlighted cell-cell interactions. We found different compositions and functions of both tumor cells and immune cells. Single anti-PD-L1 monoclonal antibody (mAb) treated tumor exhibited two specific clusters which might be resistant to PD-L1 blockade. The accumulation of immune cells, including T cell, NK cell and pro-inflammatory macrophage subset in tumors infected with F. nucleatum may be one of the reasons for the increased sensitivity to PD-L1 blockade. Thus, targeting F. nucleatum to change the composition of tumor cell subclusters and enliven the immune response might help to overcome immune checkpoint blockade (ICB) resistance.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medicine School, Nanjing University, Nanjing, China
| | - Qian Chen
- Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hu Liu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Heping Zhang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuefang Sun
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lamei Zhao
- Department of Pathology, Shanghai Clinical College, Anhui Medical University, Hefei, Anhui, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
32
|
Stolfi C, Laudisi F. Editorial for the Special Issue "Gut Dysbiosis: Molecular Mechanisms and Therapies 2.0". Biomedicines 2024; 12:2186. [PMID: 39457499 PMCID: PMC11504651 DOI: 10.3390/biomedicines12102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Gut homeostasis depends on maintaining a fine equilibrium between the intestinal epithelial barrier, the microbiota, and the host's immune system [...].
Collapse
Affiliation(s)
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
33
|
Qi P, Chen X, Tian J, Zhong K, Qi Z, Li M, Xie X. The gut homeostasis-immune system axis: novel insights into rheumatoid arthritis pathogenesis and treatment. Front Immunol 2024; 15:1482214. [PMID: 39391302 PMCID: PMC11464316 DOI: 10.3389/fimmu.2024.1482214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Rheumatoid arthritis is a widely prevalent autoimmune bone disease that imposes a significant burden on global healthcare systems due to its increasing incidence. In recent years, attention has focused on the interaction between gut homeostasis and the immune system, particularly in relation to bone health. Dysbiosis, which refers to an imbalance in the composition and function of the gut microbiota, has been shown to drive immune dysregulation through mechanisms such as the release of pro-inflammatory metabolites, increased gut permeability, and impaired regulatory T cell function. These factors collectively contribute to immune system imbalance, promoting the onset and progression of Rheumatoid arthritis. Dysbiosis induces both local and systemic inflammatory responses, activating key pro-inflammatory cytokines such as tumor necrosis factor-alpha, Interleukin-6, and Interleukin-17, which exacerbate joint inflammation and damage. Investigating the complex interactions between gut homeostasis and immune regulation in the context of Rheumatoid arthritis pathogenesis holds promise for identifying new therapeutic targets, revealing novel mechanisms of disease progression, and offering innovative strategies for clinical treatment.
Collapse
Affiliation(s)
- Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xin Chen
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kexin Zhong
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhonghua Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Menghan Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xingwen Xie
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
34
|
Boverhoff D, Kool J, Pijnacker R, Ducarmon QR, Zeller G, Shetty S, Sie S, Mulder AC, van der Klis F, Franz E, Mughini-Gras L, van Baarle D, Fuentes S. Profiling the fecal microbiome and its modulators across the lifespan in the Netherlands. Cell Rep 2024; 43:114729. [PMID: 39264809 DOI: 10.1016/j.celrep.2024.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024] Open
Abstract
Defining what constitutes a healthy microbiome throughout our lives remains an ongoing challenge. Understanding to what extent host and environmental factors can influence it has been the primary motivation for large population studies worldwide. Here, we describe the fecal microbiome of 3,746 individuals (0-87 years of age) in a nationwide study in the Netherlands, in association with extensive questionnaires. We validate previous findings, such as infant-adult trajectories, and explore the collective impact of our variables, which explain over 40% of the variation in microbiome composition. We identify associations with less explored factors, particularly those ethnic related, which show the largest impact on the adult microbiome composition, diversity, metabolic profiles, and CAZy (carbohydrate-active enzyme) repertoires. Understanding the sources of microbiome variability is crucial, given its potential as a modifiable target with therapeutic possibilities. With this work, we aim to serve as a foundational element for the design of health interventions and fundamental research.
Collapse
Affiliation(s)
- David Boverhoff
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Virology & Immunology Research, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Jolanda Kool
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Roan Pijnacker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Quinten R Ducarmon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sudarshan Shetty
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Virology & Immunology Research, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Stephan Sie
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Annemieke Christine Mulder
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Fiona van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Virology & Immunology Research, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Susana Fuentes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| |
Collapse
|
35
|
Maier JA, Castiglioni S, Petrelli A, Cannatelli R, Ferretti F, Pellegrino G, Sarzi Puttini P, Fiorina P, Ardizzone S. Immune-Mediated Inflammatory Diseases and Cancer - a dangerous liaison. Front Immunol 2024; 15:1436581. [PMID: 39359726 PMCID: PMC11445042 DOI: 10.3389/fimmu.2024.1436581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Patients with Immune-Mediated Inflammatory Diseases (IMIDs) are known to have an elevated risk of developing cancer, but the exact causative factors remain subject to ongoing debate. This narrative review aims to present the available evidence concerning the intricate relationship between these two conditions. Environmental influences and genetic predisposition lead to a dysregulated immune response resulting in chronic inflammation, which is crucial in the pathogenesis of IMIDs and oncogenic processes. Mechanisms such as the inflammatory microenvironment, aberrant intercellular communication due to abnormal cytokine levels, excessive reparative responses, and pathological angiogenesis are involved. The chronic immunosuppression resulting from IMIDs treatments further adds to the complexity of the pathogenic scenario. In conclusion, this review highlights critical gaps in the current literature, suggesting potential avenues for future research. The intricate interplay between IMIDs and cancer necessitates more investigation to deepen our understanding and improve patient management.
Collapse
Affiliation(s)
- Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Alessandra Petrelli
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | | | | | | | - Piercarlo Sarzi Puttini
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Paolo Fiorina
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sandro Ardizzone
- Gastroenterology Unit, ASST Fatebenefratelli-Sacco, Milano, Italy
| |
Collapse
|
36
|
Li Y, Li Z, Zheng S, Xu X. Probiotics in the management of radiation-induced oral mucositis. Front Cell Infect Microbiol 2024; 14:1477143. [PMID: 39359935 PMCID: PMC11445617 DOI: 10.3389/fcimb.2024.1477143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Oral mucositis is a common and debilitating oral complication in head and neck cancer patients undergoing radiotherapy, resulting in diminished quality of life and potential treatment disruptions. Oral microbiota has long been recognized as a contributing factor in the initiation and progression of radiation-induced oral mucositis (RIOM). Numerous studies have indicated that the radiation-induced oral microbial dysbiosis promotes the occurrence and severity of oral mucositis. Therefore, approaches that modulate oral microbial ecology are promising for the management of RIOM. Probiotics as a relatively predicable and safe measure that modulates microecology have garnered significant interest. In this review, we discussed the correlation between RIOM and oral microbiota, with a particular focus on the efficacy of probiotics in the control of RIOM, in order to provide novel paradigm for the management of this disease.
Collapse
Affiliation(s)
- Yixuan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zixia Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuhao Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Sasaki T, Ota Y, Takikawa Y, Terrooatea T, Kanaya T, Takahashi M, Taguchi-Atarashi N, Tachibana N, Yabukami H, Surh CD, Minoda A, Kim KS, Ohno H. Food antigens suppress small intestinal tumorigenesis. Front Immunol 2024; 15:1373766. [PMID: 39359724 PMCID: PMC11445177 DOI: 10.3389/fimmu.2024.1373766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024] Open
Abstract
Food components suppressing small intestinal tumorigenesis are not well-defined partly because of the rarity of this tumor type compared to colorectal tumors. Using Apcmin/+ mice, a mouse model for intestinal tumorigenesis, and antigen-free diet, we report here that food antigens serve this function in the small intestine. By depleting Peyer's patches (PPs), immune inductive sites in the small intestine, we found that PPs have a role in the suppression of small intestinal tumors and are important for the induction of small intestinal T cells by food antigens. On the follicle-associated epithelium (FAE) of PPs, microfold (M) cells pass food antigens from lumen to the dendritic cells to induce T cells. Single-cell RNA-seq (scRNA-seq) analysis of immune cells in PPs revealed a significant impact of food antigens on the induction of the PP T cells and the antigen presentation capacity of dendritic cells. These data demonstrate the role of food antigens in the suppression of small intestinal tumorigenesis by PP-mediated immune cell induction.
Collapse
Affiliation(s)
- Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuna Ota
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yui Takikawa
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tommy Terrooatea
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masumi Takahashi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Taguchi-Atarashi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Tachibana
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haruka Yabukami
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Charles D. Surh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
38
|
Leino LI, Vesterinen EJ, Sánchez-Virosta P, Puigbò P, Eeva T, Rainio MJ. Pollution-related changes in nest microbiota: Implications for growth and fledging in three passerine birds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124434. [PMID: 38936789 DOI: 10.1016/j.envpol.2024.124434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Non-ferrous smelters emit toxic metals into the environment, posing a threat to wildlife health. Despite the acknowledged role of microbes in host health, the impact of such emissions on host-associated microbiota, especially in wild birds, remains largely unexplored. This study investigates the associations of metal pollution, fitness, and nest microbiota (serving as a proxy for early-life microbial environment) which may influence the nestling health and development. Our study focuses on three passerine birds, the great tit (Parus major), blue tit (Cyanistes caeruleus), and pied flycatcher (Ficedula hypoleuca), within control and metal-polluted sites around a Finnish copper-nickel smelter. The polluted sites had been contaminated with arsenic (As), cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn). We performed bacterial 16S rRNA sequencing and metal analyses on 90 nests and monitored nestling body mass, fledging success, and various biotic and abiotic factors. Our findings revealed species-specific responses to metal exposure in terms of both fitness and nest microbiota. P. major and C. caeruleus showed sensitivity to pollution, with decreased nestling growth and fledging in the polluted zone. This was accompanied by a shift in the bacterial community composition, which was characterized by an increase in some pathogenic bacteria (in P. major and C. caeruleus nests) and by a decrease in plant-associated bacteria (within C. caeruleus nests). Conversely, F. hypoleuca and their nest microbiota showed limited responses to pollution, indicating greater tolerance to pollution-induced environmental changes. Although pollution did not correlate with nest alpha diversity or the most abundant bacterial taxa across all species, certain potential pathogens within the nests were enriched in polluted environments and negatively correlated with nestling fitness parameters. Our results suggest that metal pollution may alter the nest bacterial composition in some bird species, either directly or indirectly through environmental changes, promoting pathogenic bacteria and potentially impacting bird survival.
Collapse
Affiliation(s)
- Lyydia I Leino
- Department of Biology, University of Turku, Henrikinkatu 2, 20014, Turku, Finland.
| | - Eero J Vesterinen
- Department of Biology, University of Turku, Henrikinkatu 2, 20014, Turku, Finland.
| | - Pablo Sánchez-Virosta
- Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| | - Pere Puigbò
- Department of Biology, University of Turku, Henrikinkatu 2, 20014, Turku, Finland; Eurecat, Technology Centre of Catalonia, Reus, Catalonia, Spain; Department of Biochemistry and Biotechnology, Rovira I Virgili University, Tarragona, Catalonia, Spain.
| | - Tapio Eeva
- Department of Biology, University of Turku, Henrikinkatu 2, 20014, Turku, Finland.
| | - Miia J Rainio
- Department of Biology, University of Turku, Henrikinkatu 2, 20014, Turku, Finland.
| |
Collapse
|
39
|
Byun S, Lee J, Choi YH, Ko H, Lee C, Park JC, Kim SW, Lee H, Sharma A, Kim KS, Rudra D, Kim JK, Im SH. Gut Microbiota Defines Functional Direction of Colonic Regulatory T Cells with Unique TCR Repertoires. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:886-897. [PMID: 39101764 DOI: 10.4049/jimmunol.2300395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
Intestinal microbiota and selected strains of commensal bacteria influence regulatory T (Treg) cell functionality in the colon. Nevertheless, whether and how microbiota changes the transcriptome profile and TCR specificities of colonic Tregs remain to be precisely defined. In this study, we have employed single-cell RNA sequencing and comparatively analyzed colonic Tregs from specific pathogen-free and germ-free (GF) mice. We found that microbiota shifts the activation trajectory of colonic Tregs toward a distinct phenotypic subset enriched in specific pathogen-free but not in GF mice. Moreover, microbiota induced the expansion of specific Treg clonotypes with shared transcriptional specificities. The microbiota-induced subset of colonic Tregs, identified as PD-1- CXCR3+ Tregs, displayed enhanced suppressive capabilities compared with colonic Tregs derived from GF mice, enhanced production of IL-10, and were the primary regulators of enteric inflammation in dextran sodium sulfate-induced colitis. These findings identify a hitherto unknown gut microbiota and immune cell interaction module that could contribute to the development of a therapeutic modality for intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Seohyun Byun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jusung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Changhon Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - John Chulhoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seung Won Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Haena Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Amit Sharma
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dipayan Rudra
- School of Life Science and Technology, ShanghaiTech University; Shanghai, People's Republic of China
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
- ImmunoBiome Inc., Pohang, Republic of Korea
| |
Collapse
|
40
|
Xu W, Liu AX, Liu KH, Zhang S, Gong ZH, Xiao WJ. l-Theanine Alleviates Ulcerative Colitis by Regulating Colon Immunity via the Gut Microbiota in an MHC-II-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19852-19868. [PMID: 39197065 DOI: 10.1021/acs.jafc.4c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Alterations to the gut microbiota are associated with ulcerative colitis (UC), whereas restoration of normobiosis can effectively alleviate UC. l-Theanine has been shown to reshape the gut microbiota and regulate gut immunity. To investigate the mechanisms by which l-theanine alleviates UC, we used l-theanine and l-theanine fecal microbiota solution to treat UC mice. In this study, we used l-theanine and l-theanine fecal microbiota solution to treat UC mice to explore the mechanism by which l-theanine alleviates UC. By reducing inflammation in the colon, we demonstrated that l-theanine alleviates symptoms of UC. Meanwhile, l-theanine can improve the abundance of microbiota related to short-chain fatty acid, bile acid, and tryptophan production. Single-cell sequencing results indicated that l-theanine-mediated suppression of UC was associated with immune cell changes, especially regarding macrophages and T and B cells, and validated the immune cell responses to the gut microbiota. Further, flow cytometry results showed that the ability of dendritic cells, macrophages, and monocytes to present microbiota antigens to colonic T cells in an MHC-II-dependent manner was reduced after treating normal mouse fecal donors with l-theanine. These results demonstrate that l-theanine modulates colon adaptive and innate immunity by regulating the gut microbiota in an MHC-II-dependent manner, thereby alleviating UC.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Ao-Xiang Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Ke-Hong Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, Hunan, China
| | - Zhi-Hua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, Hunan, China
| | - Wen-Jun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, Hunan, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, Hunan, China
| |
Collapse
|
41
|
Jensen O, Trujillo E, Hanson L, Ost KS. Controlling Candida: immune regulation of commensal fungi in the gut. Infect Immun 2024; 92:e0051623. [PMID: 38647290 PMCID: PMC11385159 DOI: 10.1128/iai.00516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The intestinal microbiome harbors fungi that pose a significant risk to human health as opportunistic pathogens and drivers of inflammation. Inflammatory and autoimmune diseases are associated with dysbiotic fungal communities and the expansion of potentially pathogenic fungi. The gut is also the main reservoir for disseminated fungal infections. Immune interactions are critical for preventing commensal fungi from becoming pathogenic. Significant strides have been made in defining innate and adaptive immune pathways that regulate intestinal fungi, and these discoveries have coincided with advancements in our understanding of the fungal molecular pathways and effectors involved in both commensal colonization and pathogenesis within the gut. In this review, we will discuss immune interactions important for regulating commensal fungi, with a focus on how specific cell types and effectors interact with fungi to limit their colonization or pathogenic potential. This will include how innate and adaptive immune pathways target fungi and orchestrate antifungal immune responses, in addition to how secreted immune effectors, such as mucus and antimicrobial peptides, regulate fungal colonization and inhibit pathogenic potential. These immune interactions will be framed around our current understanding of the fungal effectors and pathways regulating colonization and pathogenesis within this niche. Finally, we highlight important unexplored mechanisms by which the immune system regulates commensal fungi in the gut.
Collapse
Affiliation(s)
- Owen Jensen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emma Trujillo
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Luke Hanson
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kyla S. Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
42
|
Kanno T, Miyako K, Endo Y. Lipid metabolism: a central modulator of RORγt-mediated Th17 cell differentiation. Int Immunol 2024; 36:487-496. [PMID: 38824406 DOI: 10.1093/intimm/dxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Among the T helper cell subsets, Th17 cells contribute to the development of various inflammatory and autoimmune diseases, including psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. Retinoid-related orphan receptor gamma t (RORγt), a nuclear hormone receptor, serves as a master transcription factor for Th17 cell differentiation. Recent findings have shown that modulating the metabolic pathway is critical for Th17 cell differentiation, particularly through the engagement of de novo lipid biosynthesis. Suppression of lipid biosynthesis, either through the pharmacological inhibition or gene deletion of related enzymes in CD4+ T cells, results in significant impairment of Th17 cell differentiation. Mechanistic studies indicate that metabolic fluxes through both the fatty acid and cholesterol biosynthetic pathways have a pivotal role in the regulation of RORγt activity through the generation of endogenous RORγt lipid ligands. This review discusses recent discoveries highlighting the importance of lipid metabolism in Th17 cell differentiation and function, as well as exploring specific molecular pathways involved in RORγt activation through cellular lipid metabolism. We further elaborate on a pioneering therapeutic approach to improve inflammatory and autoimmune disorders via the inhibition of RORγt.
Collapse
Affiliation(s)
- Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
43
|
Widmer KM, Rahic-Seggerman F, Forster A, Ahrens-Kress A, Sauer M, Mooyottu S, Vinithakumari A, Dunkerson-Kurzhumov A, Sponseller B, Kiupel M, Schmitz-Esser S, Tuggle CK. EFFECT OF GENOTYPE AND AGE ON A DEFINED MICROBIOTA IN GNOTOBIOTIC SCID PIGLETS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611011. [PMID: 39282343 PMCID: PMC11398413 DOI: 10.1101/2024.09.03.611011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Severe combined immunodeficient (SCID) individuals lack functional T and B lymphocytes, leading to a deficient adaptive immune system. SCID pigs are a unique large animal biomedical model as they possess many similarities to humans, allowing for the collection of translatable data in regenerative medicine, cancer, and other biomedical research topics. While many studies suggest early gut microbiota development is necessary for developing the intestinal barrier and immune system, these animals are often cesarian section derived, leaving them uncolonized for normal intestinal microflora. The hypothesis was that an increase in complexity of microbiota inoculum will allow for more stability in the composition of the gut microbiota of SCID piglets. This was tested across multiple litters of SCID piglets with three different defined microbiota consortium (2-strain, 6-strain, 7-strain). All piglets received their designated defined microbiota by oral gavage immediately after birth and again 24 hours later. There was no effect of SCID genotype on the composition of the gut microbiota, but there was a significant effect due to piglet age. Additionally, all three defined microbiota consortia were deemed safe to use in SCID piglets, and the 7-strain microbiota was the most stable over time. Based on these results, the 7-strain defined microbiota will be added to the SCID pig husbandry protocol, allowing for a more reproducible model.
Collapse
Affiliation(s)
- Katherine M Widmer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Ahlea Forster
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Mary Sauer
- Laboratory Animal Resources, Iowa State University, Ames, IA 50011, USA
| | - Shankumar Mooyottu
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA
| | - Akhil Vinithakumari
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Aaron Dunkerson-Kurzhumov
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Brett Sponseller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
44
|
Rodriguez-Marino N, Royer CJ, Rivera-Rodriguez DE, Seto E, Gracien I, Jones RM, Scharer CD, Gracz AD, Cervantes-Barragan L. Dietary fiber promotes antigen presentation on intestinal epithelial cells and development of small intestinal CD4 +CD8αα + intraepithelial T cells. Mucosal Immunol 2024:S1933-0219(24)00092-8. [PMID: 39244090 DOI: 10.1016/j.mucimm.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The impact of dietary fiber on intestinal T cell development is poorly understood. Here we show that a low fiber diet reduces MHC-II antigen presentation by small intestinal epithelial cells (IECs) and consequently impairs development of CD4+CD8αα+ intraepithelial lymphocytes (DP IELs) through changes to the microbiota. Dietary fiber supports colonization by Segmented Filamentous Bacteria (SFB), which induces the secretion of IFNγ by type 1 innate lymphoid cells (ILC1s) that lead to MHC-II upregulation on IECs. IEC MHC-II expression caused either by SFB colonization or exogenous IFNγ administration induced differentiation of DP IELs. Finally, we show that a low fiber diet promotes overgrowth of Bifidobacterium pseudolongum, and that oral administration of B. pseudolongum reduces SFB abundance in the small intestine. Collectively we highlight the importance of dietary fiber in maintaining the balance among microbiota members that allow IEC MHC-II antigen presentation and define a mechanism of microbiota-ILC-IEC interactions participating in the development of intestinal intraepithelial T cells.
Collapse
Affiliation(s)
- Naomi Rodriguez-Marino
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Charlotte J Royer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Current affiliation. Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Dormarie E Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory Vaccine Center, , Emory University School of Medicine, Atlanta, GA, United States; Division of Infectious Diseases, Department of Medicine, , Emory University School of Medicine, Atlanta, GA, United States
| | - Emma Seto
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Isabelle Gracien
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rheinallt M Jones
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, , Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory Vaccine Center, , Emory University School of Medicine, Atlanta, GA, United States
| | - Adam D Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Luisa Cervantes-Barragan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
45
|
Breivik TJ, Gjermo P, Gundersen Y, Opstad PK, Murison R, Hugoson A, von Hörsten S, Fristad I. Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000 2024. [PMID: 39233381 DOI: 10.1111/prd.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
This review highlights the significance of interactions between the microbiota, immune system, nervous and hormonal systems, and the brain on periodontal health and disease. Microorganisms in the microbiota, immune cells, and neurons communicate via homeostatic nervous and hormonal systems, regulating vital body functions. By modulating pro-inflammatory and anti-inflammatory adaptive immune responses, these systems control the composition and number of microorganisms in the microbiota. The strength of these brain-controlled responses is genetically determined but is sensitive to early childhood stressors, which can permanently alter their responsiveness via epigenetic mechanisms, and to adult stressors, causing temporary changes. Clinical evidence and research with humans and animal models indicate that factors linked to severe periodontitis enhance the responsiveness of these homeostatic systems, leading to persistent hyperactivation. This weakens the immune defense against invasive symbiotic microorganisms (pathobionts) while strengthening the defense against non-invasive symbionts at the gingival margin. The result is an increased gingival tissue load of pathobionts, including Gram-negative bacteria, followed by an excessive innate immune response, which prevents infection but simultaneously destroys gingival and periodontal tissues. Thus, the balance between pro-inflammatory and anti-inflammatory adaptive immunity is crucial in controlling the microbiota, and the responsiveness of brain-controlled homeostatic systems determines periodontal health.
Collapse
Affiliation(s)
- Torbjørn Jarle Breivik
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical Odontology, University of Oslo, Oslo, Norway
- Division for Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical Odontology, University of Oslo, Oslo, Norway
| | - Yngvar Gundersen
- Division for Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Per Kristian Opstad
- Division for Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Robert Murison
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Anders Hugoson
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg and School of Health and Welfare, Gothenburg, Sweden
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
46
|
Manus MB, Lucore J, Kuthyar S, Moy M, Savo Sardaro ML, Amato KR. Technical note: A biological anthropologist's guide for applying microbiome science to studies of human and non-human primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024:e25020. [PMID: 39222382 DOI: 10.1002/ajpa.25020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
A central goal of biological anthropology is connecting environmental variation to differences in host physiology, biology, health, and evolution. The microbiome represents a valuable pathway for studying how variation in host environments impacts health outcomes. While there are many resources for learning about methods related to microbiome sample collection, laboratory analyses, and genetic sequencing, there are fewer dedicated to helping researchers navigate the dense portfolio of bioinformatics and statistical approaches for analyzing microbiome data. Those that do exist are rarely related to questions in biological anthropology and instead are often focused on human biomedicine. To address this gap, we expand on existing tutorials and provide a "road map" to aid biological anthropologists in understanding, selecting, and deploying the data analysis and visualization methods that are most appropriate for their specific research questions. Leveraging an existing dataset of fecal samples and survey data collected from wild geladas living in Simien Mountains National Park in Ethiopia (Baniel et al., 2021), this paper guides researchers toward answering three questions related to variation in the gut microbiome across host and environmental factors. By providing explanations, examples, and a reproducible workflow for different analytic methods, we move beyond the theoretical benefits of considering the microbiome within anthropological research and instead present researchers with a guide for applying microbiome science to their work. This paper makes microbiome science more accessible to biological anthropologists and paves the way for continued research into the microbiome's role in the ecology, evolution, and health of human and non-human primates.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Jordan Lucore
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Madelyn Moy
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Maria Luisa Savo Sardaro
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Human Science and Promotion of the Quality of Life, University of San Raffaele, Rome, Italy
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
47
|
Bogdan C, Islam NAK, Barinberg D, Soulat D, Schleicher U, Rai B. The immunomicrotope of Leishmania control and persistence. Trends Parasitol 2024; 40:788-804. [PMID: 39174373 DOI: 10.1016/j.pt.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Leishmania is an intracellular protozoan transmitted by sand fly vectors; it causes cutaneous, mucocutaneous, or visceral disease. Its growth and survival are impeded by type 1 T helper cell responses, which entail interferon (IFN)-γ-mediated macrophage activation. Leishmania partially escapes this host defense by triggering immune cell and cytokine responses that favor parasite replication rather than killing. Novel methods for in situ analyses have revealed that the pathways of immune control and microbial evasion are strongly influenced by the tissue context, the micro milieu factors, and the metabolism at the site of infection, which we collectively term the 'immunomicrotope'. Understanding the components and the impact of the immunomicrotope will enable the development of novel strategies for the treatment of chronic leishmaniasis.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany.
| | - Noor-A-Kasida Islam
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - David Barinberg
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Baplu Rai
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| |
Collapse
|
48
|
Weng MT, Hsiung CY, Wei SC, Chen Y. Nanotechnology for Targeted Inflammatory Bowel Disease Therapy: Challenges and Opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1999. [PMID: 39439396 DOI: 10.1002/wnan.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a complex and recurring inflammatory disorder that affects the gastrointestinal tract and is influenced by genetic predisposition, immune dysregulation, the gut microbiota, and environmental factors. Advanced therapies, such as biologics and small molecules, target diverse immune pathways to manage IBD. Nanoparticle (NP)-based drugs have emerged as effective tools, offering controlled drug release and targeted delivery. This review highlights NP modifications for anti-inflammatory purposes, utilizing changes such as those in size, charge, redox reactions, and ligand-receptor interactions in drug delivery systems. By using pathological and microenvironmental cues to guide NP design, precise targeting can be achieved. In IBD, a crucial aspect of NP intervention is targeting specific types of cells, such as immune and epithelial cells, to address compromised intestinal barrier function and reduce overactive immune responses. This review also addresses current challenges and future prospects, with the goal of advancing the development of NP-mediated strategies for IBD treatment.
Collapse
Affiliation(s)
- Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chia-Yueh Hsiung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
49
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Wang C, Wang N, Wang D. Structural properties of glucan from Russula griseocarnosa and its immunomodulatory activities mediated via T cell differentiation. Carbohydr Polym 2024; 339:122214. [PMID: 38823900 DOI: 10.1016/j.carbpol.2024.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-β-D-Glcp-(1→ by β-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam 000000, Hong Kong.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
50
|
Xu Z, Chen M, Ng SC. Metabolic Regulation of Microbiota and Tissue Response. Gastroenterol Clin North Am 2024; 53:399-412. [PMID: 39068002 DOI: 10.1016/j.gtc.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The microbiota in our gut regulates the sophisticated metabolic system that the human body has, essentially converting food into energy and the building blocks for various bodily functions. In this review, we discuss the multifaceted impact of the microbiota on host nutritional status by producing short-chain fatty acids, influencing gut hormones and mediating bile acid metabolism, and the key role in maintaining intestinal barrier integrity and immune homeostasis. Understanding and leveraging the power of the gut microbiome holds tremendous potential for enhancing human health and preventing various diseases.
Collapse
Affiliation(s)
- Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Manman Chen
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew Chien Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|