1
|
Kadamb R, Anton ML, Purwin TJ, Seeneevassen L, Chua V, Waltrich F, Teh JLF, Nieto MA, Sato T, Terai M, Roman SR, De Koning L, Zheng D, Aplin AE, Aguirre-Ghiso JA. Lineage commitment pathways epigenetically oppose oncogenic Gαq/11-YAP1 signaling in dormant disseminated uveal melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.05.583565. [PMID: 38496663 PMCID: PMC10942354 DOI: 10.1101/2024.03.05.583565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Uveal melanoma (UM) can remain in clinical dormancy for decades only to later produce lethal metastases. Using Gαq/11 mut /BAP1 wt UM xenograft models and human metastatic samples, we identified NR2F1 as a key inducer of UM disseminated cancer cell (DCC) dormancy. Dormant UM DCCs upregulate NR2F1, neural crest genes and, along with suppression of proliferation programs, NR2F1 silences YAP1/TEAD1 transcription by altering histone H3 activation marks. YAP1 can reciprocally repress NR2F1, but inhibiting Gαq/11 signaling or activating NR2F1 can arrest UM growth. NR2F1 knockout led to dormant DCC awakening and liver metastatic growth. NR2F1 and YAP1 inverse expression was confirmed in human livers carrying UM solitary, small DCC clusters as well as large metastases. Intriguingly, RNA-seq and Cut&Run analysis revealed that NR2F1 short-circuits oncogene signaling by repressing multiple G-protein signaling components. Our work provides previously unrecognized mechanistic insight into UM DCC dormancy and potential pathways for interception. Statement of significance NR2F1 epigenetically suppresses genes associated with G-protein signaling, cell cycle, and YAP1/TEAD1 pathways, inducing dormancy in uveal melanoma (UM) disseminated cancer cells. This study unveils novel markers for UM dormancy and reactivation, positioning NR2F1 as a promising target for intercepting residual and UM metastatic disease.
Collapse
|
2
|
Gilon-Zaltsman O, Weidenfeld-Barenboim K, Samara H, Feuermann Y, Michaeli-Ashkenasi S, Schif-Zuck S, Von Huth P, Butenko S, Assi S, Sabo E, Ariel A, Barkan D. Targeting Dormant Disseminated Tumor Cells and their Permissive Niche by Pro-Resolving Mediators Derived from Resolution-Phase Macrophages. Cancer Lett 2025:217468. [PMID: 39826669 DOI: 10.1016/j.canlet.2025.217468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Metastatic breast cancer (BC) can recur years after initial treatments and arise from quiescent disseminated tumor cells (QDTC) that resist conventional therapies. To date there are no treatments to target QDTCs. Previously, the fibrotic-like niche (FLN) enriched with Type I collagen (Col-I) was shown to be required for the switch of QDTC to overt metastases. Here, we examined whether artificially reinstating resolution of inflammation, by using soluble mediators secreted by ex-vivo generated pro-resolving macrophages (CM-Mres), will prevent FLN establishment and in turn hinder QDTC outgrowth. Our findings indicate that CM-Mres promoted immune silencing at the metastatic site as part of the resolution process and inhibited the FLN resulting in the inhibition of the metastatic outgrowth in vitro and in vivo. This was due to inhibition of fibroblasts to myofibroblasts differentiation independent of TGFβ1 canonical signaling and the abolishment of Col-I expression. Furthermore, CM-Mres eliminated myofibroblasts as part of the resolution process by inducing an increase in reactive oxygen species (ROS) via NADPH oxidase leading to DNA damage and apoptosis. Moreover, ROS-mediated apoptosis was also induced by CM-Mres in the dormant and outgrowing DTCs. Overall, our findings suggest for the first time that pro-resolving mediators can target both QDTCs and their permissive niche thus preventing BC from recurring. SIGNIFICANCE: Since conventional therapies fail to eradicate QDTCs. Future identification of the pro-resolving mediators secreted by pro-resolving macrophages may serve as a basis for novel therapeutic strategies targeting QDTCs and their metastatic niche.
Collapse
Affiliation(s)
| | | | - Hadeel Samara
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | | | | | | | - Sergei Butenko
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Simaan Assi
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Edmond Sabo
- Department of Pathology, Carmel Medical Center, Israel
| | - Amiram Ariel
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Dalit Barkan
- Department of Human Biology, University of Haifa, Haifa, Israel.
| |
Collapse
|
3
|
Anandi L, Garcia J, Ros M, Janská L, Liu J, Carmona-Fontaine C. Direct visualization of emergent metastatic features within an ex vivo model of the tumor microenvironment. Life Sci Alliance 2025; 8:e202403053. [PMID: 39419548 PMCID: PMC11487089 DOI: 10.26508/lsa.202403053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Ischemic conditions such as hypoxia and nutrient starvation, together with interactions with stromal cells, are critical drivers of metastasis. These conditions arise deep within tumor tissues, and thus, observing nascent metastases is exceedingly challenging. We thus developed the 3MIC-an ex vivo model of the tumor microenvironment-to study the emergence of metastatic features in tumor cells in a 3-dimensional (3D) context. Here, tumor cells spontaneously create ischemic-like conditions, allowing us to study how tumor spheroids migrate, invade, and interact with stromal cells under different metabolic conditions. Consistent with previous data, we show that ischemia increases cell migration and invasion, but the 3MIC allowed us to directly observe and perturb cells while they acquire these pro-metastatic features. Interestingly, our results indicate that medium acidification is one of the strongest pro-metastatic cues and also illustrate using the 3MIC to test anti-metastatic drugs on cells experiencing different metabolic conditions. Overall, the 3MIC can help dissecting the complexity of the tumor microenvironment for the direct observation and perturbation of tumor cells during the early metastatic process.
Collapse
Affiliation(s)
- Libi Anandi
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Jeremy Garcia
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Manon Ros
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Libuše Janská
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Josephine Liu
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Carlos Carmona-Fontaine
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
4
|
Rusnáková DŠ, Aziri R, Dubovan P, Jurík M, Mego M, Pinďák D. Detection, significance and potential utility of circulating tumor cells in clinical practice in breast cancer (Review). Oncol Lett 2025; 29:10. [PMID: 39492933 PMCID: PMC11526295 DOI: 10.3892/ol.2024.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 11/05/2024] Open
Abstract
Although advances in diagnostic techniques, new therapeutic strategies and personalization of breast cancer (BC) care have improved the survival for a number of patients, BC remains a major cause of morbidity and mortality for women. The study of circulating tumor cells (CTCs) has significant potential in translational oncology since these cells represent promising biomarkers throughout the entire course of BC in patients. CTCs also have notable prognostic value in early BC as well as metastatic BC. Based on current knowledge, it seems that the dynamics of CTCs that change during therapy reflect therapy response, and CTCs could serve as a tool for risk stratification and real-time monitoring of treatment in patients with BC. The question of how to use this information in everyday clinical practice and how this information can guide or change therapy to affect the clinical outcome of patients with BC remains unanswered. The present review aims to discuss current completed and ongoing trials that have been designed to demonstrate the clinical significance of CTCs, offer insights into treatment efficacy and assess CTC utility, facilitating their implementation in the routine management of patients with BC.
Collapse
Affiliation(s)
- Dominika Šmičková Rusnáková
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Ramadan Aziri
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Peter Dubovan
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Miroslav Jurík
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Michal Mego
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Daniel Pinďák
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| |
Collapse
|
5
|
Puente-Cobacho B, Esteo C, Altea-Manzano P, Garcia-Perez JL, Quiles JL, Sanchez-Rovira P, Martín-Salvago MD, Molina-Jiménez L, Luque RJ, Fendt SM, Vera-Ramirez L. De novo lipogenesis protects dormant breast cancer cells from ferroptosis and promotes metastasis. Redox Biol 2024; 80:103480. [PMID: 39787900 PMCID: PMC11764609 DOI: 10.1016/j.redox.2024.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Dormant disseminated tumor cells (DTCs) remain viable for years to decades before establishing a clinically overt metastatic lesion. DTCs are known to be highly resilient and able to overcome the multiple biological hurdles imposed along the metastatic cascade. However, the specific metabolic adaptations of dormant DTCs remain to be elucidated. Here, we reveal that dormant DTCs upregulate de novo lipogenesis and favor the activation and incorporation of monounsaturated fatty acids (MUFAs) to their cellular membranes through the activation of acyl-coenzyme A synthetase long-chain family member 3 (ACSL3). Pharmacologic inhibition of de novo lipogenesis or genetic knockdown of ACSL3 results in lipid peroxidation and non-apoptotic cell death through ferroptosis. Clinically, ACSL3 was found to be overexpressed in quiescent DTCs in the lymph nodes of breast cancer patients and to significantly correlate with shorter disease-free and overall survival. Our work provides new insights into the molecular mechanisms enabling the survival of dormant DTCs and supports the use of de novo lipogenesis inhibitors to prevent breast cancer metastasis.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Cintia Esteo
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jose Luis Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | | | | | | | - Rafael J Luque
- Pathological Anatomy Unit, University Hospital of Jaén, Jaén, Spain
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
6
|
Büdeyri I, Guckelberger O, Oppermann E, Roy D, Sliwinski S, Becker F, Struecker B, Vogl TJ, Pascher A, Bechstein WO, Lorentzen A, Heikenwalder M, Juratli MA. Ezrin Polarization as a Diagnostic Marker for Circulating Tumor Cells in Hepatocellular Carcinoma. Cells 2024; 14:6. [PMID: 39791707 PMCID: PMC11720075 DOI: 10.3390/cells14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer-related death worldwide, with no precise method for early detection. Circulating tumor cells (CTCs) expressing the dynamic polarity of the cytoskeletal membrane protein, ezrin, have been proposed to play a crucial role in tumor progression and metastasis. This study investigated the diagnostic and prognostic potential of polarized circulating tumor cells (p-CTCs) in HCC patients. CTCs were isolated from the peripheral blood of 20 HCC patients and 18 patients with nonmalignant liver disease (NMLD) via an OncoQuick® kit and immunostained with Ezrin-Alexa Fluor 488®, CD146-PE, and CD45-APC. A fluorescence microscopy was then performed for analysis. The HCC group exhibited significantly higher levels of p-CTCs, with median values of 0.56 p-CTCs/mL, compared to 0.02 p-CTCs/mL (p = 0.03) in the NMLD group. CTCs were detected in 95% of the HCC patients, with a sensitivity of 95% and specificity of 89%. p-CTCs were present in 75% of the HCC patients, with a sensitivity of 75% and a specificity of 94%. Higher p-CTC counts were associated with the significantly longer overall survival in HCC patients (p = 0.05). These findings suggest that p-CTCs could serve as valuable diagnostic and prognostic markers for HCC. The incorporation of p-CTCs into diagnostic strategies could enhance therapeutic decision-making and improve patient outcomes.
Collapse
Affiliation(s)
- Ibrahim Büdeyri
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; (I.B.)
| | - Olaf Guckelberger
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; (I.B.)
| | - Elsie Oppermann
- Department of General, Visceral and Transplant Surgery, Frankfurt University Hospital, 60596 Frankfurt, Germany
| | - Dhruvajyoti Roy
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Svenja Sliwinski
- Department of General, Visceral and Transplant Surgery, Frankfurt University Hospital, 60596 Frankfurt, Germany
| | - Felix Becker
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; (I.B.)
| | - Benjamin Struecker
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; (I.B.)
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, Frankfurt University Hospital, Goethe University, 60596 Frankfurt, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; (I.B.)
| | - Wolf O. Bechstein
- Department of General, Visceral and Transplant Surgery, Frankfurt University Hospital, 60596 Frankfurt, Germany
| | - Anna Lorentzen
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mazen A. Juratli
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; (I.B.)
| |
Collapse
|
7
|
Wang G, Wen P, Xue T, Huang Y, Shao Q, Zhang N, Qu F, Wang J, Wang N, Zeng X. Her2 promotes early dissemination of breast cancer by inhibiting the p38 pathway through the downregulation of MAP3K4. Cell Commun Signal 2024; 22:611. [PMID: 39702199 DOI: 10.1186/s12964-024-02000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024] Open
Abstract
Early dissemination refers to the process by which cancer cells spread to distant organs at an early stage of the disease, often before the primary tumor is clinically detectable. Experimental studies have demonstrated that Her2 promotes early dissemination of breast cancer by inhibiting the p38 signaling pathway. However, the precise mechanism by which Her2 suppresses the activation of p38 signaling in early-stage cancer cells (ECCs) remains unclear. Here, we report that MAP3K4, an upstream kinase of p38, is downregulated in Her2 + ductal carcinoma in situ (DCIS) cells and tissues, which is required for Her2-induced early dissemination of DCIS cells by regulating the activation of the p38 signaling cascade. Furthermore, Her2 suppresses the transcription of MAP3K4 by downregulating the expression of HOXB13, a crucial transcription factor contributing to MAP3K4 expression in DCIS cells. Together, these findings unveil a novel downstream regulatory mechanism through which Her2 inhibits the activation of p38 signaling and facilitates early dissemination of breast cancer, offering insights into the development of effective diagnostic methods and targeted therapies for inhibiting the early dissemination of Her2 + breast cancer.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Female
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Down-Regulation
- Cell Line, Tumor
- p38 Mitogen-Activated Protein Kinases/metabolism
- MAP Kinase Signaling System/genetics
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/genetics
- Animals
- MAP Kinase Kinase Kinase 4/metabolism
- MAP Kinase Kinase Kinase 4/genetics
- Gene Expression Regulation, Neoplastic
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Mice
- Signal Transduction
Collapse
Affiliation(s)
- Guanwen Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Ping Wen
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Ting Xue
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Yuxin Huang
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Qing Shao
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Ningning Zhang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Fanli Qu
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Jing Wang
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China
| | - Nan Wang
- The Second Surgical Department of Breast Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300071, China.
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
8
|
Redoute-Timonnier C, Auguste P. Implication of the Extracellular Matrix in Metastatic Tumor Cell Dormancy. Cancers (Basel) 2024; 16:4076. [PMID: 39682261 DOI: 10.3390/cancers16234076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Metastasis is the main cause of cancer-related deaths. The formation and growth of metastasis is a multistep process. Tumor cells extravasating in the secondary organ are in contact with a new microenvironment and a new extracellular matrix (ECM), called the metastatic niche. Some components of the ECM, such as periostin, can induce tumor cell growth in macrometastasis. In contrast, other components, such as Thrombospondin 1 (TSP-1), can maintain isolated cells in a dormant state. During dormancy, intracellular signaling activation, such as p38, maintains tumor cells arrested in the cell-cycle G0 phase for years. At any moment, stress can induce ECM modifications and binding to their specific receptors (mainly integrins) and reactivate dormant tumor cell growth in macrometastasis. In this review, we describe the tumor microenvironment of the different niches implicated in tumor cell dormancy. The role of ECM components and their associated receptors and intracellular signaling in the reactivation of dormant tumor cells in macrometastasis will be emphasized. We also present the different methodologies and experimental approaches used to study tumor cell dormancy. Finally, we discuss the current and future treatment strategies to avoid late metastasis relapse in patients.
Collapse
Affiliation(s)
| | - Patrick Auguste
- University of Bordeaux, INSERM, BRIC, U1312, MIRCADE Team, F-33000 Bordeaux, France
| |
Collapse
|
9
|
Hasan S, Awasthi P, Malik S, Dwivedi M. Immunotherapeutic strategies to induce inflection in the immune response: therapy for cancer and COVID-19. Biotechnol Genet Eng Rev 2024; 40:3571-3610. [PMID: 36411974 DOI: 10.1080/02648725.2022.2147661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
Cancer has agonized the human race for millions of years. The present decade witnesses biological therapeutics to combat cancer effectively. Cancer Immunotherapy involves the use of therapeutics for manipulation of the immune system by immune agents like cytokines, vaccines, and transfection agents. Recently, this therapeutic approach has got vast attention due to the current pandemic COVID-19 and has been very effective. Concerning cancer, immunotherapy is based on the activation of the host's antitumor response by enhancing effector cell number and the production of soluble mediators, thereby reducing the host's suppressor mechanisms by induction of a tumour killing environment and by modulating immune checkpoints. In the present era, immunotherapies have gained traction and momentum as a pedestal of cancer treatment, improving the prognosis of many patients with a wide variety of haematological and solid malignancies. Food supplements, natural immunomodulatory drugs, and phytochemicals, with recent developments, have shown positive trends in cancer treatment by improving the immune system. The current review presents the systematic studies on major immunotherapeutics and their development for the effective treatment of cancers as well as in COVID-19. The focus of the review is to highlight comparative analytics of existing and novel immunotherapies in cancers, concerning immunomodulatory drugs and natural immunosuppressants, including immunotherapy in COVID-19 patients.
Collapse
Affiliation(s)
- Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University, Ranchi, Jharkhand, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
10
|
Rajabi F, Smith R, Liu-Bordes WY, Schertzer M, Huet S, Londoño-Vallejo A. DNA damage-induced EMT controlled by the PARP-dependent chromatin remodeler ALC1 promotes DNA repair efficiency through RAD51 in tumor cells. Mol Biol Cell 2024; 35:ar151. [PMID: 39504452 PMCID: PMC11656468 DOI: 10.1091/mbc.e24-08-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) allows cancer cells to metastasize while acquiring resistance to apoptosis and chemotherapeutic agents with significant implications for patients' prognosis and survival. Despite its clinical relevance, the mechanisms initiating EMT during cancer progression remain poorly understood. We demonstrate that DNA damage triggers EMT and that activation of poly (ADP-ribose) polymerase (PARP) and the PARP-dependent chromatin remodeler ALC1 (CHD1L) was required for this response. Our results suggest that this activation directly facilitates access to the chromatin of EMT transcriptional factors (TFs) which then initiate cell reprogramming. We also show that EMT-TFs bind to the RAD51 promoter to stimulate its expression and to promote DNA repair by homologous recombination. Importantly, a clinically relevant PARP inhibitor reversed or prevented EMT in response to DNA damage while resensitizing tumor cells to other genotoxic agents. Overall, our observations shed light on the intricate relationship between EMT, DNA damage response, and PARP inhibitors, providing potential insights for in cancer therapeutics.
Collapse
Affiliation(s)
- Fatemeh Rajabi
- Institut Curie, CNRS-UMR3244, Sorbonne University, 75005 Paris, France
- Present addresses: Cancer Genomics lab, Inserm-U981, Gustave Roussy Cancer Center Grand Paris, Villejuif, 94805, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT – UMS3480, F- 35000 Rennes, France
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | - Michael Schertzer
- Institut Curie, CNRS-UMR3244, Sorbonne University, 75005 Paris, France
| | - Sebastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT – UMS3480, F- 35000 Rennes, France
| | - Arturo Londoño-Vallejo
- Institut Curie, CNRS-UMR3244, Sorbonne University, 75005 Paris, France
- Institut Curie, Inserm U1021-CNRS UMR 3347, Paris Saclay University, Centre Universitaire, 91405 Orsay Cedex, France
| |
Collapse
|
11
|
Pedde AM, Kim H, Donakonda S, Baumann T, Bayerl F, Meiser P, Hirschberger A, Klement C, Grassmann S, Öllinger R, Hüser N, Hartmann D, Laschinger M, Trapani JA, Zippelius A, Bald T, Wiedemann GM, Rad R, Sun JC, Höchst B, Böttcher JP. Tissue-colonizing disseminated tumor cells secrete prostaglandin E2 to promote NK cell dysfunction and evade anti-metastatic immunity. Cell Rep 2024; 43:114855. [PMID: 39541209 DOI: 10.1016/j.celrep.2024.114855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Natural killer (NK) cells are critical for anti-metastatic immunity and can eliminate metastasizing tumor cells within circulation and sites of metastatic seeding. Here, we show that disseminated tumor cells (DTCs) colonizing the mouse lung secrete prostaglandin E2 (PGE2) to locally induce NK cell dysfunction, allowing outgrowing metastases to escape immune control and establish metastatic disease. Mechanistically, PGE2 signaling through its receptors EP2 and EP4 mediates NK cell dysfunction, which leads to reprogramming of NK cell gene expression and results in impaired production of anti-metastatic cytokines. In human cancer patients, the PGE2-EP2/EP4 axis is associated with NK cell dysfunction within distant organ metastases. Disabling EP2/EP4 signaling in NK cells prevents their dysfunction in DTC-colonized lungs and achieves effective NK cell-mediated control of metastatic disease. Our findings reveal a suppressive signaling axis exploited by metastasizing tumor cells to escape immune control in distant organs that could be targeted for metastatic cancer therapy.
Collapse
Affiliation(s)
- Anna-Marie Pedde
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Hyunu Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sainitin Donakonda
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Tobias Baumann
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Felix Bayerl
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Philippa Meiser
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Anna Hirschberger
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Christine Klement
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, TUM, Munich, Germany
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, TUM, Munich, Germany
| | - Norbert Hüser
- Department of Surgery, School of Medicine and Health, TUM, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, School of Medicine and Health, TUM, Munich, Germany; Department of Surgery, University Clinic Tübingen, M3 Research Center, Tübingen, Germany
| | - Melanie Laschinger
- Department of Surgery, School of Medicine and Health, TUM, Munich, Germany
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC, Australia
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Tobias Bald
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Gabriela M Wiedemann
- Department of Internal Medicine II, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, TUM, Munich, Germany
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bastian Höchst
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany.
| |
Collapse
|
12
|
Lenart NA, Rao SS. Cell-cell interactions mediating primary and metastatic breast cancer dormancy. Cancer Metastasis Rev 2024; 44:6. [PMID: 39585533 DOI: 10.1007/s10555-024-10223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Breast cancer remains one of the leading causes of death in women around the world. A majority of deaths from breast cancer occur due to cancer cells colonizing distant organ sites. When colonizing these distant organ sites, breast cancer cells have been known to enter into a state of dormancy for extended periods of time. However, the mechanisms that promote dormancy as well as dormant-to-proliferative switch are not fully understood. The tumor microenvironment plays a key role in mediating cancer cell phenotype including regulation of the dormant state. In this review, we highlight cell-cell interactions in the tumor microenvironment mediating breast cancer dormancy at the primary and metastatic sites. Specifically, we describe how immune cells from the lymphoid lineage, tumor-associated myeloid lineage cells, and stromal cells of non-hematopoietic origin as well as tissue resident stromal cells impact dormancy vs. proliferation in breast cancer cells as well as the associated mechanisms. In addition, we highlight the importance of developing model systems and the associated considerations that will be critical in unraveling the mechanisms that promote primary and metastatic breast cancer dormancy mediated via cell-cell interactions.
Collapse
Affiliation(s)
- Nicholas A Lenart
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487-0203, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487-0203, USA.
| |
Collapse
|
13
|
Zhou H, Tan L, Zhang B, Kwong DLW, Wong CN, Zhang Y, Ru B, Lyu Y, Siu KTH, Luo J, Yang Y, Liu Q, Chen Y, Zhang W, He C, Jiang P, Qin Y, Liu B, Guan XY. GPRC5A promotes lung colonization of esophageal squamous cell carcinoma. Nat Commun 2024; 15:9950. [PMID: 39550386 PMCID: PMC11569164 DOI: 10.1038/s41467-024-54251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Emerging evidence suggests that cancer cells may disseminate early, prior to the formation of traditional macro-metastases. However, the mechanisms underlying the seeding and transition of early disseminated cancer cells (DCCs) into metastatic tumors remain poorly understood. Through single-cell RNA sequencing, we show that early lung DCCs from esophageal squamous cell carcinoma (ESCC) exhibit a trophoblast-like 'tumor implantation' phenotype, which enhances their dissemination and supports metastatic growth. Notably, ESCC cells overexpressing GPRC5A demonstrate improved implantation and persistence, resulting in macro-metastases in the lungs. Clinically, elevated GPRC5A level is associated with poorer outcomes in a cohort of 148 ESCC patients. Mechanistically, GPRC5A is found to potentially interact with WWP1, facilitating the polyubiquitination and degradation of LATS1, thereby activating YAP1 signaling pathways essential for metastasis. Importantly, targeting YAP1 axis with CA3 or TED-347 significantly diminishes early implantation and macro-metastases. Thus, the GPRC5A/WWP1/LATS1/YAP1 pathway represents a crucial target for therapeutic intervention in ESCC lung metastases.
Collapse
Grants
- Hong Kong Research Grant Council (RGC) grants including Collaborative Research Funds (C7065-18GF, C7026-18GF and C4039-19GF), Research Impact Fund (R4017-18, R1020-18F and R7022-20), General Research Fund (17119322), Theme-based Research Scheme Fund (T12-703/22-R), the National Natural Science Foundation of China (82072738, 82273483), Shenzhen Key Laboratory for cancer metastasis and personalized therapy (ZDSYS20210623091811035), Shenzhen Science and Technology Program (JCYJ20220818103014030, KQTD20180411185028798, JCYJ20220818103012025), Sanming Project of Medicine in Shenzhen (SZSM202211017), Guangdong Science and Technology Department (2020B1212030004), the Program for Guangdong Introducing Innovative and Entrepreneurial Team (2019BT02Y198)
- National Natural Science Foundation of China (82303160), GuangdongBasic and Applied Basic Research Foundation (2023A1515010109)
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Licheng Tan
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Baifeng Zhang
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dora Lai Wan Kwong
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ching Ngar Wong
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Zhang
- Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Beibei Ru
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yingchen Lyu
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Luo
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuma Yang
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qin Liu
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yixin Chen
- Department of Liver Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaohui He
- Department of Cardiovascular Surgery, Songshan Lake Central Hospital of Dongguan City, Dongguan, China
| | - Peng Jiang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanru Qin
- Department of Clinical Oncology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Beilei Liu
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
14
|
Shahhosseini R, Pakmehr S, Elhami A, Shakir MN, Alzahrani AA, Al-Hamdani MM, Abosoda M, Alsalamy A, Mohammadi-Dehcheshmeh M, Maleki TE, Saffarfar H, Ali-Khiavi P. Current biological implications and clinical relevance of metastatic circulating tumor cells. Clin Exp Med 2024; 25:7. [PMID: 39546080 PMCID: PMC11567993 DOI: 10.1007/s10238-024-01518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Metastatic disease and cancer recurrence are the primary causes of cancer-related deaths. Circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) are the driving forces behind the spread of cancer cells. The emergence and development of liquid biopsy using rare CTCs as a minimally invasive strategy for early-stage tumor detection and improved tumor management is a promising advancement in recent years. However, before blood sample analysis and clinical translation, precise isolation of CTCs from patients' blood based on their biophysical properties, followed by molecular identification of CTCs using single-cell multi-omics technologies is necessary to understand tumor heterogeneity and provide effective diagnosis and monitoring of cancer progression. Additionally, understanding the origin, morphological variation, and interaction between CTCs and the primary and metastatic tumor niche, as well as and regulatory immune cells, will offer new insights into the development of CTC-based advanced tumor targeting in the future clinical trials.
Collapse
Affiliation(s)
| | - SeyedAbbas Pakmehr
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ahvaz Jundishapur University of Medical Sciences Ahvaz, Ahvaz, Iran
| | - Anis Elhami
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | | | - Munther Abosoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Pharmacy, Imam Ja'afar Al-Sadiq University, Al-Samawa, Al-Muthanna, 66002, Iraq
| | | | | | - Hossein Saffarfar
- Cardiovascular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Payam Ali-Khiavi
- Medical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Kim MJ. Tracing Quiescent Cancer Cells In Vivo. Cancers (Basel) 2024; 16:3822. [PMID: 39594777 PMCID: PMC11593267 DOI: 10.3390/cancers16223822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
QCCs have long gained significant interest as potential "seeds" for recurrent cancers. Clinical evidence suggests that a subset of cancer cells exits the cell cycle and enters a quiescent state following anti-cancer treatment. These microscopic-residual QCCs are extremely challenging to trace and detect within patients. Additionally, QCCs resist conventional anti-cancer therapies due to the lack of cell activity. Notably, upon the unknown environmental cues in unknown time points, sometimes decades later, QCCs can reactivate, triggering cancer relapse at primary or secondary sites. Currently, no targeted therapies or diagnostic tools exist for QCCs, and their molecular regulatory mechanisms remain largely unknown. The major challenge in understanding QCCs lies in the limited availability of human-relevant pre-clinical models that trace and collect QCCs in vivo. This review provides an overview of existing QCC tracing systems and analyzes their limitations. It also cautiously proposes potential improvements for tracing QCCs in vivo based on recent advancements in QCC studies and lineage-tracing techniques. Developing human-relevant and easily accessible in vivo tracing systems will be a crucial step in advancing QCC diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
16
|
Dalla E, Papanicolaou M, Park MD, Barth N, Hou R, Segura-Villalobos D, Valencia Salazar L, Sun D, Forrest ARR, Casanova-Acebes M, Entenberg D, Merad M, Aguirre-Ghiso JA. Lung-resident alveolar macrophages regulate the timing of breast cancer metastasis. Cell 2024; 187:6631-6648.e20. [PMID: 39378878 PMCID: PMC11568918 DOI: 10.1016/j.cell.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Breast disseminated cancer cells (DCCs) can remain dormant in the lungs for extended periods, but the mechanisms limiting their expansion are not well understood. Research indicates that tissue-resident alveolar macrophages suppress breast cancer metastasis in lung alveoli by inducing dormancy. Through ligand-receptor mapping and intravital imaging, it was found that alveolar macrophages express transforming growth factor (TGF)-β2. This expression, along with persistent macrophage-cancer cell interactions via the TGF-βRIII receptor, maintains cancer cells in a dormant state. Depleting alveolar macrophages or losing the TGF-β2 receptor in cancer cells triggers metastatic awakening. Aggressive breast cancer cells are either suppressed by alveolar macrophages or evade this suppression by avoiding interaction and downregulating the TGF-β2 receptor. Restoring TGF-βRIII in aggressive cells reinstates TGF-β2-mediated macrophage growth suppression. Thus, alveolar macrophages act as a metastasis immune barrier, and downregulation of TGF-β2 signaling allows cancer cells to overcome macrophage-mediated growth suppression.
Collapse
Affiliation(s)
- Erica Dalla
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Papanicolaou
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Matthew D Park
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole Barth
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Deisy Segura-Villalobos
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Luis Valencia Salazar
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Dan Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Maria Casanova-Acebes
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - David Entenberg
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julio A Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| |
Collapse
|
17
|
Pan C, Wang X, Yang C, Fu K, Wang F, Fu L. The culture and application of circulating tumor cell-derived organoids. Trends Cell Biol 2024:S0962-8924(24)00210-1. [PMID: 39523200 DOI: 10.1016/j.tcb.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Circulating tumor cells (CTCs), which have the heterogeneity and histological properties of the primary tumor and metastases, are shed from the primary tumor and/or metastatic lesions into the vasculature and initiate metastases at remote sites. In the clinic, CTCs are used extensively in liquid biopsies for early screening, diagnosis, treatment, and prognosis. Current research focuses on using CTC-derived models to study tumor heterogeneity and metastasis, with 3D organoids emerging as a promising tool in cancer research and precision oncology. However, isolating and enriching CTCs from blood remains challenging due to their scarcity, exacerbated by the lack of an optimized culture medium for CTC-derived organoids (CTCDOs). In this review, we summarize the origin, isolation, enrichment, culture, validation, and clinical application of CTCs and CTCDOs.
Collapse
Affiliation(s)
- Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
18
|
Zasheva D, Mladenov P, Zapryanova S, Gospodinova Z, Georgieva M, Alexandar I, Velinov V, Djilianov D, Moyankova D, Simova-Stoilova L. Cytotoxic Effects of Plant Secondary Metabolites and Naturally Occurring Bioactive Peptides on Breast Cancer Model Systems: Molecular Mechanisms. Molecules 2024; 29:5275. [PMID: 39598664 PMCID: PMC11596968 DOI: 10.3390/molecules29225275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Breast cancer is the second leading cause of death among women, and the number of mortal cases in diagnosed patients is constantly increasing. The search for new plant compounds with antitumor effects is very important because of the side effects of conventional therapy and the development of drug resistance in cancer cells. The use of plant substances in medicine has been well known for centuries, but the exact mechanism of their action is far from being elucidated. The molecular mechanisms of cytotoxicity exerted by secondary metabolites and bioactive peptides of plant origin on breast cancer cell lines are the subject of this review.
Collapse
Affiliation(s)
- Diana Zasheva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria; (D.Z.); (S.Z.)
| | - Petko Mladenov
- Agrobioinstitute, Agricultural Academy, bul. “Dragan Tsankov” 8, 1164 Sofia, Bulgaria; (P.M.); (D.D.); (D.M.)
| | - Silvina Zapryanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria; (D.Z.); (S.Z.)
| | - Zlatina Gospodinova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.G.); (V.V.)
| | - Mariyana Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.G.); (V.V.)
| | - Irina Alexandar
- Institute of Molecular Biology “Rumen Tzanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Valentin Velinov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.G.); (V.V.)
| | - Dimitar Djilianov
- Agrobioinstitute, Agricultural Academy, bul. “Dragan Tsankov” 8, 1164 Sofia, Bulgaria; (P.M.); (D.D.); (D.M.)
| | - Daniela Moyankova
- Agrobioinstitute, Agricultural Academy, bul. “Dragan Tsankov” 8, 1164 Sofia, Bulgaria; (P.M.); (D.D.); (D.M.)
| | - Lyudmila Simova-Stoilova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.G.); (V.V.)
| |
Collapse
|
19
|
Wang Y, Ding G, Chu C, Cheng XD, Qin JJ. Genomic biology and therapeutic strategies of liver metastasis from gastric cancer. Crit Rev Oncol Hematol 2024; 202:104470. [PMID: 39111457 DOI: 10.1016/j.critrevonc.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The liver is a frequent site of metastasis in advanced gastric cancer (GC). Despite significant advancements in diagnostic and therapeutic techniques, the overall survival rate for patients afflicted with gastric cancer liver metastasis (GCLM) remains dismally low. Precision oncology has made significant progress in identifying therapeutic targets and enhancing our understanding of metastasis mechanisms through genome sequencing and molecular characterization. Therefore, it is crucial to have a comprehensive understanding of the various molecular processes involved in GCLM and the fundamental principles of systemic therapy to develop new treatment approaches. This paper aims to review recent findings on the diagnosis, potential biomarkers, and therapies targeting the multiple molecular processes of GCLM, with the goal of improving treatment strategies for patients with GCLM.
Collapse
Affiliation(s)
- Yichao Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guangyu Ding
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 313200, China
| | - Xiang-Dong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
20
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
21
|
Xin Z, Qin L, Tang Y, Guo S, Li F, Fang Y, Li G, Yao Y, Zheng B, Zhang B, Wu D, Xiao J, Ni C, Wei Q, Zhang T. Immune mediated support of metastasis: Implication for bone invasion. Cancer Commun (Lond) 2024; 44:967-991. [PMID: 39003618 PMCID: PMC11492328 DOI: 10.1002/cac2.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Bone is a common organ affected by metastasis in various advanced cancers, including lung, breast, prostate, colorectal, and melanoma. Once a patient is diagnosed with bone metastasis, the patient's quality of life and overall survival are significantly reduced owing to a wide range of morbidities and the increasing difficulty of treatment. Many studies have shown that bone metastasis is closely related to bone microenvironment, especially bone immune microenvironment. However, the effects of various immune cells in the bone microenvironment on bone metastasis remain unclear. Here, we described the changes in various immune cells during bone metastasis and discussed their related mechanisms. Osteoblasts, adipocytes, and other non-immune cells closely related to bone metastasis were also included. This review also summarized the existing treatment methods and potential therapeutic targets, and provided insights for future studies of cancer bone metastasis.
Collapse
Affiliation(s)
- Zengfeng Xin
- Department of Orthopedic SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Luying Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yang Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Siyu Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Fangfang Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yuan Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Gege Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yihan Yao
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Binbin Zheng
- Department of Respiratory MedicineNingbo Hangzhou Bay HospitalNingboZhejiangP. R. China
| | - Bicheng Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jie Xiao
- Department of Orthopedic SurgerySecond Affiliated Hospital (Jiande Branch)Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Breast SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qichun Wei
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Ting Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
22
|
Zhang Q, Zhang X, Xie P, Zhang W. Liquid biopsy: An arsenal for tumour screening and early diagnosis. Cancer Treat Rev 2024; 129:102774. [PMID: 38851148 DOI: 10.1016/j.ctrv.2024.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Cancer has become the second leading cause of death in the world, and more than 50% of cancer patients are diagnosed at an advanced stage. Early diagnosis of tumours is the key to improving patient quality of life and survival time and reducing the socioeconomic burden. However, there is still a lack of reliable early diagnosis methods in clinical practice. In recent years, liquid biopsy technology has developed rapidly. It has the advantages of noninvasiveness, easy access to sample sources, and reproducibility. It has become the main focus of research on the early diagnosis methods of tumours. This review summarises the research progress of existing liquid biopsy markers, such as circulating tumour DNA, circulating viral DNA, DNA methylation, circulating tumour cells, circulating RNA, exosomes, and tumour education platelets in early diagnosis of tumours, and analyses the current advantages and limitations of various markers, providing a direction for the application and transformation of liquid biopsy research in early diagnosis of clinical tumours.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoli Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peipei Xie
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
23
|
Wang L, Hong R, Shi S, Wang S, Chen Y, Han C, Li M, Ye F. The prognostic significance of circulating tumor cell enumeration and HER2 expression by a novel automated microfluidic system in metastatic breast cancer. BMC Cancer 2024; 24:1067. [PMID: 39210288 PMCID: PMC11360297 DOI: 10.1186/s12885-024-12818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The prognostic value of circulating tumor cells (CTCs) in metastatic breast cancer (MBC) has been extensively studied and verified by the CellSearch® system. Varieties of microfluidic systems have been developed to improve capture efficiency with the lack of standardization and automation. This study systematically verified the positive threshold for prognosis and its guidance value in anti-HER2 therapy based on a novel automated microfluidic system OmiCell®. METHODS CTCs isolation, enumeration and labeling were performed using the OmiCell® system. CTCs identification and reporting were performed using the DeepSight® scanning system. RESULTS The capture efficiency and specificity of OmiCell® system was 91.9% and 90%, respectively. Then, 65 MBC patients with known HER2 status of their metastatic tumors were enrolled. In the cohort, we detected ≥ 1 CTCs in 59 patients (90.8%, range: 1-55 CTCs, median = 6), < 8 CTCs in 45 (69.2%) and ≥ 8 CTCs in 20 (30.8%) patients at baseline. The patients with < 8 CTCs had longer PFS than ≥ 8 CTCs (median, 7 vs. 4.4 months, p = 0.028). CTC enumeration was found to be an independent prognostic factor in our cohort. Moreover, we found a weak concordance between tissue HER2 (tHER2) status and the corresponding CTCs (k = 0.16, p = 0.266). The patients with tHER2 positive and cHER2 negative had better PFS compared with patients with both tHER2 and cHER2 positive (median, 8.2 vs. 3.3 months, p = 0.022). CONCLUSIONS This clinical study shows the prognosis value of a new threshold of CTC number and meanwhile the guidance value of cHER2 status in anti-HER2 therapy.
Collapse
Affiliation(s)
- Liye Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou, Henan, 450052, China
| | - Ruoxi Hong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Simei Shi
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shusen Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Paris, 75005, France
| | - Chao Han
- Anfang Biotechnology Co, Guanzhou Life&Science Center, LtdBio-Island, Guangzhou , 510120, China.
| | - Mei Li
- Department of Pathology Department, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Dongfengdong Road 651, Guangzhou, 510060, China.
| | - Feng Ye
- Department of Breast Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Dongfengdong Road 651, Guangzhou, 510060, China.
| |
Collapse
|
24
|
Brechbuhl HM, Sartorius CA. Sticky Business: Progesterone Receptors Mediate Cancer Associated Fibroblast and Breast Cancer Cell Interaction. Endocrinology 2024; 165:bqae109. [PMID: 39212483 DOI: 10.1210/endocr/bqae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Heather M Brechbuhl
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
25
|
Giles C, Lee J. Inflammation drives tumor growth in an immunocompetent implantable metastasis model. RESEARCH SQUARE 2024:rs.3.rs-4719290. [PMID: 39149496 PMCID: PMC11326373 DOI: 10.21203/rs.3.rs-4719290/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nearly 90% of cancer deaths are due to metastasis. Conventional cancer therapeutics including chemotherapy, surgery, and radiotherapy, are effective in treating primary tumors, but may aggravate disseminated tumor cells (DTCs) into regaining a proliferative state. Models isolating the post dissemination environment are needed to address the potential risks of these therapies, however modeling post dissemination environments is challenging. Often, host organisms become moribund due to primary tumor mass before native metastatic niches can evolve. Implantable tissue engineered niches have been used to attract circulating tumor cells independent of the primary tumor. Here, we serially transplant such tissue engineered niches with recruited DTCs in order to isolate the post dissemination environment. After transplantaion, 69% of scaffolds developed overt post-dissemination cancer growth, however 100% of scaffolds did not grow to a life-threatening critical size within twelve weeks. Adjuvant chemotherapy, while initially effective, did not prevent long-term DTC growth in scaffolds. Subjecting these transplanted niches to surgical resection via biopsy punch enhanced CD31, MMP9, Ly6G, and tumor burden compared to control scaffolds. Biopsy punching was able to rescue tumor incidence from prior chemotherapy. This model of serial transplantation of engineered DTC niches is a highly controllable and flexible method of establishing and systematically investigating the post-dissemination niche.
Collapse
|
26
|
Nathanson SD, Dieterich LC, Zhang XHF, Chitale DA, Pusztai L, Reynaud E, Wu YH, Ríos-Hoyo A. Associations amongst genes, molecules, cells, and organs in breast cancer metastasis. Clin Exp Metastasis 2024; 41:417-437. [PMID: 37688650 DOI: 10.1007/s10585-023-10230-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
This paper is a cross fertilization of ideas about the importance of molecular aspects of breast cancer metastasis by basic scientists, a pathologist, and clinical oncologists at the Henry Ford Health symposium. We address four major topics: (i) the complex roles of lymphatic endothelial cells and the molecules that stimulate them to enhance lymph node and systemic metastasis and influence the anti-tumor immunity that might inhibit metastasis; (ii) the interaction of molecules and cells when breast cancer spreads to bone, and how bone metastases may themselves spread to internal viscera; (iii) how molecular expression and morphologic subtypes of breast cancer assist clinicians in determining which patients to treat with more or less aggressive therapies; (iv) how the outcomes of patients with oligometastases in breast cancer are different from those with multiple metastases and how that could justify the aggressive treatment of these patients with the hope of cure.
Collapse
Affiliation(s)
- S David Nathanson
- Department of Surgery, Henry Ford Health, 2799 W. Grand Blvd, Detroit, MI, 48202, USA.
- Cancer Center, Henry Ford Health, Detroit, MI, USA.
| | - Lothar C Dieterich
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emma Reynaud
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
27
|
Rodriguez-Tirado C, Sosa MS. How much do we know about the metastatic process? Clin Exp Metastasis 2024; 41:275-299. [PMID: 38520475 PMCID: PMC11374507 DOI: 10.1007/s10585-023-10248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2024]
Abstract
Cancer cells can leave their primary sites and travel through the circulation to distant sites, where they lodge as disseminated cancer cells (DCCs), even during the early and asymptomatic stages of tumor progression. In experimental models and clinical samples, DCCs can be detected in a non-proliferative state, defined as cellular dormancy. This state can persist for extended periods until DCCs reawaken, usually in response to niche-derived reactivation signals. Therefore, their clinical detection in sites like lymph nodes and bone marrow is linked to poor survival. Current cancer therapy designs are based on the biology of the primary tumor and do not target the biology of the dormant DCC population and thus fail to eradicate the initial or subsequent waves of metastasis. In this brief review, we discuss the current methods for detecting DCCs and highlight new strategies that aim to target DCCs that constitute minimal residual disease to reduce or prevent metastasis formation. Furthermore, we present current evidence on the relevance of DCCs derived from early stages of tumor progression in metastatic disease and describe the animal models available for their study. We also discuss our current understanding of the dissemination mechanisms utilized by genetically less- and more-advanced cancer cells, which include the functional analysis of intermediate or hybrid states of epithelial-mesenchymal transition (EMT). Finally, we raise some intriguing questions regarding the clinical impact of studying the crosstalk between evolutionary waves of DCCs and the initiation of metastatic disease.
Collapse
Affiliation(s)
- Carolina Rodriguez-Tirado
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| | - Maria Soledad Sosa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
28
|
Borrelli C, Roberts M, Eletto D, Hussherr MD, Fazilaty H, Valenta T, Lafzi A, Kretz JA, Guido Vinzoni E, Karakatsani A, Adivarahan S, Mannhart A, Kimura S, Meijs A, Baccouche Mhamedi F, Acar IE, Handler K, Ficht X, Platt RJ, Piscuoglio S, Moor AE. In vivo interaction screening reveals liver-derived constraints to metastasis. Nature 2024; 632:411-418. [PMID: 39048831 PMCID: PMC11306111 DOI: 10.1038/s41586-024-07715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
It is estimated that only 0.02% of disseminated tumour cells are able to seed overt metastases1. While this suggests the presence of environmental constraints to metastatic seeding, the landscape of host factors controlling this process remains largely unclear. Here, combining transposon technology2 and fluorescence niche labelling3, we developed an in vivo CRISPR activation screen to systematically investigate the interactions between hepatocytes and metastatic cells. We identify plexin B2 as a critical host-derived regulator of liver colonization in colorectal and pancreatic cancer and melanoma syngeneic mouse models. We dissect a mechanism through which plexin B2 interacts with class IV semaphorins on tumour cells, leading to KLF4 upregulation and thereby promoting the acquisition of epithelial traits. Our results highlight the essential role of signals from the liver parenchyma for the seeding of disseminated tumour cells before the establishment of a growth-promoting niche. Our findings further suggest that epithelialization is required for the adaptation of CRC metastases to their new tissue environment. Blocking the plexin-B2-semaphorin axis abolishes metastatic colonization of the liver and therefore represents a therapeutic strategy for the prevention of hepatic metastases. Finally, our screening approach, which evaluates host-derived extrinsic signals rather than tumour-intrinsic factors for their ability to promote metastatic seeding, is broadly applicable and lays a framework for the screening of environmental constraints to metastasis in other organs and cancer types.
Collapse
Affiliation(s)
- Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Morgan Roberts
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Davide Eletto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Atefeh Lafzi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elena Guido Vinzoni
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Ardian Mannhart
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shoichiro Kimura
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ab Meijs
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Ilhan E Acar
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Salvatore Piscuoglio
- IRCCS Humanitas Research Hospital, Milan, Italy
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
29
|
Wu YL, Hong YY, Zhan HL, Zhang LY, Wu SG, Zhang FX. Axillary lymph node removal in de novo metastatic breast cancer. Gland Surg 2024; 13:1214-1228. [PMID: 39175710 PMCID: PMC11336786 DOI: 10.21037/gs-24-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/03/2024] [Indexed: 08/24/2024]
Abstract
Background Several prospective studies have found that local surgical resection did not improve the survival of patients with de novo metastatic breast cancer (dnMBC). However, a significant portion of dnMBC patients still undergo local surgery, and the role of axillary lymph node dissection (ALND) in dnMBC patients remains unclear. This study aimed to investigate the effect of ALND in patients with dnMBC. Methods We included patients diagnosed with dnMBC between 2010 and 2020 using the data from the Surveillance, Epidemiology, and End Results program. The Chi-square test, binomial logistic regression, propensity score matching (PSM), Kaplan-Meier method, and multivariate Cox proportional models were employed for statistical analysis. Results A total of 6,838 patients were identified, with 5,562 (81.3%) in the ALND group and 1,276 (18.7%) in the non-ALND group. Being diagnosed in later years emerged as an independent predictive factor related to the receipt of ALND (P=0.003). Before PSM, the 5-year breast cancer-specific survival (BCSS) was 51.1% and 38.2% in those with and without ALND, respectively (P<0.001). The 5-year overall survival (OS) was 45.9% and 32.3% in those with and without ALND, respectively (P<0.001). ALND was identified as an independent prognostic factor related to better BCSS (P<0.001) and OS (P<0.001) compared to the non-ALND group. Similar findings were observed after PSM. The outcomes were significantly better in the ALND group than in the non-ALND group in most subgroups. However, the number of removed lymph nodes did not show a significant association with BCSS (P=0.27) and OS (P=0.29). Conclusions Our study suggests that ALND is associated with improved survival outcomes in dnMBC patients. These findings advocate for a re-evaluation of the role of surgical interventions in dnMBC, emphasizing the need for personalized treatment strategies that consider the potential benefits of ALND.
Collapse
Affiliation(s)
- Ya-Lin Wu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Yi-Yan Hong
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Hong-Liang Zhan
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Long-Ying Zhang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - San-Gang Wu
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fu-Xing Zhang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Wang Y, Liu J, Gong Y, Hu B, Xie J, Cheng J, Huang Q. Bone Marrow Disseminated Tumor Cell Detection Is Beneficial for the Early Finding of Bone Metastasis and Prognosis. Diagnostics (Basel) 2024; 14:1629. [PMID: 39125505 PMCID: PMC11311593 DOI: 10.3390/diagnostics14151629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Disseminated tumor cells (DTCs) are thought to be the initiators of tumor recurrence and metastasis. However, based on the current imaging examination methods, early detection of DTCs is extremely difficult due to their small number and dormant state. METHODS We used the SE-iFISH approach to detect bone marrow DTCs (mDTCs) in patients with breast or prostate cancer, and compared it with various imaging examination methods to explore its role in predicting metastasis and prognosis. RESULTS Fifteen patients were enrolled in this study. Among them, 11 patients showed imaging-confirmed bone metastases in different sites of the body, of which seven patients had iliac mDTCs and signs of iliac bone metastases on imaging. For the remaining four patients, imaging confirmed that the bone metastatic foci were far from the ilium, but in one patient, mDTCs were detected in the ilium. Interestedly, iliac mDTCs were also detected in two out of four patients who had no sign of bone metastases on imaging. Furthermore, the epithelial marker, CK18, was ubiquitously expressed in mDTCs, but its expression was very low in peripheral circulating tumor cells (pCTCs). The Kaplan-Meier plot suggested that CK18+ mDTCs ≥ 5 was related to poor overall survival (OS) compared with that of CK18+ mDTCs < 5 in breast cancer patients (median OS: 22.1 vs. 46.9 months; log-rank, p = 0.035). CONCLUSIONS SE-iFISH examination for mDTCs is more sensitive than the conventional methods used for detecting bone metastases. mDTC detection facilitated the early finding of tumor cells in the bone marrow and ≥5 CK18+ mDTCs was associated with a poor prognosis in breast cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; (Y.W.)
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; (Y.W.)
| |
Collapse
|
31
|
Diep CH, Spartz A, Truong TH, Dwyer AR, El-Ashry D, Lange CA. Progesterone Receptor Signaling Promotes Cancer Associated Fibroblast Mediated Tumorigenicity in ER+ Breast Cancer. Endocrinology 2024; 165:bqae092. [PMID: 39041201 PMCID: PMC11492492 DOI: 10.1210/endocr/bqae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Breast cancer progression involves intricate interactions between cancer cells and the tumor microenvironment (TME). This study elucidates the critical role of progesterone receptor (PR) signaling in mediating the protumorigenic effects of cancer-associated fibroblasts (CAFs) on estrogen receptor-positive (ER+) luminal breast cancer cells. We demonstrate that CAFs produce physiologically relevant levels of estrogen and progesterone, which significantly contribute to breast cancer tumorigenicity. Specifically, CAF conditioned media (CM) promoted PR-dependent anchorage-independent growth, tumorsphere formation/stem cell expansion, and CD44 upregulation. CAF cells formed co-clusters more frequently with PR+ breast cancer cells relative to PR-null models. While both PR isoforms mediated these actions, PR-A was a dominant driver of tumorsphere formation/stemness, while PR-B induced robust CD44 expression and CAF/tumor cell co-cluster formation. CD44 knockdown impaired CAF/tumor cell co-clustering. Fibroblast growth factor 2 (FGF2), also secreted by CAFs, phosphorylated PR (Ser294) in a MAPK-dependent manner and activated PR to enhance CD44 expression and breast cancer tumorigenicity. The FGF receptor (FGFR) inhibitor PD173074 diminished CAF- and FGF2-dependent PR activation, tumorsphere formation, and co-clustering. In summary, this study reveals a novel mechanism through which stromal CAFs orchestrate elevated PR signaling in ER+ luminal breast cancer via secretion of both progesterone and FGF2, a potent activator of ERK1/2. Understanding tumor cell/TME interactions provides insights into potential therapeutic strategies aimed at disrupting PR- and/or FGF2/FGFR-dependent signaling pathways to prevent early metastasis in patients with ER+ breast cancer.
Collapse
Affiliation(s)
- Caroline H Diep
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Spartz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy R Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Hematology, Oncology & Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
32
|
Zhu S, Zhu W, Zhao K, Yu J, Lu W, Zhou R, Fan S, Kong W, Yang F, Shan P. Discovery of a novel hybrid coumarin-hydroxamate conjugate targeting the HDAC1-Sp1-FOSL2 signaling axis for breast cancer therapy. Cell Commun Signal 2024; 22:361. [PMID: 39010083 PMCID: PMC11247895 DOI: 10.1186/s12964-024-01733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most lethal cancers in women. Despite significant advances in the diagnosis and treatment of breast cancer, many patients still succumb to this disease, and thus, novel effective treatments are urgently needed. Natural product coumarin has been broadly investigated since it reveals various biological properties in the medicinal field. Accumulating evidence indicates that histone deacetylase inhibitors (HDACIs) are promising novel anti-breast cancer agents. However, most current HDACIs exhibit only moderate effects against solid tumors and are associated with severe side effects. Thus, to develop more effective HDACIs for breast cancer therapy, hydroxamate of HDACIs was linked to coumarin core, and coumarin-hydroxamate hybrids were designed and synthesized. METHODS A substituted coumarin moiety was incorporated into the classic hydroxamate HDACIs by the pharmacophore fusion strategy. ZN444B was identified by using the HDACI screening kit and cell viability assay. Molecular docking was performed to explore the binding mode of ZN444B with HDAC1. Western blot, immunofluorescent staining, cell viability, colony formation and cell migration and flow cytometry assays were used to analyze the anti-breast cancer effects of ZN444B in vitro. Orthotopic studies in mouse models were applied for preclinical evaluation of efficacy and toxicity in vivo. Proteomic analysis, dual-luciferase reporter assay, chromatin immunoprecipitation, co-immunoprecipitation, immunofluorescent staining assays along with immunohistochemical (IHC) analysis were used to elucidate the molecular basis of the actions of ZN444B. RESULTS We synthesized and identified a novel coumarin-hydroxamate conjugate, ZN444B which possesses promising anti-breast cancer activity both in vitro and in vivo. A molecular docking model showed that ZN444B binds to HDAC1 with high affinity. Further mechanistic studies revealed that ZN444B specifically decreases FOS-like antigen 2 (FOSL2) mRNA levels by inhibiting the deacetylase activity of HDAC1 on Sp1 at K703 and abrogates the binding ability of Sp1 to the FOSL2 promoter. Furthermore, FOSL2 expression positively correlates with breast cancer progression and metastasis. Silencing FOSL2 expression decreases the sensitivity of breast cancer cells to ZN444B treatment. In addition, ZN444B shows no systemic toxicity in mice. CONCLUSIONS Our findings highlight the potential of FOSL2 as a new biomarker and therapeutic target for breast cancer and that targeting the HDAC1-Sp1-FOSL2 signaling axis with ZN444B may be a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Sujie Zhu
- Institute of Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Wenjing Zhu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Kaihua Zhao
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Jie Yu
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Wenxia Lu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Rui Zhou
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Shule Fan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Weikaixin Kong
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, 00250, Finland.
- Institute Sanqu Technology (Hangzhou) Co., Ltd., Hangzhou, China.
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Peipei Shan
- Institute of Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
33
|
Elkholi IE, Rose AAN, Aguirre-Ghiso JA, Côté JF. How can we integrate the biology of breast cancer cell dormancy into clinical practice? Cancer Cell 2024; 42:1147-1151. [PMID: 38906154 DOI: 10.1016/j.ccell.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
Clinical practice and clinical research heavily rely on primary tumors, circulating tumor DNA, and/or overt metastases as sources of material for predicting or investigating breast cancer metastatic relapses. However, these approaches do not consider emerging fundamentals in the biology of metastatic dormancy and relapse. Conversely, the field of metastatic dormancy often discounts key clinical factors influencing relapse dynamics (e.g., patient's age and overall health condition). Here, we delineate these disparities into four gaps and propose a framework to bridge them.
Collapse
Affiliation(s)
- Islam E Elkholi
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada; Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada; Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada.
| | - April A N Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada; Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Julio A Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Ruth L. & David S. Gottesman Institute for Stem Cell Research & Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
34
|
Gu C, Chen P, Tian H, Yang Y, Huang Z, Yan H, Tang C, Xiang J, Shangguan L, Pan K, Chen P, Huang Y, Liu Z, Tang R, Fan S, Lin X. Targeting initial tumour-osteoclast spatiotemporal interaction to prevent bone metastasis. NATURE NANOTECHNOLOGY 2024; 19:1044-1054. [PMID: 38499860 DOI: 10.1038/s41565-024-01613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/16/2024] [Indexed: 03/20/2024]
Abstract
Bone is the most common site of metastasis, and although low proliferation and immunoediting at the early stage make existing treatment modalities less effective, the microenvironment-inducing behaviour could be a target for early intervention. Here we report on a spatiotemporal coupling interaction between tumour cells and osteoclasts, and named the tumour-associated osteoclast 'tumasteoclast'-a subtype of osteoclasts in bone metastases induced by tumour-migrasome-mediated cytoplasmic transfer. We subsequently propose an in situ decoupling-killing strategy in which tetracycline-modified nanoliposomes encapsulating sodium bicarbonate and sodium hydrogen phosphate are designed to specifically release high concentrations of hydrogen phosphate ions triggered by tumasteoclasts, which depletes calcium ions and forms calcium-phosphorus crystals. This can inhibit the formation of migrasomes for decoupling and disrupt cell membrane for killing, thereby achieving early prevention of bone metastasis. This study provides a research model for exploring tumour cell behaviour in detail and a proof-of-concept for behaviour-targeting strategy.
Collapse
Affiliation(s)
- Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Hongsen Tian
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Zhenxiang Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Chenxi Tang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajia Xiang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Liqing Shangguan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Pengyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Yue Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China.
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
35
|
Ferrer CM, Cho HM, Boon R, Bernasocchi T, Wong LP, Cetinbas M, Haggerty ER, Mitsiades I, Wojtkiewicz GR, McLoughlin DE, Aboushousha R, Abdelhamid H, Kugel S, Rheinbay E, Sadreyev R, Juric D, Janssen-Heininger YMW, Mostoslavsky R. The glutathione S-transferase Gstt1 drives survival and dissemination in metastases. Nat Cell Biol 2024; 26:975-990. [PMID: 38862786 DOI: 10.1038/s41556-024-01426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/18/2024] [Indexed: 06/13/2024]
Abstract
Identifying the adaptive mechanisms of metastatic cancer cells remains an elusive question in the treatment of metastatic disease, particularly in pancreatic cancer (pancreatic adenocarcinoma, PDA). A loss-of-function shRNA targeted screen in metastatic-derived cells identified Gstt1, a member of the glutathione S-transferase superfamily, as uniquely required for dissemination and metastasis, but dispensable for primary tumour growth. Gstt1 is expressed in latent disseminated tumour cells (DTCs), is retained within a subpopulation of slow-cycling cells within existing metastases, and its inhibition leads to complete regression of macrometastatic tumours. This distinct Gstt1high population is highly metastatic and retains slow-cycling phenotypes, epithelial-mesenchymal transition features and DTC characteristics compared to the Gstt1low population. Mechanistic studies indicate that in this subset of cancer cells, Gstt1 maintains metastases by binding and glutathione-modifying intracellular fibronectin, in turn promoting its secretion and deposition into the metastatic microenvironment. We identified Gstt1 as a mediator of metastasis, highlighting the importance of heterogeneity and its influence on the metastatic tumour microenvironment.
Collapse
Affiliation(s)
- Christina M Ferrer
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- University of Maryland School of Medicine and the Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.
| | - Hyo Min Cho
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ruben Boon
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Galapagos NV, 2800 Mechelen, Belgium
| | - Tiziano Bernasocchi
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth R Haggerty
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Irene Mitsiades
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Daniel E McLoughlin
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Termeer Center for Targeted Therapies, Massachusetts General Hospital, Boston, MA, USA
| | - Reem Aboushousha
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Hend Abdelhamid
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Sita Kugel
- Fred Hutchison Cancer Research Center, Seattle, WA, USA
| | - Esther Rheinbay
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Dejan Juric
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Termeer Center for Targeted Therapies, Massachusetts General Hospital, Boston, MA, USA
| | | | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
36
|
Volmer LL, Dannehl D, Matovina S, Taran FA, Walter CB, Wallwiener M, Brucker SY, Hartkopf AD, Engler T. Comparing the HER2 Status of the Primary Tumor to That of Disseminated Tumor Cells in Early Breast Cancer. Int J Mol Sci 2024; 25:5910. [PMID: 38892097 PMCID: PMC11173203 DOI: 10.3390/ijms25115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancer remains a leading cause of cancer mortality in women globally. Despite advancements in systemic therapy, the risk of distant recurrence persists even after such treatment and may be linked to disseminated tumor cells (DTCs). Variability in molecular characteristics between primary tumors (PTs) and distant metastases underscores the need to comprehensively understand metastatic pathways. This retrospective study investigated discrepancies between HER2 expression in PTs and DTCs and their implications for survival outcomes in 201 early breast cancer (EBC) patients. We found a significant association between HER2 expression in PTs and DTCs when classifying tumors as HER2-high/low/negative. Patients whose HER2 status was discordant between PTs and DTCs exhibited worse distant disease-free survival than those with concordant status. Multivariate analysis confirmed the HER2 status of DTCs as an independent prognostic factor for distant DFS. These findings emphasize the importance of assessing HER2 expression in DTCs and its potential implications for tailored therapy strategies in EBC. Furthermore, prospective trials are needed to validate these findings and explore targeted therapies based on the molecular characteristics of DTCs.
Collapse
Affiliation(s)
- Léa Louise Volmer
- Department of Women’s Health, Tübingen University, 72076 Tübingen, Germany; (D.D.); (S.M.); (C.B.W.); (S.Y.B.); (A.D.H.); (T.E.)
| | - Dominik Dannehl
- Department of Women’s Health, Tübingen University, 72076 Tübingen, Germany; (D.D.); (S.M.); (C.B.W.); (S.Y.B.); (A.D.H.); (T.E.)
| | - Sabine Matovina
- Department of Women’s Health, Tübingen University, 72076 Tübingen, Germany; (D.D.); (S.M.); (C.B.W.); (S.Y.B.); (A.D.H.); (T.E.)
| | - Florin-Andrei Taran
- Department for Gynecology and Obstetrics, Freiburg University, 79085 Freiburg im Breisgau, Germany;
| | - Christina Barbara Walter
- Department of Women’s Health, Tübingen University, 72076 Tübingen, Germany; (D.D.); (S.M.); (C.B.W.); (S.Y.B.); (A.D.H.); (T.E.)
| | - Markus Wallwiener
- Department for Gynecology and Obstetrics, University Medical Center Halle, 06120 Halle (Saale), Germany;
| | - Sara Yvonne Brucker
- Department of Women’s Health, Tübingen University, 72076 Tübingen, Germany; (D.D.); (S.M.); (C.B.W.); (S.Y.B.); (A.D.H.); (T.E.)
| | - Andreas Daniel Hartkopf
- Department of Women’s Health, Tübingen University, 72076 Tübingen, Germany; (D.D.); (S.M.); (C.B.W.); (S.Y.B.); (A.D.H.); (T.E.)
| | - Tobias Engler
- Department of Women’s Health, Tübingen University, 72076 Tübingen, Germany; (D.D.); (S.M.); (C.B.W.); (S.Y.B.); (A.D.H.); (T.E.)
| |
Collapse
|
37
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
38
|
Wu Y, Cao Y, Chen L, Lai X, Zhang S, Wang S. Role of Exosomes in Cancer and Aptamer-Modified Exosomes as a Promising Platform for Cancer Targeted Therapy. Biol Proced Online 2024; 26:15. [PMID: 38802766 PMCID: PMC11129508 DOI: 10.1186/s12575-024-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Exosomes are increasingly recognized as important mediators of intercellular communication in cancer biology. Exosomes can be derived from cancer cells as well as cellular components in tumor microenvironment. After secretion, the exosomes carrying a wide range of bioactive cargos can be ingested by local or distant recipient cells. The released cargos act through a variety of mechanisms to elicit multiple biological effects and impact most if not all hallmarks of cancer. Moreover, owing to their excellent biocompatibility and capability of being easily engineered or modified, exosomes are currently exploited as a promising platform for cancer targeted therapy. In this review, we first summarize the current knowledge of roles of exosomes in risk and etiology, initiation and progression of cancer, as well as their underlying molecular mechanisms. The aptamer-modified exosome as a promising platform for cancer targeted therapy is then briefly introduced. We also discuss the future directions for emerging roles of exosome in tumor biology and perspective of aptamer-modified exosomes in cancer therapy.
Collapse
Affiliation(s)
- Yating Wu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Medical Oncology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Yue Cao
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Xiaofeng Lai
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| |
Collapse
|
39
|
Karras P, Black JRM, McGranahan N, Marine JC. Decoding the interplay between genetic and non-genetic drivers of metastasis. Nature 2024; 629:543-554. [PMID: 38750233 DOI: 10.1038/s41586-024-07302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
Metastasis is a multistep process by which cancer cells break away from their original location and spread to distant organs, and is responsible for the vast majority of cancer-related deaths. Preventing early metastatic dissemination would revolutionize the ability to fight cancer. Unfortunately, the relatively poor understanding of the molecular underpinnings of metastasis has hampered the development of effective anti-metastatic drugs. Although it is now accepted that disseminating tumour cells need to acquire multiple competencies to face the many obstacles they encounter before reaching their metastatic site(s), whether these competencies are acquired through an accumulation of metastasis-specific genetic alterations and/or non-genetic events is often debated. Here we review a growing body of literature highlighting the importance of both genetic and non-genetic reprogramming events during the metastatic cascade, and discuss how genetic and non-genetic processes act in concert to confer metastatic competencies. We also describe how recent technological advances, and in particular the advent of single-cell multi-omics and barcoding approaches, will help to better elucidate the cross-talk between genetic and non-genetic mechanisms of metastasis and ultimately inform innovative paths for the early detection and interception of this lethal process.
Collapse
Affiliation(s)
- Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - James R M Black
- Cancer Genome Evolution Research Group, UCL Cancer Institute, London, UK
| | | | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
40
|
Lambert AW, Zhang Y, Weinberg RA. Cell-intrinsic and microenvironmental determinants of metastatic colonization. Nat Cell Biol 2024; 26:687-697. [PMID: 38714854 DOI: 10.1038/s41556-024-01409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Cancer metastasis is a biologically complex process that remains a major challenge in the oncology clinic, accounting for nearly all of the mortality associated with malignant neoplasms. To establish metastatic growths, carcinoma cells must disseminate from the primary tumour, survive in unfamiliar tissue microenvironments, re-activate programs of proliferation, and escape innate and adaptive immunosurveillance. The entire process is extremely inefficient and can occur over protracted timescales, yielding only a vanishingly small number of carcinoma cells that are able to complete all of the required steps. Here we review both the cancer-cell-intrinsic mechanisms and microenvironmental interactions that enable metastatic colonization. In particular, we highlight recent work on the behaviour of already-disseminated tumour cells, since meaningful progress in treating metastatic disease will clearly require a better understanding of the cells that spawn metastases, which generally have disseminated by the time of initial diagnosis.
Collapse
Affiliation(s)
- Arthur W Lambert
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Translational Medicine, Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT Ludwig Center, Cambridge, MA, USA.
| |
Collapse
|
41
|
Waldum H, Slupphaug G. Correctly identifying the cells of origin is essential for tailoring treatment and understanding the emergence of cancer stem cells and late metastases. Front Oncol 2024; 14:1369907. [PMID: 38660133 PMCID: PMC11040596 DOI: 10.3389/fonc.2024.1369907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Malignancy manifests itself by deregulated growth and the ability to invade surrounding tissues or metastasize to other organs. These properties are due to genetic and/or epigenetic changes, most often mutations. Many aspects of carcinogenesis are known, but the cell of origin has been insufficiently focused on, which is unfortunate since the regulation of its growth is essential to understand the carcinogenic process and guide treatment. Similarly, the concept of cancer stem cells as cells having the ability to stop proliferation and rest in a state of dormancy and being resistant to cytotoxic drugs before "waking up" and become a highly malignant tumor recurrence, is not fully understood. Some tumors may recur after decades, a phenomenon probably also connected to cancer stem cells. The present review shows that many of these questions are related to the cell of origin as differentiated cells being long-term stimulated to proliferation.
Collapse
Affiliation(s)
- Helge Waldum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
42
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
43
|
Pícková M, Kahounová Z, Radaszkiewicz T, Procházková J, Fedr R, Nosková M, Radaszkiewicz KA, Ovesná P, Bryja V, Souček K. Orthotopic model for the analysis of melanoma circulating tumor cells. Sci Rep 2024; 14:7827. [PMID: 38570556 PMCID: PMC10991390 DOI: 10.1038/s41598-024-58236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Metastatic melanoma, a highly lethal form of skin cancer, presents significant clinical challenges due to limited therapeutic options and high metastatic capacity. Recent studies have demonstrated that cancer dissemination can occur earlier, before the diagnosis of the primary tumor. The progress in understanding the kinetics of cancer dissemination is limited by the lack of animal models that accurately mimic disease progression. We have established a xenograft model of human melanoma that spontaneously metastasizes to lymph nodes and lungs. This model allows precise monitoring of melanoma progression and is suitable for the quantitative and qualitative analysis of circulating tumor cells (CTCs). We have validated a flow cytometry-based protocol for CTCs enumeration and isolation. We could demonstrate that (i) CTCs were detectable in the bloodstream from the fourth week after tumor initiation, coinciding with the lymph node metastases appearance, (ii) excision of the primary tumor accelerated the formation of metastases in lymph nodes and lungs as early as one-week post-surgery, accompanied by the increased numbers of CTCs, and (iii) CTCs change their surface protein signature. In summary, we present a model of human melanoma that can be effectively utilized for future drug efficacy studies.
Collapse
Affiliation(s)
- Markéta Pícková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Tomasz Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Michaela Nosková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Centre for Inflammation Research, University of Edinburgh Institute for Regeneration and Repair, Edinburgh, Scotland
| | | | - Petra Ovesná
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
44
|
Li Y, Qin J, Chen G, Wu W, Sun X. Plasma THBS1 as a predictive biomarker for poor prognosis and brain metastasis in patients with HER2-enriched breast cancer. Int J Clin Oncol 2024; 29:427-441. [PMID: 38411882 DOI: 10.1007/s10147-024-02472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/04/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Thrombospondin-1 (THBS1) is a secretory adhesive glycoprotein involved in the progression of multiple malignancies, including breast cancer. However, the clinical significance and prognostic role of plasma THBS1 in breast cancer have yet to be clarified. METHODS Plasma THBS1 levels in 627 breast cancer patients were analyzed by enzyme-linked immunosorbent assay. Bone marrow blood was drawn from the anterior/posterior superior iliac spine to detect the presence of disseminated tumor cells (DTCs). The effects of plasma THBS1 on the clinicopathological characteristics and survival prediction of breast cancer patients were explored. RESULTS Plasma THBS1 did not correlate with overall survival, breast cancer-specific survival (BCSS), and distant disease-free survival (DDFS) in the entire breast cancer cohort. Notably, HER2-enriched patients with high-plasma THBS1 levels had significantly shorter BCSS (P = 0.027) and DDFS (P = 0.011) than those with low levels. Multivariate analyses revealed that plasma THBS1 was an independent prognostic marker of BCSS (P = 0.026) and DDFS (P = 0.007) in HER2-enriched patients. THBS1 levels were 24% higher in positive DTC patients than in negative DTC patients (P = 0.031), and high levels were significantly associated with poor BCSS in positive DTC patients (HR 2.08, 95% CI 1.17-3.71; P = 0.019). Moreover, high-plasma THBS1 levels were specifically associated with an increased occurrence of brain metastasis in HER2-enriched patients (P = 0.041). CONCLUSION These findings suggest that plasma THBS1 may be serving as an unfavorable prognosis predictor for HER2-enriched breast cancer and justifies the need for further research.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Jun Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Guiming Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Weidong Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
45
|
Yu L, Huang Z, Xiao Z, Tang X, Zeng Z, Tang X, Ouyang W. Unveiling the best predictive models for early‑onset metastatic cancer: Insights and innovations (Review). Oncol Rep 2024; 51:60. [PMID: 38456540 PMCID: PMC10940877 DOI: 10.3892/or.2024.8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cancer metastasis is the primary cause of cancer deaths. Metastasis involves the spread of cancer cells from the primary tumors to other body parts, commonly through lymphatic and vascular pathways. Key aspects include the high mutation rate and the capability of metastatic cells to form invasive tumors even without a large initial tumor mass. Particular emphasis is given to early metastasis, occurring in initial cancer stages and often leading to misdiagnosis, which adversely affects survival and prognosis. The present review highlighted the need for improved understanding and detection methods for early metastasis, which has not been effectively identified clinically. The present review demonstrated the clinicopathological and molecular characteristics of early‑onset metastatic types of cancer, noting factors such as age, race, tumor size and location as well as the histological and pathological grade as significant predictors. In conclusion, the present review underscored the importance of early detection and management of metastatic types of cancer and called for improved predictive models, including advanced techniques such as nomograms and machine learning, so as to enhance patient outcomes, acknowledging the challenges and limitations of the current research as well as the necessity for further studies.
Collapse
Affiliation(s)
- Liqing Yu
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhenjun Huang
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ziqi Xiao
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaofu Tang
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ziqiang Zeng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoli Tang
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenhao Ouyang
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
46
|
Richbourg NR, Irakoze N, Kim H, Peyton SR. Outlook and opportunities for engineered environments of breast cancer dormancy. SCIENCE ADVANCES 2024; 10:eadl0165. [PMID: 38457510 PMCID: PMC10923521 DOI: 10.1126/sciadv.adl0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Dormant, disseminated breast cancer cells resist treatment and may relapse into malignant metastases after decades of quiescence. Identifying how and why these dormant breast cancer cells are triggered into outgrowth is a key unsolved step in treating latent, metastatic breast cancer. However, our understanding of breast cancer dormancy in vivo is limited by technical challenges and ethical concerns with triggering the activation of dormant breast cancer. In vitro models avoid many of these challenges by simulating breast cancer dormancy and activation in well-controlled, bench-top conditions, creating opportunities for fundamental insights into breast cancer biology that complement what can be achieved through animal and clinical studies. In this review, we address clinical and preclinical approaches to treating breast cancer dormancy, how precisely controlled artificial environments reveal key interactions that regulate breast cancer dormancy, and how future generations of biomaterials could answer further questions about breast cancer dormancy.
Collapse
Affiliation(s)
- Nathan R. Richbourg
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Ninette Irakoze
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Hyuna Kim
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst Amherst, MA 01003, USA
| |
Collapse
|
47
|
Singh D, Siddique HR. Epithelial-to-mesenchymal transition in cancer progression: unraveling the immunosuppressive module driving therapy resistance. Cancer Metastasis Rev 2024; 43:155-173. [PMID: 37775641 DOI: 10.1007/s10555-023-10141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Cancer cells undergo phenotypic switching (cancer cell plasticity) in response to microenvironmental cues, including exposure to therapy/treatment. Phenotypic plasticity enables the cancer cells to acquire more mesenchymal traits promoting cancer cells' growth, survival, therapy resistance, and disease recurrence. A significant program in cancer cell plasticity is epithelial-to-mesenchymal transition (EMT), wherein a comprehensive reprogramming of gene expression occurs to facilitate the translational shift from epithelial-to-mesenchymal phenotypes resulting in increased invasiveness and metastasis. In addition, EMT plays a pivotal role in facilitating cancer cells' escape from the body's immune system using several mechanisms, such as the downregulation of major histocompatibility complex-mediated antigen presentation, upregulation of immune checkpoint molecules, and recruitment of immune-suppressive cells. Cancer cells' ability to undergo phenotypic switching and EMT-driven immune escape presents a formidable obstacle in cancer management, highlighting the need to unravel the intricate mechanisms underlying these processes and develop novel therapeutic strategies. This article discusses the role of EMT in promoting immune evasion and therapy resistance. We also discuss the ongoing research on developing therapeutic approaches targeting intrinsic and induced cell plasticity within the immune suppressive microenvironment. We believe this review article will update the current research status and equip researchers, clinicians, and other healthcare professionals with valuable insights enhancing their existing knowledge and shedding light on promising directions for future cancer research. This will facilitate the development of innovative strategies for managing therapy-resistant cancers and improving patient outcomes.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
48
|
Bae SY, Kamalanathan KJ, Galeano-Garces C, Konety BR, Antonarakis ES, Parthasarathy J, Hong J, Drake JM. Dissemination of Circulating Tumor Cells in Breast and Prostate Cancer: Implications for Early Detection. Endocrinology 2024; 165:bqae022. [PMID: 38366552 PMCID: PMC10904107 DOI: 10.1210/endocr/bqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Burgeoning evidence suggests that circulating tumor cells (CTCs) may disseminate into blood vessels at an early stage, seeding metastases in various cancers such as breast and prostate cancer. Simultaneously, the early-stage CTCs that settle in metastatic sites [termed disseminated tumor cells (DTCs)] can enter dormancy, marking a potential source of late recurrence and therapy resistance. Thus, the presence of these early CTCs poses risks to patients but also holds potential benefits for early detection and treatment and opportunities for possibly curative interventions. This review delves into the role of early DTCs in driving latent metastasis within breast and prostate cancer, emphasizing the importance of early CTC detection in these diseases. We further explore the correlation between early CTC detection and poor prognoses, which contribute significantly to increased cancer mortality. Consequently, the detection of CTCs at an early stage emerges as a critical imperative for enhancing clinical diagnostics and allowing for early interventions.
Collapse
Affiliation(s)
| | | | | | - Badrinath R Konety
- Astrin Biosciences, St. Paul, MN 55114, USA
- Allina Health Cancer Institute, Minneapolis, MN 55407, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jiarong Hong
- Astrin Biosciences, St. Paul, MN 55114, USA
- Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
| | - Justin M Drake
- Astrin Biosciences, St. Paul, MN 55114, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
49
|
Jiao Y, Yu Y, Zheng M, Yan M, Wang J, Zhang Y, Zhang S. Dormant cancer cells and polyploid giant cancer cells: The roots of cancer recurrence and metastasis. Clin Transl Med 2024; 14:e1567. [PMID: 38362620 PMCID: PMC10870057 DOI: 10.1002/ctm2.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.
Collapse
Affiliation(s)
- Yuqi Jiao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yongjun Yu
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Minying Zheng
- Department of PathologyTianjin Union Medical CenterNankai UniversityTianjinChina
| | - Man Yan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiangping Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
50
|
Aouad P, Quinn HM, Berger A, Brisken C. Tumor dormancy: EMT beyond invasion and metastasis. Genesis 2024; 62:e23552. [PMID: 37776086 DOI: 10.1002/dvg.23552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
More than two-thirds of cancer-related deaths are attributable to metastases. In some tumor types metastasis can occur up to 20 years after diagnosis and successful treatment of the primary tumor, a phenomenon termed late recurrence. Metastases arise from disseminated tumor cells (DTCs) that leave the primary tumor early on in tumor development, either as single cells or clusters, adapt to new environments, and reduce or shut down their proliferation entering a state of dormancy for prolonged periods of time. Dormancy has been difficult to track clinically and study experimentally. Recent advances in technology and disease modeling have provided new insights into the molecular mechanisms orchestrating dormancy and the switch to a proliferative state. A new role for epithelial-mesenchymal transition (EMT) in inducing plasticity and maintaining a dormant state in several cancer models has been revealed. In this review, we summarize the major findings linking EMT to dormancy control and highlight the importance of pre-clinical models and tumor/tissue context when designing studies. Understanding of the cellular and molecular mechanisms controlling dormant DTCs is pivotal in developing new therapeutic agents that prevent distant recurrence by maintaining a dormant state.
Collapse
Affiliation(s)
- Patrick Aouad
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Hazel M Quinn
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adeline Berger
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|