1
|
Chen Y, Zuo M, Jana D, Zhong W, Tan BSN, Zhang X, Chen X, Zhao Y. Priming of cancer-immunity cycle by alleviating hypoxia-induced ferroptosis resistance and immunosuppression. Biomaterials 2025; 315:122911. [PMID: 39481340 DOI: 10.1016/j.biomaterials.2024.122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Stimulating a robust cancer-immunity cycle (CIC) holds promising potential for eliciting potent and enduring immune responses for cancer immunotherapy. However, designing a therapeutic nanomaterial capable of both enhancing tumor immunogenicity and mitigating immunosuppression is challenging and often associated with complicated design paradigms and immune-related adverse effects. Herein, a multienzyme-mimetic alloy nanosheet incorporating palladium (Pd) and iron (Fe) is developed, which can prime effective CIC by overcoming ferroptosis resistance for enhancing tumor immunogenicity and reprograming the tumor microenvironment for enhanced second near-infrared (NIR-II) photoimmunotherapy. The nanosheets accumulate in tumors when administered intravenously and counteract hypoxia through catalase-like oxygen production and subsequent reduction of hypoxia-inducible factor-1α, M2-like macrophages, regulatory T-cell, and programmed death-ligand 1 (PD-L1) expression. The surface plasmon resonance of the nanosheets enables NIR-II phototherapy and photoacoustic imaging, coupling with its ferroptosis and tumor microenvironment reprogram properties to synergize with anti-PD-L1 checkpoint blockade therapy to achieve satisfactory antitumor outcome. This study offers a strategy for localized tumor treatment and boosting the CIC through a straightforward and inexpensive nanomaterial design.
Collapse
Affiliation(s)
- Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Mengxuan Zuo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Deblin Jana
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Brynne Shu Ni Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
2
|
Liu J, Liu J, Wang Y, Chen F, He Y, Xie X, Zhong Y, Yang C. Bioactive mesoporous silica materials-assisted cancer immunotherapy. Biomaterials 2025; 315:122919. [PMID: 39481339 DOI: 10.1016/j.biomaterials.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Immunotherapy is initially envisioned as a powerful approach to train immune cells within the tumor microenvironment (TME) and lymphoid tissues to elicit strong anti-tumor responses. However, clinical cancer immunotherapy still faces challenges, such as limited immunogenicity and insufficient immune response. Leveraging the advantages of mesoporous silica (MS) materials in controllable drug and immunomodulator release, recent efforts have focused on engineering MS with intrinsic immunoregulatory functions to promote robust, systemic, and safe anti-tumor responses. This review discusses advances in bioactive MS materials that address the challenges of immunotherapy. Beyond their role in on-demand delivery and drug release in response to the TME, we highlight the intrinsic functions of bioactive MS in orchestrating localized immune responses by inducing immunogenic cell death in tumor cells, modulating immune cell activity, and facilitating tumor-immune cell interactions. Additionally, we emphasize the advantages of bioactive MS in recruiting and activating immune cells within lymphoid tissues to initiate anti-tumor vaccination. The review also covers the challenges of MS-assisted immunotherapy, potential solutions, and future outlooks. With a deeper understanding of material-bio interactions, the rational design of MS with sophisticated bioactivities and controllable responsiveness holds great promise for enhancing the outcomes of personalized immunotherapy.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Jiying Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yaxin Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Liu N, Yan M, Lu C, Tao Q, Wu J, Zhou Z, Chen J, Chen X, Peng C. Eravacycline improves the efficacy of anti-PD1 immunotherapy via AP1/CCL5 mediated M1 macrophage polarization in melanoma. Biomaterials 2025; 314:122815. [PMID: 39288620 DOI: 10.1016/j.biomaterials.2024.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Screening approved library is a promising and safe strategy to overcome the limitation of low response rate and drug resistance in immunotherapy. Accumulating evidence showed that the application of antibiotics has been considered to reduce the effectiveness of anti-PD1 immunotherapy in tumor treatment, however, in this study, an antibiotic drug (Eravacycline, ERV) was identified to improve the efficacy of anti-PD1 immunotherapy in melanoma through screening approved library. Administration of ERV significantly attenuated melanoma cells growth as well as directly or indirectly benefited M1 macrophage polarization. Meanwhile, ERV treatment significantly induced cellular autophagy via damage of mitochondria, leading to up-regulation of ROS production, subsequently, raised CCL5 secretion through elevation AP1 binding to CCL5 promoter via p38 or JNK1/2 activation. Knockdown of Ccl5 expression attenuated ERV triggered M1 macrophage polarization in melanoma cells. Clinical analysis revealed a positive association between high expression of CCL5 and improved prognosis as well as a favorable anti-PD1 therapy in melanoma patients. As expected, application of ERV improved the efficacy of anti-PD1. Overall, our results approved that ERV enhances the efficacy of anti-PD1 immunotherapy in melanoma by promoting the polarization of M1 macrophages, which provided novel therapeutic strategy for improving the effectiveness of melanoma anti-PD1 immunotherapy.
Collapse
Affiliation(s)
- Nian Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Furong Laboratory, Central South University, Changsha, Hunan, 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Mingjie Yan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Furong Laboratory, Central South University, Changsha, Hunan, 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Can Lu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Furong Laboratory, Central South University, Changsha, Hunan, 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Qian Tao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Furong Laboratory, Central South University, Changsha, Hunan, 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Jie Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Furong Laboratory, Central South University, Changsha, Hunan, 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
| | - Jing Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Furong Laboratory, Central South University, Changsha, Hunan, 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China.
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; Furong Laboratory, Central South University, Changsha, Hunan, 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China.
| |
Collapse
|
4
|
Wu L, Pi W, Huang X, Yang L, Zhang X, Lu J, Yao S, Lin X, Tan X, Wang Z, Wang P. Orchestrated metal-coordinated carrier-free celastrol hydrogel intensifies T cell activation and regulates response to immune checkpoint blockade for synergistic chemo-immunotherapy. Biomaterials 2025; 312:122723. [PMID: 39121732 DOI: 10.1016/j.biomaterials.2024.122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The challenges generated by insufficient T cell activation and infiltration have constrained the application of immunotherapy. Making matters worse, the complex tumor microenvironment (TME), resistance to apoptosis collectively poses obstacles for cancer treatment. The carrier-free small molecular self-assembly strategy is a current research hotspot to overcome these challenges. This strategy can transform multiple functional agents into sustain-released hydrogel without the addition of any excipients. Herein, a coordination and hydrogen bond mediated tricomponent hydrogel (Cel hydrogel) composed of glycyrrhizic acid (GA), copper ions (Cu2+) and celastrol (Cel) was initially constructed. The hydrogel can regulate TME by chemo-dynamic therapy (CDT), which increases reactive oxygen species (ROS) in conjunction with GA and Cel, synergistically expediting cellular apoptosis. What's more, copper induced cuproptosis also contributes to the anti-tumor effect. In terms of regulating immunity, ROS generated by Cel hydrogel can polarize tumor-associated macrophages (TAMs) into M1-TAMs, Cel can induce T cell proliferation as well as activate DC mediated antigen presentation, which subsequently induce T cell proliferation, elevate T cell infiltration and enhance the specific killing of tumor cells, along with the upregulation of PD-L1 expression. Upon co-administration with aPD-L1, this synergy mitigated both primary and metastasis tumors, showing promising clinical translational value.
Collapse
Affiliation(s)
- Linying Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wenmin Pi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Luping Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiang Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuchang Yao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoyu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinru Tan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhixia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
5
|
Jiang F, Liu W, Zhou Y, Lin S, Zhang Q, Zhang W, Xue Y, Li C, Gao A, Shao M, Liao S, Ma T, Yu X. Bortezomib induces cell apoptosis and increases the efficacy of αPD-1 in BCR::ABL T315I mutation CML by targeting UBE2Q1. Int Immunopharmacol 2024; 143:113311. [PMID: 39454411 DOI: 10.1016/j.intimp.2024.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
The BCR:ABL T315I mutation presents a significant challenge in the current management of Chronic Myeloid Leukemia (CML), highlighting the need to identify novel targets and drugs. In our study, we observed the elevated expression of UBE2Q1 in KBM5-T315I cells compared to KBM5 cells, where it interacted with DDX3, regulating its ubiquitination. Furthermore, we found that Bortezomib (BTZ) targeted UBE2Q1, reducing its protein level expression. Consequently, BTZ dose-dependently inhibited the growth vitality of KBM5-T315I cells, inducing increased ROS production, mitochondrial membrane potential collapse, cytochrome C release, and expression of apoptosis-related proteins. These events collectively induced apoptosis in KBM5-T315I cells. Moreover, BTZ enhanced the therapeutic effects of anti-PD-1 treatment. In NOD/SCID mice bearing KBM5-T315I cell line xenografts, BTZ administration (2 mg/kg, ip, every other day for 4 weeks) significantly inhibited the growth of KBM5-T315Iderived xenografts and extended survival. In conclusion, our study sheds new light on the BTZ-induced apoptosis mechanism, suggesting the potential of BTZ as a promising chemo-immunotherapy agent against BCR:ABL T315I mutation CML.
Collapse
MESH Headings
- Animals
- Bortezomib/pharmacology
- Bortezomib/therapeutic use
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Apoptosis/drug effects
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Mice, SCID
- Cell Line, Tumor
- Mice, Inbred NOD
- Mice
- Mutation
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/genetics
- Xenograft Model Antitumor Assays
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Drug Synergism
- Female
Collapse
Affiliation(s)
- Fengyu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wenjie Liu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, PR China
| | - Yanyu Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Siwei Lin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qin Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wan Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yangyang Xue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Cenming Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Anran Gao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Miaomiao Shao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shanting Liao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tonghui Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoxuan Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Lai Y, Huang C, Wu J, Yang K, Yang L. Ferroptosis in Cancer: A new perspective on T cells. Int Immunopharmacol 2024; 143:113539. [PMID: 39488034 DOI: 10.1016/j.intimp.2024.113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
T cells occupy a pivotal position in the immune response against cancer by recognizing and eliminating cancer cells. However, the tumor microenvironment often suppresses the function of T cells, leading to immune evasion and cancer progression. Recent research has unveiled novel connections among T cells, ferroptosis, and cancer. Ferroptosis is a type of regulated cell death that relies iron and reactive oxygen species and is distinguished by the proliferation of lipid peroxides. Emerging scientific findings underscore the potential of ferroptosis to modulate the function and survival of T cells in the tumor microenvironment. Moreover, T cells or immunotherapy can also affect cancer by modulating ferroptosis in cancer cells. This review delved into the intricate crosstalk between T cells and ferroptosis in the context of cancer, highlighting the molecular mechanisms involved. We also explored the therapeutic potential of targeting ferroptosis to enhance the anticancer immune response mediated by T cells. Understanding the interplay among T cells, ferroptosis, and cancer may provide new insights into developing innovative cancer immunotherapies.
Collapse
Affiliation(s)
- Yuping Lai
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Huankui academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chunxia Huang
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiaqiang Wu
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kangping Yang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Liang Yang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Patkar S, Chen A, Basnet A, Bixby A, Rajendran R, Chernet R, Faso S, Kumar PA, Desai D, El-Zammar O, Curtiss C, Carello SJ, Nasr MR, Choyke P, Harmon S, Turkbey B, Jamaspishvili T. Predicting the tumor microenvironment composition and immunotherapy response in non-small cell lung cancer from digital histopathology images. NPJ Precis Oncol 2024; 8:280. [PMID: 39702609 DOI: 10.1038/s41698-024-00765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have become integral to treatment of non-small cell lung cancer (NSCLC). However, reliable biomarkers predictive of immunotherapy efficacy are limited. Here, we introduce HistoTME, a novel weakly supervised deep learning approach to infer the tumor microenvironment (TME) composition directly from histopathology images of NSCLC patients. We show that HistoTME accurately predicts the expression of 30 distinct cell type-specific molecular signatures directly from whole slide images, achieving an average Pearson correlation of 0.5 with the ground truth on independent tumor cohorts. Furthermore, we find that HistoTME-predicted microenvironment signatures and their underlying interactions improve prognostication of lung cancer patients receiving immunotherapy, achieving an AUROC of 0.75 [95% CI: 0.61-0.88] for predicting treatment responses following first-line ICI treatment, utilizing an external clinical cohort of 652 patients. Collectively, HistoTME presents an effective approach for interrogating the TME and predicting ICI response, complementing PD-L1 expression, and bringing us closer to personalized immuno-oncology.
Collapse
Affiliation(s)
- Sushant Patkar
- Artificial Intelligence Resource (AIR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Alex Chen
- Artificial Intelligence Resource (AIR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alina Basnet
- Department of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Amber Bixby
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rahul Rajendran
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rachel Chernet
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Susan Faso
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Prashant A Kumar
- Department of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Devashish Desai
- Department of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ola El-Zammar
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Christopher Curtiss
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Saverio J Carello
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michel R Nasr
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Peter Choyke
- Artificial Intelligence Resource (AIR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Harmon
- Artificial Intelligence Resource (AIR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baris Turkbey
- Artificial Intelligence Resource (AIR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
8
|
Yao J, Cui Z, Zhang F, Li H, Tian L. Biomaterials enhancing localized cancer therapy activated anti-tumor immunity: a review. J Mater Chem B 2024; 13:117-136. [PMID: 39544081 DOI: 10.1039/d4tb01995d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Localized cancer therapies such as radiotherapy, phototherapy, and chemotherapy are precise cancer treatment strategies aimed at minimizing systemic side effects. However, cancer metastasis remains the primary cause of mortality among cancer patients in clinical settings, and localized cancer treatments have limited efficacy against metastatic cancer. Therefore, researchers are exploring strategies that combine localized therapy with immunotherapy to activate robust anti-tumor immune responses, thereby eradicating metastatic cancer. Biomaterials, as novel materials, exhibit great potential in biomedical applications and have achieved great progress in clinic translation. This review introduces biomaterials and their applications in research focused on enhancing localized cancer treatment activated anti-tumor immunity. Additionally, the current challenges and future directions of biomaterials are also discussed, providing insights and references for related research.
Collapse
Affiliation(s)
- Jipeng Yao
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhencun Cui
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Feifei Zhang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Haidong Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Longlong Tian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| |
Collapse
|
9
|
Zhang P, Chu Q. Identification of BRCA new prognostic targets and neoantigen candidates from fusion genes. Discov Oncol 2024; 15:805. [PMID: 39692896 DOI: 10.1007/s12672-024-01571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer-associated gene fusions serve as a potential source of highly immunogenic neoantigens. In this study, we identified fusion proteins from fusion genes and extracted fusion peptides to accurately predict Breast cancer (BRCA) neo-antigen candidates by high-throughput artificial intelligence computation. Firstly, Deepsurv was used to evaluate the prognosis of patients, providing a landscape of prognostic fusion genes in BRCA. Next, AGFusion was utilized to generate full-length fusion protein sequences and annotate functional domains. Advanced neural networks and Transformer-based analyses were implemented to predict the binding of fusion peptides to 112 types of HLA, thereby forming a new immunotherapy candidates' library of BRCA neo-antigens (n = 7791, covering 88.41% of patients). Among them, 15 neo-antigens were validated and factually translated into mass spectrometry data of BRCA patients. Finally, AlphaFold2 was applied to predict the binding sites of these neo-antigens to MHC (HLA) molecules. Notably, we identified a prognostic neoantigen from the TBC1D4-COMMD6 fusion that significantly improves patient prognosis and extensively binds to 16 types of HLA alleles. These highly immunogenic and tumor-specific neoantigens offer emerging targets for personalized cancer immunotherapies and act as prospective predictors for tumor survival prognosis and responses to immune checkpoint therapies.
Collapse
Affiliation(s)
- Pei Zhang
- Beijing Institute of Technology, No.5 South Zhongguancun Rd, Haidian District, Beijing, 100081, China
| | - Qingzhao Chu
- Beijing Institute of Technology, No.5 South Zhongguancun Rd, Haidian District, Beijing, 100081, China.
| |
Collapse
|
10
|
Mengistu BA, Tsegaw T, Demessie Y, Getnet K, Bitew AB, Kinde MZ, Beirhun AM, Mebratu AS, Mekasha YT, Feleke MG, Fenta MD. Comprehensive review of drug resistance in mammalian cancer stem cells: implications for cancer therapy. Cancer Cell Int 2024; 24:406. [PMID: 39695669 DOI: 10.1186/s12935-024-03558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer remains a significant global challenge, and despite the numerous strategies developed to advance cancer therapy, an effective cure for metastatic cancer remains elusive. A major hurdle in treatment success is the ability of cancer cells, particularly cancer stem cells (CSCs), to resist therapy. These CSCs possess unique abilities, including self-renewal, differentiation, and repair, which drive tumor progression and chemotherapy resistance. The resilience of CSCs is linked to certain signaling pathways. Tumors with pathway-dependent CSCs often develop genetic resistance, whereas those with pathway-independent CSCs undergo epigenetic changes that affect gene regulation. CSCs can evade cytotoxic drugs, radiation, and apoptosis by increasing drug efflux transporter activity and activating survival mechanisms. Future research should prioritize the identification of new biomarkers and signaling molecules to better understand drug resistance. The use of cutting-edge approaches, such as bioinformatics, genomics, proteomics, and nanotechnology, offers potential solutions to this challenge. Key strategies include developing targeted therapies, employing nanocarriers for precise drug delivery, and focusing on CSC-targeted pathways such as the Wnt, Notch, and Hedgehog pathways. Additionally, investigating multitarget inhibitors, immunotherapy, and nanodrug delivery systems is critical for overcoming drug resistance in cancer cells.
Collapse
Affiliation(s)
- Bemrew Admassu Mengistu
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia.
| | - Tirunesh Tsegaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayew Demessie
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Kalkidan Getnet
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Belete Bitew
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Asnakew Mulaw Beirhun
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Atsede Solomon Mebratu
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yesuneh Tefera Mekasha
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melaku Getahun Feleke
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melkie Dagnaw Fenta
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
11
|
Aasy NKA, Sallam MA, Ragab D, Abdelmonsif DA, Aly RG, Abdelfattah EZA, Elkhodairy KA. CD44-targeted hyaluronic acid coated imiquimod lipid nanocapsules foster the efficacy against skin cancer: Attempt to conquer unfavorable side effects. Int J Biol Macromol 2024; 290:138895. [PMID: 39701268 DOI: 10.1016/j.ijbiomac.2024.138895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
This study was executed to mitigate imiquimod (IMQ)-side effects and promote its anticancer potential against skin cancer via encapsulation in hyaluronic acid-coated lipid nanocapsules (HA-LNCs) for targeted topical delivery. The LNCs were prepared using the phase inversion technique. Optimized LNCs formulation was gained following 22 factorial design experiment to adjust the IMQ and CTAB concentrations. The two variables were found to significantly influence the dependent responses. The encapsulation efficiency of IMQ exceeded 97 %. HA coating provided a sustained release of IMQ from LNCs, with 63.81 ± 2.45 % of IMQ released after 24 h. Moreover, the ex-vivo human skin permeation study showed that 7.9-fold more IMQ was localized in all skin layers than that permeated. In vitro anticancer activity indicated that IMQ-HA-LNCs had higher cytotoxicity (IC50 = 22.39 μg/mL) compared to free IMQ (IC50 = 97.94 μg/mL). Further, in vivo studies revealed that encapsulation of IMQ in HA-LNCs enhanced its immunostimulatory potential and promoted its anti-tumor activity in competing skin cancer even in low doses compared to the untreated group and group treated with a brand product with no topical or systemic toxicity. The present study suggested that HA-LNCs with their mixed polymeric/lipophilic nature epitomize a promising strategy for safe topical delivery of poorly water-soluble candidates.
Collapse
Affiliation(s)
- Noha Khalifa Abo Aasy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, University of Alexandria, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Kadria A Elkhodairy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
12
|
Farooq MA, Johnston APR, Trevaskis NL. Impact of Nanoparticle Properties on Immune Cell Interactions in the Lymph Node. Acta Biomater 2024:S1742-7061(24)00758-X. [PMID: 39701340 DOI: 10.1016/j.actbio.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The lymphatic system plays an important role in health and many diseases, such as cancer, autoimmune, cardiovascular, metabolic, hepatic, viral, and other infectious diseases. The lymphatic system is, therefore, an important treatment target site for a range of diseases. Lymph nodes (LNs), rich in T cells, B cells, dendritic cells, and macrophages, are also primary sites of action for vaccines and immunotherapies. Promoting the delivery of therapeutics and vaccines to LNs can, therefore, enhance treatment efficacy and facilitate avoidance of off-target side effects by enabling a reduction in therapeutic dose. Several nanoparticle (NP) based delivery systems, such as polymeric NPs, lipid NPs, liposomes, micelles, and dendrimers, have been reported to enhance the delivery of therapeutics and/or vaccines to LNs. Specific uptake into the lymph following injection into tissues is highly dependent on particle properties, particularly particle size, as small molecules are more likely to be taken up by blood capillaries due to higher blood flow rates, whereas larger molecules and NPs can be specifically transported via the lymphatic vessels to LNs as the initial lymphatic capillaries are more permeable than blood capillaries. Once NPs enter LNs, particle properties also have an important influence on their disposition within the node and association with immune cells, which has significant implications for the design of vaccines and immunotherapies. This review article focuses on the impact of NP properties, such as size, surface charge and modification, and route of administration, on lymphatic uptake, retention, and interactions with immune cells in LNs. We suggest that optimizing all these factors can enhance the efficacy of vaccines or therapeutics with targets in the lymphatics and also be helpful for the rational design of vaccines. STATEMENT OF SIGNIFICANCE: The lymphatic system plays an essential role in health and is an important treatment target site for a range of diseases. Promoting the delivery of immunotherapies and vaccines to immune cells in lymph nodes can enhance efficacy and facilitate avoidance of off-target side effects by enabling a reduction in therapeutic dose. One of the major approaches used to deliver therapeutics and vaccines to lymph nodes is via injection in nanoparticle delivery systems. This review aims to provide an overview of the impact of nanoparticle properties, such as size, surface charge, modification, and route of administration, on lymphatic uptake, lymph node retention, and interactions with immune cells in lymph nodes. This will inform the design of future improved nanoparticle systems for vaccines and immunotherapies.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
13
|
Zeng D, Fang Y, Qiu W, Luo P, Wang S, Shen R, Gu W, Huang X, Mao Q, Wang G, Lai Y, Rong G, Xu X, Shi M, Wu Z, Yu G, Liao W. Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0. CELL REPORTS METHODS 2024; 4:100910. [PMID: 39626665 DOI: 10.1016/j.crmeth.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/30/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module.
Collapse
Affiliation(s)
- Dongqiang Zeng
- Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, P.R. China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, P.R. China; Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yiran Fang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Wenjun Qiu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Shixiang Wang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Rongfang Shen
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Wenchao Gu
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Xiatong Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Qianqian Mao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yonghong Lai
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Guangda Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xi Xu
- The First School of Clinical Medical, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zuqiang Wu
- Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, P.R. China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, P.R. China.
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China.
| | - Wangjun Liao
- Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, P.R. China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, P.R. China; Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
14
|
Yin Y, Zhang W, Chen Y, Zhang Y, Shen X. Radiomics predicting immunohistochemical markers in primary hepatic carcinoma: Current status and challenges. Heliyon 2024; 10:e40588. [PMID: 39660185 PMCID: PMC11629216 DOI: 10.1016/j.heliyon.2024.e40588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/28/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Primary hepatic carcinoma, comprising hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and combined hepatocellular cholangiocarcinoma (cHCC-CCA), ranks among the most common malignancies worldwide. The heterogeneity of tumors is a primary factor impeding the efficacy of treatments for primary hepatic carcinoma. Immunohistochemical markers may play a potential role in characterizing this heterogeneity, providing significant guidance for prognostic analysis and the development of personalized treatment plans for the patients with primary hepatic carcinoma. Currently, primary hepatic carcinoma immunohistochemical analysis primarily relies on invasive techniques such as surgical pathology and tissue biopsy. Consequently, the non-invasive preoperative acquisition of primary hepatic carcinoma immunohistochemistry has emerged as a focal point of research. As an emerging non-invasive diagnostic technique, radiomics possesses the potential to extensively characterize tumor heterogeneity. It can predict immunohistochemical markers associated with hepatocellular carcinoma preoperatively, demonstrating significant auxiliary utility in clinical guidance. This article summarizes the progress in using radiomics to predict immunohistochemical markers in primary hepatic carcinoma, addresses the challenges faced in this field of study, and anticipates its future application prospects.
Collapse
Affiliation(s)
- Yunqing Yin
- The Second Clinical Medical College, Jinan University, China
| | - Wei Zhang
- Department of Intervention, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yanhui Chen
- Department of Intervention, Shenzhen Bao'an People's Hospital, Shenzhen, 518100, Guangdong, China
| | - Yanfang Zhang
- Department of Intervention, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Xinying Shen
- Department of Intervention, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| |
Collapse
|
15
|
Dudziak D, Heger L, Agace WW, Bakker J, de Gruijl TD, Dress RJ, Dutertre CA, Fenton TM, Fransen MF, Ginhoux F, Heyman O, Horev Y, Hornsteiner F, Kandiah V, Kles P, Lubin R, Mizraji G, Prokopi A, Saar O, Sopper S, Stoitzner P, Strandt H, Sykora MM, Toffoli EC, Tripp CH, van Pul K, van de Ven R, Wilensky A, Yona S, Zelle-Rieser C. Guidelines for preparation and flow cytometry analysis of human nonlymphoid tissue DC. Eur J Immunol 2024:e2250325. [PMID: 39668411 DOI: 10.1002/eji.202250325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single-cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor-draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single-cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Diana Dudziak
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen, Germany
| | - William W Agace
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Immunology Section, Lund University, Lund, Sweden
| | - Joyce Bakker
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
| | - Regine J Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Thomas M Fenton
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Marieke F Fransen
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Department of Pulmonary Diseases, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- SingHealth Duke-NUS Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Oded Heyman
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Yael Horev
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Florian Hornsteiner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Vinitha Kandiah
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
| | - Paz Kles
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Ruth Lubin
- Faculty of Dental Medicine, The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Israel
| | - Gabriel Mizraji
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Anastasia Prokopi
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
| | - Or Saar
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Sieghart Sopper
- Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Center, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helen Strandt
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina M Sykora
- Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Center, Innsbruck, Austria
| | - Elisa C Toffoli
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
| | - Christoph H Tripp
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kim van Pul
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
- Department of Otolaryngology, Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
| | - Asaf Wilensky
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Simon Yona
- Faculty of Dental Medicine, The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Israel
| | - Claudia Zelle-Rieser
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Manole S, Nguyen DH, Min JJ, Zhou S, Forbes N. Setting "cold" tumors on fire: Cancer therapy with live tumor-targeting bacteria. MED 2024:S2666-6340(24)00443-4. [PMID: 39689707 DOI: 10.1016/j.medj.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/18/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
Immunotherapy with checkpoint blockade has shown remarkable efficacy in many patients with a variety of different types of cancer. However, the majority of patients with cancer have yet to benefit from this revolutionary therapy. Studies have shown that checkpoint blockade works best against immune-inflamed tumors characterized by the presence of tumor-infiltrating lymphocytes (TILs). In this review, we summarize studies using live tumor-targeting bacteria to treat cancer and describe various strategies to engineer the tumor-targeting bacteria for maximized immunoregulatory effects. We propose that tumor-localized infections by such engineered bacteria can create an immune microenvironment in favor of a more effective antitumor immunity with or without other therapies, such as immune checkpoint blockade (ICB). Finally, we will briefly outline some exemplary oncology clinical trials involving ICB plus live therapeutic bacteria, with a focus on their ability to modulate antitumor immune responses.
Collapse
Affiliation(s)
- Simin Manole
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University, Hwasun, Jeonnam 58128, South Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University, Hwasun, Jeonnam 58128, South Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeonnam 58128, South Korea.
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Neil Forbes
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA; Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA; Department of Microbiology, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
17
|
Zhang Y, Ju B, Cheng R, Ding T, Wu J. PD-L1 expression and immune infiltration across molecular subtypes of endometrial cancer: An integrative-analysis of molecular classification and immune subtypes. Hum Pathol 2024; 154:105704. [PMID: 39662783 DOI: 10.1016/j.humpath.2024.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
The immune subtypes of the tumor microenvironment in endometrial cancer (EC), associated with different molecular classifications, warrant further investigation to guide EC immunotherapy strategies. This study focused on programmed death-ligand 1 (PD-L1) expression (Clone SP263) and immune cell (IC) markers (CD3, CD8, CD68, CD20, CD21) in 110 EC cases. In this cohort, the molecular subtype distribution was: POLE mutation (POLEmut) 7.3% (8/110), mismatch repair-deficient (MMRd) 21.8% (24/110), p53 abnormal (p53abn) 14.5% (16/110), and non-specific molecular profile (NSMP) 56.4% (62/110). NSMP subtypes exhibited the lowest PD-L1+ cell densities and scores. POLEmut and MMRd subtypes showed higher IC densities, while p53abn and NSMP subtypes had lower IC densities and fewer tertiary lymphoid structures (TLS). Integrative analysis of immune subtypes with PD-L1 and CD8+ tumor infiltrating lymphocytes (TILs) revealed 62.5% of POLEmut and 45.8% of MMRd cases as TIME type Ⅰ (PD-L1+ & CD8high). Conversely, p53abn and NSMP cases were more heterogeneous, with 37.5% of p53abn cases in TIME type Ⅲ (PD-L1+ & CD8low) and 41.9% of NSMP cases in TIME type Ⅱ (PD-L1- & CD8low). Higher CD8+ T cell density was a prognostic marker for disease-free survival in EC, including within NSMP (p < 0.05). In summary, the four WHO molecular subtypes of EC exhibit distinct TIME subtypes, complementing molecular classification and providing insights for optimizing EC immunotherapy strategies.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Baohui Ju
- Department of Gynecology and Obstetrics, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Runfen Cheng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tingting Ding
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jianghua Wu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
18
|
Gallego RA, Cho-Schultz S, Del Bel M, Dechert-Schmitt AM, Donaldson JS, He M, Jalaie M, Kania R, Matthews J, McTigue M, Tuttle JB, Risley H, Zhou D, Zhou R, Ahmad OK, Bernier L, Berritt S, Braganza J, Chen Z, Cianfrogna JA, Collins M, Costa Jones C, Cronin CN, Davis C, Dress K, Edwards M, Farrell W, France SP, Grable N, Johnson E, Johnson TW, Jones R, Knauber T, Lafontaine J, Loach RP, Maestre M, Miller N, Moen M, Monfette S, Morse P, Nager AR, Niosi M, Richardson P, Rohner AK, Sach NW, Timofeevski S, Tucker JW, Vetelino B, Zhang L, Nair SK. Discovery of PF-07265028, A Selective Small Molecule Inhibitor of Hematopoietic Progenitor Kinase 1 (HPK1) for the Treatment of Cancer. J Med Chem 2024. [PMID: 39651809 DOI: 10.1021/acs.jmedchem.4c01930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1/MAP4K1) represents a high interest target for the treatment of cancer through an immune-mediated mechanism. Herein we present highlights of the drug discovery campaign within the lactam/azalactam series of inhibitors that yielded a small molecule (21, PF-07265028), which was advanced to a phase 1 clinical trial (NCT05233436). Key components of the discovery effort included optimization of potency through mitigation of ligand strain as guided by the use of cocrystal structures, mitigation of ADME liabilities (plasma instability and fraction metabolism by CYP2D6), and optimization of kinase selectivity, particularly over immune-modulating kinases with high homology to HPK1. Structure-based drug design via leveraging cocrystal structures and lipophilic efficiency analysis proved to be valuable tools that ultimately enabled the delivery of a clinical-quality small molecule inhibitor of HPK1.
Collapse
Affiliation(s)
- Rebecca A Gallego
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Sujin Cho-Schultz
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Matthew Del Bel
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | | | - Joyann S Donaldson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mingying He
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mehran Jalaie
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Rob Kania
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jean Matthews
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Michele McTigue
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jamison B Tuttle
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Hud Risley
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Dahui Zhou
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Ru Zhou
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Omar K Ahmad
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Louise Bernier
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Simon Berritt
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - John Braganza
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Zecheng Chen
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Julie A Cianfrogna
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Michael Collins
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Cinthia Costa Jones
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ciaran N Cronin
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Carl Davis
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Klaus Dress
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Martin Edwards
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - William Farrell
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Scott P France
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Nicole Grable
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Eric Johnson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ted W Johnson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Rhys Jones
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Thomas Knauber
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Jennifer Lafontaine
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Richard P Loach
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Michael Maestre
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Nichol Miller
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mark Moen
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Peter Morse
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Andrew Ross Nager
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mark Niosi
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Paul Richardson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Allison K Rohner
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Neal W Sach
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Sergei Timofeevski
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Joseph W Tucker
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Beth Vetelino
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lei Zhang
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Sajiv K Nair
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| |
Collapse
|
19
|
Mazzaglia C, Shery Huang YY, Shields JD. Advancing tumor microenvironment and lymphoid tissue research through 3D bioprinting and biofabrication. Adv Drug Deliv Rev 2024; 217:115485. [PMID: 39653084 DOI: 10.1016/j.addr.2024.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Cancer progression is significantly influenced by the complex interactions within the tumor microenvironment (TME). Immune cells, in particular, play a critical role by infiltrating tumors from the circulation and surrounding lymphoid tissues in an attempt to control their spread. However, they often fail in this task. Current in vivo and in vitro preclinical models struggle to fully capture these intricate interactions affecting our ability to understand immune evasion and predict drugs behaviour in the clinic. To address this challenge, biofabrication and particularly 3D bioprinting has emerged as a promising tool for modeling both tumors and the immune system. Its ability to incorporate multiple cell types into 3D matrices, enable tissue compartmentalization with high spatial accuracy, and integrate vasculature makes it a valuable approach. Nevertheless, limited research has focused on capturing the complex tumor-immune interplay in vitro. This review highlights the composition and significance of the TME, the architecture and function of lymphoid tissues, and innovative approaches to modeling their interactions in vitro, while proposing the concept of an extended TME.
Collapse
Affiliation(s)
- Corrado Mazzaglia
- The Nanoscience Centre, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland; Department of Engineering, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland; Center for Life Nano, and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy.
| | - Yan Yan Shery Huang
- The Nanoscience Centre, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland; Department of Engineering, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland
| | - Jacqueline D Shields
- Translational Medical Sciences, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, the United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
20
|
Narukawa T, Yasuda S, Horinaka M, Taniguchi K, Tsujikawa T, Morita M, Ukimura O, Sakai T. The Novel HDAC Inhibitor OBP-801 Promotes MHC Class I Presentation Through LMP2 Upregulation, Enhancing the PD-1-Targeting Therapy in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2024; 16:4058. [PMID: 39682244 DOI: 10.3390/cancers16234058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors have been reported to exhibit immunomodulatory activities, including the upregulation of major histocompatibility complex class I (MHC class I). Although the immunoproteasome plays a pivotal role in MHC class I antigen presentation, its effect on immunotherapy for clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS This study assessed whether OBP-801, a novel HDAC inhibitor, affects the expression of immunoproteasome subunits and subsequently the MHC class-I-mediated anti-cancer immunity in ccRCC. We analyzed the data of 531 patients with ccRCC from the Cancer Genome Atlas Kidney Clear Cell Carcinoma database. We further evaluated the treatment efficacy of the combination of OBP-801 and anti-PD-1 in a ccRCC mouse model. RESULTS Low molecular mass polypeptide (LMP) 2 was correlated most positively with CD3E, CD8A, and CD8B expression and estimated CD8+ T cell number. In vitro studies showed that OBP-801 upregulated MHC class I presentation by inducing LMP2 expression in the ccRCC cell lines RENCA, 786-O, and Caki-1. In vivo studies in a syngeneic mouse model with subcutaneous implantation of RENCA cells showed that OBP-801 treatment increased the percentage of CD45+CD3e+ T cells in tumor-infiltrating lymphocytes. The combination of anti-PD-1 antibody and OBP-801 enhanced the anti-tumor effect, LMP2 protein expression, and MHC class I presentation in tumor cells. MHC class I presentation in the tumors of each mouse was positively correlated with the percentage of CD45+CD3e+ T cells. CONCLUSIONS Our results demonstrate that OBP-801 promotes MHC class I presentation through LMP2 upregulation in tumor cells and thereby potentiates PD-1-targeting therapy. These data suggest that the combination of OBP-801 and anti-PD-1 treatment is a promising therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- Tsukasa Narukawa
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Urology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shusuke Yasuda
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Keiko Taniguchi
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takahiro Tsujikawa
- Department of Otolaryngology-Head & Neck Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mie Morita
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
21
|
Wang X, Ma T, Liu H, Zhang S, Yang G, Zhao Y, Kong L, Gao R, Chen X. Heterogeneous immune landscapes and macrophage dynamics in primary and lung metastatic adenoid cystic carcinoma of the head and neck. Front Immunol 2024; 15:1483887. [PMID: 39697346 PMCID: PMC11653016 DOI: 10.3389/fimmu.2024.1483887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Recurrent or metastatic adenoid cystic carcinoma (ACC) of the head and neck is rare and highly aggressive. Due to the ineffectiveness of immune checkpoint therapies, this study aims to investigate the tumor immune microenvironment of primary tumor tissues and lung metastatic tissues and to comprehend the challenges of immunotherapy. Methods We analyzed RNA sequencing data and constructed immune landscapes from 25 primary tumors and 34 lung metastases. The data were then validated by immunohistochemistry and single-cell sequencing analysis. Results Compared to adjacent normal tissues, both primary and lung metastatic ACC showed low immune infiltration. Lung metastases had higher immune infiltration levels and antigen presentation scores but also higher T cell exclusion and dysfunction scores. Single-cell sequencing data and immunohistochemistry revealed abundant immunosuppressive tumor-associated macrophages in lung metastases. Patients with high M2 macrophage infiltration had shorter lung metastasis-free survival. Discussion Primary and lung metastatic ACC exhibit heterogeneous tumor immune microenvironments. Higher immune cell infiltration in lung metastases is countered by the presence of suppressive tumor-associated macrophages, which may limit effective anti-tumor responses.
Collapse
Affiliation(s)
- Xuelian Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- National Human Diseases Animal Model Resource Center; State Key Laboratory of Respiratory Health and Multimorbidity, National Health Commission (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Tingyao Ma
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongfei Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shujing Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guoliang Yang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Zhao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lu Kong
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Ran Gao
- National Human Diseases Animal Model Resource Center; State Key Laboratory of Respiratory Health and Multimorbidity, National Health Commission (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Xiaohong Chen
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Fan Y, Sun L, He J, Chen Y, Ma H, Ding H. Siglec15 in blood system diseases: from bench to bedside. Front Immunol 2024; 15:1490505. [PMID: 39697338 PMCID: PMC11652361 DOI: 10.3389/fimmu.2024.1490505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Inhibiting the PD-1/PD-L1 pathway using immunomodulators has demonstrated promising outcomes in clinics. Immunomodulators can effectively target immune checkpoints with a strong preference for the tumor microenvironment (TME). Besides, immunomodulators specifically target the recently discovered inhibitory immune checkpoint, sialic acid-binding immunoglobulin-like lectin (Siglec-15). Distinctive in its molecular composition, Siglec-15 has a unique molecular composition and been shown to be highly prevalent in numerous solid tumor tissues and tumor-associated macrophages (TAMs) in human subjects. Notably, Siglec-15 is up-regulated across various cancer types. As a result, Siglec-15 has attracted significant attention due to its exclusive nature concerning PD-L1 expression, suggesting its role in immune evasion in patients lacking PD-L1. Siglec-15 predominantly appears in certain populations and can promote tumor development by repressing T lymphocyte activation and proliferation, thereby facilitating tumor cell immune escape. Furthermore, Siglec-15 is implicated in osteoclast differentiation and bone remodeling, indicating that it is a promising target for next-generation cancer immunotherapies. Additionally, Siglec-15 can modulate immune responses to microbial infections. The current treatment strategies for hematological conditions predominantly include conventional intensive chemotherapy and transplantation methods. However, emerging immunotherapeutic approaches are increasingly recognized for their overall effectiveness, indicating that specific molecular targets should be identified. The expression of Siglec-15 within tumor cells may indicate a novel pathway for treating hematological malignancies. In this study, the biological attributes, expression patterns, and pathogenic mechanisms of Siglec-15 across various diseases were reviewed. The role of Siglec-15 in the pathogenesis and laboratory diagnosis of hematological disorders was also evaluated.
Collapse
Affiliation(s)
- Yujia Fan
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Liangliang Sun
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Juan He
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Yuetong Chen
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Hongli Ma
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Haitao Ding
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
23
|
Che Y, Lee J, Abou-Taleb F, Rieger KE, Satpathy AT, Chang ALS, Chang HY. Induced B-Cell Receptor Diversity Predicts PD-1 Blockade Immunotherapy Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626669. [PMID: 39677742 PMCID: PMC11643026 DOI: 10.1101/2024.12.03.626669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Immune checkpoint inhibitors such as anti-PD-1 antibodies (aPD1) can be effective in treating advanced cancers. However, many patients do not respond and the mechanisms underlying these differences remain incompletely understood. In this study, we profile a cohort of patients with locally-advanced or metastatic basal cell carcinoma undergoing aPD-1 therapy using single-cell RNA sequencing, high-definition spatial transcriptomics in tumors and draining lymph nodes, and spatial immunoreceptor profiling, with long-term clinical follow-up. We find that successful responses to PD-1 inhibition are characterized by an induction of B-cell receptor (BCR) clonal diversity after treatment initiation. These induced BCR clones spatially co-localize with T-cell clones, facilitate their activation, and traffic alongside them between tumor and draining lymph nodes to enhance tumor clearance. Furthermore, we validated aPD1-induced BCR diversity as a predictor of clinical response in a larger cohort of glioblastoma, melanoma, and head and neck squamous cell carcinoma patients, suggesting that this is a generalizable predictor of treatment response across many types of cancers. We discover that pre-treatment tumors harbor a characteristic gene expression signature that portends a higher probability of inducing BCR clonal diversity after aPD-1 therapy, and we develop a machine learning model that predicts PD-1-induced BCR clonal diversity from baseline tumor RNA sequencing. These findings underscore a dynamic role of B cell diversity during immunotherapy, highlighting its importance as a prognostic marker and a potential target for intervention in non-responders.
Collapse
Affiliation(s)
- Yonglu Che
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Jinwoo Lee
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Farah Abou-Taleb
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Kerri E Rieger
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Howard Y Chang
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
24
|
Song Y, Zhang J, Li Y, Cheng L, Song H, Zhang Y, Du G, Yu S, Zou Y, Xu Q. Exploring Bioinformatics Tools to Analyze the Role of CDC6 in the Progression of Polycystic Ovary Syndrome to Endometrial Cancer by Promoting Immune Infiltration. Int J Mol Sci 2024; 25:12974. [PMID: 39684684 DOI: 10.3390/ijms252312974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Cell division cycle 6 (CDC6) is essential for the initiation of DNA replication in eukaryotic cells and contributes to the development of various human tumors. Polycystic ovarian syndrome (PCOS) is a reproductive endocrine disease in women of childbearing age, with a significant risk of endometrial cancer (EC). However, the role of CDC6 in the progression of PCOS to EC is unclear. Therefore, we examined CDC6 expression in patients with PCOS and EC. We evaluated the relationship between CDC6 expression and its prognostic value, potential biological functions, and immune infiltrates in patients with EC. In vitro analyses were performed to investigate the effects of CDC6 knockdown on EC proliferation, migration, invasion, and apoptosis. CDC6 expression was significantly upregulated in patients with PCOS and EC. Moreover, this protein caused EC by promoting the aberrant infiltration of macrophages into the immune microenvironment in patients with PCOS. A functional enrichment analysis revealed that CDC6 exerted its pro-cancer and pro-immune cell infiltration functions via the PI3K-AKT pathway. Moreover, it promoted EC proliferation, migration, and invasion but inhibited apoptosis. This protein significantly reduced EC survival when mutated. These findings demonstrate that CDC6 regulates the progression of PCOS to EC and promotes immune infiltration.
Collapse
Affiliation(s)
- Yuhang Song
- School of Basic Medicine, Xinjiang Medical University, Urumqi 830054, China
- School of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Jing Zhang
- Department of Immunology, School of Basic Medicine, Central South University, Changsha 410017, China
| | - Yao Li
- School of Basic Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Lufeng Cheng
- Basic Medical College, Xinjiang Medical University, Urumqi 830054, China
| | - Hua Song
- School of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Yuhang Zhang
- School of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Guoqing Du
- School of Basic Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Sunyue Yu
- School of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine, Central South University, Changsha 410017, China
| | - Qi Xu
- School of Basic Medicine, Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
25
|
Eljilany I, Coleman S, Tan AC, McCarter MD, Carpten J, Colman H, Naqash AR, Puzanov I, Arnold SM, Churchman ML, Spakowicz D, Salhia B, Marin J, Ganesan S, Ratan A, Shriver C, Hwu P, Dalton WS, Weiner GJ, Conejo-Garcia JR, Rodriguez P, Tarhini AA. Differential Infiltration of Key Immune T-Cell Populations Across Malignancies Varying by Immunogenic Potential and the Likelihood of Response to Immunotherapy. Cells 2024; 13:1993. [PMID: 39682743 DOI: 10.3390/cells13231993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Solid tumors vary by the immunogenic potential of the tumor microenvironment (TME) and the likelihood of response to immunotherapy. The emerging literature has identified key immune cell populations that significantly impact immune activation or suppression within the TME. This study investigated candidate T-cell populations and their differential infiltration within different tumor types as estimated from mRNA co-expression levels of the corresponding cellular markers. Methods: We analyzed the mRNA co-expression levels of cellular biomarkers that define stem-like tumor-infiltrating lymphocytes (TILs), tissue-resident memory T-cells (TRM), early dysfunctional T-cells, late dysfunctional T-cells, activated-potentially anti-tumor (APA) T-cells and Butyrophilin 3A (BTN3A) isoforms, utilizing clinical and transcriptomic data from 1892 patients diagnosed with melanoma, bladder, ovarian, or pancreatic carcinomas. Real-world data were collected under the Total Cancer Care Protocol and the Avatar® project (NCT03977402) across 18 cancer centers. Furthermore, we compared the survival outcomes following immune checkpoint inhibitors (ICIs) based on immune cell gene expression. Results: In melanoma and bladder cancer, the estimated infiltration of APA T-cells differed significantly (p = 4.67 × 10-12 and p = 5.80 × 10-12, respectively) compared to ovarian and pancreatic cancers. Ovarian cancer had lower TRM T-cell infiltration than melanoma, bladder, and pancreatic (p = 2.23 × 10-8, 3.86 × 10-28, and 7.85 × 10-9, respectively). Similar trends were noted with stem-like, early, and late dysfunctional T-cells. Melanoma and ovarian expressed BTN3A isoforms more than other malignancies. Higher densities of stem-like TILs; TRM, early and late dysfunctional T-cells; APA T-cells; and BTN3A isoforms were associated with increased survival in melanoma (p = 0.0075, 0.00059, 0.013, 0.005, 0.0016, and 0.041, respectively). The TRM gene signature was a moderate predictor of survival in the melanoma cohort (AUROC = 0.65), with similar findings in testing independent public datasets of ICI-treated patients with melanoma (AUROC 0.61-0.64). Conclusions: Key cellular elements related to immune activation are more heavily infiltrated within ICI-responsive versus non-responsive malignancies, supporting a central role in anti-tumor immunity. In melanoma patients treated with ICIs, higher densities of stem-like TILs, TRM T-cells, early dysfunctional T-cells, late dysfunctional T-cells, APA T-cells, and BTN3A isoforms were associated with improved survival.
Collapse
Affiliation(s)
- Islam Eljilany
- Departments of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Sam Coleman
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA
| | - Aik Choon Tan
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA
| | | | - John Carpten
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Howard Colman
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Abdul Rafeh Naqash
- Oklahoma University Health Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Susanne M Arnold
- University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA
| | | | - Daniel Spakowicz
- Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Bodour Salhia
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Julian Marin
- Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Aakrosh Ratan
- Department of Genome Sciences, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Craig Shriver
- Murtha Cancer Center, Walter Reed National Military Medical Center, Falls Church, VA 22042-5101, USA
| | - Patrick Hwu
- Departments of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - George J Weiner
- Department of Internal Medicine, Carver College of Medicine, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Paulo Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ahmad A Tarhini
- Departments of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
26
|
Lei J, Chen J, Chen J, Fang J, Zhou Z, Xu A. Epigallocatechin-3-gallate induces immunogenic cell death and enhances cancer immunotherapy in colorectal cancer. Biochem Biophys Res Commun 2024; 736:150907. [PMID: 39471680 DOI: 10.1016/j.bbrc.2024.150907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
The induction of immunogenic cell death (ICD) can activate antitumor immune response to potentiate cancer immunotherapy. In this study, we observed the antitumor activity following combinatorial therapy with anti-CTLA4 antibody and epigallocatechin-3-gallate (EGCG) in CT26 tumors.Indeed, EGCG triggered colon cancer cells ICD with the secretion of high-mobility group protein B1 (HMGB1) and the surface expression of calreticulin (CRT) and heat shock protein 70 (HSP70). Mice treated with EGCG promoted the maturation of dendritic cells and enhanced the effector function of CD8+ T cells within tumors to remodel the tumor immune microenvironment. Overall, these results indicate that EGCG, a novel ICD inducer, triggers ICD in CRC, and provides a new concept for cancer immunotherapy.
Collapse
Affiliation(s)
- Jun Lei
- Department of Laboratory Medicine, Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China; State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Jingli Chen
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jian Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Jialing Fang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zihao Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Aifang Xu
- Department of Laboratory Medicine, Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
27
|
Rados M, Landegger A, Schmutzler L, Rabidou K, Taschner-Mandl S, Fetahu IS. Natural killer cells in neuroblastoma: immunological insights and therapeutic perspectives. Cancer Metastasis Rev 2024; 43:1401-1417. [PMID: 39294470 PMCID: PMC11554946 DOI: 10.1007/s10555-024-10212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Natural killer (NK) cells have multifaceted roles within the complex tumor milieu. They are pivotal components of innate immunity and shape the dynamic landscape of tumor-immune cell interactions, and thus can be leveraged for use in therapeutic interventions. NK-based immunotherapies have had remarkable success in hematological malignancies, but these therapies are met with many challenges in solid tumors, including neuroblastoma (NB), a childhood tumor arising from the sympathetic nervous system. With a focus on NB, this review outlines the mechanisms employed by NK cells to recognize and eliminate malignant cells, delving into the dynamic relationship between ligand-receptor interactions, cytokines, and other molecules that facilitate the cross talk between NK and NB cells. We discuss the immunomodulatory functions of NK cells and the mechanisms that contribute to loss of this immunosurveillance in NB, with a focus on how this dynamic has been utilized in recent immunotherapy advancements for NB.
Collapse
Affiliation(s)
- Magdalena Rados
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Lukas Schmutzler
- Department of Otorhinolaryngology - Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Kimberlie Rabidou
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, USA
| | | | - Irfete S Fetahu
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Hasan S, Awasthi P, Malik S, Dwivedi M. Immunotherapeutic strategies to induce inflection in the immune response: therapy for cancer and COVID-19. Biotechnol Genet Eng Rev 2024; 40:3571-3610. [PMID: 36411974 DOI: 10.1080/02648725.2022.2147661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
Cancer has agonized the human race for millions of years. The present decade witnesses biological therapeutics to combat cancer effectively. Cancer Immunotherapy involves the use of therapeutics for manipulation of the immune system by immune agents like cytokines, vaccines, and transfection agents. Recently, this therapeutic approach has got vast attention due to the current pandemic COVID-19 and has been very effective. Concerning cancer, immunotherapy is based on the activation of the host's antitumor response by enhancing effector cell number and the production of soluble mediators, thereby reducing the host's suppressor mechanisms by induction of a tumour killing environment and by modulating immune checkpoints. In the present era, immunotherapies have gained traction and momentum as a pedestal of cancer treatment, improving the prognosis of many patients with a wide variety of haematological and solid malignancies. Food supplements, natural immunomodulatory drugs, and phytochemicals, with recent developments, have shown positive trends in cancer treatment by improving the immune system. The current review presents the systematic studies on major immunotherapeutics and their development for the effective treatment of cancers as well as in COVID-19. The focus of the review is to highlight comparative analytics of existing and novel immunotherapies in cancers, concerning immunomodulatory drugs and natural immunosuppressants, including immunotherapy in COVID-19 patients.
Collapse
Affiliation(s)
- Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University, Ranchi, Jharkhand, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
29
|
Mortazavi SMA, Firoozabadi B. Towards a framework for predicting immunotherapy outcome: a hybrid multiscale mathematical model of immune response to vascular tumor growth. Biomech Model Mechanobiol 2024; 23:2243-2264. [PMID: 39373819 DOI: 10.1007/s10237-024-01891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Studying tumor immune microenvironment (TIME) is pivotal to understand the mechanism and predict the outcome of cancer immunotherapy. Systems biology mathematical models can consider and control various factors of TIME and therefore explore the anti-tumor immune response meticulously. However, the role of tumor vasculature in the recruitment of T cells and the mechanism of T cell migration through TIME have not been studied comprehensively. In this work, we developed a hybrid discrete-continuum multi-scale model to study TIME. The mathematical model includes angiogenesis and T cell recruitment via tumor vasculature. Moreover, solid tumor growth, vascular growth and remodeling, interstitial fluid flow, hemodynamics, and blood rheology are all considered in the model. In addition, different aspects of T cells, including their migration, proliferation, subtype conversion, and interaction with tumor cells are thoroughly included. The model reproduces spatiotemporal distribution of tumor infiltrating T cells that mimics histopathological patterns. Furthermore, TIME model robustly recapitulates different phases of tumor immunoediting. We also examined a number of biomarkers to predict the outcome of immune checkpoint blockade (ICB) treatment. The results demonstrated that although tumor mutational burden (TMB) may predict non-responders to ICB, a combination of different biomarkers is essential to predict the majority of the responders. Based on our results, the ICB response rate varies significantly from 28 to 89% depending on the values of different parameters, even in the cases with high TMB.
Collapse
Affiliation(s)
| | - Bahar Firoozabadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
30
|
Yumoto S, Horiguchi H, Kadomatsu T, Horino T, Sato M, Terada K, Miyata K, Moroishi T, Baba H, Oike Y. Host ANGPTL2 establishes an immunosuppressive tumor microenvironment and resistance to immune checkpoint therapy. Cancer Sci 2024; 115:3846-3858. [PMID: 39321028 PMCID: PMC11611770 DOI: 10.1111/cas.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic; however, mechanisms underlying resistance to ICI therapy, including impaired T cell infiltration, low immunogenicity, and tumor "immunophenotypes" governed by the host, remain unclear. We previously reported that in some cancer contexts, tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) has tumor-promoting functions. Here, we asked whether ANGPTL2 deficiency could enhance antitumor ICI activity in two inflammatory contexts: a murine syngeneic model of colorectal cancer and a mouse model of high-fat diet (HFD)-induced obesity. Systemic ANGPTL2 deficiency potentiated ICI efficacy in the syngeneic model, supporting an immunosuppressive role for host ANGPTL2. Relevant to the mechanism, we found that ANGPTL2 induces pro-inflammatory cytokine production in adipose tissues, driving generation of myeloid-derived suppressor cells (MDSCs) in bone marrow and contributing to an immunosuppressive tumor microenvironment and resistance to ICI therapy. Moreover, HFD-induced obese mice showed impaired responsiveness to ICI treatment, suggesting that obesity-induced chronic inflammation facilitated by high ANGPTL2 expression blocks ICI antitumor effects. Our findings overall provide novel insight into protumor ANGPTL2 functions and illustrate the essential role of the host system in ICI responsiveness.
Collapse
Affiliation(s)
- Shinsei Yumoto
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Aging and Geriatric Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Taichi Horino
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Aging and Geriatric Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
31
|
Chen YY, Zeng XT, Gong ZC, Zhang MM, Wang KQ, Tang YP, Huang ZH. Euphorbia Pekinensis Rupr. sensitizes colorectal cancer to PD-1 blockade by remodeling the tumor microenvironment and enhancing peripheral immunity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156107. [PMID: 39368338 DOI: 10.1016/j.phymed.2024.156107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/28/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Immune checkpoint blockade, such as monoclonal antibodies targeting programmed cell death protein 1 (PD-1), has been a major breakthrough in the treatment of several cancers, but has limited effect in colorectal cancer (CRC), which is a highly prevalent cancer worldwide. Current chemotherapy-based strategies to boost PD-1 response have many limitations. And the role of peripheral immunity in boosting PD-1 response continues to attract attention. Therefore, candidate combinations of PD-1 blockade need to be drugs with multi-targets and multi-modulatory functions. However, it is still unknown whether traditional Chinese medicines with such property can enhance the applicability and efficacy of PD-1 blockade in colorectal cancer. METHODS Euphorbia Pekinensis extract (EP) was prepared and the constituents were analyzed by HPLC. CRC cells were used for in vitro experiments, including cell viability assay, colony formation assay, flow cytometry for 7-AAD staining, western blotting for caspase 3 and caspase 7, HMGB1 and ATP detection. An orthotopic CT26 mouse model was subsequently used to investigate the combination of EP and PD-1 blockade therapy. Tumor volume and tumor weight were assessed, tumor tissues were subjected to histopathological HE staining and TUNEL staining, and tumor-infiltrating immune cells were evaluated by immunofluorescence staining. RNA-sequencing, target prediction and pathway analysis were further employed to explore the mechanism. Molecular docking and cellular thermal shift assay (CETSA) were utilized to verify the direct target of the core component of EP. And, loss-of-function analysis was carried to confirm the upstream-downstream relationship. Flow cytometry was employed to analyze CD8+ T cells in the peripheral blood and spleen. RESULTS The main constituents of EP are diterpenoids and flavonoids. EP dramatically suppresses CRC cell growth and exerts its cytotoxic effect by triggering immunogenic cell death in vitro. Moreover, EP synergizes with PD-1 blockade to inhibit tumorigenesis in tumor-bearing mice. Disruption of ISX nuclear localization by helioscopinolide E is a central mechanism of EP-induced apoptosis in CRC cell. Meanwhile, EP activates immune response by upregulating Phox2b to reshape the immune microenvironment. In addition, EP regulates peripheral immunity by regulating the T cell activation and proliferation, and the ratio of CD8+ T cells in peripheral blood is drastically increased, thereby enhancing the therapeutic efficacy of anti-PD1 immunotherapy. CONCLUSION EP triggers intra-tumor immunogenic cell death and modulates the immunoregulatory signaling to elicit the tumor immunogenicity. Moreover, EP participates in transcriptional activation of immune response-related pathways. Consequently, multiple stimulating functions of EP on macro- and micro-immune potentiates the anti-tumor effect of PD-1 blockade in CRC.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Wuxi Cancer Institute, Wuxi Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Tao Zeng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, China
| | - Zhi-Cheng Gong
- Wuxi Cancer Institute, Wuxi Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mei-Mei Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, China
| | - Kai-Qing Wang
- Wuxi Cancer Institute, Wuxi Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, China.
| | - Zhao-Hui Huang
- Wuxi Cancer Institute, Wuxi Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
32
|
Chen S, Huang M, Zhang L, Huang Q, Wang Y, Liang Y. Inflammatory response signature score model for predicting immunotherapy response and pan-cancer prognosis. Comput Struct Biotechnol J 2024; 23:369-383. [PMID: 38226313 PMCID: PMC10788202 DOI: 10.1016/j.csbj.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/17/2024] Open
Abstract
Background Inflammatory responses influence the outcome of immunotherapy and tumorigenesis by modulating host immunity. However, systematic inflammatory response assessment models for predicting cancer immunotherapy (CIT) responses and survival across human cancers remain unexplored. Here, we investigated an inflammatory response score model to predict CIT responses and patient survival in a pan-cancer analysis. Methods We retrieved 12 CIT response gene expression datasets from the Gene Expression Omnibus database (GSE78220, GSE19423, GSE100797, GSE126044, GSE35640, GSE67501, GSE115821 and GSE168204), Tumor Immune Dysfunction and Exclusion database (PRJEB23709, PRJEB25780 and phs000452.v2.p1), European Genome-phenome Archive database (EGAD00001005738), and IMvigor210 cohort. The tumor samples from six cancers types: metastatic urothelial cancer, metastatic melanoma, gastric cancer, primary bladder cancer, renal cell carcinoma, and non-small cell lung cancer.We further established a binary classification model to predict CIT responses using the least absolute shrinkage and selection operator (LASSO) computational algorithm. Findings The model had high predictive accuracy in both the training and validation cohorts. During sub-group analysis, area under the curve (AUC) values of 0.82, 0.80, 0.71, 0.7, 0.67, and 0.64 were obtained for the non-small cell lung cancer, gastric cancer, metastatic urothelial cancer, primary bladder cancer, metastatic melanoma, and renal cell carcinoma cohorts, respectively. CIT response rates were higher in the high-scoring training cohort subjects (51%) than the low-scoring subjects (27%). The five-year survival rates in the high- and low score groups of the training cohorts were 62% and 21%, respectively, while those of the validation cohorts were 54% and 22%, respectively (P < 0·001 in all cases). Inflammatory response signature score derived from on-treatment tumor specimens are highly predictive of response to CIT in patients with metastatic melanoma. A significant correlation was observed between the inflammatory response scores and tumor purity. Regardless of the tumor purity, patients in the low score group had a significantly poorer prognosis than those in the high score group. Immune cell infiltration analysis indicated that in the high score cohort, tumor-infiltrating lymphocytes were significantly enriched, particularly effector and natural killer cells. Inflammatory response scores were positively correlated with immune checkpoint genes, suggesting that immune checkpoint inhibitors may have benefited patients with high scores. Analysis of signature scores across different cancer types from The Cancer Genome Atlas revealed that the prognostic performance of inflammatory response scores for survival in patients who have not undergone immunotherapy can be affected by tumor purity. Interleukin 21 (IL21) had the highest weight in the inflammatory response model, suggesting its vital role in the prediction mode. Since the number of metastatic melanoma patients (n = 429) was relatively large among CIT cohorts, we further performed a co-culture experiment using a melanoma cell line and CD8 + T cell populations generated from peripheral blood monocytes. The results showed that IL21 therapy combined with anti-PD1 (programmed cell death 1) antibodies (trepril monoclonal antibodies) significantly enhanced the cytotoxic activity of CD8 + T cells against the melanoma cell line. Conclusion In this study, we developed an inflammatory response gene signature model that predicts patient survival and immunotherapy response in multiple malignancies. We further found that the predictive performance in the non-small cell lung cancer and gastric cancer group had the highest value among the six different malignancy subgroups. When compared with existing signatures, the inflammatory response gene signature scores for on-treatment samples were more robust predictors of the response to CIT in metastatic melanoma.
Collapse
Affiliation(s)
- Shuzhao Chen
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), Shantou, Guangdong, China
| | - Mayan Huang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Limei Zhang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Qianqian Huang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Yun Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Yang Liang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Liu X, Kong Y, Qian Y, Guo H, Zhao L, Wang H, Xu K, Ye L, Liu Y, Lu H, He Y. Spatial heterogeneity of infiltrating immune cells in the tumor microenvironment of non-small cell lung cancer. Transl Oncol 2024; 50:102143. [PMID: 39366301 PMCID: PMC11474367 DOI: 10.1016/j.tranon.2024.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are essential components of the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). Still, it is difficult to describe due to their heterogeneity. In this study, five cell markers from NSCLC patients were analyzed. We segmented tumor cells (TCs) and TILs using Efficientnet-B3 and explored their quantitative information and spatial distribution. After that, we simulated multiplex immunohistochemistry (mIHC) by overlapping continuous single chromogenic IHCs slices. As a result, the proportion and the density of programmed cell death-ligand 1 (PD-L1)-positive TCs were the highest in the core. CD8+ T cells were the closest to the tumor (median distance: 41.71 μm), while PD-1+T cells were the most distant (median distance: 62.2μm), and our study found that most lymphocytes clustered together within the peritumoral range of 10-30 μm where cross-talk with TCs could be achieved. We also found that the classification of TME could be achieved using CD8+ T-cell density, which is correlated with the prognosis of patients. In addition, we achieved single chromogenic IHC slices overlap based on CD4-stained IHC slices. We explored the number and spatial distribution of cells in heterogeneous TME of NSCLC patients and achieved TME classification. We also found a way to show the co-expression of multiple molecules economically.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Kong
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Youwen Qian
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Affiliated to Naval Medical University, Shanghai, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Lishu Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Yujin Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
34
|
Hu C, Li Q, Xiang L, Luo Y, Li S, An J, Yu X, Zhang G, Chen Y, Wang Y, Wang D. Comprehensive pan-cancer analysis unveils the significant prognostic value and potential role in immune microenvironment modulation of TRIB3. Comput Struct Biotechnol J 2024; 23:234-250. [PMID: 38161736 PMCID: PMC10757237 DOI: 10.1016/j.csbj.2023.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
TRIB3, a pseudokinase, was previously studied within only some specific cancer types, leaving its comprehensive functions in pan-cancer contexts largely unexplored. Here, we performed an integrated analysis of TRIB3 expression, prognosis, genetic alterations, functional enrichment and tumor immune-related characteristics in 33 cancer types. Our results showed that TRIB3 exhibits high expression levels across 24 different cancer types and correlates closely with unfavorable prognoses. Meanwhile, TRIB3 shows mutations in a wide spectrum of 22 distinct cancer types, with the predominant mutation types being missense mutations and gene amplifications, and significant changes in DNA methylation levels in 14 types of cancer. We further discovered that TRIB3 expression is significantly associated with cancer immune-related genome mutations, such as tumor mutational burden (TMB), microsatellite instability (MSI) and DNA mismatch repair (MMR), and infiltration of immunosuppressive cells, such as CD4+ Th2 cells and myeloid-derived suppressor cells (MDSCs), into the tumor microenvironment. These results indicated that the expression of TRIB3 might reshape the tumor immune microenvironment (TIME) and lead to immunosuppressive "cold" tumors. In addition, our results confirmed that the loss of function of TRIB3 inhibits cell proliferation, promotes apoptosis, and leads to significant enrichment of "hot" tumor-related immune pathways, at least in breast cancer cells, which further supports the important role of TRIB3 in cancer prognosis and TIME regulation. Together, this pan-cancer investigation provided a comprehensive understanding of the critical role of TRIB3 in human cancers, and suggested that TRIB3 might be a promising prognostic biomarker and a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qingzhou Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lei Xiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shengrong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun An
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiankuo Yu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guochen Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuhui Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yumei Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
35
|
Pan L, Zhou Y, Kuang Y, Wang C, Wang W, Hu X, Chen X. Progress of research on γδ T cells in colorectal cancer (Review). Oncol Rep 2024; 52:160. [PMID: 39364743 PMCID: PMC11478060 DOI: 10.3892/or.2024.8819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent malignancy and second leading cause of cancer‑related fatalities worldwide. Immunotherapy alone or in combination with chemotherapy has a favorable survival benefit for patients with CRC. Unlike αβ T cells, which are prone to drug resistance, γδ T cells do not exhibit major histocompatibility complex restriction and can target tumor cells through diverse mechanisms. Recent research has demonstrated the widespread involvement of Vδ1T, Vδ2T, and γδ T17 cells in tumorigenesis and progression. In the present review, the influence of different factors, including immune checkpoint molecules, the tumor microenvironment and microorganisms, was summarized on the antitumor/protumor effects of these cells, aiming to provide insights for the development of more efficient and less toxic immunotherapy‑based anticancer drugs.
Collapse
Affiliation(s)
- Lijuan Pan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Yiru Zhou
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yeye Kuang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Chan Wang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Weimin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| |
Collapse
|
36
|
Shi X, Wang Y, Qi F, Zhang H, Cao Y, Xu X, Liu W, Li C. Devising Biocompatible, NIR-Activated Helical Pyroptosis Agents via 𝛑-Twisting Strategy for Promoting Antitumor Immunity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405496. [PMID: 39291904 DOI: 10.1002/smll.202405496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Indexed: 09/19/2024]
Abstract
Specifically controlling cell pyroptosis is advantageous for oncotherapy as it allows simultaneous ablation of primary tumors and activation of immunogenicity of tumor environment. Herein, a facile and robust strategy is presented to construct efficient NIR-activated helical pyroptosis agents (PyroAs) with negligible dark cytotoxicity. It is demonstrated that the construction of four intramolecular B-X bonds (X = O or N) within the BODIPY chromophore enforces a significant twisting of its π-conjugation, yielding a variety of helical HBD molecules with desired high photosensitivity and negligible dark toxicity. A robust approach is established to extend HBD into the near-infrared (NIR) region through site-selective incorporation of an electron-withdrawing ester moiety. It is also proved that targeted delivery of the NIR-activated HBD-ER to the endoplasmic reticulum (ER) specifically activates pyroptosis pathway by equipping it with an ER-targeting moiety. Finally, the favorable biocompatibility, excellent antitumor efficacy, and remarkable systematic immune response of this unique NIR-activated helical PyroAs are shown in vivo, demonstrating its potential application in solid tumor immunotherapy.
Collapse
Affiliation(s)
- Xiaoqian Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yaming Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Fan Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Hao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yahui Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiaona Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Weiqing Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| |
Collapse
|
37
|
Li HX, Gong YW, Yan PJ, Xu Y, Qin G, Wen WP, Teng FY. Revolutionizing head and neck squamous cell carcinoma treatment with nanomedicine in the era of immunotherapy. Front Immunol 2024; 15:1453753. [PMID: 39676875 PMCID: PMC11638222 DOI: 10.3389/fimmu.2024.1453753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignant tumor globally. Despite advancements in treatment methods, the overall survival rate remains low due to limitations such as poor targeting and low bioavailability, which result in the limited efficacy of traditional drug therapies. Nanomedicine is considered to be a promising strategy in tumor therapy, offering the potential for maximal anti-tumor effects. Nanocarriers can overcome biological barriers, enhance drug delivery efficiency to targeted sites, and minimize damage to normal tissues. Currently, various nano-carriers for drug delivery have been developed to construct new nanomedicine. This review aims to provide an overview of the current status of HNSCC treatment and the necessity of nanomedicine in improving treatment outcomes. Moreover, it delves into the research progress of nanomedicine in HNSCC treatment, with a focus on enhancing radiation sensitivity, improving the efficacy of tumor immunotherapy, effectively delivering chemotherapy drugs, and utilizing small molecule inhibitors. Finally, this article discussed the challenges and prospects of applying nanomedicine in cancer treatment.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Yu-Wen Gong
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pi-Jun Yan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei-Ping Wen
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang-Yuan Teng
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| |
Collapse
|
38
|
Xu Y, Li GD, Wu CH, Zhong XQ. Nomogram prediction model for gastric cancer risk in chronic atrophic gastritis: Role of blood cell ratios. Shijie Huaren Xiaohua Zazhi 2024; 32:811-820. [DOI: 10.11569/wcjd.v32.i11.811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/20/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a precancerous condition for gastric cancer. Although endoscopy is the standard method for monitoring CAG, its invasive nature and high cost limit its use.
AIM To identify risk factors for gastric cancer in the CAG population, focusing on blood cell ratios, and develop a personalized prediction model using a nomogram.
METHODS A retrospective analysis was conducted on 314 GAG patients admitted to Hangzhou Normal University Affiliated Hospital from January 2018 to January 2024. Data collected included demographic, serological, and blood cell parameters. Independent risk factors were identified using multivariate logistic regression and a nomogram model was constructed with R. Model performance was assessed using the area under the ROC curve (AUC), the Hosmer-Lemeshow test, and decision curve analysis (DCA).
RESULTS Significant predictive factors for gastric cancer in the CAG population included male gender (odds ratio [OR] = 2.214, P < 0.05), Helicobacter pylori (H. pylori) infection (OR = 2.686, P < 0.05), gastrin 17 (G-17) (OR = 1.037, P < 0.05), hemoglobin-to-red blood cell distribution width ratio (HRR) (OR = 0.648, P < 0.05), and lymphocyte-to-monocyte ratio (LMR) (OR = 0.645, P < 0.05). The prediction model, with an AUC of 0.854, demonstrated good fit (Hosmer-Lemeshow test: χ2 = 6.062, P = 0.640). DCA indicated the potential generalizability of the model.
CONCLUSION The nomogram provides a noninvasive, convenient, and cost-effective tool for screening gastric cancer in CAG patients, showing excellent discrimination and calibration. Further large-scale, multicenter studies are necessary to validate its efficacy across diverse populations.
Collapse
Affiliation(s)
- Yang Xu
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
- Department of Gastroenterology and Hepatology, Hospital of Zhejiang People's Armed Police, Hangzhou 310051, Zhejiang Province, China
| | - Guo-Dong Li
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Chen-Han Wu
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Xue-Qing Zhong
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| |
Collapse
|
39
|
Chen Y, Guo Y, Cheng W, Fan J, Li J, Song J, Yang X, Wang K, Huang J. Sequentially Activated Smart DNA Nanospheres for Photoimmunotherapy and Immune Checkpoint Blockade. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410632. [PMID: 39588591 DOI: 10.1002/advs.202410632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Due to the inherent immunosuppression and immune evasion of cancer cells, combining photoimmunotherapy with immune checkpoint blockade leverages phototherapy and immune enhancement, overcoming mutual limitations and demonstrating significant anticancer potential. The main challenges include nonspecific accumulation of agents, uncontrolled activation, and drug carrier safety. Smart DNA nanospheres (NS) is developed with targeted delivery and controllable release of photosensitizers and immune agents to achieve effective synergistic therapy and minimize side effects. The multifunctional NS incorporate a targeting module for programming aptamers, a response module for programming i-motif and DNA/RNA hybrid sequences, and a therapeutic module for packaging photosensitizers and PD-L1 siRNA. NS navigate to the tumor site and are sequentially activated by intracellular acid and enzymes to release photosensitizers and programmed death ligand 1 (PD-L1) small interfering RNA (siRNA) programmed death protein 1 (PD-1) and programmed cell death ligands. Besides tumor killing and immune promotion, activated NS downregulate PD-L1 expression, alleviating immune tolerance and evasion, thus enhancing the immune response. These results indicate that NS significantly enhance antitumor immune responses, synergistically improve antitumor efficacy, and reduce systemic toxicity. This study broadens the application of DNA nanomaterials in precision drug delivery and tumor therapy.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yu Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Wen Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jiahao Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jiacheng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jiajia Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
40
|
Yin X, Song Y, Deng W, Blake N, Luo X, Meng J. Potential predictive biomarkers in antitumor immunotherapy: navigating the future of antitumor treatment and immune checkpoint inhibitor efficacy. Front Oncol 2024; 14:1483454. [PMID: 39655071 PMCID: PMC11625675 DOI: 10.3389/fonc.2024.1483454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment modality, offering promising outcomes for various malignancies. However, the efficacy of ICIs varies among patients, highlighting the essential need of accurate predictive biomarkers. This review synthesizes the current understanding of biomarkers for ICI therapy, and discusses the clinical utility and limitations of these biomarkers in predicting treatment outcomes. It discusses three US Food and Drug Administration (FDA)-approved biomarkers, programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), and microsatellite instability (MSI), and explores other potential biomarkers, including tumor immune microenvironment (TIME)-related signatures, human leukocyte antigen (HLA) diversity, non-invasive biomarkers such as circulating tumor DNA (ctDNA), and combination biomarker strategies. The review also addresses multivariable predictive models integrating multiple features of patients, tumors, and TIME, which could be a promising approach to enhance predictive accuracy. The existing challenges are also pointed out, such as the tumor heterogeneity, the inconstant nature of TIME, nonuniformed thresholds and standardization approaches. The review concludes by emphasizing the importance of biomarker research in realizing the potential of personalized immunotherapy, with the goal of improving patient selection, treatment strategies, and overall outcomes in cancer treatment.
Collapse
Affiliation(s)
- Xiangyu Yin
- Department of Biological Sciences, School of Science, AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Yunjie Song
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Wanglong Deng
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Neil Blake
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Xinghong Luo
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Jia Meng
- Department of Biological Sciences, School of Science, AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
41
|
Zilenaite-Petrulaitiene D, Rasmusson A, Valkiuniene RB, Laurinaviciene A, Petkevicius L, Laurinavicius A. Spatial distributions of CD8 and Ki67 cells in the tumor microenvironment independently predict breast cancer-specific survival in patients with ER+HER2- and triple-negative breast carcinoma. PLoS One 2024; 19:e0314364. [PMID: 39576843 PMCID: PMC11584100 DOI: 10.1371/journal.pone.0314364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
INTRODUCTION Breast cancer (BC) presents diverse malignancies with varying biological and clinical behaviors, driven by an interplay between cancer cells and tumor microenvironment. Deciphering these interactions is crucial for personalized diagnostics and treatment. This study explores the prognostic impact of tumor proliferation and immune response patterns, assessed by computational pathology indicators, on breast cancer-specific survival (BCSS) models in estrogen receptor-positive HER2-negative (ER+HER2-) and triple-negative BC (TNBC) patients. MATERIALS AND METHODS Whole-slide images of tumor surgical excision samples from 252 ER+HER2- patients and 63 TNBC patients stained for estrogen and progesterone receptors, Ki67, HER2, and CD8 were analyzed. Digital image analysis (DIA) was performed for tumor tissue segmentation and quantification of immunohistochemistry (IHC) markers; the DIA outputs were subsampled by hexagonal grids to assess the spatial distributions of Ki67-positive tumor cells and CD8-positive (CD8+) cell infiltrates, expressed as Ki67-entropy and CD8-immunogradient indicators, respectively. Prognostic models for BCSS were generated using multivariable Cox regression analysis, integrating clinicopathological and computational IHC indicators. RESULTS In the ER+HER2- BC, multivariable Cox regression revealed that high CD8+ density within the tumor interface zone (IZ) (HR: 0.26, p = 0.0056), low immunodrop indicator of CD8+ density (HR: 2.93, p = 0.0051), and low Ki67-entropy (HR: 5.95, p = 0.0.0061) were independent predictors of better BCSS, while lymph node involvement predicted worse BCSS (HR: 3.30, p = 0.0013). In TNBC, increased CD8+ density in the IZ stroma (HR: 0.19, p = 0.0119) and Ki67-entropy (HR: 3.31, p = 0.0250) were independent predictors of worse BCSS. Combining these independent indicators enhanced prognostic stratification in both BC subtypes. CONCLUSIONS Computational biomarkers, representing spatial properties of the tumor proliferation and immune cell infiltrates, provided independent prognostic information beyond conventional IHC markers in BC. Integrating Ki67-entropy and CD8-immunogradient indicators into prognostic models can improve patient stratification with regard to BCSS.
Collapse
Affiliation(s)
- Dovile Zilenaite-Petrulaitiene
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- National Centre of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Institute of Informatics, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania
| | - Allan Rasmusson
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- National Centre of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Ruta Barbora Valkiuniene
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- National Centre of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Aida Laurinaviciene
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- National Centre of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Linas Petkevicius
- Institute of Informatics, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania
| | - Arvydas Laurinavicius
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- National Centre of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| |
Collapse
|
42
|
Ji B, Wang X, Wang X, Xu L, Peng S. scDCA: deciphering the dominant cell communication assembly of downstream functional events from single-cell RNA-seq data. Brief Bioinform 2024; 26:bbae663. [PMID: 39694816 DOI: 10.1093/bib/bbae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cell-cell communications (CCCs) involve signaling from multiple sender cells that collectively impact downstream functional processes in receiver cells. Currently, computational methods are lacking for quantifying the contribution of pairwise combinations of cell types to specific functional processes in receiver cells (e.g. target gene expression or cell states). This limitation has impeded understanding the underlying mechanisms of cancer progression and identifying potential therapeutic targets. Here, we proposed a deep learning-based method, scDCA, to decipher the dominant cell communication assembly (DCA) that have a higher impact on a particular functional event in receiver cells from single-cell RNA-seq data. Specifically, scDCA employed a multi-view graph convolution network to reconstruct the CCCs landscape at single-cell resolution, and then identified DCA by interpreting the model with the attention mechanism. Taking the samples from advanced renal cell carcinoma as a case study, the scDCA was successfully applied and validated in revealing the DCA affecting the crucial gene expression in immune cells. The scDCA was also applied and validated in revealing the DCA responsible for the variation of 14 typical functional states of malignant cells. Furthermore, the scDCA was applied and validated to explore the alteration of CCCs under clinical intervention by comparing the DCA for certain cytotoxic factors between patients with and without immunotherapy. In summary, scDCA provides a valuable and practical tool for deciphering the cell type combinations with the most dominant impact on a specific functional process of receiver cells, which is of great significance for precise cancer treatment. Our data and code are free available at a public GitHub repository: https://github.com/pengsl-lab/scDCA.git.
Collapse
Affiliation(s)
- Boya Ji
- College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China
| | - Xiaoqi Wang
- College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China
| | - Xiang Wang
- The Second Xiangya Hospital, Central South University, Yuelu, 410006 Changsha, China
| | - Liwen Xu
- College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China
| |
Collapse
|
43
|
Li R, Liu R, Xu Y, Zhang S, Yang P, Zeng W, Wang H, Liu Y, Yang H, Yue X, Dai Z. Suppressing Pancreatic Cancer Survival and Immune Escape via Nanoparticle-Modulated STING/STAT3 Axis Regulation. Bioconjug Chem 2024; 35:1815-1822. [PMID: 39420541 DOI: 10.1021/acs.bioconjchem.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a challenge in oncology due to its high lethality and resistance to immunotherapy. Recently, emerging research on the stimulator of interferon gene (STING) pathway offers novel opportunities for immunotherapy. Although STING expression is retained in PDAC cells, the response of PDAC cells to STING agonists remains ineffective. Signal transducer and activator of transcription 3 (STAT3), a downstream pathway of STING, is notably overexpressed in pancreatic cancer and related to tumor survival and immune escape. We observed that inhibiting STAT3 signaling post-STING activation effectively suppressed tumor growth through signal transducer and activator of transcription 1 (STAT1)-mediated apoptosis but led to a potential risk of immune-related adverse events (irAEs). To address this issue, we designed a tumor-penetrating liposome for the codelivery of STING agonist and STAT3 inhibitor. These nanoparticles regulated the STING/STAT3 signaling axis and effectively inhibited the proliferation and survival of tumor. Simultaneously, we found a significant increase in the activation of NK cells and CD8+ T cells after treatment, leading to robust innate immunity and adaptive immune response. We highlight the potential of regulating the STING/STAT3 axis as a promising treatment for improving clinical outcomes in PDAC patients.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Canter, Peking University, Beijing 100871, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Canter, Peking University, Beijing 100871, China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Canter, Peking University, Beijing 100871, China
| | - Shuhao Zhang
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Canter, Peking University, Beijing 100871, China
| | - Peipei Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wenlong Zeng
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Canter, Peking University, Beijing 100871, China
| | - Huiyang Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310027, China
| | - Yijia Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Canter, Peking University, Beijing 100871, China
| | - Huajing Yang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Canter, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Kim DH, Kang M, Park G, Mostafavi M, Lim Y, Ock CY, Koh J, Jeon YK, Jung KC, Ahn SH, Chung EJ, Kwon SK, Keam B. Changes in the tumor microenvironment in recurrent head and neck squamous cell carcinoma and its implication on efficacy of immune checkpoint inhibitors. Discov Oncol 2024; 15:686. [PMID: 39567471 PMCID: PMC11579274 DOI: 10.1007/s12672-024-01504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Little is known about changes in the abundance of tumor-infiltrating lymphocytes (TILs) and immune phenotype (IP) in recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). We aimed to compare the TILs and IP between initial and recurrent HNSCCs using paired analysis. Thirty-seven patients who experienced recurrence after surgical resection and received treatment with immune checkpoint inhibitors (ICIs) between June 2014 and June 2023 were included. Changes in intratumoral TIL (iTILs), stromal TIL (sTILs), and IPs were subjected to paired analysis between the initial and recurrent tumors. We investigated their relationship with the outcomes of ICIs. The density of iTIL and sTIL in the recurrent tumors was significantly lower compared to initial tumors. IP was significantly different; the proportion of desert IP was higher in recurrent tumors (83.8% vs. 35.1%, P < 0.001). Increased sTIL was a favorable indicator for overall response to ICIs and progression-free survival. Our findings suggest TILs decrease during recurrence compared with the initial tumor, resulting in a transition toward desert IP. Therefore, careful evaluation of TIL density in both initial and recurrent tumors is recommended when using ICIs in patients with R/M HNSCC.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-Ro, Jongro-Gu, Seoul, 03080, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soon-Hyun Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seong-Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-Ro, Jongro-Gu, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Roszkowska M. Multilevel Mechanisms of Cancer Drug Resistance. Int J Mol Sci 2024; 25:12402. [PMID: 39596466 PMCID: PMC11594576 DOI: 10.3390/ijms252212402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer drug resistance represents one of the most significant challenges in oncology and manifests through multiple interconnected molecular and cellular mechanisms. Objective: To provide a comprehensive analysis of multilevel processes driving treatment resistance by integrating recent advances in understanding genetic, epigenetic, and microenvironmental factors. This is a systematic review of the recent literature focusing on the mechanisms of cancer drug resistance, including genomic studies, clinical trials, and experimental research. Key findings include the following: (1) Up to 63% of somatic mutations can be heterogeneous within individual tumors, contributing to resistance development; (2) cancer stem cells demonstrate enhanced DNA repair capacity and altered metabolic profiles; (3) the tumor microenvironment, including cancer-associated fibroblasts and immune cell populations, plays a crucial role in promoting resistance; and (4) selective pressure from radiotherapy drives the emergence of radioresistant phenotypes through multiple adaptive mechanisms. Understanding the complex interplay between various resistance mechanisms is essential for developing effective treatment strategies. Future therapeutic approaches should focus on combination strategies that target multiple resistance pathways simultaneously, guided by specific biomarkers.
Collapse
Affiliation(s)
- Malgorzata Roszkowska
- Department of Clinical Neuropsychology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
46
|
Chen J, Gao Y, Zhong J, Wu X, Leng Z, Liu M, Wang Y, Wang Y, Yang X, Huang N, Xiao F, Zhang M, Liu X, Zhang N. Lnc-H19-derived protein shapes the immunosuppressive microenvironment of glioblastoma. Cell Rep Med 2024; 5:101806. [PMID: 39481387 PMCID: PMC11604490 DOI: 10.1016/j.xcrm.2024.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
The immunosuppressive tumor microenvironment (TME) is a prominent feature of glioblastoma (GBM), the most lethal primary brain cancer resistant to current immunotherapies. The mechanisms underlying GBM-TME remain to be explored. We report that long non-coding RNA (LncRNA) H19 encodes an immune-related protein called H19-IRP. Functionally separated from H19 RNA, H19-IRP promotes GBM immunosuppression by binding to the CCL2 and Galectin-9 promoters and activating their transcription, thereby recruiting myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), leading to T cell exhaustion and an immunosuppressive GBM-TME. H19-IRP, overexpressed in clinical GBM samples, acts as a tumor-associated antigen (TAA) presented by major histocompatibility complex class I (MHC-I). A circular RNA vaccine targeting H19-IRP (circH19-vac) triggers a potent cytotoxic T cell response against GBM and inhibits GBM growth. Our results highlight the unrevealed function of H19-IRP in creating immunosuppressive GBM-TME by recruiting MDSCs and TAMs, supporting the idea of targeting H19-IRP with cancer vaccine for GBM treatment.
Collapse
MESH Headings
- Glioblastoma/immunology
- Glioblastoma/pathology
- Glioblastoma/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- Tumor Microenvironment/immunology
- Humans
- Animals
- Galectins/metabolism
- Galectins/genetics
- Galectins/immunology
- Cell Line, Tumor
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Brain Neoplasms/immunology
- Brain Neoplasms/pathology
- Brain Neoplasms/genetics
- Chemokine CCL2/metabolism
- Chemokine CCL2/immunology
- Chemokine CCL2/genetics
- Mice
- Gene Expression Regulation, Neoplastic
- Macrophages/immunology
- Macrophages/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Mice, Inbred C57BL
- Cancer Vaccines/immunology
- Promoter Regions, Genetic/genetics
Collapse
Affiliation(s)
- Junju Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Yixin Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Xujia Wu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Zhaojie Leng
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Ming Liu
- Guangzhou Geneseed Biotech. Co., Ltd, Guangzhou, Guangdong Province, China
| | - Yesheng Wang
- Guangzhou Geneseed Biotech. Co., Ltd, Guangzhou, Guangdong Province, China
| | - Yuan Wang
- Guangzhou Geneseed Biotech. Co., Ltd, Guangzhou, Guangdong Province, China
| | - Xuesong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Nunu Huang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Maolei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| | - Xuesong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
47
|
Wang X, Li S, Shen Y, Cao L, Lu Y, Cao J, Liu Y, Deng A, Yang J, Wang T. Construction of molecular subtype and prognostic model for gastric cancer based on nucleus-encoded mitochondrial genes. Sci Rep 2024; 14:28491. [PMID: 39557952 PMCID: PMC11574080 DOI: 10.1038/s41598-024-78729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
Gastric cancer (GC) is a common digestive system cancer, characterized by a significant mortality rate. Mitochondria is an indispensable organelle in eukaryotic cells. It was previously revealed that a series of nucleus-encoded mitochondrial genes (NMG) mutations and dysfunctions potentially contribute to the initiation and progression of GC. However, the correlation between NMG mutations and survival outcomes for GC patients is still unclear. In this study, NMG expression profile and clinical information in GC samples were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Through consistent clustering and functional enrichment analysis, we have identified three NMG clusters and three gene clusters that are associated with patterns of immune cell infiltration. Prognostic genes were identified through Univariate Cox regression analysis. The principal component analysis was conducted to set up a scoring system. Subsequently, the Single‑cell RNA sequencing (scRNA-seq) data of GC patients and cancer cell drug sensitivity data were retrieved from the GEO database. Patients with high NMG scores exhibited increased microsatellite instability status and a heightened tumor mutation rate compared to those with low NMG scores. Survival analysis revealed that GC samples with high NMG scores could achieve a better prognosis. Additionally, These patients were observed to be more responsive to immunotherapy. Moreover, we delved into prognostic genes at the level of single cells, revealing that MRPL4 and MRPL37 exhibit high expression in epithelial cells, while TPM1 demonstrates high expression in tissue stem cells. Utilizing cancer cell drug sensitivity data from the Drug Sensitivity in Cancer (GDSC) database, we noted a heightened sensitivity to chemotherapy in the high NMG group. Furthermore, we discovered a significant enrichment of cuproptosis-related genes in clusters with high NMG scores. Consequently, employing the scoring system could facilitate the prediction of GC patients' sensitivity to cuproptosis-induced therapy. Our study confirmed the potency of this scoring system as a therapeutic response biomarker for gastric cancer, potentially informing clinical treatment strategies.
Collapse
Affiliation(s)
- Xu Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Li Cao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jiyun Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Tongtong Wang
- Department of Intensive Care Unit, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xian, China.
| |
Collapse
|
48
|
Zhuang M, Liu J, Li Y, Zhang J, Jiang Z, Wang X, Tang J. PD-L1 promotes tumor metastasis by regulating the infiltration of FGFBP2(+)Tm cells in colorectal cancer. Oncogene 2024:10.1038/s41388-024-03223-w. [PMID: 39558101 DOI: 10.1038/s41388-024-03223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Tumor-infiltrating lymphocytes can influence tumorigenesis and progression. We found PD-L1 can inhibit the infiltration of memory T (Tm) cells in vivo and in vitro by reducing the secretion of CXCL9, CXCL10 in colorectal cancer. Patients with high PD-L1 expression have minimal Tm cell infiltration, accompanied with a higher incidence of tumor metastasis. Single-cell sequencing revealed that PD-L1 mainly inhibited the infiltration of a specific Tm cell subset characterized by the expression of FGFBP2 gene. To clarify the distribution of FGFBP2(+)Tm cells, peripheral blood, lymph nodes, colon polyps, primary tumor, and liver metastases samples were collected. As the tumor progressed, the infiltration of FGFBP2(+) memory T cells gradually increased and accumulated in liver metastases. By establishing a mouse metastasis model, we found in high PD-L1 expression group, the luciferin intensity of metastatic tumor was significantly higher, the number of metastatic nodules and the weight of metastases were also increased. The number of FGFBP2(+) Tm cells in peripheral blood and in liver/lung metastases were increased. Therefore, the expression of PD-L1 in primary tumor can promote the occurrence of metastases, and FGFBP2(+)Tm cells may be involved in the formation of metastases. Furthermore, the result showed that the number of FGFBP2(+) Tm cells in metastases was positively correlated with the number of vessels in liver/lung metastases. In conclusion, we confirmed that the expression of PD-L1 in primary tumor can increase the number of FGFBP2(+) Tm cells in peripheral blood and promote tumor metastasis, which is likely to be caused by the angiogenesis of FGFBP2(+) Tm cells in metastases.
Collapse
Affiliation(s)
- Meng Zhuang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jialiang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuegang Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jinzhu Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
49
|
Zhou L, Zhu Y, Guo F, Long H, Yin M. Pan-cancer analysis of oncogenic role of CEP55 and experiment validation in clear cell renal cell carcinoma. Sci Rep 2024; 14:28279. [PMID: 39550427 PMCID: PMC11569145 DOI: 10.1038/s41598-024-80057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
Immunotherapy has emerged as a vital component in the contemporary landscape of cancer treatment. Recent studies have indicated that CEP55 plays an oncogenic role; however, its specific mechanisms in promoting tumor proliferation and its potential value in prognosis and immunotherapy prediction across various cancers remain to be elucidated. CEP55 was significantly overexpressed in 22 cancer types compared with their adjacent normal tissues. Elevated CEP55 expression was positively correlated with younger onset age, worse tumor stage, lower response rate to the first treatment, lower tumor-free survival rate, and poorer overall survival (OS) and disease-free survival (DFS) prognosis in most cancers. Moreover, CEP55 expression was positively correlated with its binding and related genes, such as KIF11 (R = 0.83, P < 0.001), CDK1 (R = 0.77, P < 0.001) and CCNA2 (R = 0.76, P < 0.001), and the classic proliferation markers, including MKI67 and PCNA. Enrichment analyses indicated that CEP55 was predominantly associated with cell division, cell cycle activities and proliferation. Immune cell infiltration analysis by TIMER2.0 revealed that CEP55 expression was positively correlated with many kinds of infiltrating cells, such as Th2 cells and some CD4+ T cell subsets. The CEP55 expression was positively associated with increased MSI and TMB in various cancers. Our analyzation indicated that the CEP55 expression level in patients with complete remission (CR) or partial remission (PR) to anti-PDL1 therapy was significantly higher than patients with stable disease (SD) or progressive disease (PD) based on IMvigor210 cohort. We also used Gene Set Cancer Analysis (GSCA) to predict a serious of small molecule CEP55 targeted drugs, such as AZ628, SB52334, SB590885, A-770,041, AZD7762, Elesclomol, panobinostat, BRD-A94377914, and LRRK2-IN-1. Furthermore, the patients with high level of CEP55-posivie tumor epithelial cells had inferior overall survival in ccRCC according to single-cell analysis. Finally, our wet lab experiments verified that the CEP55-positive rate in ccRCC tissues (19/30, 63.3%) was significantly higher than that in renal adjacent tissues (10/30, 33.3%). The clinicopathologic analysis revealed that CEP55 protein level was significantly associated with tumor size (P = 0.044), histology grade (P < 0.001) and stage (P = 0.034). Our study indicated that CEP55 overexpression in most caner types was associated with poor prognosis. Notably, CEP55 was closely relevant to immune cell infiltration and impacted the response to immunotherapy and small molecule drugs against cancers.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yimeng Zhu
- Department of Nephrology, Zhejiang University Medical College Affiliated Sir Run Run Shaw Hospital, Shaoxing, Zhejiang, China
| | - Fei Guo
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, China
| | - Huimin Long
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| | - Min Yin
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
50
|
Shi Y, An K, ShaoX zhou, Zhang X, Kan Q, Tian X. Integration of single-cell sequencing and bulk transcriptome data develops prognostic markers based on PCLAF + stem-like tumor cells using artificial neural network in gastric cancer. Heliyon 2024; 10:e38662. [PMID: 39524750 PMCID: PMC11547969 DOI: 10.1016/j.heliyon.2024.e38662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/10/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Gastric cancer stem cells (GCSCs) are important tumour cells involved in tumourigenesis and gastric cancer development. However, their clinical value remains unclear due to the limitations of the available technologies. This study aims to explore the clinical significance of GCSCs, their connection to the tumour microenvironment, and their underlying molecular mechanisms. Methods Stem-like tumour cells were identified by mining single-cell transcriptomic data from multiple samples. Integrated analysis of single-cell and bulk transcriptome data was performed to analyse the role of stem-like tumour cells in predicting clinical outcomes by introducing the intermediate variable mRNA stemness degree (SD). Consensus clustering analysis was performed to develop an SD-related molecular classification strategy to assess the clinical characteristics in gastric cancer. A prognostic model was constructed using a customized approach that comprehensively considered SD-related gene signatures based on an artificial neural network. Results By analysing single-cell data and validating immunofluorescence results, we identified a PCLAF+ stem-like tumour cell population in GC. By calculating SD, we observed that PCLAF+ stem-like tumour cells were associated with poor prognosis and certain clinical features. The SD was negatively correlated with the abundance of most immune cell types. Furthermore, we proposed an SD-related classification method and prognostic model. In addition, the customised prognostic model can be used to predict whether a patient respond to PD-1/PD-L1 immunotherapy. Conclusion We identified a cluster of stem-like cells and elucidated their clinical significance, highlighting the possibility of their use as immunotherapeutic targets.
Collapse
Affiliation(s)
- Yong Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - ShaoX zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - XuR. Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - QuanC. Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|