1
|
Jarvis WMC, Careau V, Rundle HD. Divergence in genetic (co)variances and the alignment of gmax with phenotypic divergence. Evolution 2025; 79:597-610. [PMID: 39841166 DOI: 10.1093/evolut/qpaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/25/2024] [Accepted: 01/20/2025] [Indexed: 01/23/2025]
Abstract
To better understand the sources of biological diversity in nature, we need information on the mechanisms underlying population divergence. Biological systems with patterns of naturally occurring adaptive variation among populations can provide insight into the genetic architecture of diverging traits and the influence of genetic constraints on responses to selection. Using a system of reproductive character displacement in the North American mushroom-feeding fly Drosophila subquinaria, we assessed patterns of genetic (co)variance among a suite of chemical signaling traits and divergence in this pattern among populations. D. subquinaria exhibits stronger reproductive isolation against the closely related Drosophila recens in sympatry, where both female mating preferences and male chemical signaling traits have diverged from the ancestral allopatric populations. We collected 3 wild populations from each region and, in the lab, characterized the phenotypic divergence in these traits, as well as the additive genetic (co)variance structure (G-matrix), via replicate breeding designs. We found divergence between allopatric and sympatric D. subquinaria in the shape and size of the G-matrix, and that the leading axis of genetic variance (gmax) had changed in sympatry to come into alignment with the primary axis of phenotypic divergence between the sympatric and allopatric regions.
Collapse
Affiliation(s)
- Will M C Jarvis
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Vincent Careau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Howard D Rundle
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Rohner PT, Berger D. Macroevolution along developmental lines of least resistance in fly wings. Nat Ecol Evol 2025; 9:639-651. [PMID: 39920350 PMCID: PMC11976274 DOI: 10.1038/s41559-025-02639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Evolutionary change requires genetic variation, and a reigning paradigm in biology is that rates of microevolution can be predicted from estimates of available genetic variation within populations. However, the accuracy of such predictions should decay on longer evolutionary timescales, as the influence of genetic constraints diminishes. Here we show that intrinsic developmental variability and standing genetic variation in wing shape in two distantly related flies, Drosophila melanogaster and Sepsis punctum, are aligned and predict deep divergence in the dipteran phylogeny, spanning >900 taxa and 185 million years. This alignment cannot be easily explained by constraint hypotheses unless most of the quantified standing genetic variation is associated with deleterious side effects and is effectively unusable for evolution. However, phenotyping of 71 genetic lines of S. punctum revealed no covariation between wing shape and fitness, lending no support to this hypothesis. We also find little evidence for genetic constraints on the pace of wing shape evolution along the dipteran phylogeny. Instead, correlational selection related to allometric scaling, simultaneously shaping developmental variability and deep divergence in fly wings, emerges as a potential explanation for the observed alignment. This suggests that pervasive natural selection has the potential to shape developmental architectures of some morphological characters such that their intrinsic variability predicts their long-term evolution.
Collapse
Affiliation(s)
- Patrick T Rohner
- Department of Ecology, Behavior, and Evolution, University of California, San Diego, La Jolla, CA, USA.
| | - David Berger
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Cai H, Melo D, Des Marais DL. Disentangling variational bias: the roles of development, mutation, and selection. Trends Genet 2025; 41:23-32. [PMID: 39443198 DOI: 10.1016/j.tig.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
The extraordinary diversity and adaptive fit of organisms to their environment depends fundamentally on the availability of variation. While most population genetic frameworks assume that random mutations produce isotropic phenotypic variation, the distribution of variation available to natural selection is more restricted, as the distribution of phenotypic variation is affected by a range of factors in developmental systems. Here, we revisit the concept of developmental bias - the observation that the generation of phenotypic variation is biased due to the structure, character, composition, or dynamics of the developmental system - and argue that a more rigorous investigation into the role of developmental bias in the genotype-to-phenotype map will produce fundamental insights into evolutionary processes, with potentially important consequences on the relation between micro- and macro-evolution. We discuss the hierarchical relationships between different types of variational biases, including mutation bias and developmental bias, and their roles in shaping the realized phenotypic space. Furthermore, we highlight the challenges in studying variational bias and propose potential approaches to identify developmental bias using modern tools.
Collapse
Affiliation(s)
- Haoran Cai
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| | - Diogo Melo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
4
|
Jiang D, Pennell M. Alternative mutational architectures producing identical M -matrices can lead to different patterns of evolutionary divergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553044. [PMID: 39677663 PMCID: PMC11642737 DOI: 10.1101/2023.08.11.553044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Explaining macroevolutionary divergence in light of population genetics requires understanding the extent to which the patterns of mutational input contribute to long-term trends. In the context of quantitative traits, mutational input is typically described by the mutational variance-covariance matrix, or the M -matrix, which summarizes phenotypic variances and covariances introduced by new mutations per generation. However, as a summary statistic, the M -matrix does not fully capture all the relevant information from the underlying mutational architecture, and there exist infinitely many possible underlying mutational architectures that give rise to the same M -matrix. Using individual-based simulations, we demonstrate mutational architectures that produce the same M -matrix can lead to different levels of constraint on evolution and result in difference in within-population genetic variance, between-population divergence, and rate of adaptation. In particular, the rate of adaptation and that of neutral evolution are both reduced when a greater proportion of loci are pleiotropic. Our results reveal that aspects of mutational input not reflected by the M -matrix can have a profound impact on long-term evolution, and suggest it is important to take them into account in order to connect patterns of long-term phenotypic evolution to underlying microevolutionary mechanisms.
Collapse
Affiliation(s)
- Daohan Jiang
- Department of Quantitative and Computational Biology, University of Southern California, USA
- Macroevolution Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, USA
- Department of Biological Sciences, University of Southern California, USA
- Department of Computational Biology, Cornell University, USA
| |
Collapse
|
5
|
Tsuboi M, Sztepanacz J, De Lisle S, Voje KL, Grabowski M, Hopkins MJ, Porto A, Balk M, Pontarp M, Rossoni D, Hildesheim LS, Horta-Lacueva QJB, Hohmann N, Holstad A, Lürig M, Milocco L, Nilén S, Passarotto A, Svensson EI, Villegas C, Winslott E, Liow LH, Hunt G, Love AC, Houle D. The paradox of predictability provides a bridge between micro- and macroevolution. J Evol Biol 2024; 37:1413-1432. [PMID: 39208440 DOI: 10.1093/jeb/voae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The relationship between the evolutionary dynamics observed in contemporary populations (microevolution) and evolution on timescales of millions of years (macroevolution) has been a topic of considerable debate. Historically, this debate centers on inconsistencies between microevolutionary processes and macroevolutionary patterns. Here, we characterize a striking exception: emerging evidence indicates that standing variation in contemporary populations and macroevolutionary rates of phenotypic divergence is often positively correlated. This apparent consistency between micro- and macroevolution is paradoxical because it contradicts our previous understanding of phenotypic evolution and is so far unexplained. Here, we explore the prospects for bridging evolutionary timescales through an examination of this "paradox of predictability." We begin by explaining why the divergence-variance correlation is a paradox, followed by data analysis to show that the correlation is a general phenomenon across a broad range of temporal scales, from a few generations to tens of millions of years. Then we review complementary approaches from quantitative genetics, comparative morphology, evo-devo, and paleontology to argue that they can help to address the paradox from the shared vantage point of recent work on evolvability. In conclusion, we recommend a methodological orientation that combines different kinds of short-term and long-term data using multiple analytical frameworks in an interdisciplinary research program. Such a program will increase our general understanding of how evolution works within and across timescales.
Collapse
Affiliation(s)
| | - Jacqueline Sztepanacz
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Stephen De Lisle
- Department of Biology, Lund University, Lund, Sweden
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| | - Kjetil L Voje
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Mark Grabowski
- Research Centre for Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Melanie J Hopkins
- Division of Paleontology (Invertebrates), American Museum of Natural History, New York, United States
| | - Arthur Porto
- Florida Museum of Natural History, University of Florida, Gainesville, United States
| | - Meghan Balk
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Daniela Rossoni
- Department of Biological Science, Florida State University, Tallahassee, United States
| | | | | | - Niklas Hohmann
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
- Faculty of Biology, Institute of Evolutionary Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Agnes Holstad
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Moritz Lürig
- Department of Biology, Lund University, Lund, Sweden
| | | | - Sofie Nilén
- Department of Biology, Lund University, Lund, Sweden
| | - Arianna Passarotto
- Department of Biology, Lund University, Lund, Sweden
- Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Cristina Villegas
- Centro de Filosofia das Ciências, Departamento de História e Filosofia Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - Lee Hsiang Liow
- Natural History Museum, University of Oslo, Oslo, Norway
- Department of Geosciences, Centre for Planetary Habitability, University of Oslo, Oslo, Norway
| | - Gene Hunt
- Department of Paleobiology, Smithsonian Institution, National Museum of Natural History, Washington, United States
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, United States
| | - David Houle
- Department of Biological Science, Florida State University, Tallahassee, United States
| |
Collapse
|
6
|
Tsuboi M, Gaboriau T, Latrille T. An introduction to the special issue: inferring macroevolutionary patterns and processes from microevolutionary mechanisms. J Evol Biol 2024; 37:1395-1401. [PMID: 39656639 DOI: 10.1093/jeb/voae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 12/17/2024]
Affiliation(s)
| | - Théo Gaboriau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Thibault Latrille
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Voje KL, Saito-Kato M, Spanbauer TL. Evolution in fossil time series reconciles observations in micro- and macroevolution. J Evol Biol 2024; 37:1551-1562. [PMID: 39012224 DOI: 10.1093/jeb/voae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Extrapolating microevolutionary models does not always provide satisfactory explanations for phenotypic diversification on million-year time scales. For example, short-term evolutionary change is often modelled assuming a fixed adaptive landscape, but macroevolutionary changes are likely to involve changes in the adaptive landscape itself. A better understanding of how the adaptive landscape changes across different time intervals and how these changes cause populations to evolve has the potential to narrow the gap between micro- and macroevolution. Here, we analyze two fossil diatom time series of exceptional quality and resolution covering time intervals of a few hundred thousand years using models that account for different behaviours of the adaptive landscape. We find that one of the lineages evolves on a randomly and continuously changing landscape, whereas the other lineage evolves on a landscape that shows a rapid shift in the position of the adaptive peak of a magnitude that is typically associated with species-level differentiation. This suggests phenotypic evolution beyond generational timescales may be a consequence of both gradual and sudden repositioning of adaptive peaks. Both lineages show rapid and erratic evolutionary change and are constantly readapting towards the optimal trait state, observations that align with evolutionary dynamics commonly observed in contemporary populations. The inferred trait evolution over a span of a few hundred thousand years in these two lineages is, therefore, chimeric in the sense that it combines components of trait evolution typically observed on both short and long timescales.
Collapse
Affiliation(s)
| | - Megumi Saito-Kato
- Department of Geology and Paleontology, National Museum of Nature and Science, Tsukuba, Japan
| | - Trisha L Spanbauer
- Department of Environmental Science and Lake Erie Center, University of Toledo, Toledo, OH, United States
| |
Collapse
|
8
|
Stansfield C, Parsons KJ. Developmental bias as a cause and consequence of adaptive radiation and divergence. Front Cell Dev Biol 2024; 12:1453566. [PMID: 39479512 PMCID: PMC11521891 DOI: 10.3389/fcell.2024.1453566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Efforts to reconcile development and evolution have demonstrated that development is biased, with phenotypic variation being more readily produced in certain directions. However, how this "developmental bias" can influence micro- and macroevolution is poorly understood. In this review, we demonstrate that defining features of adaptive radiations suggest a role for developmental bias in driving adaptive divergence. These features are i) common ancestry of developmental systems; ii) rapid evolution along evolutionary "lines of least resistance;" iii) the subsequent repeated and parallel evolution of ecotypes; and iv) evolutionary change "led" by biased phenotypic plasticity upon exposure to novel environments. Drawing on empirical and theoretical data, we highlight the reciprocal relationship between development and selection as a key driver of evolutionary change, with development biasing what variation is exposed to selection, and selection acting to mold these biases to align with the adaptive landscape. Our central thesis is that developmental biases are both the causes and consequences of adaptive radiation and divergence. We argue throughout that incorporating development and developmental bias into our thinking can help to explain the exaggerated rate and scale of evolutionary processes that characterize adaptive radiations, and that this can be best achieved by using an eco-evo-devo framework incorporating evolutionary biology, development, and ecology. Such a research program would demonstrate that development is not merely a force that imposes constraints on evolution, but rather directs and is directed by evolutionary forces. We round out this review by highlighting key gaps in our understanding and suggest further research programs that can help to resolve these issues.
Collapse
Affiliation(s)
- Corin Stansfield
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
9
|
Schraiber JG, Edge MD, Pennell M. Unifying approaches from statistical genetics and phylogenetics for mapping phenotypes in structured populations. PLoS Biol 2024; 22:e3002847. [PMID: 39383205 PMCID: PMC11493298 DOI: 10.1371/journal.pbio.3002847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/21/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024] Open
Abstract
In both statistical genetics and phylogenetics, a major goal is to identify correlations between genetic loci or other aspects of the phenotype or environment and a focal trait. In these 2 fields, there are sophisticated but disparate statistical traditions aimed at these tasks. The disconnect between their respective approaches is becoming untenable as questions in medicine, conservation biology, and evolutionary biology increasingly rely on integrating data from within and among species, and once-clear conceptual divisions are becoming increasingly blurred. To help bridge this divide, we lay out a general model describing the covariance between the genetic contributions to the quantitative phenotypes of different individuals. Taking this approach shows that standard models in both statistical genetics (e.g., genome-wide association studies; GWAS) and phylogenetic comparative biology (e.g., phylogenetic regression) can be interpreted as special cases of this more general quantitative-genetic model. The fact that these models share the same core architecture means that we can build a unified understanding of the strengths and limitations of different methods for controlling for genetic structure when testing for associations. We develop intuition for why and when spurious correlations may occur analytically and conduct population-genetic and phylogenetic simulations of quantitative traits. The structural similarity of problems in statistical genetics and phylogenetics enables us to take methodological advances from one field and apply them in the other. We demonstrate by showing how a standard GWAS technique-including both the genetic relatedness matrix (GRM) as well as its leading eigenvectors, corresponding to the principal components of the genotype matrix, in a regression model-can mitigate spurious correlations in phylogenetic analyses. As a case study, we re-examine an analysis testing for coevolution of expression levels between genes across a fungal phylogeny and show that including eigenvectors of the covariance matrix as covariates decreases the false positive rate while simultaneously increasing the true positive rate. More generally, this work provides a foundation for more integrative approaches for understanding the genetic architecture of phenotypes and how evolutionary processes shape it.
Collapse
Affiliation(s)
- Joshua G. Schraiber
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
10
|
De Lisle SP, Bolnick DI, Stuart YE. Predictable and Divergent Change in the Multivariate P Matrix during Parallel Adaptation. Am Nat 2024; 204:15-29. [PMID: 38857340 DOI: 10.1086/730261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AbstractAdaptation to replicated environmental conditions can be remarkably predictable, suggesting that parallel evolution may be a common feature of adaptive radiation. An open question, however, is how phenotypic variation itself evolves during repeated adaptation. Here, we use a dataset of morphological measurements from 35 populations of threespine stickleback, consisting of 16 parapatric lake-stream pairs and three marine populations, to understand how phenotypic variation has evolved during transitions from marine to freshwater environments and during subsequent diversification across the lake-stream boundary. We find statistical support for divergent phenotypic covariance (P) across populations, with most diversification of P occurring among freshwater populations. Despite a close correspondence between within-population phenotypic variation and among-population divergence, we find that variation in P is unrelated to total variation in population means across the set of populations. For lake-stream pairs, we find that theoretical predictions for microevolutionary change can explain more than 30% of divergence in P matrices across the habitat boundary. Together, our results indicate that divergence in variance structure occurs primarily in dimensions of trait space with low phenotypic integration, correlated with disparate lake and stream environments. Our findings illustrate how conserved and divergent features of multivariate variation can underlie adaptive radiation.
Collapse
|
11
|
Holstad A, Voje KL, Opedal ØH, Bolstad GH, Bourg S, Hansen TF, Pélabon C. Evolvability predicts macroevolution under fluctuating selection. Science 2024; 384:688-693. [PMID: 38723067 DOI: 10.1126/science.adi8722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/07/2024] [Indexed: 05/31/2024]
Abstract
Heritable variation is a prerequisite for evolutionary change, but the relevance of genetic constraints on macroevolutionary timescales is debated. By using two datasets on fossil and contemporary taxa, we show that evolutionary divergence among populations, and to a lesser extent among species, increases with microevolutionary evolvability. We evaluate and reject several hypotheses to explain this relationship and propose that an effect of evolvability on population and species divergence can be explained by the influence of genetic constraints on the ability of populations to track rapid, stationary environmental fluctuations.
Collapse
Affiliation(s)
- Agnes Holstad
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjetil L Voje
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Øystein H Opedal
- Biodiversity Unit, Department of Biology, Lund University, Lund, Sweden
| | - Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Salomé Bourg
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas F Hansen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Christophe Pélabon
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
12
|
Uyeda JC, McGlothlin JW. The predictive power of genetic variation. Science 2024; 384:622-623. [PMID: 38723099 DOI: 10.1126/science.adp2599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
New analyses show that trait variability links evolution across vastly different timescales.
Collapse
Affiliation(s)
- Josef C Uyeda
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
13
|
Milocco L, Uller T. Utilizing developmental dynamics for evolutionary prediction and control. Proc Natl Acad Sci U S A 2024; 121:e2320413121. [PMID: 38530898 PMCID: PMC10998628 DOI: 10.1073/pnas.2320413121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding, predicting, and controlling the phenotypic consequences of genetic and environmental change is essential to many areas of fundamental and applied biology. In evolutionary biology, the generative process of development is a major source of organismal evolvability that constrains or facilitates adaptive change by shaping the distribution of phenotypic variation that selection can act upon. While the complex interactions between genetic and environmental factors during development may appear to make it impossible to infer the consequences of perturbations, the persistent observation that many perturbations result in similar phenotypes indicates that there is a logic to what variation is generated. Here, we show that a general representation of development as a dynamical system can reveal this logic. We build a framework that allows predicting the phenotypic effects of perturbations, and conditions for when the effects of perturbations of different origins are concordant. We find that this concordance is explained by two generic features of development, namely the dynamical dependence of the phenotype on itself and the fact that all perturbations must affect the developmental process to have an effect on the phenotype. We apply our theoretical framework to classical models of development and show that it can be used to predict the evolutionary response to selection using information of plasticity and to accelerate evolution in a desired direction. The framework we introduce provides a way to quantitatively interchange perturbations, opening an avenue of perturbation design to control the generation of variation.
Collapse
Affiliation(s)
| | - Tobias Uller
- Department of Biology, Lund University, 223 62Lund, Sweden
| |
Collapse
|
14
|
Rossoni DM, Patterson BD, Marroig G, Cheverud JM, Houle D. The Role of (Co)variation in Shaping the Response to Selection in New World Leaf-Nosed Bats. Am Nat 2024; 203:E107-E127. [PMID: 38489775 DOI: 10.1086/729219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
AbstractUnderstanding and predicting the evolutionary responses of complex morphological traits to selection remains a major challenge in evolutionary biology. Because traits are genetically correlated, selection on a particular trait produces both direct effects on the distribution of that trait and indirect effects on other traits in the population. The correlations between traits can strongly impact evolutionary responses to selection and may thus impose constraints on adaptation. Here, we used museum specimens and comparative quantitative genetic approaches to investigate whether the covariation among cranial traits facilitated or constrained the response to selection during the major dietary transitions in one of the world's most ecologically diverse mammalian families-the phyllostomid bats. We reconstructed the set of net selection gradients that would have acted on each cranial trait during the major transitions to feeding specializations and decomposed the selection responses into their direct and indirect components. We found that for all transitions, most traits capturing craniofacial length evolved toward adaptive directions owing to direct selection. Additionally, we showed instances of dietary transitions in which the complex interaction between the patterns of covariation among traits and the strength and direction of selection either constrained or facilitated evolution. Our work highlights the importance of considering the within-species covariation estimates to quantify evolvability and to disentangle the relative contribution of variational constraints versus selective causes for observed patterns.
Collapse
|
15
|
Schraiber JG, Edge MD, Pennell M. Unifying approaches from statistical genetics and phylogenetics for mapping phenotypes in structured populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579721. [PMID: 38496530 PMCID: PMC10942266 DOI: 10.1101/2024.02.10.579721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In both statistical genetics and phylogenetics, a major goal is to identify correlations between genetic loci or other aspects of the phenotype or environment and a focal trait. In these two fields, there are sophisticated but disparate statistical traditions aimed at these tasks. The disconnect between their respective approaches is becoming untenable as questions in medicine, conservation biology, and evolutionary biology increasingly rely on integrating data from within and among species, and once-clear conceptual divisions are becoming increasingly blurred. To help bridge this divide, we derive a general model describing the covariance between the genetic contributions to the quantitative phenotypes of different individuals. Taking this approach shows that standard models in both statistical genetics (e.g., Genome-Wide Association Studies; GWAS) and phylogenetic comparative biology (e.g., phylogenetic regression) can be interpreted as special cases of this more general quantitative-genetic model. The fact that these models share the same core architecture means that we can build a unified understanding of the strengths and limitations of different methods for controlling for genetic structure when testing for associations. We develop intuition for why and when spurious correlations may occur using analytical theory and conduct population-genetic and phylogenetic simulations of quantitative traits. The structural similarity of problems in statistical genetics and phylogenetics enables us to take methodological advances from one field and apply them in the other. We demonstrate this by showing how a standard GWAS technique-including both the genetic relatedness matrix (GRM) as well as its leading eigenvectors, corresponding to the principal components of the genotype matrix, in a regression model-can mitigate spurious correlations in phylogenetic analyses. As a case study of this, we re-examine an analysis testing for co-evolution of expression levels between genes across a fungal phylogeny, and show that including covariance matrix eigenvectors as covariates decreases the false positive rate while simultaneously increasing the true positive rate. More generally, this work provides a foundation for more integrative approaches for understanding the genetic architecture of phenotypes and how evolutionary processes shape it.
Collapse
|
16
|
Matamoro-Vidal A, Cumming T, Davidović A, Levillayer F, Levayer R. Patterned apoptosis has an instructive role for local growth and tissue shape regulation in a fast-growing epithelium. Curr Biol 2024; 34:376-388.e7. [PMID: 38215743 PMCID: PMC10808510 DOI: 10.1016/j.cub.2023.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
What regulates organ size and shape remains one fundamental mystery of modern biology. Research in this area has primarily focused on deciphering the regulation in time and space of growth and cell division, while the contribution of cell death has been overall neglected. This includes studies of the Drosophila wing, one of the best-characterized systems for the study of growth and patterning, undergoing massive growth during larval stage and important morphogenetic remodeling during pupal stage. So far, it has been assumed that cell death was relatively neglectable in this tissue both during larval stage and pupal stage, and as a result, the pattern of growth was usually attributed to the distribution of cell division. Here, using systematic mapping and registration combined with quantitative assessment of clone size and disappearance as well as live imaging, we outline a persistent pattern of cell death and clone elimination emerging in the larval wing disc and persisting during pupal wing morphogenesis. Local variation of cell death is associated with local variation of clone size, pointing to an impact of cell death on local growth that is not fully compensated by proliferation. Using morphometric analyses of adult wing shape and genetic perturbations, we provide evidence that patterned death locally and globally affects adult wing shape and size. This study describes a roadmap for precise assessment of the contribution of cell death to tissue shape and outlines an important instructive role of cell death in modulating quantitatively local growth and morphogenesis of a fast-growing tissue.
Collapse
Affiliation(s)
- Alexis Matamoro-Vidal
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France
| | - Tom Cumming
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France; PPU program Institut Pasteur, Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Anđela Davidović
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Florence Levillayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France.
| |
Collapse
|
17
|
Mallard F, Noble L, Guzella T, Afonso B, Baer CF, Teotónio H. Phenotypic stasis with genetic divergence. PEER COMMUNITY JOURNAL 2023; 3:e119. [PMID: 39346701 PMCID: PMC11434230 DOI: 10.24072/pcjournal.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Whether or not genetic divergence in the short-term of tens to hundreds of generations is compatible with phenotypic stasis remains a relatively unexplored problem. We evolved predominantly outcrossing, genetically diverse populations of the nematode Caenorhabditis elegans under a constant and homogeneous environment for 240 generations and followed individual locomotion behavior. Although founders of lab populations show highly diverse locomotion behavior, during lab evolution, the component traits of locomotion behavior - defined as the transition rates in activity and direction - did not show divergence from the ancestral population. In contrast, transition rates' genetic (co)variance structure showed a marked divergence from the ancestral state and differentiation among replicate populations during the final 100 generations and after most adaptation had been achieved. We observe that genetic differentiation is a transient pattern during the loss of genetic variance along phenotypic dimensions under drift during the last 100 generations of lab evolution. These results suggest that short-term stasis of locomotion behavior is maintained because of stabilizing selection, while the genetic structuring of component traits is contingent upon drift history.
Collapse
Affiliation(s)
- François Mallard
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Luke Noble
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Thiago Guzella
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Bruno Afonso
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Charles F Baer
- Department of Biology, University of Florida Genetics Institute, University of Florida, Gainsville, Florida 32611, U.S.A
| | - Henrique Teotónio
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| |
Collapse
|
18
|
Desbiez-Piat A, Ressayre A, Marchadier E, Noly A, Remoué C, Vitte C, Belcram H, Bourgais A, Galic N, Le Guilloux M, Tenaillon MI, Dillmann C. Pervasive G × E interactions shape adaptive trajectories and the exploration of the phenotypic space in artificial selection experiments. Genetics 2023; 225:iyad186. [PMID: 37824828 DOI: 10.1093/genetics/iyad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Quantitative genetics models have shown that long-term selection responses depend on initial variance and mutational influx. Understanding limits of selection requires quantifying the role of mutational variance. However, correlative responses to selection on nonfocal traits can perturb the selection response on the focal trait; and generations are often confounded with selection environments so that genotype by environment (G×E) interactions are ignored. The Saclay divergent selection experiments (DSEs) on maize flowering time were used to track the fate of individual mutations combining genotyping data and phenotyping data from yearly measurements (DSEYM) and common garden experiments (DSECG) with four objectives: (1) to quantify the relative contribution of standing and mutational variance to the selection response, (2) to estimate genotypic mutation effects, (3) to study the impact of G×E interactions in the selection response, and (4) to analyze how trait correlations modulate the exploration of the phenotypic space. We validated experimentally the expected enrichment of fixed beneficial mutations with an average effect of +0.278 and +0.299 days to flowering, depending on the genetic background. Fixation of unfavorable mutations reached up to 25% of incoming mutations, a genetic load possibly due to antagonistic pleiotropy, whereby mutations fixed in the selection environment (DSEYM) turned to be unfavorable in the evaluation environment (DSECG). Global patterns of trait correlations were conserved across genetic backgrounds but exhibited temporal patterns. Traits weakly or uncorrelated with flowering time triggered stochastic exploration of the phenotypic space, owing to microenvironment-specific fixation of standing variants and pleiotropic mutational input.
Collapse
Affiliation(s)
- Arnaud Desbiez-Piat
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
- Université Montpellier, INRAE, Institut Agro Montpellier, LEPSE, Montpellier 34000, France
| | - Adrienne Ressayre
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Elodie Marchadier
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Alicia Noly
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institut of Plants Sciences Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Carine Remoué
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Clémentine Vitte
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Harry Belcram
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Aurélie Bourgais
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Nathalie Galic
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Martine Le Guilloux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Maud I Tenaillon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Christine Dillmann
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| |
Collapse
|
19
|
Guillerme T, Bright JA, Cooney CR, Hughes EC, Varley ZK, Cooper N, Beckerman AP, Thomas GH. Innovation and elaboration on the avian tree of life. SCIENCE ADVANCES 2023; 9:eadg1641. [PMID: 37878701 PMCID: PMC10599619 DOI: 10.1126/sciadv.adg1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Widely documented, megaevolutionary jumps in phenotypic diversity continue to perplex researchers because it remains unclear whether these marked changes can emerge from microevolutionary processes. Here, we tackle this question using new approaches for modeling multivariate traits to evaluate the magnitude and distribution of elaboration and innovation in the evolution of bird beaks. We find that elaboration, evolution along the major axis of phenotypic change, is common at both macro- and megaevolutionary scales, whereas innovation, evolution away from the major axis of phenotypic change, is more prominent at megaevolutionary scales. The major axis of phenotypic change among species beak shapes at megaevolutionary scales is an emergent property of innovation across clades. Our analyses suggest that the reorientation of phenotypes via innovation is a ubiquitous route for divergence that can arise through gradual change alone, opening up further avenues for evolution to explore.
Collapse
Affiliation(s)
- Thomas Guillerme
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jen A. Bright
- School of Natural Science, University of Hull, Hull HU6 7RX, UK
| | | | - Emma C. Hughes
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Zoë K. Varley
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Bird Group, Department of Life Sciences, the Natural History Museum at Tring, Tring, UK
| | - Natalie Cooper
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | - Gavin H. Thomas
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Bird Group, Department of Life Sciences, the Natural History Museum at Tring, Tring, UK
| |
Collapse
|
20
|
Machado FA, Mongle CS, Slater G, Penna A, Wisniewski A, Soffin A, Dutra V, Uyeda JC. Rules of teeth development align microevolution with macroevolution in extant and extinct primates. Nat Ecol Evol 2023; 7:1729-1739. [PMID: 37652997 DOI: 10.1038/s41559-023-02167-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Macroevolutionary biologists have classically rejected the notion that higher-level patterns of divergence arise through microevolutionary processes acting within populations. For morphology, this consensus partly derives from the inability of quantitative genetics models to correctly predict the behaviour of evolutionary processes at the scale of millions of years. Developmental studies (evo-devo) have been proposed to reconcile micro- and macroevolution. However, there has been little progress in establishing a formal framework to apply evo-devo models of phenotypic diversification. Here we reframe this issue by asking whether using evo-devo models to quantify biological variation can improve the explanatory power of comparative models, thus helping us bridge the gap between micro- and macroevolution. We test this prediction by evaluating the evolution of primate lower molars in a comprehensive dataset densely sampled across living and extinct taxa. Our results suggest that biologically informed morphospaces alongside quantitative genetics models allow a seamless transition between the micro- and macroscales, whereas biologically uninformed spaces do not. We show that the adaptive landscape for primate teeth is corridor like, with changes in morphology within the corridor being nearly neutral. Overall, our framework provides a basis for integrating evo-devo into the modern synthesis, allowing an operational way to evaluate the ultimate causes of macroevolution.
Collapse
Affiliation(s)
- Fabio A Machado
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
| | - Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Graham Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Anna Penna
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Anna Wisniewski
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Anna Soffin
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| | - Vitor Dutra
- Department of Anthropology, Florida Atlantic University, Boca Raton, FL, USA
| | - Josef C Uyeda
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
21
|
Miller CL, Sun D, Thornton LH, McGuigan K. The Contribution of Mutation to Variation in Temperature-Dependent Sprint Speed in Zebrafish, Danio rerio. Am Nat 2023; 202:519-533. [PMID: 37792923 DOI: 10.1086/726011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe contribution of new mutations to phenotypic variation and the consequences of this variation for individual fitness are fundamental concepts for understanding genetic variation and adaptation. Here, we investigated how mutation influenced variation in a complex trait in zebrafish, Danio rerio. Typical of many ecologically relevant traits in ectotherms, swimming speed in fish is temperature dependent, with evidence of adaptive evolution of thermal performance. We chemically induced novel germline point mutations in males and measured sprint speed in their sons at six temperatures (between 16°C and 34°C). Heterozygous mutational effects on speed were strongly positively correlated among temperatures, resulting in statistical support for only a single axis of mutational variation, reflecting temperature-independent variation in speed (faster-slower mode). These results suggest pleiotropic effects on speed across different temperatures; however, spurious correlations arise via linkage or heterogeneity in mutation number when mutations have consistent directional effects on each trait. Here, mutation did not change mean speed, indicating no directional bias in mutational effects. The results contribute to emerging evidence that mutations may predominantly have synergistic cross-environment effects, in contrast to conditionally neutral or antagonistic effects that underpin thermal adaptation. We discuss several aspects of experimental design that may affect resolution of mutations with nonsynergistic effects.
Collapse
|
22
|
Jiang D, Zhang J. Detecting natural selection in trait-trait coevolution. BMC Ecol Evol 2023; 23:50. [PMID: 37700252 PMCID: PMC10496359 DOI: 10.1186/s12862-023-02164-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
No phenotypic trait evolves independently of all other traits, but the cause of trait-trait coevolution is poorly understood. While the coevolution could arise simply from pleiotropic mutations that simultaneously affect the traits concerned, it could also result from multivariate natural selection favoring certain trait relationships. To gain a general mechanistic understanding of trait-trait coevolution, we examine the evolution of 220 cell morphology traits across 16 natural strains of the yeast Saccharomyces cerevisiae and the evolution of 24 wing morphology traits across 110 fly species of the family Drosophilidae, along with the variations of these traits among gene deletion or mutation accumulation lines (a.k.a. mutants). For numerous trait pairs, the phenotypic correlation among evolutionary lineages differs significantly from that among mutants. Specifically, we find hundreds of cases where the evolutionary correlation between traits is strengthened or reversed relative to the mutational correlation, which, according to our population genetic simulation, is likely caused by multivariate selection. Furthermore, we detect selection for enhanced modularity of the yeast traits analyzed. Together, these results demonstrate that trait-trait coevolution is shaped by natural selection and suggest that the pleiotropic structure of mutation is not optimal. Because the morphological traits analyzed here are chosen largely because of their measurability and thereby are not expected to be biased with regard to natural selection, our conclusion is likely general.
Collapse
Affiliation(s)
- Daohan Jiang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Present address: Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
23
|
Mallard F, Afonso B, Teotónio H. Selection and the direction of phenotypic evolution. eLife 2023; 12:e80993. [PMID: 37650381 PMCID: PMC10564456 DOI: 10.7554/elife.80993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/14/2023] [Indexed: 09/01/2023] Open
Abstract
Predicting adaptive phenotypic evolution depends on invariable selection gradients and on the stability of the genetic covariances between the component traits of the multivariate phenotype. We describe the evolution of six traits of locomotion behavior and body size in the nematode Caenorhabditis elegans for 50 generations of adaptation to a novel environment. We show that the direction of adaptive multivariate phenotypic evolution can be predicted from the ancestral selection differentials, particularly when the traits were measured in the new environment. Interestingly, the evolution of individual traits does not always occur in the direction of selection, nor are trait responses to selection always homogeneous among replicate populations. These observations are explained because the phenotypic dimension with most of the ancestral standing genetic variation only partially aligns with the phenotypic dimension under directional selection. These findings validate selection theory and suggest that the direction of multivariate adaptive phenotypic evolution is predictable for tens of generations.
Collapse
Affiliation(s)
- François Mallard
- Institut de Biologie de l’École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research UniversityParisFrance
| | - Bruno Afonso
- Institut de Biologie de l’École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research UniversityParisFrance
| | - Henrique Teotónio
- Institut de Biologie de l’École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research UniversityParisFrance
| |
Collapse
|
24
|
Rolland J, Henao-Diaz LF, Doebeli M, Germain R, Harmon LJ, Knowles LL, Liow LH, Mank JE, Machac A, Otto SP, Pennell M, Salamin N, Silvestro D, Sugawara M, Uyeda J, Wagner CE, Schluter D. Conceptual and empirical bridges between micro- and macroevolution. Nat Ecol Evol 2023; 7:1181-1193. [PMID: 37429904 DOI: 10.1038/s41559-023-02116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
Explaining broad molecular, phenotypic and species biodiversity patterns necessitates a unifying framework spanning multiple evolutionary scales. Here we argue that although substantial effort has been made to reconcile microevolution and macroevolution, much work remains to identify the links between biological processes at play. We highlight four major questions of evolutionary biology whose solutions require conceptual bridges between micro and macroevolution. We review potential avenues for future research to establish how mechanisms at one scale (drift, mutation, migration, selection) translate to processes at the other scale (speciation, extinction, biogeographic dispersal) and vice versa. We propose ways in which current comparative methods to infer molecular evolution, phenotypic evolution and species diversification could be improved to specifically address these questions. We conclude that researchers are in a better position than ever before to build a synthesis to understand how microevolutionary dynamics unfold over millions of years.
Collapse
Affiliation(s)
- Jonathan Rolland
- CNRS, UMR5174, Laboratoire Evolution et Diversité Biologique, Université Toulouse 3 Paul Sabatier, Toulouse, France.
| | - L Francisco Henao-Diaz
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Michael Doebeli
- Department of Zoology, and Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel Germain
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke J Harmon
- Dept. of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | | | - Judith E Mank
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antonin Machac
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Prague, Czech Republic
| | - Sarah P Otto
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt Pennell
- Departments of Quantitative and Computational Biology and Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Mauro Sugawara
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Mário Schenberg Institute, São Paulo, Brazil
| | - Josef Uyeda
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Catherine E Wagner
- Department of Botany, and Program in Ecology and Evolution, University of Wyoming, Laramie, WY, USA
| | - Dolph Schluter
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Venkataram S, Kryazhimskiy S. Evolutionary repeatability of emergent properties of ecological communities. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220047. [PMID: 37004728 PMCID: PMC10067272 DOI: 10.1098/rstb.2022.0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 04/04/2023] Open
Abstract
Most species belong to ecological communities where their interactions give rise to emergent community-level properties, such as diversity and productivity. Understanding and predicting how these properties change over time has been a major goal in ecology, with important practical implications for sustainability and human health. Less attention has been paid to the fact that community-level properties can also change because member species evolve. Yet, our ability to predict long-term eco-evolutionary dynamics hinges on how repeatably community-level properties change as a result of species evolution. Here, we review studies of evolution of both natural and experimental communities and make the case that community-level properties at least sometimes evolve repeatably. We discuss challenges faced in investigations of evolutionary repeatability. In particular, only a handful of studies enable us to quantify repeatability. We argue that quantifying repeatability at the community level is critical for approaching what we see as three major open questions in the field: (i) Is the observed degree of repeatability surprising? (ii) How is evolutionary repeatability at the community level related to repeatability at the level of traits of member species? (iii) What factors affect repeatability? We outline some theoretical and empirical approaches to addressing these questions. Advances in these directions will not only enrich our basic understanding of evolution and ecology but will also help us predict eco-evolutionary dynamics. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Sandeep Venkataram
- Department of Ecology, Behavior and Evolution, UC San Diego, La Jolla, CA 92093, USA
| | - Sergey Kryazhimskiy
- Department of Ecology, Behavior and Evolution, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Dugand RJ, Blows MW, McGuigan K. Using inbreeding to test the contribution of non-additive genetic effects to additive genetic variance: a case study in Drosophila serrata. Proc Biol Sci 2023; 290:20222111. [PMID: 36919433 PMCID: PMC10015326 DOI: 10.1098/rspb.2022.2111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Additive genetic variance, VA, is the key parameter for predicting adaptive and neutral phenotypic evolution. Changes in demography (e.g. increased close-relative inbreeding) can alter VA, but how they do so depends on the (typically unknown) gene action and allele frequencies across many loci. For example, VA increases proportionally with the inbreeding coefficient when allelic effects are additive, but smaller (or larger) increases can occur when allele frequencies are unequal at causal loci with dominance effects. Here, we describe an experimental approach to assess the potential for dominance effects to deflate VA under inbreeding. Applying a powerful paired pedigree design in Drosophila serrata, we measured 11 wing traits on half-sibling families bred via either random or sibling mating, differing only in homozygosity (not allele frequency). Despite close inbreeding and substantial power to detect small VA, we detected no deviation from the expected additive effect of inbreeding on genetic (co)variances. Our results suggest the average dominance coefficient is very small relative to the additive effect, or that allele frequencies are relatively equal at loci affecting wing traits. We outline the further opportunities for this paired pedigree approach to reveal the characteristics of VA, providing insight into historical selection and future evolutionary potential.
Collapse
Affiliation(s)
- Robert J Dugand
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072. Australia.,School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009 Australia
| | - Mark W Blows
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072. Australia
| | - Katrina McGuigan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072. Australia
| |
Collapse
|
27
|
Liow LH, Uyeda J, Hunt G. Cross-disciplinary information for understanding macroevolution. Trends Ecol Evol 2023; 38:250-260. [PMID: 36456381 DOI: 10.1016/j.tree.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Many different macroevolutionary models can produce the same observations. Despite efforts in building more complex and realistic models, it may still be difficult to distinguish the processes that have generated the biodiversity we observe. In this opinion we argue that we can make new progress by reaching out across disciplines, relying on independent data and theory to constrain macroevolutionary inference. Using mainly paleontological insights and data, we illustrate how we can eliminate less plausible or implausible models, and/or parts of parameter space, while applying comparative phylogenetic approaches. We emphasize that such cross-disciplinary insights and data can be drawn between many other disciplines relevant to macroevolution. We urge cross-disciplinary training, and collaboration using common-use databases as a platform for increasing our understanding.
Collapse
Affiliation(s)
- Lee Hsiang Liow
- Natural History Museum, University of Oslo, Oslo 0562, Norway.
| | - Josef Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Gene Hunt
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
28
|
Mallard F, Noble L, Baer CF, Teotónio H. Variation in mutational (co)variances. G3 (BETHESDA, MD.) 2023; 13:jkac335. [PMID: 36548954 PMCID: PMC9911065 DOI: 10.1093/g3journal/jkac335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/10/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Because of pleiotropy, mutations affect the expression and inheritance of multiple traits and, together with selection, are expected to shape standing genetic covariances between traits and eventual phenotypic divergence between populations. It is therefore important to find if the M matrix, describing mutational variances of each trait and covariances between traits, varies between genotypes. We here estimate the M matrix for six locomotion behavior traits in lines of two genotypes of the nematode Caenorhabditis elegans that accumulated mutations in a nearly neutral manner for 250 generations. We find significant mutational variance along at least one phenotypic dimension of the M matrices, but neither their size nor their orientation had detectable differences between genotypes. The number of generations of mutation accumulation, or the number of MA lines measured, was likely insufficient to sample enough mutations and detect potentially small differences between the two M matrices. We then tested if the M matrices were similar to one G matrix describing the standing genetic (co)variances of a population derived by the hybridization of several genotypes, including the two measured for M, and domesticated to a lab-defined environment for 140 generations. We found that the M and G were different because the genetic covariances caused by mutational pleiotropy in the two genotypes are smaller than those caused by linkage disequilibrium in the lab population. We further show that M matrices differed in their alignment with the lab population G matrix. If generalized to other founder genotypes of the lab population, these observations indicate that selection does not shape the evolution of the M matrix for locomotion behavior in the short-term of a few tens to hundreds of generations and suggests that the hybridization of C. elegans genotypes allows selection on new phenotypic dimensions of locomotion behavior.
Collapse
Affiliation(s)
- François Mallard
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| | - Luke Noble
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| | - Charles F Baer
- Department of Biology, University of Florida Genetics Institute, University of Florida, Gainsville, FL 32611, USA
| | - Henrique Teotónio
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| |
Collapse
|
29
|
Dresow M, Love AC. Teleonomy: Revisiting a Proposed Conceptual Replacement for Teleology. BIOLOGICAL THEORY 2023; 18:101-113. [PMID: 37214193 PMCID: PMC10191995 DOI: 10.1007/s13752-022-00424-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/07/2022] [Indexed: 05/24/2023]
Abstract
The concept of teleonomy has been attracting renewed attention recently. This is based on the idea that teleonomy provides a useful conceptual replacement for teleology, and even that it constitutes an indispensable resource for thinking biologically about purposes. However, both these claims are open to question. We review the history of teleological thinking from Greek antiquity to the modern period to illuminate the tensions and ambiguities that emerged when forms of teleological reasoning interacted with major developments in biological thought. This sets the stage for an examination of Pittendrigh's (Adaptation, natural selection, and behavior. In: Roe A, Simpson GG (eds) Behavior and evolution. Yale University Press, New Haven, pp 390-416, 1958) introduction of "teleonomy" and its early uptake in the work of prominent biologists. We then explore why teleonomy subsequently foundered and consider whether the term may yet have significance for discussions of goal-directedness in evolutionary biology and philosophy of science. This involves clarifying the relationship between teleonomy and teleological explanation, as well as asking how the concept of teleonomy impinges on research at the frontiers of evolutionary theory.
Collapse
Affiliation(s)
- Max Dresow
- Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN USA
| | - Alan C. Love
- Department of Philosophy & Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
30
|
Mongle CS, Nesbitt A, Machado FA, Smaers JB, Turner AH, Grine FE, Uyeda JC. A common mechanism drives the alignment between the micro- and macroevolution of primate molars. Evolution 2022; 76:2975-2985. [PMID: 36005286 DOI: 10.1111/evo.14600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/22/2023]
Abstract
A central challenge for biology is to reveal how different levels of biological variation interact and shape diversity. However, recent experimental studies have indicated that prevailing models of evolution cannot readily explain the link between micro- and macroevolution at deep timescales. Here, we suggest that this paradox could be the result of a common mechanism driving a correlated pattern of evolution. We examine the proportionality between genetic variance and patterns of trait evolution in a system whose developmental processes are well understood to gain insight into how such alignment between morphological divergence and genetic variation might be maintained over macroevolutionary time. Primate molars present a model system by which to link developmental processes to evolutionary dynamics because of the biased pattern of variation that results from the developmental architecture regulating their formation. We consider how this biased variation is expressed at the population level, and how it manifests through evolution across primates. There is a strong correspondence between the macroevolutionary rates of primate molar divergence and their genetic variation. This suggests a model of evolution in which selection is closely aligned with the direction of genetic variance, phenotypic variance, and the underlying developmental architecture of anatomical traits.
Collapse
Affiliation(s)
- Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794.,Division of Anthropology, American Museum of Natural History, New York, New York, 10024.,Turkana Basin Institute, Stony Brook University, Stony Brook, New York, 11794
| | - Allison Nesbitt
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, 65212
| | - Fabio A Machado
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794.,Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061
| |
Collapse
|
31
|
Wagner A. Adaptive evolvability through direct selection instead of indirect, second-order selection. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:395-404. [PMID: 34254439 PMCID: PMC9786751 DOI: 10.1002/jez.b.23071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/11/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022]
Abstract
Can evolvability itself be the product of adaptive evolution? To answer this question is challenging, because any DNA mutation that alters only evolvability is subject to indirect, "second order" selection on the future effects of this mutation. Such indirect selection is weaker than "first-order" selection on mutations that alter fitness, in the sense that it can operate only under restrictive conditions. Here I discuss a route to adaptive evolvability that overcomes this challenge. Specifically, a recent evolution experiment showed that some mutations can enhance both fitness and evolvability through a combination of direct and indirect selection. Unrelated evidence from gene duplication and the evolution of gene regulation suggests that mutations with such dual effects may not be rare. Through such mutations, evolvability may increase at least in part because it provides an adaptive advantage. These observations suggest a research program on the adaptive evolution of evolvability, which aims to identify such mutations and to disentangle their direct fitness effects from their indirect effects on evolvability. If evolvability is itself adaptive, Darwinian evolution may have created more than life's diversity. It may also have helped create the very conditions that made the success of Darwinian evolution possible.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland,Swiss Institute of BioinformaticsQuartier Sorge‐Batiment GenopodeLausanneSwitzerland,The Santa Fe InstituteSanta FeNew MexicoUSA,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
32
|
Opedal ØH, Hildesheim LS, Armbruster WS. Evolvability and constraint in the evolution of three-dimensional flower morphology. AMERICAN JOURNAL OF BOTANY 2022; 109:1906-1917. [PMID: 36371715 PMCID: PMC9827957 DOI: 10.1002/ajb2.16092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 05/31/2023]
Abstract
PREMISE Flower phenotypes evolve to attract pollinators and to ensure efficient pollen transfer to and from the bodies of pollinators or, in self-compatible bisexual flowers, between anthers and stigmas. If functionally interacting traits are genetically correlated, response to selection may be subject to genetic constraints. Genetic constraints can be assessed by quantifying standing genetic variation in (multivariate) phenotypic traits and by asking how much the available variation is reduced under specific assumptions about phenotypic selection on functionally interacting and genetically correlated traits. METHODS We evaluated multivariate evolvability and potential genetic constraints underlying the evolution of the three-dimensional structure of Dalechampia blossoms. First, we used data from a greenhouse crossing design to estimate the G matrix for traits representing the relative positions of male and female sexual organs (anthers and stigmas) and used the G matrix to ask how genetic variation is distributed in multivariate space. To assess the evolutionary importance of genetic constraints, we related standing genetic variation across phenotypic space to evolutionary divergence of population and species in the same phenotypic directions. RESULTS Evolvabilities varied substantially across phenotype space, suggesting that certain traits or trait combinations may be subject to strong genetic constraint. Traits involved functionally in flower-pollinator fit and autonomous selfing exhibited considerable independent evolutionary potential, but population and species divergence tended to occur in phenotypic directions associated with greater-than-average evolvability. CONCLUSIONS These results are consistent with the hypothesis that genetic constraints can hamper joint trait evolution towards optimum flower-pollinator fit and optimum self-pollination rates.
Collapse
Affiliation(s)
| | | | - W. Scott Armbruster
- School of Biological SciencesUniversity of PortsmouthPortsmouthPO1 2DYUK
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAK99775USA
| |
Collapse
|
33
|
Yassin A, Gidaszewski N, Debat V, David JR. Long-term evolution of quantitative traits in the Drosophila melanogaster species subgroup. Genetica 2022; 150:343-353. [PMID: 36242716 DOI: 10.1007/s10709-022-00171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022]
Abstract
Quantitative genetics aims at untangling the genetic and environmental effects on phenotypic variation. Trait heritability, which summarizes the relative importance of genetic effects, is estimated at the intraspecific level, but theory predicts that heritability could influence long-term evolution of quantitative traits. The phylogenetic signal concept bears resemblance to heritability and it has often been called species-level heritability. Under certain conditions, such as trait neutrality or contribution to phylogenesis, within-species heritability and between-species phylogenetic signal should be correlated. Here, we investigate the potential relationship between these two concepts by examining the evolution of multiple morphological traits for which heritability has been estimated in Drosophila melanogaster. Specifically, we analysed 42 morphological traits in both sexes on a phylogeny inferred from 22 nuclear genes for nine species of the melanogaster subgroup. We used Pagel's λ as a measurement of phylogenetic signal because it is the least influenced by the number of analysed taxa. Pigmentation traits showed the strongest concordance with the phylogeny, but no correlation was found between phylogenetic signal and heritability estimates mined from the literature. We obtained data for multiple climatic variables inferred from the geographical distribution of each species. Phylogenetic regression of quantitative traits on climatic variables showed a significantly positive correlation with heritability. Convergent selection, the response to which depends on the trait heritability, may have led to the null association between phylogenetic signal and heritability for morphological traits in Drosophila. We discuss the possible causes of discrepancy between both statistics and caution against their confusion in evolutionary biology.
Collapse
Affiliation(s)
- Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay - Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 12 route 128, 91190, Gif- sur-Yvette, France.
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP50, 75005, Paris, France.
| | - Nelly Gidaszewski
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP50, 75005, Paris, France
| | - Vincent Debat
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP50, 75005, Paris, France
| | - Jean R David
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay - Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 12 route 128, 91190, Gif- sur-Yvette, France
| |
Collapse
|
34
|
Rohner PT, Hu Y, Moczek AP. Developmental bias in the evolution and plasticity of beetle horn shape. Proc Biol Sci 2022; 289:20221441. [PMID: 36168764 PMCID: PMC9515630 DOI: 10.1098/rspb.2022.1441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022] Open
Abstract
The degree to which developmental systems bias the phenotypic effects of environmental and genetic variation, and how these biases affect evolution, is subject to much debate. Here, we assess whether developmental variability in beetle horn shape aligns with the phenotypic effects of plasticity and evolutionary divergence, yielding three salient results. First, we find that most pathways previously shown to regulate horn length also affect shape. Second, we find that the phenotypic effects of manipulating divergent developmental pathways are correlated with each other as well as multivariate fluctuating asymmetry-a measure of developmental variability. Third, these effects further aligned with thermal plasticity, population differences and macroevolutionary divergence between sister taxa and more distantly related species. Collectively, our results support the hypothesis that changes in horn shape-whether brought about by environmentally plastic responses, functional manipulations or evolutionary divergences-converge along 'developmental lines of least resistance', i.e. are biased by the developmental system underpinning horn shape.
Collapse
Affiliation(s)
- Patrick T. Rohner
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Yonggang Hu
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - Armin P. Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
35
|
Multivariate selection and the making and breaking of mutational pleiotropy. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe role of mutations have been subject to many controversies since the formation of the Modern Synthesis of evolution in the early 1940ties. Geneticists in the early half of the twentieth century tended to view mutations as a limiting factor in evolutionary change. In contrast, natural selection was largely viewed as a “sieve” whose main role was to sort out the unfit but which could not create anything novel alone. This view gradually changed with the development of mathematical population genetics theory, increased appreciation of standing genetic variation and the discovery of more complex forms of selection, including balancing selection. Short-term evolutionary responses to selection are mainly influenced by standing genetic variation, and are predictable to some degree using information about the genetic variance–covariance matrix (G) and the strength and form of selection (e. g. the vector of selection gradients, β). However, predicting long-term evolution is more challenging, and requires information about the nature and supply of novel mutations, summarized by the mutational variance–covariance matrix (M). Recently, there has been increased attention to the role of mutations in general and M in particular. Some evolutionary biologists argue that evolution is largely mutation-driven and claim that mutation bias frequently results in mutation-biased adaptation. Strong similarities between G and M have also raised questions about the non-randomness of mutations. Moreover, novel mutations are typically not isotropic in their phenotypic effects and mutational pleiotropy is common. Here I discuss the evolutionary origin and consequences of mutational pleiotropy and how multivariate selection directly shapes G and indirectly M through changed epistatic relationships. I illustrate these ideas by reviewing recent literature and models about correlational selection, evolution of G and M, sexual selection and the fitness consequences of sexual antagonism.
Collapse
|
36
|
Abstract
AbstractEvolvability is best addressed from a multi-level, macroevolutionary perspective through a comparative approach that tests for among-clade differences in phenotypic diversification in response to an opportunity, such as encountered after a mass extinction, entering a new adaptive zone, or entering a new geographic area. Analyzing the dynamics of clades under similar environmental conditions can (partially) factor out shared external drivers to recognize intrinsic differences in evolvability, aiming for a macroevolutionary analog of a common-garden experiment. Analyses will be most powerful when integrating neontological and paleontological data: determining differences among extant populations that can be hypothesized to generate large-scale, long-term contrasts in evolvability among clades; or observing large-scale differences among clade histories that can by hypothesized to reflect contrasts in genetics and development observed directly in extant populations. However, many comparative analyses can be informative on their own, as explored in this overview. Differences in clade-level evolvability can be visualized in diversity-disparity plots, which can quantify positive and negative departures of phenotypic productivity from stochastic expectations scaled to taxonomic diversification. Factors that evidently can promote evolvability include modularity—when selection aligns with modular structure or with morphological integration patterns; pronounced ontogenetic changes in morphology, as in allometry or multiphase life cycles; genome size; and a variety of evolutionary novelties, which can also be evaluated using macroevolutionary lags between the acquisition of a trait and phenotypic diversification, and dead-clade-walking patterns that may signal a loss of evolvability when extrinsic factors can be excluded. High speciation rates may indirectly foster phenotypic evolvability, and vice versa. Mechanisms are controversial, but clade evolvability may be higher in the Cambrian, and possibly early in the history of clades at other times; in the tropics; and, for marine organisms, in shallow-water disturbed habitats.
Collapse
|
37
|
Yair S, Coop G. Population differentiation of polygenic score predictions under stabilizing selection. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200416. [PMID: 35430887 PMCID: PMC9014188 DOI: 10.1098/rstb.2020.0416] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
Given the many small-effect loci uncovered by genome-wide association studies (GWAS), polygenic scores have become central to genomic medicine, and have found application in diverse settings including evolutionary studies of adaptation. Despite their promise, polygenic scores have been found to suffer from limited portability across human populations. This at first seems in conflict with the observation that most common genetic variation is shared among populations. We investigate one potential cause of this discrepancy: stabilizing selection on complex traits. Counterintuitively, while stabilizing selection constrains phenotypic evolution, it accelerates the loss and fixation of alleles underlying trait variation within populations (GWAS loci). Thus even when populations share an optimum phenotype, stabilizing selection erodes the variance contributed by their shared GWAS loci, such that predictions from GWAS in one population explain less of the phenotypic variation in another. We develop theory to quantify how stabilizing selection is expected to reduce the prediction accuracy of polygenic scores in populations not represented in GWAS samples. In addition, we find that polygenic scores can substantially overstate average genetic differences of phenotypes among populations. We emphasize stabilizing selection around a common optimum as a useful null model to connect patterns of allele frequency and polygenic score differentiation. This article is part of the theme issue 'Celebrating 50 years since Lewontin's apportionment of human diversity'.
Collapse
Affiliation(s)
- Sivan Yair
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Graham Coop
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
38
|
McGlothlin JW, Kobiela ME, Wright HV, Kolbe JJ, Losos JB, III EDB. Conservation and Convergence of Genetic Architecture in the Adaptive Radiation of Anolis Lizards. Am Nat 2022; 200:E207-E220. [DOI: 10.1086/721091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Evans KM, Buser TJ, Larouche O, Kolmann MA. Untangling the relationship between developmental and evolutionary integration. Semin Cell Dev Biol 2022; 145:22-27. [PMID: 35659472 DOI: 10.1016/j.semcdb.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 11/15/2022]
Abstract
Patterns of integration and modularity among organismal traits are prevalent across the tree of life, and at multiple scales of biological organization. Over the past several decades, researchers have studied these patterns at the developmental, and evolutionary levels. While their work has identified the potential drivers of these patterns at different scales, there appears to be a lack of consensus on the relationship between developmental and evolutionary integration. Here, we review and summarize key studies and build a framework to describe the conceptual relationship between these patterns across organismal scales and illustrate how, and why some of these studies may have yielded seemingly conflicting outcomes. We find that among studies that analyze patterns of integration and modularity using morphological data, the lack of consensus may stem in part from the difficulty of fully disentangling the developmental and functional causes of integration. Nonetheless, in some empirical systems, patterns of evolutionary modularity have been found to coincide with expectations based on developmental processes, suggesting that in some circumstances, developmental modularity may translate to evolutionary modularity. We also advance an extension to Hallgrímsson et al.'s palimpsest model to describe how patterns of trait modularity may shift across different evolutionary scales. Finally, we also propose some directions for future research which will hopefully be useful for investigators interested in these issues.
Collapse
Affiliation(s)
- Kory M Evans
- Rice University, Biosciences Department, 6100 Main St, Houston, TX 77005, USA.
| | - Thaddaeus J Buser
- Rice University, Biosciences Department, 6100 Main St, Houston, TX 77005, USA
| | - Olivier Larouche
- Rice University, Biosciences Department, 6100 Main St, Houston, TX 77005, USA
| | - Matthew A Kolmann
- Rice University, Biosciences Department, 6100 Main St, Houston, TX 77005, USA
| |
Collapse
|
40
|
Morphological Stasis in Time? A Triatoma brasiliensis brasiliensis Study Using Geometric Morphometrics in the Long Run. Animals (Basel) 2022; 12:ani12111362. [PMID: 35681826 PMCID: PMC9179344 DOI: 10.3390/ani12111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Triatomines are vector insects capable of transmitting the protozoan that causes Chagas disease, thus representing a health risk in several countries, especially in Central and South America. Triatoma brasiliensis brasiliensis, the main triatomine vector in northeastern Brazil, needs frequent monitoring as it is able to colonize various natural and artificial ecotopes as well as to infest domiciles. This research uses geometric morphometrics as a tool to evaluate changes in the morphology and analyze a large temporal dataset of 102 years of collections of T. b. brasiliensis. Finding novelty results which indicate a morphological stasis in the morphology. Abstract Triatoma brasiliensis brasiliensis Neiva, 1911 is one of the most important vectors of Chagas disease in the Brazilian semiarid regions in the north-east. The risk imposed by T. b. brasiliensis to the human populations, due to frequent invasions and/or colonization of the domiciles, demands constant monitoring and control actions as well as an understanding of its evolutionary process. In this context, the following research studies the pattern of shape adaptation over time using a large dataset from 102 years of specimen collections in order to identify the morphological plasticity of this vector in Brazil. This dataset was analyzed using geometric morphometrics tools and the timescale was divided into eight different groups, containing specimens from 1912 to 2014. Geometric morphometrics analysis showed an interesting morphological stasis in the wing shape of T. b. brasiliensis, which allowed us to understand the high capacity of adaptation to changes in climate condition through time, and the invasive status which Triatoma species have around the world. Moreover, these results showed novel findings as an interesting phenotypic pattern, with no modifications in more than 100 years, leading us to understand the shape evolution in Triatominae as a vector species of diseases.
Collapse
|
41
|
Conradsen C, Blows MW, McGuigan K. Causes of variability in estimates of mutational variance from mutation accumulation experiments. Genetics 2022; 221:6569838. [PMID: 35435211 PMCID: PMC9157167 DOI: 10.1093/genetics/iyac060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/08/2022] [Indexed: 11/15/2022] Open
Abstract
Characteristics of the new phenotypic variation introduced via mutation have broad implications in evolutionary and medical genetics. Standardized estimates of this mutational variance, VM, span 2 orders of magnitude, but the causes of this remain poorly resolved. We investigated estimate heterogeneity using 2 approaches. First, meta-analyses of ∼150 estimates of standardized VM from 37 mutation accumulation studies did not support a difference among taxa (which differ in mutation rate) but provided equivocal support for differences among trait types (life history vs morphology, predicted to differ in mutation rate). Notably, several experimental factors were confounded with taxon and trait, and further empirical data are required to resolve their influences. Second, we analyzed morphological data from an experiment in Drosophila serrata to determine the potential for unintentional heterogeneity among environments in which phenotypes were measured (i.e. among laboratories or time points) or transient segregation of mutations within mutation accumulation lines to affect standardized VM. Approximating the size of an average mutation accumulation experiment, variability among repeated estimates of (accumulated) mutational variance was comparable to variation among published estimates of standardized VM. This heterogeneity was (partially) attributable to unintended environmental variation or within line segregation of mutations only for wing size, not wing shape traits. We conclude that sampling error contributed substantial variation within this experiment, and infer that it will also contribute substantially to differences among published estimates. We suggest a logistically permissive approach to improve the precision of estimates, and consequently our understanding of the dynamics of mutational variance of quantitative traits.
Collapse
Affiliation(s)
- Cara Conradsen
- School of Biological Sciences; The University of Queensland; St. Lucia, Queensland, Australia 4072
| | - Mark W Blows
- School of Biological Sciences; The University of Queensland; St. Lucia, Queensland, Australia 4072
| | - Katrina McGuigan
- School of Biological Sciences; The University of Queensland; St. Lucia, Queensland, Australia 4072
| |
Collapse
|
42
|
Kumar N, Huizar FJ, Farfán-Pira KJ, Brodskiy PA, Soundarrajan DK, Nahmad M, Zartman JJ. MAPPER: An Open-Source, High-Dimensional Image Analysis Pipeline Unmasks Differential Regulation of Drosophila Wing Features. Front Genet 2022; 13:869719. [PMID: 35480325 PMCID: PMC9035675 DOI: 10.3389/fgene.2022.869719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Phenomics requires quantification of large volumes of image data, necessitating high throughput image processing approaches. Existing image processing pipelines for Drosophila wings, a powerful genetic model for studying the underlying genetics for a broad range of cellular and developmental processes, are limited in speed, precision, and functional versatility. To expand on the utility of the wing as a phenotypic screening system, we developed MAPPER, an automated machine learning-based pipeline that quantifies high-dimensional phenotypic signatures, with each dimension quantifying a unique morphological feature of the Drosophila wing. MAPPER magnifies the power of Drosophila phenomics by rapidly quantifying subtle phenotypic differences in sample populations. We benchmarked MAPPER's accuracy and precision in replicating manual measurements to demonstrate its widespread utility. The morphological features extracted using MAPPER reveal variable sexual dimorphism across Drosophila species and unique underlying sex-specific differences in morphogen signaling in male and female wings. Moreover, the length of the proximal-distal axis across the species and sexes shows a conserved scaling relationship with respect to the wing size. In sum, MAPPER is an open-source tool for rapid, high-dimensional analysis of large imaging datasets. These high-content phenomic capabilities enable rigorous and systematic identification of genotype-to-phenotype relationships in a broad range of screening and drug testing applications and amplify the potential power of multimodal genomic approaches.
Collapse
Affiliation(s)
- Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Francisco J. Huizar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Keity J. Farfán-Pira
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnical Institute (Cinvestav), Mexico City, Mexico
| | - Pavel A. Brodskiy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Dharsan K. Soundarrajan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Marcos Nahmad
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnical Institute (Cinvestav), Mexico City, Mexico
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
43
|
Benítez HA, Püschel TA, Suazo MJ. Drosophila Wing Integration and Modularity: A Multi-Level Approach to Understand the History of Morphological Structures. BIOLOGY 2022; 11:biology11040567. [PMID: 35453766 PMCID: PMC9025964 DOI: 10.3390/biology11040567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 01/12/2023]
Abstract
Simple Summary The diverse components of any morphological structure are integrated with respect to each other since they have developed, functioned, and evolved together, a phenomenon known as integration. However, this integration is not absolute but organized in units (i.e., modules) that are relatively independent while participating to generate a structure that acts as a functional whole. Even though most of the studies on modularity and integration have focused on variation among individuals within populations, there are more levels of variation that exhibit modularity and integration, deriving from distinct sources such as genetic variation, phenotypic plasticity, fluctuating asymmetry, evolutionary change, among others. Consequently, the present study focused on analysing the integration and modularity of the wing shape of some of the best-known model organisms, i.e., the genus Drosophila, at the static, developmental, and evolutionary levels to acquire a better insight about how modularity and integration act at different analytical levels. The strong integration and overall similarities observed in the variation pattern at multiple levels suggest a shared mechanism underlying the observed variation in Drosophila’s wing shape and added a new piece of evidence of stasis in the evolutionary history of Drosophila wing. Abstract Static, developmental, and evolutionary variation are different sources of morphological variation which can be quantified using morphometrics tools. In the present study we have carried out a comparative multiple level study of integration (i.e., static, developmental, and evolutionary) to acquire insight about the relationships that exist between different integration levels, as well as to better understand their involvement in the evolutionary processes related to the diversification of Drosophila’s wing shape. This approach was applied to analyse wing evolution in 59 species across the whole genus in a large dataset (~10,000 wings were studied). Static integration was analysed using principal component analysis, thus providing an integration measurement for overall wing shape. Developmental integration was studied between wing parts by using a partial least squares method between the anterior and posterior compartments of the wing. Evolutionary integration was analysed using independent contrasts. The present results show that all Drosophila species exhibit strong morphological integration at different levels. The strong integration and overall similarities observed at multiple integration levels suggest a shared mechanism underlying this variation, which could result as consequence of genetic drift acting on the wing shape of Drosophila.
Collapse
Affiliation(s)
- Hugo A. Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago 8370993, Chile
- Correspondence:
| | - Thomas A. Püschel
- Ecology and Evolutionary Biology Division, School of Biological Sciences, University of Reading, Reading RG6 6AH, UK;
- Institute of Human Sciences, School of Anthropology and Museum Ethnography, University of Oxford, Oxford OX1 2JD, UK
| | - Manuel J. Suazo
- Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile;
| |
Collapse
|
44
|
Fasanelli MN, Milla Carmona PS, Soto IM, Tuero DT. Allometry, sexual selection and evolutionary lines of least resistance shaped the evolution of exaggerated sexual traits within the genus Tyrannus. J Evol Biol 2022; 35:669-679. [PMID: 35290678 DOI: 10.1111/jeb.14000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
Abstract
Variational properties hold a fundamental role in shaping biological evolution, exerting control over the magnitude and direction of evolutionary change elicited by microevolutionary processes that sort variation, such as selection or drift. We studied the genus Tyrannus as a model for examining the conditions and drivers that facilitate the repeated evolution of exaggerated, secondary sexual traits in the face of significant functional limitations. In particular, we explore the role of allometry, sexual selection and their interaction, on the diversification of tail morphology in the genus, assessing whether and how they promoted or constrained phenotypic evolution. Non-deep-forked species tend to show reduced sexual dimorphism and moderate allometric variation in tail shape. The exaggerated and functionally constrained long feathers of deep-forked species, T. savana and T. forficatus, which show both marked sexual dimorphism and allometric tail shape variation, independently diverged from the rest of the genus following the same direction of main interspecific variation accrued during the evolution of non-deep-forked species. Moreover, the latter direction is also aligned with axes summarising sexual dimorphism and allometric variation on deep-forked species, a feature lacking in the rest of the species. Thus, exaggerated tail morphologies are interpreted as the result of amplified divergence through reorientation and co-option of allometric variation by sexual selection, repeatedly driving morphology along a historically favoured direction of cladogenetic evolution.
Collapse
Affiliation(s)
- Martín Nicolás Fasanelli
- Instituto de Ecología, Genética y Evolución de Buenos Aires - IEGEBA (CONICET-UBA), Departamento de Ecología, Genética y Evolución -DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Biología Integral de Sistemas Evolutivos, DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo S Milla Carmona
- Laboratorio de Biología Integral de Sistemas Evolutivos, DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Ecosistemas Marinos Fósiles, Instituto de Estudios Andinos - IDEAN (CONICET-UBA), Buenos Aires, Argentina
| | - Ignacio María Soto
- Instituto de Ecología, Genética y Evolución de Buenos Aires - IEGEBA (CONICET-UBA), Departamento de Ecología, Genética y Evolución -DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Biología Integral de Sistemas Evolutivos, DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Tomás Tuero
- Instituto de Ecología, Genética y Evolución de Buenos Aires - IEGEBA (CONICET-UBA), Departamento de Ecología, Genética y Evolución -DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
45
|
Brand JN, Harmon LJ, Schärer L. Frequent origins of traumatic insemination involve convergent shifts in sperm and genital morphology. Evol Lett 2022; 6:63-82. [PMID: 35127138 PMCID: PMC8802240 DOI: 10.1002/evl3.268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Traumatic insemination is a mating behavior during which the (sperm) donor uses a traumatic intromittent organ to inject an ejaculate through the epidermis of the (sperm) recipient, thereby frequently circumventing the female genitalia. Traumatic insemination occurs widely across animals, but the frequency of its evolution, the intermediate stages via which it originates, and the morphological changes that such shifts involve remain poorly understood. Based on observations in 145 species of the free-living flatworm genus Macrostomum, we identify at least nine independent evolutionary origins of traumatic insemination from reciprocal copulation, but no clear indication of reversals. These origins involve convergent shifts in multivariate morphospace of male and female reproductive traits, suggesting that traumatic insemination has a canalizing effect on morphology. We also observed sperm in both the sperm receiving organ and within the body tissue of two species. These species had intermediate trait values indicating that traumatic insemination evolves through initial internal wounding during copulation. Finally, signatures of male-female coevolution of genitalia across the genus indicate that sexual selection and sexual conflict drive the evolution of traumatic insemination, because it allows donors to bypass postcopulatory control mechanisms of recipients.
Collapse
Affiliation(s)
- Jeremias N. Brand
- Department of Environmental Sciences, Zoological InstituteUniversity of BaselBaselCH‐4051Switzerland
- Department of Tissue Dynamics and RegenerationMax Planck Institute for Biophysical ChemistryGöttingenDE‐37077Germany
| | - Luke J. Harmon
- Department of Biological SciencesUniversity of IdahoMoscowIdaho83843
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological InstituteUniversity of BaselBaselCH‐4051Switzerland
| |
Collapse
|
46
|
Li M, Wan L, Law MK, Meng L, Jia Y, Mak PI, Martins RP. One-shot high-resolution melting curve analysis for KRAS point-mutation discrimination on a digital microfluidics platform. LAB ON A CHIP 2022; 22:537-549. [PMID: 34904611 DOI: 10.1039/d1lc00564b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-nucleotide polymorphism (SNP) plays a critical role in personalized medicine, forensics, pharmacogenetics, and disease diagnostics. Among different existing SNP genotyping techniques, melting curve analysis (MCA) becomes increasingly popular due to its high accuracy and straightforward procedures in extracting the melting temperature (Tm). Yet, its study on existing digital microfluidic (DMF) platforms has intrinsic limitations due to the temperature inhomogeneity within a thickened droplet during the on-chip rapid heating process. Although the utilization of an on-chip thermostat can regulate and monitor the dynamic melting process in real time, the limited Tm accuracy resulting from the insufficient system response time to accommodate the fast-melting evolution still poses a great challenge for precise MCA with high throughput. This work proposes a one-shot MCA on a DMF platform. The tailoring of a functional substrate with hierarchical micro/nano structure enables high-resolution patterning of pL-scale droplets. Specifically, the hydrothermal and photocatalysis treatment allows the functional substrate to exhibit a superwettability contrast of >170°, facilitating passive isolation of the pL-scale DNA sample into highly-resolved pL droplets above the 200 μm superhydrophilic patterns. This high-resolution MCA technique can successfully discriminate KRAS gene targets with single-nucleotide mutations in 3 seconds. The high accuracy and consistency in the acquired Tm when compared with off-chip results demonstrate its opportunities for near-patient diagnostics, precision medicines, genetic counseling, and prevention strategies on DMF platforms.
Collapse
Affiliation(s)
- Mingzhong Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macao, China.
| | - Liang Wan
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macao, China.
- Faculty of Science and Technology - Electrical and Computer Engineering, University of Macau, Macao, China
| | - Man-Kay Law
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macao, China.
- Faculty of Science and Technology - Electrical and Computer Engineering, University of Macau, Macao, China
| | - Li Meng
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macao, China.
- Faculty of Science and Technology - Electrical and Computer Engineering, University of Macau, Macao, China
| | - Yanwei Jia
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macao, China.
- Faculty of Science and Technology - Electrical and Computer Engineering, University of Macau, Macao, China
| | - Pui-In Mak
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macao, China.
- Faculty of Science and Technology - Electrical and Computer Engineering, University of Macau, Macao, China
| | - Rui P Martins
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macao, China.
- Faculty of Science and Technology - Electrical and Computer Engineering, University of Macau, Macao, China
- On leave from Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
47
|
Katayama N, Koi S, Sassa A, Kurata T, Imaichi R, Kato M, Nishiyama T. Elevated mutation rates underlie the evolution of the aquatic plant family Podostemaceae. Commun Biol 2022; 5:75. [PMID: 35058542 PMCID: PMC8776956 DOI: 10.1038/s42003-022-03003-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Molecular evolutionary rates vary among lineages and influence the evolutionary process. Here, we report elevated genome-wide mutation rates in Podostemaceae, a family of aquatic plants with a unique body plan that allows members to live on submerged rocks in fast-flowing rivers. Molecular evolutionary analyses using 1640 orthologous gene groups revealed two historical increases in evolutionary rates: the first at the emergence of the family and the second at the emergence of Podostemoideae, which is the most diversified subfamily. In both branches, synonymous substitution rates were elevated, indicating higher mutation rates. On early branches, mutations were biased in favour of AT content, which is consistent with a role for ultraviolet light-induced mutation and habitat shift. In ancestors of Podostemoideae, DNA-repair genes were enriched in genes under positive selection, which may have responded to the meristem architectural changes.
Collapse
Affiliation(s)
- Natsu Katayama
- Graduate School of Science, Chiba University, Chiba, 263-8522, Japan.
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan.
| | - Satoshi Koi
- Botanical Gardens, Osaka City University, Osaka, 575-0004, Japan
| | - Akira Sassa
- Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Tetsuya Kurata
- Division of Biological Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Ryoko Imaichi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, 112-8681, Japan
| | - Masahiro Kato
- Department of Botany, National Museum of Nature and Science, Tsukuba, 305-0005, Japan
| | - Tomoaki Nishiyama
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-0934, Japan.
| |
Collapse
|
48
|
Hernández U, Posadas-Vidales L, Espinosa-Soto C. On the effects of the modularity of gene regulatory networks on phenotypic variability and its association with robustness. Biosystems 2021; 212:104586. [PMID: 34971735 DOI: 10.1016/j.biosystems.2021.104586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Biological adaptations depend on natural selection sorting out those individuals that exhibit characters fit to their environment. Selection, in turn, depends on the phenotypic variation present in a population. Thus, evolutionary outcomes depend, to a certain extent, on the kind of variation that organisms can produce through random genetic perturbation, that is, their phenotypic variability. Moreover, the properties of developmental mechanisms that produce the organisms affect their phenotypic variability. Two of these properties are modularity and robustness. Modularity is the degree to which interactions occur mostly within groups of the system's elements and scarcely between elements in different groups. Robustness is the propensity of a system to endure perturbations while preserving its phenotype. In this paper, we used a model of gene regulatory networks (GRNs) to study the relationship between modularity and robustness in developmental processes and how modularity affects the variation that random genetic mutations produce in the expression patterns of GRNs. Our results show that modularity and robustness are correlated in multifunctional GRNs and that selection for one of these properties affects the other as well. We contend that these observations may help to understand why modularity and robustness are widespread in biological systems. Additionally, we found that modular networks tend to produce new expression patterns with subtle changes localized in the expression of a few groups of genes. This effect in the phenotypic variability of modular GRNs may bear important consequences for adaptive evolution: it may help to adjust the expression of one group of genes at a time, with few alterations on other previously evolved expression patterns.
Collapse
Affiliation(s)
- U Hernández
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, Mexico
| | - L Posadas-Vidales
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, Mexico
| | - C Espinosa-Soto
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, Mexico.
| |
Collapse
|
49
|
Hansen TF, Pélabon C. Evolvability: A Quantitative-Genetics Perspective. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-011121-021241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The concept of evolvability emerged in the early 1990s and soon became fashionable as a label for different streams of research in evolutionary biology. In evolutionary quantitative genetics, evolvability is defined as the ability of a population to respond to directional selection. This differs from other fields by treating evolvability as a property of populations rather than organisms or lineages and in being focused on quantification and short-term prediction rather than on macroevolution. While the term evolvability is new to quantitative genetics, many of the associated ideas and research questions have been with the field from its inception as biometry. Recent research on evolvability is more than a relabeling of old questions, however. New operational measures of evolvability have opened possibilities for understanding adaptation to rapid environmental change, assessing genetic constraints, and linking micro- and macroevolution.
Collapse
Affiliation(s)
- Thomas F. Hansen
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Christophe Pélabon
- Center for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
50
|
Nosil P, Feder JL, Gompert Z. Biodiversity, resilience and the stability of evolutionary systems. Curr Biol 2021; 31:R1149-R1153. [PMID: 34637720 DOI: 10.1016/j.cub.2021.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Various macro-evolutionary phenomena, such as long-term stability punctuated by bursts of evolution, are difficult to explain via the micro-evolutionary process of weak selection acting steadily on individual mutations. In contrast, bursts of change are expected if evolutionary systems are complex and balanced, with occasional disruption of balance. Such disruption represents the collapse of resilience, akin to the snapping of an elastic band. It can be driven by external factors, or by self-propagating feedback loops internal to a system. Thus, evolutionary resilience could help explain how evolution generates broader patterns of biodiversity. We outline evidence and tests for this hypothesis, which emphasizes the processes balancing evolution, as urged fifty years ago in ecological genetics and via modern results in a range of systems.
Collapse
Affiliation(s)
- Patrik Nosil
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ Paul Valery Montpellier 3, Montpellier, 34293, France; Department of Biology, Utah State University, Logan, UT 84322, USA.
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|