1
|
Leidinger PM, Panighel M, Sushkevich VL, Piseri P, Podestà A, van Bokhoven JA, Artiglia L. Influence of zinc oxide nanoparticles on the carbon accumulation on silver exposed to carbon dioxide hydrogenation reaction conditions. NANOSCALE 2025. [PMID: 39815726 DOI: 10.1039/d4nr03766a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The strong influence of surface adsorbates on the morphology of a catalyst is exemplified by studying a silver surface with and without deposited zinc oxide nanoparticles upon exposure to reaction gases used for carbon dioxide hydrogenation. Ambient pressure X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements indicate accumulation of carbon deposits on the catalyst surface at 200 °C. While oxygen-free carbon species observed on pure silver show a strong interaction and decorate the atomic steps on the catalyst surface, this decoration is not observed for the oxygen-containing species observed on the silver surface with additional zinc oxide nanoparticles. Annealing the sample to temperatures above 350 °C removes the contaminants by hydrogenation to methane.
Collapse
Affiliation(s)
- Paul Maurice Leidinger
- Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland.
| | - Mirco Panighel
- CNR - Istituto Officina dei Materiali (IOM), Trieste, Laboratorio TASC, Strada Statale 14, km 163.5, 34149 Basovizza, Italy
| | - Vitaly L Sushkevich
- Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland.
| | - Paolo Piseri
- Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
- Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (CIMAINA), Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Alessandro Podestà
- Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Jeroen A van Bokhoven
- Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland.
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Luca Artiglia
- Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland.
| |
Collapse
|
2
|
Wang X, Yi ZY, Wang YQ, Wang D. Molecular Evidence for the Axial Coordination Effect of Atomic Iodine on Fe-N 4 Sites in Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2025; 64:e202413673. [PMID: 39278835 DOI: 10.1002/anie.202413673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
We present a molecular-scale investigation of the axial coordination effect of atomic iodine on Fe-N4 sites in the oxygen reduction reaction (ORR) by electrochemical scanning tunneling microscopy (ECSTM). A well-defined model catalytic system with explicit and uniform iodine-coordinated Fe-N4 sites was constructed facilely by the self-assembly of iron(II) phthalocyanine (FePc) on an I-modified Au(111) surface. The electrocatalytic activity of FePc for the ORR shows notable enhancement with axial iodine ligands. The modulation of the electronic structure of Fe sites to evoke a higher spin configuration by axial iodine was evidenced. The interaction strength between oxygen-containing species and active centers becomes weaker due to the presence of iodine ligands, and the reaction is thermodynamically preferable. Furthermore, the reaction dynamics of FePc on I/Au(111) were explicitly determined via in situ ECSTM potential pulse experiments. In contrast, axial atomic iodine was found inefficacious for improving the activity of Co-N4 sites, and electron rearrangement was found to be marginal, demonstrating that adequate interactions between axial ligands and metal sites for optimizing electronic structures and catalytic behaviors are prerequisites for the impactful role of axial ligands.
Collapse
Affiliation(s)
- Xiang Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Zhen-Yu Yi
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Beijing, 101408, China
| | - Yu-Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Beijing, 101408, China
| |
Collapse
|
3
|
Su S, Zhao J, Ly TH. Scanning Probe Microscopies for Characterizations of 2D Materials. SMALL METHODS 2024; 8:e2400211. [PMID: 38766949 PMCID: PMC11579571 DOI: 10.1002/smtd.202400211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/12/2024] [Indexed: 05/22/2024]
Abstract
2D materials are intriguing due to their remarkably thin and flat structure. This unique configuration allows the majority of their constituent atoms to be accessible on the surface, facilitating easier electron tunneling while generating weak surface forces. To decipher the subtle signals inherent in these materials, the application of techniques that offer atomic resolution (horizontal) and sub-Angstrom (z-height vertical) sensitivity is crucial. Scanning probe microscopy (SPM) emerges as the quintessential tool in this regard, owing to its atomic-level spatial precision, ability to detect unitary charges, responsiveness to pico-newton-scale forces, and capability to discern pico-ampere currents. Furthermore, the versatility of SPM to operate under varying environmental conditions, such as different temperatures and in the presence of various gases or liquids, opens up the possibility of studying the stability and reactivity of 2D materials in situ. The characteristic flatness, surface accessibility, ultra-thinness, and weak signal strengths of 2D materials align perfectly with the capabilities of SPM technologies, enabling researchers to uncover the nuanced behaviors and properties of these advanced materials at the nanoscale and even the atomic scale.
Collapse
Affiliation(s)
- Shaoqiang Su
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077China
| | - Jiong Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077P. R. China
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen518057China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077China
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
| |
Collapse
|
4
|
Afsahi N, Zhang Z, Faez S, Noël JM, Panda MR, Majumder M, Naseri N, Lemineur JF, Kanoufi F. Seeing nanoscale electrocatalytic reactions at individual MoS 2 particles under an optical microscope: probing sub-mM oxygen reduction reaction. Faraday Discuss 2024. [PMID: 39451059 PMCID: PMC11504976 DOI: 10.1039/d4fd00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 10/26/2024]
Abstract
MoS2 is a promising electrocatalytic material for replacing noble metals. Nanoelectrochemistry studies, such as using nanoelectrochemical cell confinement, have particularly helped in demonstrating the preferential electrocatalytic activity of MoS2 edges. These findings have been accompanied by considerable research efforts to synthesize edge-abundant nanomaterials. However, to fully apprehend their electrocatalytic performance, at the single particle level, new instrumental developments are also needed. Here, we feature a highly sensitive refractive index based optical microscopy technique, namely interferometric scattering microscopy (iSCAT), for monitoring local electrochemistry at single MoS2 petal-like sub-microparticles. This work focuses on the oxygen reduction reaction (ORR), which operates at low current densities and thus requires high-sensitivity imaging techniques. By employing a precipitation reaction to reveal the ORR activity and utilizing the high spatial resolution and contrast of iSCAT, we achieve the sensitivity required to evaluate the ORR activity at single MoS2 particles.
Collapse
Affiliation(s)
- Nikan Afsahi
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Zhu Zhang
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Sanli Faez
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Jean-Marc Noël
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Manas Ranjan Panda
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Naimeh Naseri
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
- Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran
| | | | | |
Collapse
|
5
|
Bao YF, Zhu MY, Zhao XJ, Chen HX, Wang X, Ren B. Nanoscale chemical characterization of materials and interfaces by tip-enhanced Raman spectroscopy. Chem Soc Rev 2024; 53:10044-10079. [PMID: 39229965 DOI: 10.1039/d4cs00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Materials and their interfaces are the core for the development of a large variety of fields, including catalysis, energy storage and conversion. In this case, tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with plasmon-enhanced Raman spectroscopy, is a powerful technique that can simultaneously obtain the morphological information and chemical fingerprint of target samples at nanometer spatial resolution. It is an ideal tool for the nanoscale chemical characterization of materials and interfaces, correlating their structures with chemical performances. In this review, we begin with a brief introduction to the nanoscale characterization of materials and interfaces, followed by a detailed discussion on the recent theoretical understanding and technical improvements of TERS, including the origin of enhancement, TERS instruments, TERS tips and the application of algorithms in TERS. Subsequently, we list the key experimental issues that need to be addressed to conduct successful TERS measurements. Next, we focus on the recent progress of TERS in the study of various materials, especially the novel low-dimensional materials, and the progresses of TERS in studying different interfaces, including both solid-gas and solid-liquid interfaces. Finally, we provide an outlook on the future developments of TERS in the study of materials and interfaces.
Collapse
Affiliation(s)
- Yi-Fan Bao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Meng-Yuan Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiao-Jiao Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hong-Xuan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
6
|
Wang YQ, Fu J, Feng Y, Zhao K, Wang L, Cai JY, Wang X, Chen T, Yang F, Hu JS, Xu B, Wang D, Wan LJ. Alkali Metal Cations Induce Structural Evolution on Au(111) During Cathodic Polarization. J Am Chem Soc 2024; 146:27713-27724. [PMID: 39324482 DOI: 10.1021/jacs.4c09404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The activity of the electrocatalytic CO2 reduction reaction (CO2RR) is substantially affected by alkali metal cations (AM+) in electrolytes, yet the underlying mechanism is still controversial. Here, we employed electrochemical scanning tunneling microscopy and in situ observed Au(111) surface roughening in AM+ electrolytes during cathodic polarization. The roughened surface is highly active for catalyzing the CO2RR due to the formation of surface low-coordinated Au atoms. The critical potential for surface roughening follows the order Cs+ > Rb+ > K+ > Na+ > Li+, and the surface proportion of roughened area decreases in the order of Cs+ > Rb+ > K+ > Na+ > Li+. Electrochemical CO2RR measurements demonstrate that the catalytic activity strongly correlates with the surface roughness. Furthermore, we found that AM+ is critical for surface roughening to occur. The results unveil the unrecognized effect of AM+ on the surface structural evolution and elucidate that the AM+-induced formation of surface high-activity sites contributes to the enhanced CO2RR in large AM+ electrolytes.
Collapse
Affiliation(s)
- Yu-Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaju Fu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Feng
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiyue Zhao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lu Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ji-Yuan Cai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiang Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Chen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jin-Song Hu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Sun Y, Wu CR, Wang F, Bi RH, Zhuang YB, Liu S, Chen MS, Zhang KHL, Yan JW, Mao BW, Tian ZQ, Cheng J. Step-induced double-row pattern of interfacial water on rutile TiO 2(110) under electrochemical conditions. Chem Sci 2024; 15:12264-12269. [PMID: 39118606 PMCID: PMC11304521 DOI: 10.1039/d4sc01952k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/21/2024] [Indexed: 08/10/2024] Open
Abstract
Metal oxides are promising (photo)electrocatalysts for sustainable energy technologies due to their good activity and abundant resources. Their applications such as photocatalytic water splitting predominantly involve aqueous interfaces under electrochemical conditions, but in situ probing oxide-water interfaces is proven to be extremely challenging. Here, we present an electrochemical scanning tunneling microscopy (EC-STM) study on the rutile TiO2(110)-water interface, and by tuning surface redox chemistry with careful potential control we are able to obtain high quality images of interfacial structures with atomic details. It is interesting to find that the interfacial water exhibits an unexpected double-row pattern that has never been observed. This finding is confirmed by performing a large scale simulation of a stepped interface model enabled by machine learning accelerated molecular dynamics (MLMD) with ab initio accuracy. Furthermore, we show that this pattern is induced by the steps present on the surface, which can propagate across the terraces through interfacial hydrogen bonds. Our work demonstrates that by combining EC-STM and MLMD we can obtain new atomic details of interfacial structures that are valuable to understand the activity of oxides under realistic conditions.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Cheng-Rong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Feng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Rui-Hao Bi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yong-Bin Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Shuai Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ming-Shu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Kelvin H-L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Laboratory of AI for Electrochemistry (AI4EC), IKKEM Xiamen 361005 China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Laboratory of AI for Electrochemistry (AI4EC), IKKEM Xiamen 361005 China
- Institute of Artificial Intelligence, Xiamen University Xiamen 361005 China
| |
Collapse
|
9
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
10
|
Li S, Shi L, Guo Y, Wang J, Liu D, Zhao S. Selective oxygen reduction reaction: mechanism understanding, catalyst design and practical application. Chem Sci 2024; 15:11188-11228. [PMID: 39055002 PMCID: PMC11268513 DOI: 10.1039/d4sc02853h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The oxygen reduction reaction (ORR) is a key component for many clean energy technologies and other industrial processes. However, the low selectivity and the sluggish reaction kinetics of ORR catalysts have hampered the energy conversion efficiency and real application of these new technologies mentioned before. Recently, tremendous efforts have been made in mechanism understanding, electrocatalyst development and system design. Here, a comprehensive and critical review is provided to present the recent advances in the field of the electrocatalytic ORR. The two-electron and four-electron transfer catalytic mechanisms and key evaluation parameters of the ORR are discussed first. Then, the up-to-date synthetic strategies and in situ characterization techniques for ORR electrocatalysts are systematically summarized. Lastly, a brief overview of various renewable energy conversion devices and systems involving the ORR, including fuel cells, metal-air batteries, production of hydrogen peroxide and other chemical synthesis processes, along with some challenges and opportunities, is presented.
Collapse
Affiliation(s)
- Shilong Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yingjie Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingyang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
11
|
Sun Z, Wang J, Su L, Gu Z, Wu XP, Chen W, Ma W. Dynamic Evolution and Reversibility of a Single Au 25 Nanocluster for the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:20059-20068. [PMID: 38994646 DOI: 10.1021/jacs.4c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Ultrasmall metallic nanoclusters (NCs) protected by surface ligands represent the most promising catalytic materials; yet understanding the structure and catalytic activity of these NCs remains a challenge due to dynamic evolution of their active sites under reaction conditions. Herein, we employed a single-nanoparticle collision electrochemistry method for real-time monitoring of the dynamic electrocatalytic activity of a single fully ligand-protected Au25(PPh3)10(SC2H4Ph)5Cl22+ nanocluster (Au252+ NC) at a cavity carbon nanoelectrode toward the oxygen reduction reaction (ORR). Our experimental results and computational simulations indicated that the reversible depassivation and passivation of ligands on the surface of the Au252+ NC, combined with the dynamic conformation evolution of the Au259+ core, led to a characteristic current signal that involves "ON-OFF" switches and "ON" fluctuations during the ORR process of a single Au252+ NC. Our findings reinvent the new perception and comprehension of the structure-activity correlation of NCs at the atomic level.
Collapse
Affiliation(s)
- Zehui Sun
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jia Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lei Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhihao Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xin-Ping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
12
|
Song KT, Zagalskaya A, Schott CM, Schneider PM, Garlyyev B, Alexandrov V, Bandarenka AS. Influence of Alkali Metal Cations on the Oxygen Reduction Activity of Pt 5Y and Pt 5Gd Alloys. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:4969-4977. [PMID: 38567375 PMCID: PMC10983829 DOI: 10.1021/acs.jpcc.4c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Electrolyte species can significantly influence the electrocatalytic performance. In this work, we investigate the impact of alkali metal cations on the oxygen reduction reaction (ORR) on active Pt5Gd and Pt5Y polycrystalline electrodes. Due to the strain effects, Pt alloys exhibit a higher kinetic current density of ORR than pure Pt electrodes in acidic media. In alkaline solutions, the kinetic current density of ORR for Pt alloys decreases linearly with the decreasing hydration energy in the order of Li+ > Na+ > K+ > Rb+ > Cs+, whereas Pt shows the opposite trend. To gain further insights into these experimental results, we conduct complementary density functional theory calculations considering the effects of both electrode surface strain and electrolyte chemistry. The computational results reveal that the different trends in the ORR activity in alkaline media can be explained by the change in the adsorption energy of reaction intermediates with applied surface strain in the presence of alkali metal cations. Our findings provide important insights into the effects of the electrolyte and the strain conditions on the electrocatalytic performance and thus offer valuable guidelines for optimizing Pt-based electrocatalysts.
Collapse
Affiliation(s)
- Kun-Ting Song
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, Garching D-85748, Germany
| | - Alexandra Zagalskaya
- Department
of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Quantum
Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Christian M. Schott
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, Garching D-85748, Germany
| | - Peter M. Schneider
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, Garching D-85748, Germany
| | - Batyr Garlyyev
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, Garching D-85748, Germany
| | - Vitaly Alexandrov
- Department
of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Nebraska
Center for Materials and Nanoscience, University
of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Aliaksandr S. Bandarenka
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, Garching D-85748, Germany
- Catalysis
Research Center TUM, Ernst-Otto-Fischer-Straße 1, Garching
bei München 85748, Germany
| |
Collapse
|
13
|
Liu G, Shih AJ, Deng H, Ojha K, Chen X, Luo M, McCrum IT, Koper MTM, Greeley J, Zeng Z. Site-specific reactivity of stepped Pt surfaces driven by stress release. Nature 2024; 626:1005-1010. [PMID: 38418918 DOI: 10.1038/s41586-024-07090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Heterogeneous catalysts are widely used to promote chemical reactions. Although it is known that chemical reactions usually happen on catalyst surfaces, only specific surface sites have high catalytic activity. Thus, identifying active sites and maximizing their presence lies at the heart of catalysis research1-4, in which the classic model is to categorize active sites in terms of distinct surface motifs, such as terraces and steps1,5-10. However, such a simple categorization often leads to orders of magnitude errors in catalyst activity predictions and qualitative uncertainties of active sites7,8,11,12, thus limiting opportunities for catalyst design. Here, using stepped Pt(111) surfaces and the electrochemical oxygen reduction reaction (ORR) as examples, we demonstrate that the root cause of larger errors and uncertainties is a simplified categorization that overlooks atomic site-specific reactivity driven by surface stress release. Specifically, surface stress release at steps introduces inhomogeneous strain fields, with up to 5.5% compression, leading to distinct electronic structures and reactivity for terrace atoms with identical local coordination, and resulting in atomic site-specific enhancement of ORR activity. For the terrace atoms flanking both sides of the step edge, the enhancement is up to 50 times higher than that of the atoms in the middle of the terrace, which permits control of ORR reactivity by either varying terrace widths or controlling external stress. Thus, the discovery of the above synergy provides a new perspective for both fundamental understanding of catalytically active atomic sites and design principles of heterogeneous catalysts.
Collapse
Affiliation(s)
- Guangdong Liu
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha, China
| | - Arthur J Shih
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Huiqiu Deng
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha, China
| | - Kasinath Ojha
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Xiaoting Chen
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Mingchuan Luo
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Ian T McCrum
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY, USA
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeffrey Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
14
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
15
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Wang X, Yi ZY, Wang YQ, Wang D, Wan LJ. Unraveling the Dynamic Processes of Methanol Electrooxidation at Isolated Rhodium Sites by In Situ Electrochemical Scanning Tunneling Microscopy. J Phys Chem Lett 2023; 14:9448-9455. [PMID: 37830902 DOI: 10.1021/acs.jpclett.3c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Materials with isolated single-atom Rh-N4 sites are emerging as promising and compelling catalysts for methanol electrooxidation. Herein, we carried out an in situ electrochemical scanning tunneling microscopy (ECSTM) investigation of the dynamic processes of methanol absorption and catalytic conversion in the rhodium octaethylporphyrin (RhOEP)-catalyzed methanol oxidation reaction at the molecular scale. The high-contrast RhOEP-CH3OH complex formed by methanol adsorption was visualized distinctly in the STM images. The Rh-C adsorption configuration of methanol on isolated rhodium sites was identified on the basis of a series of control experiments and theoretical simulation. The adsorption energy of methanol on RhOEP was obtained from quantitative analysis. In situ ECSTM experiments present an explicit description of the transformation of the intermediate species in the catalytic process. By qualitatively evaluating the rate constants of different stages in the reaction at the microscopic level, we considered the CO transformation/desorption as the critical step for determining the reaction dynamics. Methanol adsorption was found to be correlated with RhOEP oxidation in the initial stage of the reaction, and the dynamic information was revealed unambiguously by in situ potential step experiments. This work provides microscopic results for the catalytic mechanism of Rh-N4 sites for methanol electrooxidation, which is instructive for the rational design of the high-performance catalyst.
Collapse
Affiliation(s)
- Xiang Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen-Yu Yi
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Poppe A, Griffiths J, Hu S, Baumberg JJ, Osadchy M, Gibson S, de Nijs B. Mapping Atomic-Scale Metal-Molecule Interactions: Salient Feature Extraction through Autoencoding of Vibrational Spectroscopy Data. J Phys Chem Lett 2023; 14:7603-7610. [PMID: 37594383 PMCID: PMC10476190 DOI: 10.1021/acs.jpclett.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Atomic-scale features, such as step edges and adatoms, play key roles in metal-molecule interactions and are critically important in heterogeneous catalysis, molecular electronics, and sensing applications. However, the small size and often transient nature of atomic-scale structures make studying such interactions challenging. Here, by combining single-molecule surface-enhanced Raman spectroscopy with machine learning, spectra are extracted of perturbed molecules, revealing the formation dynamics of adatoms in gold and palladium metal surfaces. This provides unique insight into atomic-scale processes, allowing us to resolve where such metallic protrusions form and how they interact with nearby molecules. Our technique paves the way to tailor metal-molecule interactions on an atomic level and assists in rational heterogeneous catalyst design.
Collapse
Affiliation(s)
- Alex Poppe
- School
of Physics and Astronomy, University of
Kent, Canterbury CT2 7NH, U.K.
| | - Jack Griffiths
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Shu Hu
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Margarita Osadchy
- Computer
Science Department, University of Haifa, Haifa 3498838, Israel
| | - Stuart Gibson
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Bart de Nijs
- School
of Physics and Astronomy, University of
Kent, Canterbury CT2 7NH, U.K.
| |
Collapse
|
18
|
Bunting RJ, Wodaczek F, Torabi T, Cheng B. Reactivity of Single-Atom Alloy Nanoparticles: Modeling the Dehydrogenation of Propane. J Am Chem Soc 2023. [PMID: 37390457 DOI: 10.1021/jacs.3c04030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Physical catalysts often have multiple sites where reactions can take place. One prominent example is single-atom alloys, where the reactive dopant atoms can preferentially locate in the bulk or at different sites on the surface of the nanoparticle. However, ab initio modeling of catalysts usually only considers one site of the catalyst, neglecting the effects of multiple sites. Here, nanoparticles of copper doped with single-atom rhodium or palladium are modeled for the dehydrogenation of propane. Single-atom alloy nanoparticles are simulated at 400-600 K, using machine learning potentials trained on density functional theory calculations, and then the occupation of different single-atom active sites is identified using a similarity kernel. Further, the turnover frequency for all possible sites is calculated for propane dehydrogenation to propene through microkinetic modeling using density functional theory calculations. The total turnover frequencies of the whole nanoparticle are then described from both the population and the individual turnover frequency of each site. Under operating conditions, rhodium as a dopant is found to almost exclusively occupy (111) surface sites while palladium as a dopant occupies a greater variety of facets. Undercoordinated dopant surface sites are found to tend to be more reactive for propane dehydrogenation compared to the (111) surface. It is found that considering the dynamics of the single-atom alloy nanoparticle has a profound effect on the calculated catalytic activity of single-atom alloys by several orders of magnitude.
Collapse
Affiliation(s)
- Rhys J Bunting
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Felix Wodaczek
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Tina Torabi
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Bingqing Cheng
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
19
|
Liu RZ, Shen ZZ, Wen R, Wan LJ. Recent advances in the application of scanning probe microscopy in interfacial electroanalytical chemistry. J Electroanal Chem (Lausanne) 2023; 938:117443. [DOI: 10.1016/j.jelechem.2023.117443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
|
20
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
21
|
Inoue KI, Mao J, Okamoto R, Shibata Y, Song W, Ye S. Development of Line-Detected UV-Vis Absorption Microscope and Its Application to Quantitative Evaluation of Lithium Surface Reactivity. Anal Chem 2023; 95:4550-4555. [PMID: 36826446 DOI: 10.1021/acs.analchem.2c05759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Electrochemical reactions in practical batteries occur in confined environments where anode and cathode electrodes are separated only by a thin separator. Therefore, their electrochemical behaviors may differ from those obtained in the conventional experimental cells, where the two electrodes (working and counter electrodes) are largely separated compared to the batteries. The spatial and temporal distributions of the chemical species in the vicinity of each electrode are highly expected to be determined for quantitatively understanding the phenomena in confined environments. In the present study, we developed a line-detected UV-vis absorption microscope that simultaneously measures space-resolved UV-vis absorption spectra. This novel technique has been successfully applied to evaluate the reactivities of the highly reactive lithium (Li) surfaces in organic electrolyte solutions under in situ conditions. The quantitative evaluations of the dissolution rate of Li and the diffusion constant of the product were successfully realized by analyzing the space- and time-resolved absorption spectra based on Fick's law of diffusion. The microscopic technique is expected to open the door to understanding the fundamental electrochemistry in batteries.
Collapse
Affiliation(s)
- Ken-Ichi Inoue
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Jianxin Mao
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.,College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Rika Okamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shen Ye
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
22
|
Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nat Rev Chem 2023; 7:184-201. [PMID: 37117902 DOI: 10.1038/s41570-023-00462-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2022] [Indexed: 02/04/2023]
Abstract
The Mo/Fe nitrogenase enzyme is unique in its ability to efficiently reduce dinitrogen to ammonia at atmospheric pressures and room temperature. Should an artificial electrolytic device achieve the same feat, it would revolutionize fertilizer production and even provide an energy-dense, truly carbon-free fuel. This Review provides a coherent comparison of recent progress made in dinitrogen fixation on solid electrodes, homogeneous catalysts and nitrogenases. Specific emphasis is placed on systems for which there is unequivocal evidence that dinitrogen reduction has taken place. By establishing the cross-cutting themes and synergies between these systems, we identify viable avenues for future research.
Collapse
|
23
|
Affiliation(s)
- Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
24
|
In situ/operando characterization techniques for electrochemical CO2 reduction. Sci China Chem 2023. [DOI: 10.1007/s11426-021-1463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Recent Advances in In Situ/Operando Surface/Interface Characterization Techniques for the Study of Artificial Photosynthesis. INORGANICS 2022. [DOI: 10.3390/inorganics11010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
(Photo-)electrocatalytic artificial photosynthesis driven by electrical and/or solar energy that converts water (H2O) and carbon dioxide (CO2) into hydrogen (H2), carbohydrates and oxygen (O2), has proven to be a promising and effective route for producing clean alternatives to fossil fuels, as well as for storing intermittent renewable energy, and thus to solve the energy crisis and climate change issues that we are facing today. Basic (photo-)electrocatalysis consists of three main processes: (1) light absorption, (2) the separation and transport of photogenerated charge carriers, and (3) the transfer of photogenerated charge carriers at the interfaces. With further research, scientists have found that these three steps are significantly affected by surface and interface properties (e.g., defect, dangling bonds, adsorption/desorption, surface recombination, electric double layer (EDL), surface dipole). Therefore, the catalytic performance, which to a great extent is determined by the physicochemical properties of surfaces and interfaces between catalyst and reactant, can be changed dramatically under working conditions. Common approaches for investigating these phenomena include X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), scanning probe microscopy (SPM), wide angle X-ray diffraction (WAXRD), auger electron spectroscopy (AES), transmission electron microscope (TEM), etc. Generally, these techniques can only be applied under ex situ conditions and cannot fully recover the changes of catalysts in real chemical reactions. How to identify and track alterations of the catalysts, and thus provide further insight into the complex mechanisms behind them, has become a major research topic in this field. The application of in situ/operando characterization techniques enables real-time monitoring and analysis of dynamic changes. Therefore, researchers can obtain physical and/or chemical information during the reaction (e.g., morphology, chemical bonding, valence state, photocurrent distribution, surface potential variation, surface reconstruction), or even by the combination of these techniques as a suite (e.g., atomic force microscopy-based infrared spectroscopy (AFM-IR), or near-ambient-pressure STM/XPS combined system (NAP STM-XPS)) to correlate the various properties simultaneously, so as to further reveal the reaction mechanisms. In this review, we briefly describe the working principles of in situ/operando surface/interface characterization technologies (i.e., SPM and X-ray spectroscopy) and discuss the recent progress in monitoring relevant surface/interface changes during water splitting and CO2 reduction reactions (CO2RR). We hope that this review will provide our readers with some ideas and guidance about how these in situ/operando characterization techniques can help us investigate the changes in catalyst surfaces/interfaces, and further promote the development of (photo-)electrocatalytic surface and interface engineering.
Collapse
|
26
|
Density Functional Calculations of the Sequential Adsorption of Hydrogen on Single Atom and Small Clusters of Pd and Pt Supported on Au(111). Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Feng YC, Wang X, Yi ZY, Wang YQ, Yan HJ, Wang D. In-situ ECSTM investigation of H2O2 production in cobalt—porphyrin-catalyzed oxygen reduction reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Li H, Liang Y, Ju W, Schneider O, Stimming U. In Situ Monitoring of the Surface Evolution of a Silver Electrode from Polycrystalline to Well-Defined Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14981-14987. [PMID: 36395357 DOI: 10.1021/acs.langmuir.2c02748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Capturing the surface-structural dynamics of metal electrocatalysts under certain electrochemical environments is intriguingly desired for understanding the behavior of various metal-based electrocatalysts. However, in situ monitoring of the evolution of a polycrystalline metal surface at the interface of electrode-electrolyte solutions at negative/positive potentials with high-resolution scanning tunneling microscopy (STM) is seldom. Here, we use electrochemical STM (EC-STM) for in situ monitoring of the surface evolution process of a silver electrode in both an aqueous sodium hydroxide solution and an ionic liquid of 1-methyl-1-octylpyrrolidinium bis(trifluoromethylsulfonyl) amide driven by negative potentials. We found silver underwent a surface change from a polycrystalline structure to a well-defined surface arrangement in both electrolytes. In NaOH aqueous solution, the silver surface transferred in several minutes at a turning-point potential where hydrogen adsorbed and formed mainly (111) and (100) pits. Controversially, the surface evolution in the ionic liquid was much slower than that in the aqueous solution, and cation adsorption was observed in a wide potential range. The surface evolution of silver is proposed to be linked to the surface adsorbates as well as the formation of their complexes with undercoordinated silver atoms. The results also show that cathodic annealing of polycrystalline silver is a cheap, easy, and reliable way to obtain quasi-ordered crystal surfaces.
Collapse
Affiliation(s)
- Hongjiao Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institut für Informatik VI, Technische Universität München, Schleißheimer Str. 90a, Garching b. München 85748, Germany
| | - Yunchang Liang
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wenbo Ju
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Oliver Schneider
- Institut für Informatik VI, Technische Universität München, Schleißheimer Str. 90a, Garching b. München 85748, Germany
| | - Ulrich Stimming
- Department of Physics E19, Technische Universität München, James-Franck-Str.1, Garching b. München 85748, Germany
| |
Collapse
|
29
|
Wang S, Jiang Q, Ju S, Hsu CS, Chen HM, Zhang D, Song F. Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction. Nat Commun 2022; 13:6650. [PMCID: PMC9636199 DOI: 10.1038/s41467-022-34380-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Unraveling the precise location and nature of active sites is of paramount significance for the understanding of the catalytic mechanism and the rational design of efficient electrocatalysts. Here, we use well-defined crystalline cobalt oxyhydroxides CoOOH nanorods and nanosheets as model catalysts to investigate the geometric catalytic active sites. The morphology-dependent analysis reveals a ~50 times higher specific activity of CoOOH nanorods than that of CoOOH nanosheets. Furthermore, we disclose a linear correlation of catalytic activities with their lateral surface areas, suggesting that the active sites are exclusively located at lateral facets rather than basal facets. Theoretical calculations show that the coordinatively unsaturated cobalt sites of lateral facets upshift the O 2p-band center closer to the Fermi level, thereby enhancing the covalency of Co-O bonds to yield the reactivity. This work elucidates the geometrical catalytic active sites and enlightens the design strategy of surface engineering for efficient OER catalysts. While cobalt-based electrocatalysts demonstrate promising performances for oxygen evolution, active site identification is complicated by concurrent structural changes. Here, authors examine crystalline, well-defined cobalt oxyhydroxide nanomaterials and identify the geometric active sites.
Collapse
Affiliation(s)
- Sihong Wang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Qu Jiang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shenghong Ju
- grid.16821.3c0000 0004 0368 8293China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306 China
| | - Chia-Shuo Hsu
- grid.19188.390000 0004 0546 0241Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
| | - Hao Ming Chen
- grid.19188.390000 0004 0546 0241Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan ,grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| | - Di Zhang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Fang Song
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
30
|
Wang YQ, Dan XH, Wang X, Yi ZY, Fu J, Feng YC, Hu JS, Wang D, Wan LJ. Probing the Synergistic Effects of Mg 2+ on CO 2 Reduction Reaction on CoPc by In Situ Electrochemical Scanning Tunneling Microscopy. J Am Chem Soc 2022; 144:20126-20133. [PMID: 36259686 DOI: 10.1021/jacs.2c09862] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein the in situ electrochemical scanning tunneling microscopy (ECSTM) study on the synergistic effect of Mg2+ in CO2 reduction reaction (CO2RR) catalyzed by cobalt phthalocyanine (CoPc). ECSTM measurement molecularly resolves the self-assembled CoPc monolayer on the Au(111) substrate. In the CO2 environment, high-contrast species are observed in the adlayer and assigned to the CO2 adsorption on CoPc. Furthermore, the contrast of the CO2-bound complex is higher in Mg2+-containing electrolytes than in Mg2+-free electrolytes, indicating the formation of the CoPc-CO2-Mg2+ complex. The surface coverage of adsorbed CO2 is positively correlated with the Mg2+ concentration as the additive in electrolytes up to a plateau of 30.8 ± 2.7% when c(Mg2+) > 30 mM. The potential step experiment indicates the higher CO2 adsorption dynamics in Mg2+-containing electrolytes than without Mg2+. The rate constants of CO2 adsorption and dissociation in different electrolytes are extracted from the data fitting of statistical results from in situ ECSTM experiments.
Collapse
Affiliation(s)
- Yu-Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiao-Han Dan
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiang Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Zhen-Yu Yi
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - JiaJu Fu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Ya-Chen Feng
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Jin-Song Hu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
31
|
Gao C, Terasaki O. Counting charges per metal nanoparticle. Science 2022; 378:133-134. [PMID: 36227986 DOI: 10.1126/science.ade6051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Charges on a metal nanoparticle are measured with precision by electron holography.
Collapse
Affiliation(s)
- Chuanbo Gao
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Osamu Terasaki
- Center for High-resolution Electron Microscopy (ChEM) and Shanghai Key Laboratory of High-resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
32
|
Aso R, Hojo H, Takahashi Y, Akashi T, Midoh Y, Ichihashi F, Nakajima H, Tamaoka T, Yubuta K, Nakanishi H, Einaga H, Tanigaki T, Shinada H, Murakami Y. Direct identification of the charge state in a single platinum nanoparticle on titanium oxide. Science 2022; 378:202-206. [PMID: 36227985 DOI: 10.1126/science.abq5868] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A goal in the characterization of supported metal catalysts is to achieve particle-by-particle analysis of the charge state strongly correlated with the catalytic activity. Here, we demonstrate the direct identification of the charge state of individual platinum nanoparticles (NPs) supported on titanium dioxide using ultrahigh sensitivity and precision electron holography. Sophisticated phase-shift analysis for the part of the NPs protruding into the vacuum visualized slight potential changes around individual platinum NPs. The analysis revealed the number (only one to six electrons) and sense (positive or negative) of the charge per platinum NP. The underlying mechanism of platinum charging is explained by the work function differences between platinum and titanium dioxide (depending on the orientation relationship and lattice distortion) and by first-principles calculations in terms of the charge transfer processes.
Collapse
Affiliation(s)
- Ryotaro Aso
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hajime Hojo
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Yoshio Takahashi
- Research and Development Group, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - Tetsuya Akashi
- Research and Development Group, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - Yoshihiro Midoh
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fumiaki Ichihashi
- Research and Development Group, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - Hiroshi Nakajima
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takehiro Tamaoka
- The Ultramicroscopy Research Center, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kunio Yubuta
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Nakanishi
- National Institute of Technology, Akashi College, Akashi, Hyogo 674-8501, Japan
| | - Hisahiro Einaga
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Toshiaki Tanigaki
- Research and Development Group, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - Hiroyuki Shinada
- Research and Development Group, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - Yasukazu Murakami
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.,The Ultramicroscopy Research Center, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
33
|
Ghanekar PG, Deshpande S, Greeley J. Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis. Nat Commun 2022; 13:5788. [PMID: 36184625 PMCID: PMC9527237 DOI: 10.1038/s41467-022-33256-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Heterogeneous catalytic reactions are influenced by a subtle interplay of atomic-scale factors, ranging from the catalysts' local morphology to the presence of high adsorbate coverages. Describing such phenomena via computational models requires generation and analysis of a large space of atomic configurations. To address this challenge, we present Adsorbate Chemical Environment-based Graph Convolution Neural Network (ACE-GCN), a screening workflow that accounts for atomistic configurations comprising diverse adsorbates, binding locations, coordination environments, and substrate morphologies. Using this workflow, we develop catalyst surface models for two illustrative systems: (i) NO adsorbed on a Pt3Sn(111) alloy surface, of interest for nitrate electroreduction processes, where high adsorbate coverages combined with low symmetry of the alloy substrate produce a large configurational space, and (ii) OH* adsorbed on a stepped Pt(221) facet, of relevance to the Oxygen Reduction Reaction, where configurational complexity results from the presence of irregular crystal surfaces, high adsorbate coverages, and directionally-dependent adsorbate-adsorbate interactions. In both cases, the ACE-GCN model, trained on a fraction (~10%) of the total DFT-relaxed configurations, successfully describes trends in the relative stabilities of unrelaxed atomic configurations sampled from a large configurational space. This approach is expected to accelerate development of rigorous descriptions of catalyst surfaces under in-situ conditions.
Collapse
Affiliation(s)
- Pushkar G Ghanekar
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Siddharth Deshpande
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA. .,Department of Chemical Engineering, University of Delaware, Newark, DE, USA.
| | - Jeffrey Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
34
|
Wan T, Wang G, Guo Y, Fan X, Zhao J, Zhang X, Qin J, Fang J, Ma J, Long Y. Special direct route for efficient transfer hydrogenation of nitroarenes at room temperature by monatomic Zr tuned α-Fe2O3. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Tanaka S, Tajiri H, Sakata O, Hoshi N, Nakamura M. Interfacial Structure of Pt(110) Electrode during Hydrogen Evolution Reaction in Alkaline Solutions. J Phys Chem Lett 2022; 13:8403-8408. [PMID: 36047930 DOI: 10.1021/acs.jpclett.2c01575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In alkaline solutions, interfacial cations affect the hydrogen evolution reaction (HER) activity of platinum electrodes. However, the effects of cations on the HER activity have not been previously investigated based on interfacial structures. In situ surface X-ray diffraction was performed on Pt(110), of which the HER activity is the highest in the low-index planes of Pt, at hydrogen evolution potentials in alkaline solutions, and revealed the interfacial structure of alkali metal cations (Li+ and Cs+). The interfacial structure of the Pt(110) electrode changed reversibly depending on the electrode potential. In the LiOH solution, where the HER activity was higher, the densely packed water layer in the electrical double layer acted as a hydrogen supplier. In the CsOH solution, where the HER activity was lower, the Cs+ cations were aligned in the missing rows of the 1 × 2 reconstructed Pt(110) surface, suggesting that the Cs+ hindered water from accessing the surface, resulting in a lower HER activity.
Collapse
Affiliation(s)
- Syunnosuke Tanaka
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hiroo Tajiri
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute/SPring-8, Kouto 1-1-1, Sayo-gun, Hyogo 679-5198, Japan
| | - Osami Sakata
- Synchrotron X-ray Group and Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), Kouto 1-1-1, Sayo-gun, Hyogo 679-5148, Japan
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Nagahiro Hoshi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masashi Nakamura
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
36
|
Godeffroy L, Lemineur JF, Shkirskiy V, Miranda Vieira M, Noël JM, Kanoufi F. Bridging the Gap between Single Nanoparticle Imaging and Global Electrochemical Response by Correlative Microscopy Assisted By Machine Vision. SMALL METHODS 2022; 6:e2200659. [PMID: 35789075 DOI: 10.1002/smtd.202200659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The nanostructuration of an electrochemical interface dictates its micro- and macroscopic behavior. It is generally highly complex and often evolves under operating conditions. Electrochemistry at these nanostructurations can be imaged both operando and/or ex situ at the single nanoobject or nanoparticle (NP) level by diverse optical, electron, and local probe microscopy techniques. However, they only probe a tiny random fraction of interfaces that are by essence highly heterogeneous. Given the above background, correlative multimicroscopy strategy coupled to electrochemistry in a droplet cell provides a unique solution to gain mechanistic insights in electrocatalysis. To do so, a general machine-vision methodology is depicted enabling the automated local identification of various physical and chemical descriptors of NPs (size, composition, activity) obtained from multiple complementary operando and ex situ microscopy imaging of the electrode. These multifarious microscopically probed descriptors for each and all individual NPs are used to reconstruct the global electrochemical response. Herein the methodology unveils the competing processes involved in the electrocatalysis of hydrogen evolution reaction at nickel based NPs, showing that Ni metal activity is comparable to that of platinum.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Marc Noël
- Université Paris Cité, ITODYS, CNRS, 75013, Paris, France
| | | |
Collapse
|
37
|
Yang F, Jin R, Jiang D. High spatial resolution imaging of the charge injection yield at hematite using scanning electrochemical cell microscopy. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
38
|
Yu X, Cheng F, Duan X, Xie K. Porous Single-Crystalline Monolith to Enhance Catalytic Activity and Stability. Research (Wash D C) 2022; 2022:9861518. [PMID: 35928301 PMCID: PMC9297723 DOI: 10.34133/2022/9861518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/30/2022] [Indexed: 11/15/2022] Open
Abstract
Engineering the catalytic activity and stability of materials would require the identification of the structural features that can tailor active sites at surfaces. Porous single crystals combine the ordered lattice structures and disordered interconnected pores, and they would therefore provide the advantages of precise structure features to identify and engineer the active sites at surfaces. Herein, we fabricate porous single-crystalline vanadium nitride (VN) at centimeter scale and further dope Fe (Fe0.1V0.9N) and Co (Co0.1V0.9N) in lattice to engineer the active sites at surface. We demonstrate that the active surface is composed of unsaturated coordination of V-N, Fe-N, and Co-N structures which lead to the generation of high-density active sites at the porous single-crystalline monolith surface. The interconnected pores aid the pore-enhanced fluxion to facilitate species diffusion in the porous architectures. In the nonoxidative dehydrogenation of ethane to ethylene, we demonstrate the outstanding performance with ethane conversion of 36% and ethylene selectivity of 99% at 660°C. Remarkably stability as a result of their single-crystalline structure, the monoliths achieve the outstanding performance without degradation being observed even after 200 hours of a continuous operation in a monolithic reactor. This work not only demonstrates the effective structural engineering to simultaneously enhance the stability and overall performance for practically useful catalytic materials but also provide a new route for the element doping of porous single crystals at large scale for the potential application in other fields.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Fangyuan Cheng
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuyun Duan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 Fujian, China
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
39
|
Schmidt TO, Ngoipala A, Arevalo RL, Watzele SA, Lipin R, Kluge RM, Hou S, Haid RW, Senyshyn A, Gubanova EL, Bandarenka AS, Vandichel M. Elucidation of Structure-Activity Relations in Proton Electroreduction at Pd Surfaces: Theoretical and Experimental Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202410. [PMID: 35726004 DOI: 10.1002/smll.202202410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The structure-activity relationship is a cornerstone topic in catalysis, which lays the foundation for the design and functionalization of catalytic materials. Of particular interest is the catalysis of the hydrogen evolution reaction (HER) by palladium (Pd), which is envisioned to play a major role in realizing a hydrogen-based economy. Interestingly, experimentalists observed excess heat generation in such systems, which became known as the debated "cold fusion" phenomenon. Despite the considerable attention on this report, more fundamental knowledge, such as the impact of the formation of bulk Pd hydrides on the nature of active sites and the HER activity, remains largely unexplored. In this work, classical electrochemical experiments performed on model Pd(hkl) surfaces, "noise" electrochemical scanning tunneling microscopy (n-EC-STM), and density functional theory are combined to elucidate the nature of active sites for the HER. Results reveal an activity trend following Pd(111) > Pd(110) > Pd(100) and that the formation of subsurface hydride layers causes morphological changes and strain, which affect the HER activity and the nature of active sites. These findings provide significant insights into the role of subsurface hydride formation on the structure-activity relations toward the design of efficient Pd-based nanocatalysts for the HER.
Collapse
Affiliation(s)
- Thorsten O Schmidt
- Physics of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748, Garching, Germany
| | - Apinya Ngoipala
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Ryan L Arevalo
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Sebastian A Watzele
- Physics of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748, Garching, Germany
| | - Raju Lipin
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Regina M Kluge
- Physics of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748, Garching, Germany
| | - Shujin Hou
- Physics of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748, Garching, Germany
- Catalysis Research Center TUM, Ernst-Otto-Fischer-Str. 1, 85748, Garching, Germany
| | - Richard W Haid
- Physics of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748, Garching, Germany
| | - Anatoliy Senyshyn
- Heinz Maier-Leibnitz-Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Elena L Gubanova
- Physics of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748, Garching, Germany
| | - Aliaksandr S Bandarenka
- Physics of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748, Garching, Germany
- Catalysis Research Center TUM, Ernst-Otto-Fischer-Str. 1, 85748, Garching, Germany
| | - Matthias Vandichel
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| |
Collapse
|
40
|
Majee R, Parvin S, Arif Islam Q, Kumar A, Debnath B, Mondal S, Bhattacharjee S, Das S, Kumar A, Bhattacharyya S. The Perfect Imperfections in Electrocatalysts. CHEM REC 2022; 22:e202200070. [PMID: 35675947 DOI: 10.1002/tcr.202200070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/22/2022] [Indexed: 01/15/2023]
Abstract
Modern day electrochemical devices find applications in a wide range of industrial sectors, from consumer electronics, renewable energy management to pollution control by electric vehicles and reduction of greenhouse gas. There has been a surge of diverse electrochemical systems which are to be scaled up from the lab-scale to industry sectors. To achieve the targets, the electrocatalysts are continuously upgraded to meet the required device efficiency at a low cost, increased lifetime and performance. An atomic scale understanding is however important for meeting the objectives. Transitioning from the bulk to the nanoscale regime of the electrocatalysts, the existence of defects and interfaces is almost inevitable, significantly impacting (augmenting) the material properties and the catalytic performance. The intrinsic defects alter the electronic structure of the nanostructured catalysts, thereby boosting the performance of metal-ion batteries, metal-air batteries, supercapacitors, fuel cells, water electrolyzers etc. This account presents our findings on the methods to introduce measured imperfections in the nanomaterials and the impact of these atomic-scale irregularities on the activity for three major reactions, oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). Grain boundary (GB) modulation of the (ABO3 )n type perovskite oxide by noble metal doping is a propitious route to enhance the OER/ORR bifunctionality for zinc-air battery (ZAB). The perovskite oxides can be tuned by calcination at different temperatures to alter the oxygen vacancy, GB fraction and overall reactivity. The oxygen defects, unsaturated coordination environment and GBs can turn a relatively less active nanostructure into an efficient redox active catalyst by imbibing plenty of electrochemically active sites. Obviously, the crystalline GB interface is a prerequisite for effective electron flow, which is also applicable for the crystalline surface oxide shell on metal alloy core of the nanoparticles (NPs). The oxygen vacancy of two-dimensional (2D) perovskite oxide can be made reversible by the A-site termination of the nanosheets, facilitating the reversible entry and exit of a secondary phase during the redox processes. In several instances, the secondary phases have been observed to introduce the right proportion of structural defects and orbital occupancies for adsorption and desorption of reaction intermediates. Also, heterogeneous interfaces can be created by wrapping the perovskite oxide with negatively charged surface by layered double hydroxide (LDH) can promote the OER process. In another approach, ion intercalation at the 2D heterointerfaces steers the interlayer spacing that can influence the mass diffusion. Similar to anion vacancy, controlled formation of the cation vacancies can be achieved by exsolving the B-site cations of perovskite oxides to surface anchored catalytically active metal/alloy NPs. In case of the alloy electrocatalysts, incomplete solid solution by two or more mutually immiscible metals results in heterogeneous alloys having differently exposed facets with complementary functionalities. From the future perspective, new categories of defect structures including the 2D empty spaces or voids leading to undercoordinated sites, the multiple interfaces in heterogeneous alloys, antisite defects between anions and cations, and the defect induced inverse charge transfer should bring new dimensionalities to this riveting area of research.
Collapse
Affiliation(s)
- Rahul Majee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sahanaz Parvin
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Quazi Arif Islam
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Ashwani Kumar
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Bharati Debnath
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Surajit Mondal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Subhajit Bhattacharjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Satarupa Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Arun Kumar
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
41
|
Zheng W, Lee LYS. Observing Electrocatalytic Processes via In Situ Electrochemical Scanning Tunneling Microscopy: Latest Advances. Chem Asian J 2022; 17:e202200384. [PMID: 35621190 DOI: 10.1002/asia.202200384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Indexed: 11/08/2022]
Abstract
Electrocatalysis is the foundation of many techniques that are currently used to address both environmental and energy problems. Therefore, understanding electrocatalytic processes is essential to guide the rational design of electrocatalysts. Scanning tunneling microscopy (STM), which was developed in the 1980s, remains one of the few techniques that allow surface imaging at the atomic level, making it incredibly useful in electrocatalytic research. In this review, we introduced the basic concept and latest applications of the STM technique for in situ studies of electrocatalytic processes, particularly its capability in analyzing species adsorption/desorption, surface reconstruction, active site identification, and electrocatalyst dissolution, as well as its advantages and limitations.
Collapse
Affiliation(s)
- Weiran Zheng
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, HONG KONG
| | - Lawrence Yoon Suk Lee
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, ., Hung Hom, HONG KONG
| |
Collapse
|
42
|
Kluge RM, Psaltis E, Haid RW, Hou S, Schmidt TO, Schneider O, Garlyyev B, Calle-Vallejo F, Bandarenka AS. Revealing the Nature of Active Sites on Pt-Gd and Pt-Pr Alloys during the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19604-19613. [PMID: 35442013 DOI: 10.1021/acsami.2c03604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For large-scale applications of hydrogen fuel cells, the sluggish kinetics of the oxygen reduction reaction (ORR) have to be overcome. So far, only platinum (Pt)-group catalysts have shown adequate performance and stability. A well-known approach to increase the efficiency and decrease the Pt loading is to alloy Pt with other metals. Still, for catalyst optimization, the nature of the active sites is crucial. In this work, electrochemical scanning tunneling microscopy (EC-STM) is used to probe the ORR active areas on Pt5Gd and Pt5Pr in acidic media under reaction conditions. The technique detects localized fluctuations in the EC-STM signal, which indicates differences in the local activity. The in situ experiments, supported by coordination-activity plots based on density functional theory calculations, show that the compressed Pt-lanthanide (111) terraces contribute the most to the overall activity. Sites with higher coordination, as found at the bottom of step edges or concavities, remain relatively inactive. Sites of lower coordination, as found near the top of step edges, show higher activity, presumably due to an interplay of strain and steric hindrance effects. These findings should be vital in designing nanostructured Pt-lanthanide electrocatalysts.
Collapse
Affiliation(s)
- Regina M Kluge
- Physik-Department ECS, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Eleftherios Psaltis
- Physik-Department ECS, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Richard W Haid
- Physik-Department ECS, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Shujin Hou
- Physik-Department ECS, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
- Catalysis Research Center TUM, Ernst-Otto-Fischer-Straße 1, 85748 Garching, Germany
| | - Thorsten O Schmidt
- Physik-Department ECS, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Oliver Schneider
- Institut für Informatik VI, Technische Universität München, Schleißheimerstraße 90a, 85748 Garching, Germany
| | - Batyr Garlyyev
- Physik-Department ECS, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Federico Calle-Vallejo
- Department of Materials Science and Chemical Physics & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Aliaksandr S Bandarenka
- Physik-Department ECS, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
- Catalysis Research Center TUM, Ernst-Otto-Fischer-Straße 1, 85748 Garching, Germany
| |
Collapse
|
43
|
Chen R, Fan F, Li C. Unraveling Charge-Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques. Angew Chem Int Ed Engl 2022; 61:e202117567. [PMID: 35100475 DOI: 10.1002/anie.202117567] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/08/2022]
Abstract
The photocatalytic conversion of solar energy offers a potential route to renewable energy, and its efficiency relies on effective charge separation in nanostructured photocatalysts. Understanding the charge-separation mechanism is key to improving the photocatalytic performance and this has now been enabled by advances in the spatially resolved surface photovoltage (SRSPV) method. In this Review we highlight progress made by SRSPV in mapping charge distributions at the nanoscale and determining the driving forces of charge separation in heterogeneous photocatalyst particles. We discuss how charge separation arising from a built-in electric field, diffusion, and trapping can be exploited and optimized through photocatalyst design. We also highlight the importance of asymmetric engineering of photocatalysts for effective charge separation. Finally, we provide an outlook on further opportunities that arise from leveraging these insights to guide the rational design of photocatalysts and advance the imaging technique to expand the knowledge of charge separation.
Collapse
Affiliation(s)
- Ruotian Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| |
Collapse
|
44
|
Dong J, Xu Y, Zhang Z, Feng J. Operando Imaging of Chemical Activity on Gold Plates with Single-Molecule Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2022; 61:e202200187. [PMID: 35084097 DOI: 10.1002/anie.202200187] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/31/2022]
Abstract
Classical electrochemical characterization tools cannot avoid averaging between the active reaction sites and their support, thus obscuring their intrinsic roles. Single-molecule electrochemical techniques are thus in high demand. Here, we demonstrate super-resolution imaging of Ru(bpy)3 2+ based reactions on Au plates using single-molecule electrochemiluminescence microscopy. By converting electrochemical signals into optical signals, we manage to achieve the ultimate sensitivity of single-entity chemistry, that is directly resolving the single photons from individual electrochemical reactions. High spatial resolution, up to 37 nm, further enables mapping Au chemical activity and the reaction kinetics. The spatiotemporally resolved dynamic structure-activity relationship on Au plates shows that the restructuring of catalysts plays an important role in determining the reactivity. Our approach may lead to gaining new insights towards evaluating and designing electrocatalytic systems.
Collapse
Affiliation(s)
- Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Xu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ziqing Zhang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
45
|
Affiliation(s)
- Andrew R. Akbashev
- Division for Research with Neutrons and Muons (NUM), Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
46
|
Guo W, Yin J, Xu Z, Li W, Peng Z, Weststrate CJ, Yu X, He Y, Cao Z, Wen X, Yang Y, Wu K, Li Y, Niemantsverdriet JW, Zhou X. Visualization of on-surface ethylene polymerization through ethylene insertion. Science 2022; 375:1188-1191. [PMID: 35271314 DOI: 10.1126/science.abi4407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Polyethylene production through catalytic ethylene polymerization is one of the most common processes in the chemical industry. The popular Cossee-Arlman mechanism hypothesizes that the ethylene be directly inserted into the metal-carbon bond during chain growth, which has been awaiting microscopic and spatiotemporal experimental confirmation. Here, we report an in situ visualization of ethylene polymerization by scanning tunneling microscopy on a carburized iron single-crystal surface. We observed that ethylene polymerization proceeds on a specific triangular iron site at the boundary between two carbide domains. Without an activator, an intermediate, attributed to surface-anchored ethylidene (CHCH3), serves as the chain initiator (self-initiation), which subsequently grows by ethylene insertion. Our finding provides direct experimental evidence of the ethylene polymerization pathway at the molecular level.
Collapse
Affiliation(s)
- Weijun Guo
- SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing 101407, China.,Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junqing Yin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zhen Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wentao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhantao Peng
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - C J Weststrate
- SynCat@DIFFER, Syngaschem BV, 5600 HH Eindhoven, Netherlands
| | - Xin Yu
- SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing 101407, China
| | - Yurong He
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zhi Cao
- SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing 101407, China.,State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Xiaodong Wen
- SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing 101407, China.,State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Kai Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing 101407, China.,State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - J W Niemantsverdriet
- SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing 101407, China.,SynCat@DIFFER, Syngaschem BV, 5600 HH Eindhoven, Netherlands
| | - Xiong Zhou
- SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing 101407, China.,Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Chen R, Fan F, Li C. Unraveling Charge‐Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruotian Chen
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Fengtao Fan
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Can Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| |
Collapse
|
48
|
Cai C, Han S, Zhang X, Yu J, Xiang X, Yang J, Qiao L, Zu X, Chen Y, Li S. Ultrahigh oxygen evolution reaction activity in Au doped co-based nanosheets. RSC Adv 2022; 12:6205-6213. [PMID: 35424532 PMCID: PMC8982178 DOI: 10.1039/d1ra09094a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 01/06/2023] Open
Abstract
Oxygen evolution reaction (OER) has attracted enormous interest as a key process for water electrolysis over the past years. The advance of this process relies on an effective catalyst. Herein, we employed single-atom Au doped Co-based nanosheets (NSs) to theoretically and experimentally evaluate the OER activity and also the interaction between Co and Au. We reveal that Au-Co(OH)2 NSs achieved a low overpotential of 0.26 V at 10 mA cm-2. This extraordinary phenomenon presents an overall superior performance greater than state-of-the-art Co-based catalysts in a sequence of α-Co(OH)2 < Co3O4 < CoOOH < Au-Co(OH)2. With ab initio calculations and analysis in the specific Au-Co(OH)2 configuration, we reveal that OER on highly active Au-Co(OH)2 originates from lattice oxygen, which is different from the conventional adsorbate evolution scheme. Explicitly, the configuration of Au-Co(OH)2 gives rise to oxygen non-bonding (ONB) states and oxygen holes, allowing direct O-O bond formation by a couple of oxidized oxygen with oxygen holes, offering a high OER activity. This study provides new insights for elucidating the origins of activity and synthesizing efficient OER electrocatalysts.
Collapse
Affiliation(s)
- Chao Cai
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 China
| | - Shaobo Han
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 China
| | - Xiaotao Zhang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Jingxia Yu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 China
| | - Xia Xiang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 China
| | - Jack Yang
- School of Materials Science and Engineering, The University of New South Wales Sydney 2052 Australia
| | - Liang Qiao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 China
| | - Xiaotao Zu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 China .,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Sean Li
- School of Materials Science and Engineering, The University of New South Wales Sydney 2052 Australia
| |
Collapse
|
49
|
Dong J, Xu Y, Zhang Z, Feng J. Operando Imaging of Chemical Activity on Gold Plates with Single‐Molecule Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinrun Dong
- Zhejiang University Department of Chemistry CHINA
| | - Yang Xu
- Zhejiang University Department of Chemistry CHINA
| | - Ziqing Zhang
- Zhejiang University Department of Chemistry CHINA
| | | |
Collapse
|
50
|
Ding X, Scieszka D, Watzele S, Xue S, Garlyyev B, Haid RW, Bandarenka AS. A Systematic Study of the Influence of Electrolyte Ions on the Electrode Activity. ChemElectroChem 2022. [DOI: 10.1002/celc.202101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xing Ding
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Daniel Scieszka
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Sebastian Watzele
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Song Xue
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Batyr Garlyyev
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Richard W. Haid
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
- Catalysis Research Center TUM Technical University of Munich Ernst-Otto-Fischer-Strasse 1 85748 Garching Germany
| |
Collapse
|