1
|
Stortz M, Oses C, Lafuente AL, Presman DM, Levi V. Catching the glucocorticoid receptor in the act: Lessons from fluorescence fluctuation methods. Biochem Biophys Res Commun 2025; 748:151327. [PMID: 39823895 DOI: 10.1016/j.bbrc.2025.151327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Technological innovation can drive scientific inquiry by allowing researchers to answer questions that were once out of reach. Eukaryotic mRNA synthesis was not so long ago thought of as a deterministic, sequential process in which transcriptional regulators and general transcription factors assemble in an orderly fashion into chromatin to, ultimately, activate RNA polymerase II. Advances in fluorescence microscopy techniques have revealed a much more complex scenario, wherein transcriptional regulators dynamically engage with chromatin in a more stochastic, probabilistic way. In this review, we will concentrate on what fluorescence fluctuation methods have taught us about the journey of transcription factors within live cells. Specifically, we summarized how these techniques have contributed to reshaping our understanding of the mechanism(s) of action of the glucocorticoid receptor, a ligand-regulated transcription factor involved in many physiological and pathological processes. This receptor regulates a variety of gene networks in a context-specific manner and its activity can be quickly and easily controlled by the addition of specific ligands. Thus, it is widely used as a model to study the mechanisms of transcription factors through live-cell imaging.
Collapse
Affiliation(s)
- Martin Stortz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Agustina L Lafuente
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, C1428EGA, Argentina
| | - Diego M Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, C1428EGA, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina.
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina.
| |
Collapse
|
2
|
Barbotin A, Billaudeau C, Sezgin E, Carballido-López R. Quantification of membrane fluidity in bacteria using TIR-FCS. Biophys J 2024; 123:2484-2495. [PMID: 38877702 PMCID: PMC11365102 DOI: 10.1016/j.bpj.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Plasma membrane fluidity is an important phenotypic feature that regulates the diffusion, function, and folding of transmembrane and membrane-associated proteins. In bacterial cells, variations in membrane fluidity are known to affect respiration, transport, and antibiotic resistance. Membrane fluidity must therefore be tightly regulated to adapt to environmental variations and stresses such as temperature fluctuations or osmotic shocks. Quantitative investigation of bacterial membrane fluidity has been, however, limited due to the lack of available tools, primarily due to the small size and membrane curvature of bacteria that preclude most conventional analysis methods used in eukaryotes. Here, we develop an assay based on total internal reflection-fluorescence correlation spectroscopy (TIR-FCS) to directly measure membrane fluidity in live bacteria via the diffusivity of fluorescent membrane markers. With simulations validated by experiments, we could determine how the small size, high curvature, and geometry of bacteria affect diffusion measurements and correct subsequent measurements for unbiased diffusion coefficient estimation. We used this assay to quantify the fluidity of the cytoplasmic membranes of the Gram-positive bacteria Bacillus subtilis (rod-shaped) and Staphylococcus aureus (coccus) at high (37°C) and low (20°C) temperatures in a steady state and in response to a cold shock, caused by a shift from high to low temperature. The steady-state fluidity was lower at 20°C than at 37°C, yet differed between B. subtilis and S. aureus at 37°C. Upon cold shock, the membrane fluidity decreased further below the steady-state fluidity at 20°C and recovered within 30 min in both bacterial species. Our minimally invasive assay opens up exciting perspectives for the study of a wide range of phenomena affecting the bacterial membrane, from disruption by chemicals or antibiotics to viral infection or change in nutrient availability.
Collapse
Affiliation(s)
- Aurélien Barbotin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Cyrille Billaudeau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Rut Carballido-López
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
3
|
Zentout S, Imburchia V, Chapuis C, Duma L, Schützenhofer K, Prokhorova E, Ahel I, Smith R, Huet S. Histone ADP-ribosylation promotes resistance to PARP inhibitors by facilitating PARP1 release from DNA lesions. Proc Natl Acad Sci U S A 2024; 121:e2322689121. [PMID: 38865276 PMCID: PMC11194589 DOI: 10.1073/pnas.2322689121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) has emerged as a central target for cancer therapies due to the ability of PARP inhibitors to specifically kill tumors deficient for DNA repair by homologous recombination. Upon DNA damage, PARP1 quickly binds to DNA breaks and triggers ADP-ribosylation signaling. ADP-ribosylation is important for the recruitment of various factors to sites of damage, as well as for the timely dissociation of PARP1 from DNA breaks. Indeed, PARP1 becomes trapped at DNA breaks in the presence of PARP inhibitors, a mechanism underlying the cytotoxitiy of these inhibitors. Therefore, any cellular process influencing trapping is thought to impact PARP inhibitor efficiency, potentially leading to acquired resistance in patients treated with these drugs. There are numerous ADP-ribosylation targets after DNA damage, including PARP1 itself as well as histones. While recent findings reported that the automodification of PARP1 promotes its release from the DNA lesions, the potential impact of other ADP-ribosylated proteins on this process remains unknown. Here, we demonstrate that histone ADP-ribosylation is also crucial for the timely dissipation of PARP1 from the lesions, thus contributing to cellular resistance to PARP inhibitors. Considering the crosstalk between ADP-ribosylation and other histone marks, our findings open interesting perspectives for the development of more efficient PARP inhibitor-driven cancer therapies.
Collapse
Affiliation(s)
- Siham Zentout
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
| | - Victor Imburchia
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
| | - Catherine Chapuis
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
| | - Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Kira Schützenhofer
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Rebecca Smith
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Sébastien Huet
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
| |
Collapse
|
4
|
Seltmann A, Carravilla P, Reglinski K, Eggeling C, Waithe D. Neural network informed photon filtering reduces fluorescence correlation spectroscopy artifacts. Biophys J 2024; 123:745-755. [PMID: 38384131 PMCID: PMC10995453 DOI: 10.1016/j.bpj.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Fluorescence correlation spectroscopy (FCS) techniques are well-established tools to investigate molecular dynamics in confocal and super-resolution microscopy. In practice, users often need to handle a variety of sample- or hardware-related artifacts, an example being peak artifacts created by bright, slow-moving clusters. Approaches to address peak artifacts exist, but measurements suffering from severe artifacts are typically nonanalyzable. Here, we trained a one-dimensional U-Net to automatically identify peak artifacts in fluorescence time series and then analyzed the purified, nonartifactual fluctuations by time-series editing. We show that, in samples with peak artifacts, the transit time and particle number distributions can be restored in simulations and validated the approach in two independent biological experiments. We propose that it is adaptable for other FCS artifacts, such as detector dropout, membrane movement, or photobleaching. In conclusion, this simulation-based, automated, open-source pipeline makes measurements analyzable that previously had to be discarded and extends every FCS user's experimental toolbox.
Collapse
Affiliation(s)
- Alexander Seltmann
- Institute for Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany.
| | | | - Katharina Reglinski
- Institute for Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany; Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Eggeling
- Institute for Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany; Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| | - Dominic Waithe
- MRC Centre for Computational Biology and Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Pinto Jurado E, Smith R, Bigot N, Chapuis C, Timinszky G, Huet S. The recruitment of ACF1 and SMARCA5 to DNA lesions relies on ADP-ribosylation dependent chromatin unfolding. Mol Biol Cell 2024; 35:br7. [PMID: 38170578 PMCID: PMC10916859 DOI: 10.1091/mbc.e23-07-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
ADP-ribosylation signaling orchestrates the recruitment of various repair actors and chromatin remodeling processes promoting access to lesions during the early stages of the DNA damage response. The chromatin remodeler complex ACF, composed of the ATPase subunit SMARCA5/SNF2H and the cofactor ACF1/BAZ1A, is among the factors that accumulate at DNA lesions in an ADP-ribosylation dependent manner. In this work, we show that each subunit of the ACF complex accumulates to DNA breaks independently from its partner. Furthermore, we demonstrate that the recruitment of SMARCA5 and ACF1 to sites of damage is not due to direct binding to the ADP-ribose moieties but due to facilitated DNA binding at relaxed ADP-ribosylated chromatin. Therefore, our work provides new insights regarding the mechanisms underlying the timely accumulation of ACF1 and SMARCA5 to DNA lesions, where they contribute to efficient DNA damage resolution.
Collapse
Affiliation(s)
- Eva Pinto Jurado
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), F-35000 Rennes, France
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6720 Szeged, Hungary
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), F-35000 Rennes, France
| | - Nicolas Bigot
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), F-35000 Rennes, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), F-35000 Rennes, France
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), F-35000 Rennes, France
- Institut Universitaire de France, F-75000 Paris, France
| |
Collapse
|
6
|
Yu W, Liu J, Huang X, Ren J. Study on Phase Separation of Fused in Sarcoma by Fluorescence Correlation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1266-1276. [PMID: 38157426 DOI: 10.1021/acs.langmuir.3c02711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Liquid-liquid phase separation (LLPS) of fused in sarcoma (FUS) has emerged as a fundamental principle underpinning cellular function and malfunction. However, we know little about the FUS phase transition process from individual molecules to nanoscale condensates, which plays important roles in neurodegenerative diseases. Here, we propose the fluorescence correlation spectroscopy (FCS) method to quantitatively study the phase separation process of FUS protein with the fluorescent tag-enhanced green fluorescent protein (EGFP), from individual molecules to nanoscale condensates. The characteristic diffusion time (τD) of the protein condensates can be obtained from the FCS curve, which increases with the growth of the protein hydration radius. The bigger the τD value of the protein condensates, the larger the condensates formed by the phase separation of FUS. By this method, we discovered that the critical concentration for FUS to phase separation was 20 nM. We then plotted FUS phase diagrams based on τD under different concentrations of NaCl and found that both low-salt and high-salt concentrations tended to promote FUS-EGFP phase separation. Our results showed that ATP has a good inhibitory effect on FUS phase separation, and its inhibition constant IC50 was 3.2 mM. Finally, we evaluated the inhibition efficiency of single-stranded DNA sequences (ssDNA) on FUS phase separation and demonstrated that ssDNA containing three copies of TCCCCGT had relatively strong inhibition efficiency. In summary, our work provides detailed insight into the FUS phase transition process from individual molecules to nanoscale condensates at nanomolar concentrations and can be exploited for drug screening of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenxin Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jian Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
7
|
Alfonso C, Sobrinos-Sanguino M, Luque-Ortega JR, Zorrilla S, Monterroso B, Nuero OM, Rivas G. Studying Macromolecular Interactions of Cellular Machines by the Combined Use of Analytical Ultracentrifugation, Light Scattering, and Fluorescence Spectroscopy Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:89-107. [PMID: 38507202 DOI: 10.1007/978-3-031-52193-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Cellular machines formed by the interaction and assembly of macromolecules are essential in many processes of the living cell. These assemblies involve homo- and hetero-associations, including protein-protein, protein-DNA, protein-RNA, and protein-polysaccharide associations, most of which are reversible. This chapter describes the use of analytical ultracentrifugation, light scattering, and fluorescence-based methods, well-established biophysical techniques, to characterize interactions leading to the formation of macromolecular complexes and their modulation in response to specific or unspecific factors. We also illustrate, with several examples taken from studies on bacterial processes, the advantages of the combined use of subsets of these techniques as orthogonal analytical methods to analyze protein oligomerization and polymerization, interactions with ligands, hetero-associations involving membrane proteins, and protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Carlos Alfonso
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Marta Sobrinos-Sanguino
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Silvia Zorrilla
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Begoña Monterroso
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Oscar M Nuero
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Germán Rivas
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
8
|
D’Augustin O, Gaudon V, Siberchicot C, Smith R, Chapuis C, Depagne J, Veaute X, Busso D, Di Guilmi AM, Castaing B, Radicella JP, Campalans A, Huet S. Identification of key residues of the DNA glycosylase OGG1 controlling efficient DNA sampling and recruitment to oxidized bases in living cells. Nucleic Acids Res 2023; 51:4942-4958. [PMID: 37021552 PMCID: PMC10250219 DOI: 10.1093/nar/gkad243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
The DNA-glycosylase OGG1 oversees the detection and clearance of the 7,8-dihydro-8-oxoguanine (8-oxoG), which is the most frequent form of oxidized base in the genome. This lesion is deeply buried within the double-helix and its detection requires careful inspection of the bases by OGG1 via a mechanism that remains only partially understood. By analyzing OGG1 dynamics in the nucleus of living human cells, we demonstrate that the glycosylase constantly samples the DNA by rapidly alternating between diffusion within the nucleoplasm and short transits on the DNA. This sampling process, that we find to be tightly regulated by the conserved residue G245, is crucial for the rapid recruitment of OGG1 at oxidative lesions induced by laser micro-irradiation. Furthermore, we show that residues Y203, N149 and N150, while being all involved in early stages of 8-oxoG probing by OGG1 based on previous structural data, differentially regulate the sampling of the DNA and recruitment to oxidative lesions.
Collapse
Affiliation(s)
- Ostiane D’Augustin
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, F-35000 Rennes, France
- Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
| | | | - Capucine Siberchicot
- Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, F-35000 Rennes, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, F-35000 Rennes, France
| | - Jordane Depagne
- Université de Paris-Cité, Inserm, CEA/IBFJ/IRCM/CIGEx, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/CIGEx, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
| | - Xavier Veaute
- Université de Paris-Cité, Inserm, CEA/IBFJ/IRCM/CIGEx, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/CIGEx, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
| | - Didier Busso
- Université de Paris-Cité, Inserm, CEA/IBFJ/IRCM/CIGEx, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/CIGEx, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
| | - Anne-Marie Di Guilmi
- Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
| | | | - J Pablo Radicella
- Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
| | - Anna Campalans
- Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, F-35000 Rennes, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
9
|
Longarini EJ, Dauben H, Locatelli C, Wondisford AR, Smith R, Muench C, Kolvenbach A, Lynskey ML, Pope A, Bonfiglio JJ, Jurado EP, Fajka-Boja R, Colby T, Schuller M, Ahel I, Timinszky G, O'Sullivan RJ, Huet S, Matic I. Modular antibodies reveal DNA damage-induced mono-ADP-ribosylation as a second wave of PARP1 signaling. Mol Cell 2023; 83:1743-1760.e11. [PMID: 37116497 PMCID: PMC10205078 DOI: 10.1016/j.molcel.2023.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 04/30/2023]
Abstract
PARP1, an established anti-cancer target that regulates many cellular pathways, including DNA repair signaling, has been intensely studied for decades as a poly(ADP-ribosyl)transferase. Although recent studies have revealed the prevalence of mono-ADP-ribosylation upon DNA damage, it was unknown whether this signal plays an active role in the cell or is just a byproduct of poly-ADP-ribosylation. By engineering SpyTag-based modular antibodies for sensitive and flexible detection of mono-ADP-ribosylation, including fluorescence-based sensors for live-cell imaging, we demonstrate that serine mono-ADP-ribosylation constitutes a second wave of PARP1 signaling shaped by the cellular HPF1/PARP1 ratio. Multilevel chromatin proteomics reveals histone mono-ADP-ribosylation readers, including RNF114, a ubiquitin ligase recruited to DNA lesions through a zinc-finger domain, modulating the DNA damage response and telomere maintenance. Our work provides a technological framework for illuminating ADP-ribosylation in a wide range of applications and biological contexts and establishes mono-ADP-ribosylation by HPF1/PARP1 as an important information carrier for cell signaling.
Collapse
Affiliation(s)
- Edoardo José Longarini
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Helen Dauben
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Carolina Locatelli
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000 Rennes, France
| | - Charlotte Muench
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Andreas Kolvenbach
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Michelle Lee Lynskey
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexis Pope
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Juan José Bonfiglio
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Eva Pinto Jurado
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000 Rennes, France; Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6276 Szeged, Hungary; Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6276 Szeged, Hungary
| | - Roberta Fajka-Boja
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6276 Szeged, Hungary; Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Thomas Colby
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6276 Szeged, Hungary
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000 Rennes, France; Institut Universitaire de France, Paris, France.
| | - Ivan Matic
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
10
|
Smith R, Zentout S, Rother M, Bigot N, Chapuis C, Mihuț A, Zobel FF, Ahel I, van Attikum H, Timinszky G, Huet S. HPF1-dependent histone ADP-ribosylation triggers chromatin relaxation to promote the recruitment of repair factors at sites of DNA damage. Nat Struct Mol Biol 2023; 30:678-691. [PMID: 37106138 DOI: 10.1038/s41594-023-00977-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) activity is regulated by its co-factor histone poly(ADP-ribosylation) factor 1 (HPF1). The complex formed by HPF1 and PARP1 catalyzes ADP-ribosylation of serine residues of proteins near DNA breaks, mainly PARP1 and histones. However, the effect of HPF1 on DNA repair regulated by PARP1 remains unclear. Here, we show that HPF1 controls prolonged histone ADP-ribosylation in the vicinity of the DNA breaks by regulating both the number and length of ADP-ribose chains. Furthermore, we demonstrate that HPF1-dependent histone ADP-ribosylation triggers the rapid unfolding of chromatin, facilitating access to DNA at sites of damage. This process promotes the assembly of both the homologous recombination and non-homologous end joining repair machineries. Altogether, our data highlight the key roles played by the PARP1/HPF1 complex in regulating ADP-ribosylation signaling as well as the conformation of damaged chromatin at early stages of the DNA damage response.
Collapse
Affiliation(s)
- Rebecca Smith
- University of Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, Rennes, France.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Siham Zentout
- University of Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, Rennes, France
| | - Magdalena Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nicolas Bigot
- University of Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, Rennes, France
| | - Catherine Chapuis
- University of Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, Rennes, France
| | - Alexandra Mihuț
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| | - Sébastien Huet
- University of Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, Rennes, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
11
|
Kifayat S, Yele V, Ashames A, Sigalapalli DK, Bhandare RR, Shaik AB, Nasipireddy V, Sanapalli BKR. Filamentous temperature sensitive mutant Z: a putative target to combat antibacterial resistance. RSC Adv 2023; 13:11368-11384. [PMID: 37057268 PMCID: PMC10089256 DOI: 10.1039/d3ra00013c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
In the pre-antibiotic era, common bacterial infections accounted for high mortality and morbidity. Moreover, the discovery of penicillin in 1928 marked the beginning of an antibiotic revolution, and this antibiotic era witnessed the discovery of many novel antibiotics, a golden era. However, the misuse or overuse of these antibiotics, natural resistance that existed even before the antibiotics were discovered, genetic variations in bacteria, natural selection, and acquisition of resistance from one species to another consistently increased the resistance to the existing antibacterial targets. Antibacterial resistance (ABR) is now becoming an ever-increasing concern jeopardizing global health. Henceforth, there is an urgent unmet need to discover novel compounds to combat ABR, which act through untapped pathways/mechanisms. Filamentous Temperature Sensitive mutant Z (FtsZ) is one such unique target, a tubulin homolog involved in developing a cytoskeletal framework for the cytokinetic ring. Additionally, its pivotal role in bacterial cell division and the lack of homologous structural protein in mammals makes it a potential antibacterial target for developing novel molecules. Approximately 2176 X-crystal structures of FtsZ were available, which initiated the research efforts to develop novel antibacterial agents. The literature has reported several natural, semisynthetic, peptides, and synthetic molecules as FtsZ inhibitors. This review provides valuable insights into the basic crystal structure of FtsZ, its inhibitors, and their inhibitory activities. This review also describes the available in vitro detection and quantification methods of FtsZ-drug complexes and the various approaches for determining drugs targeting FtsZ polymerization.
Collapse
Affiliation(s)
- Sumaiya Kifayat
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India
| | - Akram Ashames
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Dilep Kumar Sigalapalli
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University Vadlamudi 522213 Andhra Pradesh India
| | - Richie R Bhandare
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada Chebrolu Guntur 522212 Andhra Pradesh India
| | | | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| |
Collapse
|
12
|
Otsuka S, Tempkin JOB, Zhang W, Politi AZ, Rybina A, Hossain MJ, Kueblbeck M, Callegari A, Koch B, Morero NR, Sali A, Ellenberg J. A quantitative map of nuclear pore assembly reveals two distinct mechanisms. Nature 2023; 613:575-581. [PMID: 36599981 PMCID: PMC9849139 DOI: 10.1038/s41586-022-05528-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/04/2022] [Indexed: 01/05/2023]
Abstract
Understanding how the nuclear pore complex (NPC) is assembled is of fundamental importance to grasp the mechanisms behind its essential function and understand its role during the evolution of eukaryotes1-4. There are at least two NPC assembly pathways-one during the exit from mitosis and one during nuclear growth in interphase-but we currently lack a quantitative map of these events. Here we use fluorescence correlation spectroscopy calibrated live imaging of endogenously fluorescently tagged nucleoporins to map the changes in the composition and stoichiometry of seven major modules of the human NPC during its assembly in single dividing cells. This systematic quantitative map reveals that the two assembly pathways have distinct molecular mechanisms, in which the order of addition of two large structural components, the central ring complex and nuclear filaments are inverted. The dynamic stoichiometry data was integrated to create a spatiotemporal model of the NPC assembly pathway and predict the structures of postmitotic NPC assembly intermediates.
Collapse
Affiliation(s)
- Shotaro Otsuka
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Max Perutz Labs, University of Vienna and the Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| | - Jeremy O B Tempkin
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Wanlu Zhang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio Z Politi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Arina Rybina
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - M Julius Hossain
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Moritz Kueblbeck
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andrea Callegari
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Birgit Koch
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Natalia Rosalia Morero
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
13
|
Mahen R. cNap1 bridges centriole contact sites to maintain centrosome cohesion. PLoS Biol 2022; 20:e3001854. [PMID: 36282799 PMCID: PMC9595518 DOI: 10.1371/journal.pbio.3001854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Centrioles are non-membrane-bound organelles that participate in fundamental cellular processes through their ability to form physical contacts with other structures. During interphase, two mature centrioles can associate to form a single centrosome—a phenomenon known as centrosome cohesion. Centrosome cohesion is important for processes such as cell migration, and yet how it is maintained is unclear. Current models indicate that pericentriolar fibres termed rootlets, also known as the centrosome linker, entangle to maintain centriole proximity. Here, I uncover a centriole–centriole contact site and mechanism of centrosome cohesion based on coalescence of the proximal centriole component cNap1. Using live-cell imaging of endogenously tagged cNap1, I show that proximal centrioles form dynamic contacts in response to physical force from the cytoskeleton. Expansion microscopy reveals that cNap1 bridges between these contact sites, physically linking proximal centrioles on the nanoscale. Fluorescence correlation spectroscopy (FCS)-calibrated imaging shows that cNap1 accumulates at nearly micromolar concentrations on proximal centrioles, corresponding to a few hundred protein copy numbers. When ectopically tethered to organelles such as lysosomes, cNap1 forms viscous and cohesive assemblies that promote organelle spatial proximity. These results suggest a mechanism of centrosome cohesion by cNap1 at the proximal centriole and illustrate how a non-membrane-bound organelle forms organelle contact sites. During interphase, two mature centrioles can associate to form a single centrosome; this "centrosome cohesion" is important for processes such as cell migration, but how is it maintained? This study combines live cell quantitative imaging, expansion microscopy and ectopic tethering to provide insights into the mechanisms by which centrioles maintain spatial proximity inside human cells.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, United Kingdom
- Photonics Group, Department of Physics, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
15
|
Barbiero M, Cirillo L, Veerapathiran S, Coates C, Ruffilli C, Pines J. Cell cycle-dependent binding between Cyclin B1 and Cdk1 revealed by time-resolved fluorescence correlation spectroscopy. Open Biol 2022; 12:220057. [PMID: 35765818 PMCID: PMC9240681 DOI: 10.1098/rsob.220057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/07/2022] [Indexed: 01/04/2023] Open
Abstract
Measuring the dynamics with which the regulatory complexes assemble and disassemble is a crucial barrier to our understanding of how the cell cycle is controlled that until now has been difficult to address. This considerable gap in our understanding is due to the difficulty of reconciling biochemical assays with single cell-based techniques, but recent advances in microscopy and gene editing techniques now enable the measurement of the kinetics of protein-protein interaction in living cells. Here, we apply fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy to study the dynamics of the cell cycle machinery, beginning with Cyclin B1 and its binding to its partner kinase Cdk1 that together form the major mitotic kinase. Although Cyclin B1 and Cdk1 are known to bind with high affinity, our results reveal that in living cells there is a pool of Cyclin B1 that is not bound to Cdk1. Furthermore, we provide evidence that the affinity of Cyclin B1 for Cdk1 increases during the cell cycle, indicating that the assembly of the complex is a regulated step. Our work lays the groundwork for studying the kinetics of protein complex assembly and disassembly during the cell cycle in living cells.
Collapse
Affiliation(s)
- Martina Barbiero
- Cancer Biology, The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, London SW3 6JB, UK
| | - Luca Cirillo
- Cancer Biology, The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, London SW3 6JB, UK
| | - Sapthaswaran Veerapathiran
- Cancer Biology, The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, London SW3 6JB, UK
| | - Catherine Coates
- Cancer Biology, The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, London SW3 6JB, UK
| | - Camilla Ruffilli
- Cancer Biology, The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, London SW3 6JB, UK
| | - Jonathon Pines
- Cancer Biology, The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, London SW3 6JB, UK
| |
Collapse
|
16
|
Wen Y, Xie D, Liu Z. Advances in protein analysis in single live cells: principle, instrumentation and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
18
|
Liao M, Kuo YW, Howard J. Counting fluorescently labeled proteins in tissues in the spinning disk microscope using single-molecule calibrations. Mol Biol Cell 2022; 33:ar48. [PMID: 35323029 PMCID: PMC9265152 DOI: 10.1091/mbc.e21-12-0618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Quantification of molecular numbers and concentrations in living cells is critical for testing models of complex biological phenomena. Counting molecules in cells requires estimation of the fluorescence intensity of single molecules, which is generally limited to imaging near cell surfaces, in isolated cells, or where motions are diffusive. To circumvent this difficulty, we have devised a calibration technique for spinning–disk confocal microscopy, commonly used for imaging in tissues, that uses single–step bleaching kinetics to estimate the single–fluorophore intensity. To cross–check our calibrations, we compared the brightness of fluorophores in the SDC microscope to those in the total internal reflection and epifluorescence microscopes. We applied this calibration method to quantify the number of end–binding protein 1 (EB1)–eGFP in the comets of growing microtubule ends and to measure the cytoplasmic concentration of EB1–eGFP in sensory neurons in fly larvae. These measurements allowed us to estimate the dissociation constant of EB1–eGFP from the microtubules as well as the GTP–tubulin cap size. Our results show the unexplored potential of single–molecule imaging using spinning–disk confocal microscopy and provide a straightforward method to count the absolute number of fluorophores in tissues that can be applied to a wide range of biological systems and imaging techniques.
Collapse
Affiliation(s)
- Maijia Liao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yin-Wei Kuo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Bellotto N, Agudo-Canalejo J, Colin R, Golestanian R, Malengo G, Sourjik V. Dependence of diffusion in Escherichia coli cytoplasm on protein size, environmental conditions, and cell growth. eLife 2022; 11:82654. [PMID: 36468683 PMCID: PMC9810338 DOI: 10.7554/elife.82654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Inside prokaryotic cells, passive translational diffusion typically limits the rates with which cytoplasmic proteins can reach their locations. Diffusion is thus fundamental to most cellular processes, but the understanding of protein mobility in the highly crowded and non-homogeneous environment of a bacterial cell is still limited. Here, we investigated the mobility of a large set of proteins in the cytoplasm of Escherichia coli, by employing fluorescence correlation spectroscopy (FCS) combined with simulations and theoretical modeling. We conclude that cytoplasmic protein mobility could be well described by Brownian diffusion in the confined geometry of the bacterial cell and at the high viscosity imposed by macromolecular crowding. We observed similar size dependence of protein diffusion for the majority of tested proteins, whether native or foreign to E. coli. For the faster-diffusing proteins, this size dependence is well consistent with the Stokes-Einstein relation once taking into account the specific dumbbell shape of protein fusions. Pronounced subdiffusion and hindered mobility are only observed for proteins with extensive interactions within the cytoplasm. Finally, while protein diffusion becomes markedly faster in actively growing cells, at high temperature, or upon treatment with rifampicin, and slower at high osmolarity, all of these perturbations affect proteins of different sizes in the same proportions, which could thus be described as changes of a well-defined cytoplasmic viscosity.
Collapse
Affiliation(s)
- Nicola Bellotto
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | | | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany,Rudolf Peierls Centre for Theoretical Physics, University of OxfordOxfordUnited Kingdom
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| |
Collapse
|
20
|
Singh JK, Smith R, Rother MB, de Groot AJL, Wiegant WW, Vreeken K, D’Augustin O, Kim RQ, Qian H, Krawczyk PM, González-Prieto R, Vertegaal ACO, Lamers M, Huet S, van Attikum H. Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining. Nat Commun 2021; 12:6560. [PMID: 34772923 PMCID: PMC8589989 DOI: 10.1038/s41467-021-26691-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious types of DNA damage as they can lead to mutations and chromosomal rearrangements, which underlie cancer development. Classical non-homologous end-joining (cNHEJ) is the dominant pathway for DSB repair in human cells, involving the DNA-binding proteins XRCC6 (Ku70) and XRCC5 (Ku80). Other DNA-binding proteins such as Zinc Finger (ZnF) domain-containing proteins have also been implicated in DNA repair, but their role in cNHEJ remained elusive. Here we show that ZNF384, a member of the C2H2 family of ZnF proteins, binds DNA ends in vitro and is recruited to DSBs in vivo. ZNF384 recruitment requires the poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent expansion of damaged chromatin, followed by binding of its C2H2 motifs to the exposed DNA. Moreover, ZNF384 interacts with Ku70/Ku80 via its N-terminus, thereby promoting Ku70/Ku80 assembly and the accrual of downstream cNHEJ factors, including APLF and XRCC4/LIG4, for efficient repair at DSBs. Altogether, our data suggest that ZNF384 acts as a 'Ku-adaptor' that binds damaged DNA and Ku70/Ku80 to facilitate the build-up of a cNHEJ repairosome, highlighting a role for ZNF384 in DSB repair and genome maintenance.
Collapse
Affiliation(s)
- Jenny Kaur Singh
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rebecca Smith
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France
| | - Magdalena B. Rother
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton J. L. de Groot
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter W. Wiegant
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Vreeken
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ostiane D’Augustin
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France ,grid.457349.80000 0004 0623 0579Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, F-92265 Fontenay-aux-Roses, France
| | - Robbert Q. Kim
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Haibin Qian
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Przemek M. Krawczyk
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Román González-Prieto
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alfred C. O. Vertegaal
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Meindert Lamers
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sébastien Huet
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France, F-75000 Paris, France
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
21
|
Zhang L, Perez-Romero C, Dostatni N, Fradin C. Using FCS to accurately measure protein concentration in the presence of noise and photobleaching. Biophys J 2021; 120:4230-4241. [PMID: 34242593 PMCID: PMC8516637 DOI: 10.1016/j.bpj.2021.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Quantitative cell biology requires precise and accurate concentration measurements, resolved both in space and time. Fluorescence correlation spectroscopy (FCS) has been held as a promising technique to perform such measurements because the fluorescence fluctuations it relies on are directly dependent on the absolute number of fluorophores in the detection volume. However, the most interesting applications are in cells, where autofluorescence and confinement result in strong background noise and important levels of photobleaching. Both noise and photobleaching introduce systematic bias in FCS concentration measurements and need to be corrected for. Here, we propose to make use of the photobleaching inevitably occurring in confined environments to perform series of FCS measurements at different fluorophore concentration, which we show allows a precise in situ measurement of both background noise and molecular brightness. Such a measurement can then be used as a calibration to transform confocal intensity images into concentration maps. The power of this approach is first illustrated with in vitro measurements using different dye solutions, then its applicability for in vivo measurements is demonstrated in Drosophila embryos for a model nuclear protein and for two morphogens, Bicoid and Capicua.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Carmina Perez-Romero
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Institut Curie, PSL University, CNRS, Paris, France; Nuclear Dynamics, Sorbonne University, Paris, France
| | - Nathalie Dostatni
- Institut Curie, PSL University, CNRS, Paris, France; Nuclear Dynamics, Sorbonne University, Paris, France
| | - Cécile Fradin
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
22
|
Huang R, Jin R, Jiang D, Chen HY. Single-cell-resolved measurement of enzyme activity at the tissue level using drop-on-demand microkits. Analyst 2021; 146:1548-1551. [PMID: 33427262 DOI: 10.1039/d0an02247k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drop-on-demand microkits with a diameter of ∼20 μm are used to measure the activity of acetylcholinesterase (AChE) in a brain slice with single-cell resolution. The relative standard deviation from 25 cellular regions reached 73.3% exhibiting the difference of enzyme activity in the brain slice. Therefore, this approach utilizing the well-established kits provides an alternative single-cell-resolved strategy for the elucidation of enzymatic heterogeneity at the tissue level.
Collapse
Affiliation(s)
- Rongcan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | | | | | | |
Collapse
|
23
|
Zorrilla S, Monterroso B, Robles-Ramos MÁ, Margolin W, Rivas G. FtsZ Interactions and Biomolecular Condensates as Potential Targets for New Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10030254. [PMID: 33806332 PMCID: PMC7999717 DOI: 10.3390/antibiotics10030254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
FtsZ is an essential and central protein for cell division in most bacteria. Because of its ability to organize into dynamic polymers at the cell membrane and recruit other protein partners to form a “divisome”, FtsZ is a leading target in the quest for new antibacterial compounds. Strategies to potentially arrest the essential and tightly regulated cell division process include perturbing FtsZ’s ability to interact with itself and other divisome proteins. Here, we discuss the available methodologies to screen for and characterize those interactions. In addition to assays that measure protein-ligand interactions in solution, we also discuss the use of minimal membrane systems and cell-like compartments to better approximate the native bacterial cell environment and hence provide a more accurate assessment of a candidate compound’s potential in vivo effect. We particularly focus on ways to measure and inhibit under-explored interactions between FtsZ and partner proteins. Finally, we discuss recent evidence that FtsZ forms biomolecular condensates in vitro, and the potential implications of these assemblies in bacterial resistance to antibiotic treatment.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
- Correspondence: (S.Z.); (B.M.); Tel.: +34-91-837-3112 (S.Z. & B.M.)
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
- Correspondence: (S.Z.); (B.M.); Tel.: +34-91-837-3112 (S.Z. & B.M.)
| | - Miguel-Ángel Robles-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, TX 77030, USA;
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
| |
Collapse
|
24
|
Kawai K, Fujitsuka M, Maruyama A. Single-Molecule Study of Redox Reaction Kinetics by Observing Fluorescence Blinking. Acc Chem Res 2021; 54:1001-1010. [PMID: 33539066 DOI: 10.1021/acs.accounts.0c00754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in fluorescence microscopy allow us to track chemical reactions at the single-molecule level. Single-molecule measurements make it possible to minimize the amount of sample needed for analysis and diagnosis. Signal amplification is often applied to ultralow-level biomarker detection. Polymerase chain reaction (PCR) is used to detect DNA/RNA, and enzyme-linked immunosorbent assay (ELISA) can sensitively probe antigen-antibody interactions. While these techniques are brilliant and will continue to be used in the future, single-molecule-level measurements would allow us to reduce the time and cost needed to amplify signals.The kinetics of chemical reactions have been studied mainly using ensemble-averaged methods. However, they can hardly distinguish time-dependent fluctuations and static heterogeneity of the kinetics. The information hidden in ensemble-averaged measurements would be extractable from a single-molecule experiment. Thus, single-molecule measurement would provide unique opportunities to investigate unrevealed phenomena and to elucidate the questions in chemistry, physics, and life sciences. Redox reaction, which is triggered by electron transfer, is among the most fundamental and ubiquitous chemical reactions. The redox reaction of a fluorescent molecule results in the formation of radical ions, which are normally nonemissive. In single-molecule-level measurements, the redox reaction causes the fluctuation of fluorescence signals between the bright ON-state and the dark OFF-state, in a phenomenon called blinking. The duration of the OFF-state (τOFF) corresponds to the lifetime of the radical ion state, and its reaction kinetics can be measured as 1/τOFF. Thus, the kinetics of redox reactions of fluorescent molecules can be accessed at the single-molecule level by monitoring fluorescence blinking. One of the key aspects of single-molecule analysis based on blinking is its robustness. A blinking signal with a certain regular pattern enables single fluorescent molecules to be distinguished and resolved from the random background signal.In this Account, we summarize the recent studies on the single-molecule measurement of redox reaction kinetics, with a focus on our group's recent progress. We first introduce the control of redox blinking to increase the photostability of fluorescent molecules. We then demonstrate the control of redox blinking, which allows us to detect target DNA by monitoring the function of a molecular beacon-type probe, and we investigate antigen-antibody interactions at the single-molecule level. By tracing the time-dependent changes in blinking patterns, redox blinking is shown to be adaptable to tracking the structural switching dynamics of RNA, the preQ1 riboswitch. This Account ends with a discussion of our ongoing work on the control of fluorescent blinking. We also discuss the development of devices that allow single-molecule-level analysis in a high-throughput fashion.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
25
|
Confocal Laser Scanning Microscopy and Fluorescence Correlation Methods for the Evaluation of Molecular Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:1-30. [PMID: 33834430 DOI: 10.1007/978-981-33-6064-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Confocal laser scanning microscopy (CLSM) and related microscopic techniques allow a unique and versatile approach to image and analyze living cells due to their specificity and high sensitivity. Among confocal related techniques, fluorescence correlation methods, such as fluorescence correlation spectroscopy (FCS) and dual-color fluorescence cross-correlation spectroscopy (FCCS), are highly sensitive biophysical methods for analyzing the complex dynamic events of molecular diffusion and interaction change in live cells as well as in solution by exploiting the characteristics of fluorescence signals. Analytical and quantitative information from FCS and FCCS coupled with fluorescence images obtained from CLSM can now be applied in convergence science such as drug delivery and nanomedicine, as well as in basic cell biology. In this chapter, a brief introduction into the physical parameters that can be obtained from FCS and FCCS is first provided. Secondly, experimental examples of the methods for evaluating the parameters is presented. Finally, two potential FCS and FCCS applications for convergence science are introduced in more detail.
Collapse
|
26
|
Kaňa R, Steinbach G, Sobotka R, Vámosi G, Komenda J. Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane. Life (Basel) 2020; 11:life11010015. [PMID: 33383642 PMCID: PMC7823997 DOI: 10.3390/life11010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 01/08/2023] Open
Abstract
Biological membranes were originally described as a fluid mosaic with uniform distribution of proteins and lipids. Later, heterogeneous membrane areas were found in many membrane systems including cyanobacterial thylakoids. In fact, cyanobacterial pigment-protein complexes (photosystems, phycobilisomes) form a heterogeneous mosaic of thylakoid membrane microdomains (MDs) restricting protein mobility. The trafficking of membrane proteins is one of the key factors for long-term survival under stress conditions, for instance during exposure to photoinhibitory light conditions. However, the mobility of unbound 'free' proteins in thylakoid membrane is poorly characterized. In this work, we assessed the maximal diffusional ability of a small, unbound thylakoid membrane protein by semi-single molecule FCS (fluorescence correlation spectroscopy) method in the cyanobacterium Synechocystis sp. PCC6803. We utilized a GFP-tagged variant of the cytochrome b6f subunit PetC1 (PetC1-GFP), which was not assembled in the b6f complex due to the presence of the tag. Subsequent FCS measurements have identified a very fast diffusion of the PetC1-GFP protein in the thylakoid membrane (D = 0.14 - 2.95 µm2s-1). This means that the mobility of PetC1-GFP was comparable with that of free lipids and was 50-500 times higher in comparison to the mobility of proteins (e.g., IsiA, LHCII-light-harvesting complexes of PSII) naturally associated with larger thylakoid membrane complexes like photosystems. Our results thus demonstrate the ability of free thylakoid-membrane proteins to move very fast, revealing the crucial role of protein-protein interactions in the mobility restrictions for large thylakoid protein complexes.
Collapse
Affiliation(s)
- Radek Kaňa
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
- Correspondence:
| | - Gábor Steinbach
- Institute of Biophysics, Biological Research Center, 6726 Szeged, Hungary;
| | - Roman Sobotka
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Josef Komenda
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
| |
Collapse
|
27
|
Dawes ML, Soeller C, Scholpp S. Studying molecular interactions in the intact organism: fluorescence correlation spectroscopy in the living zebrafish embryo. Histochem Cell Biol 2020; 154:507-519. [PMID: 33067656 PMCID: PMC7609432 DOI: 10.1007/s00418-020-01930-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Cell behaviour and function is determined through the interactions of a multitude of molecules working in concert. To observe these molecular dynamics, biophysical studies have been developed that track single interactions. Fluorescence correlation spectroscopy (FCS) is an optical biophysical technique that non-invasively resolves single molecules through recording the signal intensity at the femtolitre scale. However, recording the behaviour of these biomolecules using in vitro-based assays often fails to recapitulate the full range of variables in vivo that directly confer dynamics. Therefore, there has been an increasing interest in observing the state of these biomolecules within living organisms such as the zebrafish Danio rerio. In this review, we explore the advancements of FCS within the zebrafish and compare and contrast these findings to those found in vitro.
Collapse
Affiliation(s)
- Michael L Dawes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Christian Soeller
- Living Systems Institute, College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
28
|
Abstract
Liquid–liquid phase separation causes formation of membraneless condensates containing concentrated biomolecules, which play essential roles in diverse cellular processes. Currently, micrometer-scale phase-separated condensates are examined routinely to elucidate their functions and mechanisms in details. However, limited by current commonly used methods, the transition process from miscible individual molecules to micrometer-scale condensates is mostly unknown. Herein, we captured formation of nanoscale condensates, whose size, growth rate, molecular stoichiometry, and binding affinity to recruit client molecules were all quantified. To achieve this, we developed a dual-color fluorescence cross-correlation spectroscopy (dcFCCS) method, and we expect that dcFCCS can be widely applied to investigate phase separation of other biomolecules at the nanoscale. Liquid–liquid phase separation, driven by multivalent macromolecular interactions, causes formation of membraneless compartments, which are biomolecular condensates containing concentrated macromolecules. These condensates are essential in diverse cellular processes. Formation and dynamics of micrometer-scale phase-separated condensates are examined routinely. However, limited by commonly used methods which cannot capture small-sized free-diffusing condensates, the transition process from miscible individual molecules to micrometer-scale condensates is mostly unknown. Herein, with a dual-color fluorescence cross-correlation spectroscopy (dcFCCS) method, we captured formation of nanoscale condensates beyond the detection limit of conventional fluorescence microscopy. In addition, dcFCCS is able to quantify size and growth rate of condensates as well as molecular stoichiometry and binding affinity of client molecules within condensates. The critical concentration to form nanoscale condensates, identified by our experimental measurements and Monte Carlo simulations, is at least several fold lower than the detection limit of conventional fluorescence microscopy. Our results emphasize that, in addition to micrometer-scale condensates, nanoscale condensates are likely to play important roles in various cellular processes and dcFCCS is a simple and powerful quantitative tool to examine them in detail.
Collapse
|
29
|
Carlini L, Brittingham GP, Holt LJ, Kapoor TM. Microtubules Enhance Mesoscale Effective Diffusivity in the Crowded Metaphase Cytoplasm. Dev Cell 2020; 54:574-582.e4. [PMID: 32818469 PMCID: PMC7685229 DOI: 10.1016/j.devcel.2020.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/10/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Mesoscale macromolecular complexes and organelles, tens to hundreds of nanometers in size, crowd the eukaryotic cytoplasm. It is therefore unclear how mesoscale particles remain sufficiently mobile to regulate dynamic processes such as cell division. Here, we study mobility across dividing cells that contain densely packed, dynamic microtubules, comprising the metaphase spindle. In dividing human cells, we tracked 40 nm genetically encoded multimeric nanoparticles (GEMs), whose sizes are commensurate with the inter-filament spacing in metaphase spindles. Unexpectedly, the effective diffusivity of GEMs was similar inside the dense metaphase spindle and the surrounding cytoplasm. Eliminating microtubules or perturbing their polymerization dynamics decreased diffusivity by ~30%, suggesting that microtubule polymerization enhances random displacements to amplify diffusive-like motion. Our results suggest that microtubules effectively fluidize the mitotic cytoplasm to equalize mesoscale mobility across a densely packed, dynamic, non-uniform environment, thus spatially maintaining a key biophysical parameter that impacts biochemistry, ranging from metabolism to the nucleation of cytoskeletal filaments.
Collapse
Affiliation(s)
- Lina Carlini
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Gregory P Brittingham
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
30
|
Trivedi P, Stukenberg PT. A Condensed View of the Chromosome Passenger Complex. Trends Cell Biol 2020; 30:676-687. [PMID: 32684321 PMCID: PMC10714244 DOI: 10.1016/j.tcb.2020.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/02/2023]
Abstract
The inner centromere is a region on the mitotic chromosome that serves as a platform for mitotic signaling and possesses unique biophysical properties that enable it to withstand relatively large pulling forces that are generated by kinetochores (KTs) during chromosome segregation. The chromosomal passenger complex (CPC) localizes to and is the key regulator of inner centromere organization and function during mitosis. Recently, we demonstrated that in addition to its kinase and histone code-reading activities, the CPC also can undergo liquid-liquid phase separation (LLPS) and proposed that the inner centromere is a membraneless organelle scaffolded by the CPC. In this perspective, we explore mechanisms that can allow the formation and dissolution of this membraneless body. The cell-cycle-regulated spatially defined assembly and disassembly of the CPC condensate at the inner centromere can reveal general principles about how histone modifications control chromatin-bound membraneless organelles. We further explore how the ability of the CPC to undergo LLPS may contribute to the organization and function of the inner centromere during mitosis.
Collapse
Affiliation(s)
- Prasad Trivedi
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - P Todd Stukenberg
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
31
|
Štefl M, Herbst K, Rübsam M, Benda A, Knop M. Single-Color Fluorescence Lifetime Cross-Correlation Spectroscopy In Vivo. Biophys J 2020; 119:1359-1370. [PMID: 32919495 DOI: 10.1016/j.bpj.2020.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
The ability to quantify protein concentrations and to measure protein interactions in vivo is key information needed for the understanding of complex processes inside cells, but the acquisition of such information from living cells is still demanding. Fluorescence-based methods like two-color fluorescence cross-correlation spectroscopy can provide this information, but measurement precision is hampered by various sources of errors caused by instrumental or optical limitations such as imperfect overlap of detection volumes or detector cross talk. Furthermore, the nature and properties of used fluorescent proteins or fluorescent dyes, such as labeling efficiency, fluorescent protein maturation, photostability, bleaching, and fluorescence brightness can have an impact. Here, we take advantage of previously published fluorescence lifetime correlation spectroscopy which relies on lifetime differences as a mean to discriminate fluorescent proteins with similar spectral properties and to use them for single-color fluorescence lifetime cross-correlation spectroscopy (sc-FLCCS). By using only one excitation and one detection wavelength, this setup avoids all sources of errors resulting from chromatic aberrations and detector cross talk. To establish sc-FLCCS, we first engineered and tested multiple green fluorescent protein (GFP)-like fluorescent proteins for their suitability. This identified a novel, to our knowledge, GFP variant termed short-lifetime monomeric GFP with the so-far shortest lifetime. Monte-Carlo simulations were employed to explore the suitability of different combinations of GFP variants. Two GFPs, Envy and short-lifetime monomeric GFP, were predicted to constitute the best performing couple for sc-FLCCS measurements. We demonstrated application of this GFP pair for measuring protein interactions between the proteasome and interacting proteins and for measuring protein interactions between three partners when combined with a red florescent protein. Together, our findings establish sc-FLCCS as a valid alternative for conventional dual-color fluorescence cross-correlation spectroscopy measurements.
Collapse
Affiliation(s)
- Martin Štefl
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Heidelberg, Germany; J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Prague, Czech Republic.
| | - Konrad Herbst
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Heidelberg, Germany
| | - Marc Rübsam
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Heidelberg, Germany
| | - Aleš Benda
- IMCF at BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
32
|
Fu X, Sompol P, Brandon JA, Norris CM, Wilkop T, Johnson LA, Richards CI. In Vivo Single-Molecule Detection of Nanoparticles for Multiphoton Fluorescence Correlation Spectroscopy to Quantify Cerebral Blood Flow. NANO LETTERS 2020; 20:6135-6141. [PMID: 32628854 PMCID: PMC8405275 DOI: 10.1021/acs.nanolett.0c02280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present the application of multiphoton in vivo fluorescence correlation spectroscopy (FCS) of fluorescent nanoparticles for the measurement of cerebral blood flow with excellent spatial and temporal resolution. Through the detection of single nanoparticles within the complex vessel architecture of a live mouse, this new approach enables the quantification of nanoparticle dynamics occurring within the vasculature along with simultaneous measurements of blood flow properties in the brain. In addition to providing high resolution blood flow measurements, this approach enables real-time quantification of nanoparticle concentration, degradation, and transport. This method is capable of quantifying flow rates at each pixel with submicron resolution to enable monitoring of dynamic changes in flow rates in response to changes in the animal's physiological condition. Scanning the excitation beam using FCS provides pixel by pixel mapping of flow rates with subvessel resolution across capillaries 300 μm deep in the brains of mice.
Collapse
Affiliation(s)
- Xu Fu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Pradoldej Sompol
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jason A Brandon
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Thomas Wilkop
- Light Microscopy Core, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Lance A Johnson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Christopher I Richards
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
33
|
Grime RL, Goulding J, Uddin R, Stoddart LA, Hill SJ, Poyner DR, Briddon SJ, Wheatley M. Single molecule binding of a ligand to a G-protein-coupled receptor in real time using fluorescence correlation spectroscopy, rendered possible by nano-encapsulation in styrene maleic acid lipid particles. NANOSCALE 2020; 12:11518-11525. [PMID: 32428052 DOI: 10.1039/d0nr01060j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The fundamental importance of membrane proteins in cellular processes has driven a marked increase in the use of membrane mimetic approaches for studying and exploiting these proteins. Nano-encapsulation strategies which preserve the native lipid bilayer environment are particularly attractive. Consequently, the use of poly(styrene co-maleic acid) (SMA) has been widely adopted to solubilise proteins directly from cell membranes by spontaneously forming "SMA Lipid Particles" (SMALPs). G-protein-coupled receptors (GPCRs) are ubiquitous "chemical switches", are central to cell signalling throughout the evolutionary tree, form the largest family of membrane proteins in humans and are a major drug discovery target. GPCR-SMALPs that retain binding capability would be a versatile platform for a wide range of down-stream applications. Here, using the adenosine A2A receptor (A2AR) as an archetypical GPCR, we show for the first time the utility of fluorescence correlation spectroscopy (FCS) to characterise the binding capability of GPCRs following nano-encapsulation. Unbound fluorescent ligand CA200645 exhibited a monophasic autocorrelation curve (dwell time, τD = 68 ± 2 μs; diffusion coefficient, D = 287 ± 15 μm2 s-1). In the presence of A2AR-SMALP, bound ligand was also evident (τD = 625 ± 23 μs; D = 30 ± 4 μm2 s-1). Using a non-receptor control (ZipA-SMALP) plus competition binding confirmed that this slower component represented binding to the encapsulated A2AR. Consequently, the combination of GPCR-SMALP and FCS is an effective platform for the quantitative real-time characterisation of nano-encapsulated receptors, with single molecule sensitivity, that will have widespread utility for future exploitation of GPCR-SMALPs in general.
Collapse
Affiliation(s)
- Rachael L Grime
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Joelle Goulding
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK and Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Romez Uddin
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Leigh A Stoddart
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK and Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Stephen J Hill
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK and Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - David R Poyner
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Stephen J Briddon
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK and Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Mark Wheatley
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK and Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Alison Gingell Building, Coventry University, Coventry, CV1 2DS, UK.
| |
Collapse
|
34
|
Smith R, Lebeaupin T, Juhász S, Chapuis C, D'Augustin O, Dutertre S, Burkovics P, Biertümpfel C, Timinszky G, Huet S. Poly(ADP-ribose)-dependent chromatin unfolding facilitates the association of DNA-binding proteins with DNA at sites of damage. Nucleic Acids Res 2020; 47:11250-11267. [PMID: 31566235 PMCID: PMC6868358 DOI: 10.1093/nar/gkz820] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/01/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
The addition of poly(ADP-ribose) (PAR) chains along the chromatin fiber due to PARP1 activity regulates the recruitment of multiple factors to sites of DNA damage. In this manuscript, we investigated how, besides direct binding to PAR, early chromatin unfolding events controlled by PAR signaling contribute to recruitment to DNA lesions. We observed that different DNA-binding, but not histone-binding, domains accumulate at damaged chromatin in a PAR-dependent manner, and that this recruitment correlates with their affinity for DNA. Our findings indicate that this recruitment is promoted by early PAR-dependent chromatin remodeling rather than direct interaction with PAR. Moreover, recruitment is not the consequence of reduced molecular crowding at unfolded damaged chromatin but instead originates from facilitated binding to more exposed DNA. These findings are further substantiated by the observation that PAR-dependent chromatin remodeling at DNA lesions underlies increased DNAse hypersensitivity. Finally, the relevance of this new mode of PAR-dependent recruitment to DNA lesions is demonstrated by the observation that reducing the affinity for DNA of both CHD4 and HP1α, two proteins shown to be involved in the DNA-damage response, strongly impairs their recruitment to DNA lesions.
Collapse
Affiliation(s)
- Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Théo Lebeaupin
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Szilvia Juhász
- MTA SZBK Lendület DNA damage and nuclear dynamics research group, Institute of Genetics, Biological Research Center, 6276 Szeged, Hungary
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Ostiane D'Augustin
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Stéphanie Dutertre
- Univ Rennes, CNRS, Inserm, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, F-35000 Rennes, France
| | - Peter Burkovics
- Laboratory of Replication and Genome Stability, Institute of Genetics, Biological Research Center, 6276 Szeged, Hungary
| | - Christian Biertümpfel
- Department of Structural Cell Biology, Molecular Mechanisms of DNA Repair, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gyula Timinszky
- MTA SZBK Lendület DNA damage and nuclear dynamics research group, Institute of Genetics, Biological Research Center, 6276 Szeged, Hungary
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| |
Collapse
|
35
|
Deng L, Huang X, Ren J. In Situ Study of the Drug–Target Protein Interaction in Single Living Cells by Combining Fluorescence Correlation Spectroscopy with Affinity Probes. Anal Chem 2020; 92:7020-7027. [DOI: 10.1021/acs.analchem.0c00263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Liyun Deng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
36
|
Kawai K, Maruyama A. Kinetics of Photoinduced Reactions at the Single‐Molecule Level: The KACB Method. Chemistry 2020; 26:7740-7746. [DOI: 10.1002/chem.202000439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/20/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Atsushi Maruyama
- Department of Life Science and TechnologyTokyo Institute of Technology 4259 B-57 Nagatsuta Midori-ku, Yokohama, Kanagawa 226-8501 Japan
| |
Collapse
|
37
|
Schneider F, Hernandez-Varas P, Christoffer Lagerholm B, Shrestha D, Sezgin E, Julia Roberti M, Ossato G, Hecht F, Eggeling C, Urbančič I. High photon count rates improve the quality of super-resolution fluorescence fluctuation spectroscopy. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:164003. [PMID: 33191951 PMCID: PMC7655148 DOI: 10.1088/1361-6463/ab6cca] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 05/15/2023]
Abstract
Probing the diffusion of molecules has become a routine measurement across the life sciences, chemistry and physics. It provides valuable insights into reaction dynamics, oligomerisation, molecular (re-)organisation or cellular heterogeneities. Fluorescence correlation spectroscopy (FCS) is one of the widely applied techniques to determine diffusion dynamics in two and three dimensions. This technique relies on the temporal autocorrelation of intensity fluctuations but recording these fluctuations has thus far been limited by the detection electronics, which could not efficiently and accurately time-tag photons at high count rates. This has until now restricted the range of measurable dye concentrations, as well as the data quality of the FCS recordings, especially in combination with super-resolution stimulated emission depletion (STED) nanoscopy. Here, we investigate the applicability and reliability of (STED-)FCS at high photon count rates (average intensities of more than 1 MHz) using novel detection equipment, namely hybrid detectors and real-time gigahertz sampling of the photon streams implemented on a commercial microscope. By measuring the diffusion of fluorophores in solution and cytoplasm of live cells, as well as in model and cellular membranes, we show that accurate diffusion and concentration measurements are possible in these previously inaccessible high photon count regimes. Specifically, it offers much greater flexibility of experiments with biological samples with highly variable intensity, e.g. due to a wide range of expression levels of fluorescent proteins. In this context, we highlight the independence of diffusion properties of cytosolic GFP in a concentration range of approx. 0.01-1 µm. We further show that higher photon count rates also allow for much shorter acquisition times, and improved data quality. Finally, this approach also pronouncedly increases the robustness of challenging live cell STED-FCS measurements of nanoscale diffusion dynamics, which we testify by confirming a free diffusion pattern for a fluorescent lipid analogue on the apical membrane of adherent cells.
Collapse
Affiliation(s)
- Falk Schneider
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Pablo Hernandez-Varas
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Core Facility for Integrated Microscopy, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Dilip Shrestha
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - M Julia Roberti
- Leica Microsystems CMS GmbH, Am Friedensplatz 3, 68163 Mannheim, Germany
| | - Giulia Ossato
- Leica Microsystems CMS GmbH, Am Friedensplatz 3, 68163 Mannheim, Germany
| | - Frank Hecht
- Leica Microsystems CMS GmbH, Am Friedensplatz 3, 68163 Mannheim, Germany
| | - Christian Eggeling
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Iztok Urbančič
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
High-throughput fluorescence correlation spectroscopy enables analysis of surface components of cell-derived vesicles. Anal Bioanal Chem 2020; 412:2589-2597. [PMID: 32146499 DOI: 10.1007/s00216-020-02485-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 10/24/2022]
Abstract
Extracellular vesicles (EVs) and cell-derived vesicles (CDVs), generated by fragmenting cellular membranes, have both been explored as therapeutic delivery vehicles. Surface proteins on these vesicles are of great importance as they are characteristic to the cell of origin and modulate vesicle interactions with target cells. Here, we introduced a high-throughput fluorescence correlation spectroscopy (ht-FCS) approach capable of characterizing vesicle surface proteins across a large number of samples. We used automated screening and acquisition of FCS data to profile surface proteins of cell-derived vesicles with high fidelity based on changes in diffusion time upon antibody-vesicle interactions. We characterized vesicles generated from 4 cell types using antibodies for known exosome biomarkers. The ht-FCS technique presented here offers the capability to screen EVs or cell-derived vesicles against a library of surface markers or to screen a library of cell-derived vesicles for a specific identifying marker at a high speed.
Collapse
|
39
|
Wong M, Newton LR, Hartmann J, Hennrich ML, Wachsmuth M, Ronchi P, Guzmán-Herrera A, Schwab Y, Gavin AC, Gilmour D. Dynamic Buffering of Extracellular Chemokine by a Dedicated Scavenger Pathway Enables Robust Adaptation during Directed Tissue Migration. Dev Cell 2020; 52:492-508.e10. [PMID: 32059773 DOI: 10.1016/j.devcel.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/22/2019] [Accepted: 01/13/2020] [Indexed: 01/16/2023]
Abstract
How tissues migrate robustly through changing guidance landscapes is poorly understood. Here, quantitative imaging is combined with inducible perturbation experiments to investigate the mechanisms that ensure robust tissue migration in vivo. We show that tissues exposed to acute "chemokine floods" halt transiently before they perfectly adapt, i.e., return to the baseline migration behavior in the continued presence of elevated chemokine levels. A chemokine-triggered phosphorylation of the atypical chemokine receptor Cxcr7b reroutes it from constitutive ubiquitination-regulated degradation to plasma membrane recycling, thus coupling scavenging capacity to extracellular chemokine levels. Finally, tissues expressing phosphorylation-deficient Cxcr7b migrate normally in the presence of physiological chemokine levels but show delayed recovery when challenged with elevated chemokine concentrations. This work establishes that adaptation to chemokine fluctuations can be "outsourced" from canonical GPCR signaling to an autonomously acting scavenger receptor that both senses and dynamically buffers chemokine levels to increase the robustness of tissue migration.
Collapse
Affiliation(s)
- Mie Wong
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Lionel R Newton
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jonas Hartmann
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Marco L Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Malte Wachsmuth
- Luxendo GmbH, Kurfürsten-Anlage 58, 69115 Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Alejandra Guzmán-Herrera
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department for Cell Physiology and Metabolism, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Darren Gilmour
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
40
|
Fukuda T, Kawai-Noma S, Pack CG, Taguchi H. Large-scale analysis of diffusional dynamics of proteins in living yeast cells using fluorescence correlation spectroscopy. Biochem Biophys Res Commun 2019; 520:237-242. [PMID: 31594638 DOI: 10.1016/j.bbrc.2019.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
In the living cells, the majority of proteins does not work alone, but interact with other proteins or other biomolecules to maintain the cellular function, constituting a "protein community". Previous efforts on mass spectroscopy-based protein interaction networks, interactomes, have provided a picture on the protein community. However, these were static information after cells were disrupted. For a better understanding of the protein community in cells, it is important to know the properties of intracellular dynamics and interactions. Since hydrodynamic size and mobility of proteins are related into such properties, direct measurement of diffusional motion of proteins in single living cells will be helpful for uncovering the properties. Here we completed measurement of the diffusion and homo-oligomeric properties of 369 cytoplasmic GFP-fusion proteins in living yeast Saccharomyces cerevisiae cells using fluorescence correlation spectroscopy (FCS). The large-scale analysis showed that the motions of majority of proteins obeyed a two-component (i.e. slow and fast components) diffusion model. Remarkably, both of the two components diffused more slowly than expected monomeric states. In addition, further analysis suggested that more proteins existed as homo-oligomeric states in living cells than previously expected. Our study, which characterizes the dynamics of proteins in living cells on a large-scale, provided a global view on intracellular protein dynamics to understand the protein community.
Collapse
Affiliation(s)
- Takafumi Fukuda
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shigeko Kawai-Noma
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba, Japan
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
41
|
Derrer CP, Mancini R, Vallotton P, Huet S, Weis K, Dultz E. The RNA export factor Mex67 functions as a mobile nucleoporin. J Cell Biol 2019; 218:3967-3976. [PMID: 31753862 PMCID: PMC6891080 DOI: 10.1083/jcb.201909028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
Derrer et al. show that the mRNA export factor Mex67 can perform its essential function when stably tethered to the nuclear pore complex. The RNA export factor Mex67 is essential for the transport of mRNA through the nuclear pore complex (NPC) in yeast, but the molecular mechanism of this export process remains poorly understood. Here, we use quantitative fluorescence microscopy techniques in live budding yeast cells to investigate how Mex67 facilitates mRNA export. We show that Mex67 exhibits little interaction with mRNA in the nucleus and localizes to the NPC independently of mRNA, occupying a set of binding sites offered by FG repeats in the NPC. The ATPase Dbp5, which is thought to remove Mex67 from transcripts, does not affect the interaction of Mex67 with the NPC. Strikingly, we find that the essential function of Mex67 is spatially restricted to the NPC since a fusion of Mex67 to the nucleoporin Nup116 rescues a deletion of MEX67. Thus, Mex67 functions as a mobile NPC component, which receives mRNA export substrates in the central channel of the NPC to facilitate their translocation to the cytoplasm.
Collapse
Affiliation(s)
| | | | | | - Sébastien Huet
- Université de Rennes, Centre National de la Recherche Scientifique, Institut de génétique et développement de Rennes - UMR 6290, Rennes, France
| | - Karsten Weis
- Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
| | - Elisa Dultz
- Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
42
|
Trivedi P, Palomba F, Niedzialkowska E, Digman MA, Gratton E, Stukenberg PT. The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex. Nat Cell Biol 2019; 21:1127-1137. [PMID: 31481798 PMCID: PMC7341897 DOI: 10.1038/s41556-019-0376-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere.
Collapse
Affiliation(s)
- Prasad Trivedi
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Francesco Palomba
- Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Michelle A Digman
- Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - P Todd Stukenberg
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
43
|
Meng N, Lam EY, Tsia KK, So HKH. Large-Scale Multi-Class Image-Based Cell Classification With Deep Learning. IEEE J Biomed Health Inform 2019; 23:2091-2098. [DOI: 10.1109/jbhi.2018.2878878] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Wu K, Lin Y, Chai X, Duan X, Zhao X, Chun C. Mechanisms of vapor-phase antibacterial action of essential oil from Cinnamomum camphora var. linaloofera Fujita against Escherichia coli. Food Sci Nutr 2019; 7:2546-2555. [PMID: 31428342 PMCID: PMC6694428 DOI: 10.1002/fsn3.1104] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to investigate antibacterial activity of essential oil from Cinnamomum camphora var. linaloofera Fujita (EOL) at vapor phase and its mechanism of bactericidal action against Escherichia coli. Results showed that the vapor-phase EOL had significant antibacterial activity with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 200 μl/L. Further analyses showed that treatment of E. coli with vapor-phase EOL resulted in partial degradation of cell membrane, increased membrane permeability, leakage of cytoplasm materials, and prominent distortion and shrinkage of bacterial cells. FTIR showed that EOL altered bacterial protein secondary and tertiary structures. GC/MS analysis showed that the components of vapor-phase EOL included linalool (69.94%), camphor (10.90%), nerolidol (10.92%), and safrole (8.24%), of which linalool had bactericidal activity. Quantum chemical analysis suggested that the antibacterial reactive center of linalool was oxygen atom (O10) which transferred electrons during antibacterial action by the donation of electrons.
Collapse
Affiliation(s)
- Kegang Wu
- College of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Yahui Lin
- College of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute)GuangzhouChina
| | - Xianghua Chai
- College of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Xuejuan Duan
- College of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Xinxin Zhao
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Chen Chun
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
45
|
Smith R, Sellou H, Chapuis C, Huet S, Timinszky G. CHD3 and CHD4 recruitment and chromatin remodeling activity at DNA breaks is promoted by early poly(ADP-ribose)-dependent chromatin relaxation. Nucleic Acids Res 2019; 46:6087-6098. [PMID: 29733391 PMCID: PMC6158744 DOI: 10.1093/nar/gky334] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
One of the first events to occur upon DNA damage is the local opening of the compact chromatin architecture, facilitating access of repair proteins to DNA lesions. This early relaxation is triggered by poly(ADP-ribosyl)ation by PARP1 in addition to ATP-dependent chromatin remodeling. CHD4 recruits to DNA breaks in a PAR-dependent manner, although it lacks any recognizable PAR-binding domain, and has the ability to relax chromatin structure. However, its role in chromatin relaxation at the site of DNA damage has not been explored. Using a live cell fluorescence three-hybrid assay, we demonstrate that the recruitment of CHD4 to DNA damage, while being poly(ADP-ribosyl)ation-dependent, is not through binding poly(ADP-ribose). Additionally, we show that CHD3 is recruited to DNA breaks in the same manner as CHD4 and that both CHD3 and CHD4 play active roles in chromatin remodeling at DNA breaks. Together, our findings reveal a two-step mechanism for DNA damage induced chromatin relaxation in which PARP1 and the PAR-binding remodeler activities of Alc1/CHD1L induce an initial chromatin relaxation phase that promotes the subsequent recruitment of CHD3 and CHD4 via binding to DNA for further chromatin remodeling at DNA breaks.
Collapse
Affiliation(s)
- Rebecca Smith
- Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.,Univ Rennes, CNRS, Structure fédérative de recherche Biosit, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Hafida Sellou
- Univ Rennes, CNRS, Structure fédérative de recherche Biosit, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, Structure fédérative de recherche Biosit, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Sébastien Huet
- Univ Rennes, CNRS, Structure fédérative de recherche Biosit, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Gyula Timinszky
- Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.,MTA SZBK Lendület DNA damage and nuclear dynamics research group, Biological Research Center of the Hungarian Academy of Sciences, 6276 Szeged, Hungary
| |
Collapse
|
46
|
Hériché JK, Alexander S, Ellenberg J. Integrating Imaging and Omics: Computational Methods and Challenges. Annu Rev Biomed Data Sci 2019. [DOI: 10.1146/annurev-biodatasci-080917-013328] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluorescence microscopy imaging has long been complementary to DNA sequencing- and mass spectrometry–based omics in biomedical research, but these approaches are now converging. On the one hand, omics methods are moving from in vitro methods that average across large cell populations to in situ molecular characterization tools with single-cell sensitivity. On the other hand, fluorescence microscopy imaging has moved from a morphological description of tissues and cells to quantitative molecular profiling with single-molecule resolution. Recent technological developments underpinned by computational methods have started to blur the lines between imaging and omics and have made their direct correlation and seamless integration an exciting possibility. As this trend continues rapidly, it will allow us to create comprehensive molecular profiles of living systems with spatial and temporal context and subcellular resolution. Key to achieving this ambitious goal will be novel computational methods and successfully dealing with the challenges of data integration and sharing as well as cloud-enabled big data analysis.
Collapse
Affiliation(s)
- Jean-Karim Hériché
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Stephanie Alexander
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
47
|
Kim TK, Lee BW, Fujii F, Kim JK, Pack CG. Physicochemical Properties of Nucleoli in Live Cells Analyzed by Label-Free Optical Diffraction Tomography. Cells 2019; 8:cells8070699. [PMID: 31295945 PMCID: PMC6679011 DOI: 10.3390/cells8070699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
The cell nucleus is three-dimensionally and dynamically organized by nuclear components with high molecular density, such as chromatin and nuclear bodies. The structure and functions of these components are represented by the diffusion and interaction of related factors. Recent studies suggest that the nucleolus can be assessed using various protein probes, as the probes are highly mobile in this organelle, although it is known that they have a densely packed structure. However, physicochemical properties of the nucleolus itself, such as molecular density and volume when cellular conditions are changed, are not yet fully understood. In this study, physical parameters such as the refractive index (RI) and volume of the nucleoli in addition to the diffusion coefficient (D) of fluorescent probe protein inside the nucleolus are quantified and compared by combining label-free optical diffraction tomography (ODT) with confocal laser scanning microscopy (CLSM)-based fluorescence correlation spectroscopy (FCS). 3D evaluation of RI values and corresponding RI images of nucleoli in live HeLa cells successfully demonstrated varying various physiological conditions. Our complimentary method suggests that physical property of the nucleolus in live cell is sensitive to ATP depletion and transcriptional inhibition, while it is insensitive to hyper osmotic pressure when compared with the cytoplasm and nucleoplasm. The result demonstrates that the nucleolus has unique physicochemical properties when compared with other cellular components.
Collapse
Affiliation(s)
- Tae-Keun Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Byong-Wook Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Fumihiko Fujii
- Division of Physical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Jun Ki Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
48
|
Cattoglio C, Pustova I, Walther N, Ho JJ, Hantsche-Grininger M, Inouye CJ, Hossain MJ, Dailey GM, Ellenberg J, Darzacq X, Tjian R, Hansen AS. Determining cellular CTCF and cohesin abundances to constrain 3D genome models. eLife 2019; 8:e40164. [PMID: 31205001 PMCID: PMC6579579 DOI: 10.7554/elife.40164] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/28/2019] [Indexed: 01/02/2023] Open
Abstract
Achieving a quantitative and predictive understanding of 3D genome architecture remains a major challenge, as it requires quantitative measurements of the key proteins involved. Here, we report the quantification of CTCF and cohesin, two causal regulators of topologically associating domains (TADs) in mammalian cells. Extending our previous imaging studies (Hansen et al., 2017), we estimate bounds on the density of putatively DNA loop-extruding cohesin complexes and CTCF binding site occupancy. Furthermore, co-immunoprecipitation studies of an endogenously tagged subunit (Rad21) suggest the presence of cohesin dimers and/or oligomers. Finally, based on our cell lines with accurately measured protein abundances, we report a method to conveniently determine the number of molecules of any Halo-tagged protein in the cell. We anticipate that our results and the established tool for measuring cellular protein abundances will advance a more quantitative understanding of 3D genome organization, and facilitate protein quantification, key to comprehend diverse biological processes.
Collapse
Affiliation(s)
- Claudia Cattoglio
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteBerkeleyUnited States
| | - Iryna Pustova
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteBerkeleyUnited States
| | - Nike Walther
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Jaclyn J Ho
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteBerkeleyUnited States
| | | | - Carla J Inouye
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteBerkeleyUnited States
| | - M Julius Hossain
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Gina M Dailey
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
| | - Jan Ellenberg
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteBerkeleyUnited States
| | - Anders S Hansen
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteBerkeleyUnited States
| |
Collapse
|
49
|
Holzmann J, Politi AZ, Nagasaka K, Hantsche-Grininger M, Walther N, Koch B, Fuchs J, Dürnberger G, Tang W, Ladurner R, Stocsits RR, Busslinger GA, Novák B, Mechtler K, Davidson IF, Ellenberg J, Peters JM. Absolute quantification of cohesin, CTCF and their regulators in human cells. eLife 2019; 8:e46269. [PMID: 31204999 PMCID: PMC6606026 DOI: 10.7554/elife.46269] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
The organisation of mammalian genomes into loops and topologically associating domains (TADs) contributes to chromatin structure, gene expression and recombination. TADs and many loops are formed by cohesin and positioned by CTCF. In proliferating cells, cohesin also mediates sister chromatid cohesion, which is essential for chromosome segregation. Current models of chromatin folding and cohesion are based on assumptions of how many cohesin and CTCF molecules organise the genome. Here we have measured absolute copy numbers and dynamics of cohesin, CTCF, NIPBL, WAPL and sororin by mass spectrometry, fluorescence-correlation spectroscopy and fluorescence recovery after photobleaching in HeLa cells. In G1-phase, there are ~250,000 nuclear cohesin complexes, of which ~ 160,000 are chromatin-bound. Comparison with chromatin immunoprecipitation-sequencing data implies that some genomic cohesin and CTCF enrichment sites are unoccupied in single cells at any one time. We discuss the implications of these findings for how cohesin can contribute to genome organisation and cohesion.
Collapse
Affiliation(s)
- Johann Holzmann
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Gregor Mendel Institute, Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Antonio Z Politi
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Kota Nagasaka
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | | | - Nike Walther
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Birgit Koch
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Johannes Fuchs
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Gregor Mendel Institute, Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Gregor Mendel Institute, Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Rene Ladurner
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Roman R Stocsits
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Georg A Busslinger
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Béla Novák
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Gregor Mendel Institute, Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Iain Finley Davidson
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Jan Ellenberg
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Medical University of ViennaViennaAustria
| |
Collapse
|
50
|
Yang J, Cheng Y, Du L, Gong W, Shi S, Sun J, Chen B. Analyzing the effect of the incidence angle on chlorophyll fluorescence intensity based on laser-induced fluorescence lidar. OPTICS EXPRESS 2019; 27:12541-12550. [PMID: 31052794 DOI: 10.1364/oe.27.012541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Laser-induced fluorescence (LIF) technology has been widely applied to monitor vegetation growth status and biochemical concentrations. Thus, it is important to accurately acquire the fluorescence information for the quantitative monitoring of vegetation growth status. In this study, firstly, the incidence angle's effect on chlorophyll fluorescence intensity was analyzed by using the FluorMODleaf model. Then, comprehensive experimental data on the angle dependence of the fluorescence intensity to vegetation leaf surface were collected. Numerical and experimental results showed that proposed corrected cosine expression could be used to describe the relationship between the incidence angle and the fluorescence intensity in the LIF-Lidar. Lastly, fluorescence signals at 685 and 740 nm extracted at different incident angles of excitation lights were fitted with the corrected cosine expression. The coefficient of determination (R2) of the fitting results reached a maximum value of 0.93 for Salix babylonica.
Collapse
|