1
|
Das S, Ramanathan G. Assessing the Inhibitory Potential of Pregnenolone Sulfate on Pentraxin 3 in Diabetic Kidney Disease: A Molecular Docking and Simulation Study. J Cell Biochem 2024:e30661. [PMID: 39344977 DOI: 10.1002/jcb.30661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Diabetic Kidney Disease (DKD), a frequent consequence of diabetes, has substantial implications for both morbidity and mortality rates, prompting the exploration of new metabolic biomarkers due to limitations in current methods like creatinine and albumin measurements. Pentraxin 3 (PTX3) shows promise for assessing renal inflammation in DKD. This study investigates how DKD metabolites could influence PTX3 expression through molecular docking, ADMET profiling, and dynamic simulation. Network and pathway analyses were conducted to explore metabolite interactions with DKD genes and their contributions to DKD pathogenesis. Thirty-three DKD-associated metabolites were screened, using pentoxifylline (PEN) as a reference. The pharmacokinetic properties of these compounds were evaluated through molecular docking and ADMET profiling. Molecular dynamics simulations over 200 ns assessed the stability of PTX3 (apo), the PRE-PTX3 complex, and PEN-PTX3 across multiple parameters. Cytoscape identified 1082 nodes and 1381 edges linking metabolites with DKD genes. KEGG pathway analysis underscored PTX3's role in inflammation. Molecular docking revealed pregnenolone sulfate (PRE) with the highest binding affinity (-6.25 kcal/mol), followed by hydrocortisone (-6.03 kcal/mol) and 2-arachidonoylglycerol (-5.92 kcal/mol), compared to PEN (-5.35 kcal/mol). ADMET profiling selected PRE for dynamic simulation alongside PEN. Analysis of RMSD, RMSF, RG, SASA, H-bond, PCA, FEL, and MM-PBSA indicated stable complex behavior over time. Our findings suggest that increasing PRE levels could be beneficial in managing DKD, potentially through isolating PRE from fungal sources, synthesizing it as dietary supplements, or enhancing endogenous PRE synthesis within the body.
Collapse
Affiliation(s)
- Soumik Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Karpov M, Strizhov N, Novikova L, Lobastova T, Khomutov S, Shutov A, Kazantsev A, Donova M. Pregnenolone and progesterone production from natural sterols using recombinant strain of Mycolicibacterium smegmatis mc 2 155 expressing mammalian steroidogenesis system. Microb Cell Fact 2024; 23:105. [PMID: 38594656 PMCID: PMC11005228 DOI: 10.1186/s12934-024-02385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Pregnenolone and progesterone are the life-important steroid hormones regulating essential vital functions in mammals, and widely used in different fields of medicine. Microbiological production of these compounds from sterols is based on the use of recombinant strains expressing the enzyme system cholesterol hydroxylase/C20-C22 lyase (CH/L) of mammalian steroidogenesis. However, the efficiency of the known recombinant strains is still low. New recombinant strains and combination approaches are now needed to produce these steroid hormones. RESULTS Based on Mycolicibacterium smegmatis, a recombinant strain was created that expresses the steroidogenesis system (CYP11A1, adrenodoxin reductase, adrenodoxin) of the bovine adrenal cortex. The recombinant strain transformed cholesterol and phytosterol to form progesterone among the metabolites. When 3-methoxymethyl ethers of sterols were applied as bioconversion substrates, the corresponding 3-ethers of pregnenolone and dehydroepiandrosterone (DHEA) were identified as major metabolites. Under optimized conditions, the recombinant strain produced 85.2 ± 4.7 mol % 3-methoxymethyl-pregnenolone within 48 h, while production of 3-substituted DHEA was not detected. After the 3-methoxymethyl function was deprotected by acid hydrolysis, crystalline pregnenolone was isolated in high purity (over 98%, w/w). The structures of steroids were confirmed using TLC, HPLC, MS and 1H- and 13C-NMR analyses. CONCLUSION The use of mycolicybacteria as a microbial platform for the expression of systems at the initial stage of mammalian steroidogenesis ensures the production of valuable steroid hormones-progesterone and pregnenolone from cholesterol. Selective production of pregnenolone from cholesterol is ensured by the use of 3-substituted cholesterol as a substrate and optimization of the conditions for its bioconversion. The results open the prospects for the generation of the new microbial biocatalysts capable of effectively producing value-added steroid hormones.
Collapse
Affiliation(s)
- Mikhail Karpov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia.
| | - Nicolai Strizhov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Ludmila Novikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119234, Russia
| | - Tatyana Lobastova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Sergey Khomutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Andrei Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Alexey Kazantsev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Marina Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia.
| |
Collapse
|
3
|
Qin Z, Zhang Y, Liu S, Zeng W, Zhou J, Xu S. Combining Metabolic Engineering and Lipid Droplet Assembly to Achieve Campesterol Overproduction in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4814-4824. [PMID: 38389392 DOI: 10.1021/acs.jafc.3c09764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Campesterol is a kind of important functional food additive. Therefore, stable and efficient campesterol biosynthesis is significant. Herein, we first knocked out the sterol 22-desaturase gene in Saccharomyces cerevisiae and expressed sterol Δ7-reductase from Pangasianodon hypophthalmus, obtaining a strain that produced 6.6 mg/L campesterol. Then, the modular expression of campesterol synthesis enzymes was performed, and a campesterol titer of 88.3 mg/L was achieved. Because campesterol is a lipid-soluble macromolecule, we promoted lipid droplet formation by exploring regulatory factors, and campesterol production was improved to 169.20 mg/L. Next, triacylglycerol lipase was used to achieve compartment campesterol synthesis. After enhancing the expression of sterol Δ7-reductase and screening cations, the campesterol titer reached 438.28 mg/L in a shake flask and 1.44 g/L in a 5 L bioreactor, which represents the highest campesterol titer reported to date. Metabolic regulation combined with lipid droplet engineering may be useful for the synthesis of other steroids as well.
Collapse
Affiliation(s)
- Zhijie Qin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yunliang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Song Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Weizhu Zeng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Sha Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|
4
|
Liu R, Pan Y, Wang N, Tang D, Urlacher VB, Li S. Comparative biochemical characterization of mammalian-derived CYP11A1s with cholesterol side-chain cleavage activities. J Steroid Biochem Mol Biol 2023; 229:106268. [PMID: 36764495 DOI: 10.1016/j.jsbmb.2023.106268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Steroid drugs, the second largest class of pharmaceuticals after antibiotics, have shown significant anti-inflammatory, anti-allergic, and endocrine-regulating effects. A group of cytochrome P450 enzymes, namely, CYP11A1 isoenzymes from different organisms are capable of converting cholesterol into pregnenolone, which is a pivotal reaction in both steroid metabolism and (bio)synthetic network of steroid products. However, the low activity of CYP11A1s greatly restricts the industrial application of these cholesterol side-chain cleavage enzymes. Herein, we investigate ten CYP11A1 enzymes of different origins and in vitro characterize two CYP11A1s with a relatively higher expression level from Capra hircus and Sus scrofa, together with the CYP11A1s from Homo sapiens and Bos taurus as references. Towards five selected sterol substrates with different side chain structures, S. scrofa CYP11A1 displays relatively higher activities. Through redox partners combination screening, we reveal the optimal redox partner pair of S. scrofa adrenodoxin and C. hircus adrenodoxin reductase. Moreover, the semi-rational mutagenesis for the active sites and substrate entrance channels of human and bovine CYP11A1s is performed based on comparative analysis of their crystal structures. The mutant mBtCYP11A1-Q377A derived from mature B. taurus CYP11A1 shows a 1.46 times higher activity than the wild type enzyme. These results not only demonstrate the tunability of the highly conserved CYP11A1 isoenzymes, but also lay a foundation for the following engineering efforts on these industrially relevant P450 enzymes.
Collapse
Affiliation(s)
- Ruxin Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yunjun Pan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| |
Collapse
|
5
|
Zhang R, Yao M, Ma H, Xiao W, Wang Y, Yuan Y. Modular Coculture to Reduce Substrate Competition and Off-Target Intermediates in Androstenedione Biosynthesis. ACS Synth Biol 2023; 12:788-799. [PMID: 36857753 DOI: 10.1021/acssynbio.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Substrate competition within a metabolic network constitutes a common challenge in microbial biosynthesis system engineering, especially if indispensable enzymes can produce multiple intermediates from a single substrate. Androstenedione (4AD) is a central intermediate in the production of a series of steroidal pharmaceuticals; however, its yield via the coexpression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17α-hydroxylase/17,20-lyase (CYP17A1) in a microbial chassis affords a nonlinear pathway in which these enzymes compete for substrates and produce structurally similar unwanted intermediates, thereby reducing 4AD yields. To avoid substrate competition, we split the competing 3β-HSD and CYP17A1 pathway components into two separate Yarrowia lipolytica strains to linearize the pathway. This spatial segregation increased substrate availability for 3β-HSD in the upstream strain, consequently decreasing the accumulation of the unwanted intermediate 17-hydroxypregnenolone (17OHP5) from 94.8 ± 4.4% in single-chassis monocultures to 24.8 ± 12.6% in cocultures of strains expressing 3β-HSD and CYP17A1 separately. Orthologue screening to increase CYP17A1 catalytic efficiency and the preferential production of desired intermediates increased the biotransformation capacity in the downstream pathway, further decreasing 17OHP5 accumulation to 3.9%. Furthermore, nitrogen limitation induced early 4AD accumulation (final titer, 7.71 mg/L). This study provides a framework for reducing intrapathway competition between essential enzymes during natural product biosynthesis as well as a proof-of-concept platform for linear steroid production.
Collapse
Affiliation(s)
- Ruosi Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Haidi Ma
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.,Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen 518071, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Liu K, Wang FQ, Liu K, Zhao Y, Gao B, Tao X, Wei D. Light-driven progesterone production by InP-(M. neoaurum) biohybrid system. BIORESOUR BIOPROCESS 2022; 9:93. [PMID: 38647746 PMCID: PMC10992907 DOI: 10.1186/s40643-022-00575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022] Open
Abstract
Progesterone is one of the classical hormone drugs used in medicine for maintaining pregnancy. However, its manufacturing process, coupled with organic reagents and poisonous catalysts, causes irreversible environmental pollution. Recent advances in synthetic biology have demonstrated that the microbial biosynthesis of natural products, especially difficult-to-synthesize compounds, from building blocks is a promising strategy. Herein, overcoming the heterologous cytochrome P450 enzyme interdependency in Mycolicibacterium neoaurum successfully constructed the CYP11A1 running module to realize metabolic conversion from waste phytosterols to progesterone. Subsequently, progesterone yield was improved through strategies involving electron transfer and NADPH regeneration. Mutant CYP11A1 (mCYP11A1) and adrenodoxin reductase (ADR) were connected by a flexible linker (L) to form the chimera mCYP11A1-L-ADR to enhance electron transfer. The chimera mCYP11A1-L-ADR, adrenodoxin (ADX), and ADR-related homolog ARH1 were expressed in M. neoaurum, showed positive activity and produced 45 mg/L progesterone. This electron transfer strategy increased progesterone production by 3.95-fold compared with M. neoaurum expressing mCYP11A1, ADR, and ADX. Significantly, a novel inorganic-biological hybrid system was assembled by combining engineered M. neoaurum and InP nanoparticles to regenerate NADPH, which was increased 84-fold from the initial progesterone titer to 235 ± 50 mg/L. In summary, this work highlights the green and sustainable potential of obtaining synthetic progesterone from sterols in M. neoaurum.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Ke Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yunqiu Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinyi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
7
|
Feng J, Wu Q, Zhu D, Ma Y. Biotransformation Enables Innovations Toward Green Synthesis of Steroidal Pharmaceuticals. CHEMSUSCHEM 2022; 15:e202102399. [PMID: 35089653 DOI: 10.1002/cssc.202102399] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Steroids have been widely used in birth-control, prevention, and treatment of various diseases, representing the largest sector after antibiotics in the global pharmaceutical market. The steroidal active pharmaceutical ingredients (APIs) have been produced via partial synthetic processes first mainly from sapogenins, which was converted into 16-dehydropregnenolone by the famous "Marker Degradation". Traditional mutation and screening, and process engineering have resulted in the industrial production of 4-androstene-3,17-dione (AD), androst-1,4-diene-3,17-dione (ADD), 9α-hydroxy-androsta-4-ene-3,17-dione (9α-OH-AD), and so on, which serve as the key intermediates for the synthesis of steroidal APIs. Recently, genetic and metabolic engineering have generated highly efficient microbial strains for the production of these precursors, leading to the replacement of sapogenins with phytosterols as the starting materials. Further advances in synthetic biology hold promise in the design and construction of microbial cell factories for the industrial production of steroidal intermediates and/or APIs from simple carbon sources such as glucose. Integration of biotransformation into the synthesis of steroidal APIs can greatly reduce the number of reaction steps, achieve lower waste discharge and higher production efficiency, thus enabling a greener steroidal pharmaceutical industry.
Collapse
Affiliation(s)
- Jinhui Feng
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Yanhe Ma
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| |
Collapse
|
8
|
Li G, An T, Li Y, Yue J, Huang R, Huang J, Liang J, Yao W, Huang L, Chen Y, Zhang R, Ji A, Duan L. Transcriptome Analysis and Identification of the Cholesterol Side Chain Cleavage Enzyme BbgCYP11A1 From Bufo bufo gargarizans. Front Genet 2022; 13:828877. [PMID: 35480310 PMCID: PMC9037069 DOI: 10.3389/fgene.2022.828877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
Bufo bufo gargarizans Cantor are precious medicinal animals in traditional Chinese medicine (TCM). Bufadienolides as the major pharmacological components are generated from the venomous glands of B. bufo gargarizans. Bufadienolides are one type of cardiac aglycone with a six-member lactone ring and have properties of antitumor, cardiotonic, tonsillitis, and anti-inflammatory. The biosynthesis of bufadienolides is complex and unclear. This study explored the transcriptome of three different tissues (skin glands, venom glands, and muscles) of B. bufo gargarizans by high-throughput sequencing. According to the gene tissue–specific expression profile, 389 candidate genes were predicted possibly participating in the bufadienolides biosynthesis pathway. Then, BbgCYP11A1 was identified as a cholesterol side chain cleaving the enzyme in engineering yeast producing cholesterol. Furthermore, the catalytic activity of BbgCYP11A1 was studied with various redox partners. Interestingly, a plant NADPH-cytochrome P450 reductase (CPR) from Anemarrhena asphodeloides showed notably higher production than BbgAdx-2A-BbgAdR from B. bufo gargarizans. These results will provide certainly molecular research to reveal the bufadienolides biosynthesis pathway in B. bufo gargarizans.
Collapse
Affiliation(s)
- Guangli Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyue An
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yanta, China
| | - Yu Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyang Yue
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruoshi Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jincai Liang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liufang Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yidu Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongrong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijia Ji
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixin Duan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Metab Eng 2022; 70:115-128. [DOI: 10.1016/j.ymben.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
|
10
|
Gu Y, Jiao X, Ye L, Yu H. Metabolic engineering strategies for de novo biosynthesis of sterols and steroids in yeast. BIORESOUR BIOPROCESS 2021; 8:110. [PMID: 38650187 PMCID: PMC10992410 DOI: 10.1186/s40643-021-00460-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022] Open
Abstract
Steroidal compounds are of great interest in the pharmaceutical field, with steroidal drugs as the second largest category of medicine in the world. Advances in synthetic biology and metabolic engineering have enabled de novo biosynthesis of sterols and steroids in yeast, which is a green and safe production route for these valuable steroidal compounds. In this review, we summarize the metabolic engineering strategies developed and employed for improving the de novo biosynthesis of sterols and steroids in yeast based on the regulation mechanisms, and introduce the recent progresses in de novo synthesis of some typical sterols and steroids in yeast. The remaining challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Yuehao Gu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xue Jiao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
11
|
Kulagina N, Besseau S, Godon C, Goldman GH, Papon N, Courdavault V. Yeasts as Biopharmaceutical Production Platforms. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:733492. [PMID: 37744146 PMCID: PMC10512354 DOI: 10.3389/ffunb.2021.733492] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/26/2021] [Indexed: 09/26/2023]
Affiliation(s)
- Natalja Kulagina
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| | - Sébastien Besseau
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| | - Charlotte Godon
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | - Gustavo H. Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nicolas Papon
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| |
Collapse
|
12
|
Kamel EM, Lamsabhi AM. The quasi-irreversible inactivation of cytochrome P450 enzymes by paroxetine: a computational approach. Org Biomol Chem 2021; 18:3334-3345. [PMID: 32301459 DOI: 10.1039/d0ob00529k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism-based inactivation (MBI) of P450 by paroxetine was investigated by computational analysis. The drug-enzyme interactions were figured out through studying energy profiles of three competing mechanisms. The potency of paroxetine as P450's inhibitor was estimated based on the availability of two active sites for the MBI in the paroxetine structure. The inactivation by the amino site of paroxetine mainly proceeds via the hydrogen atom transfer pathway because of the lower energy demand of its rate determining step. In addition, the low-spin state is the predominant route in the MBI at the methylenedioxo active site as a result of being rebound barrier-free mechanism. Our comparative investigation showed that inactivation at the secondary amine is thermodynamically more favorable because of the lower energy barrier of the dehydration mechanism of the hydroxylated paroxetine complex than its methylenedioxo counterpart. The results of docking analysis coincided with the outputs of DFT calculations since the docking pose with the lowest binding affinity is that for conformation with polar interaction between the amino group of paroxetine and the oxo moiety of P450's active site. Assessment of the molecular dynamics simulations trajectories revealed the favorable interaction of paroxetine with P450.
Collapse
Affiliation(s)
- Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt. and Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, Campus de Excelencia UAM-CSIC Cantoblanco, Madrid, Spain
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, Campus de Excelencia UAM-CSIC Cantoblanco, Madrid, Spain and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
13
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
14
|
Lemos Cruz P, Kulagina N, Guirimand G, De Craene JO, Besseau S, Lanoue A, Oudin A, Giglioli-Guivarc’h N, Papon N, Clastre M, Courdavault V. Optimization of Tabersonine Methoxylation to Increase Vindoline Precursor Synthesis in Yeast Cell Factories. Molecules 2021; 26:3596. [PMID: 34208368 PMCID: PMC8231165 DOI: 10.3390/molecules26123596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Plant specialized metabolites are widely used in the pharmaceutical industry, including the monoterpene indole alkaloids (MIAs) vinblastine and vincristine, which both display anticancer activity. Both compounds can be obtained through the chemical condensation of their precursors vindoline and catharanthine extracted from leaves of the Madagascar periwinkle. However, the extensive use of these molecules in chemotherapy increases precursor demand and results in recurrent shortages, explaining why the development of alternative production approaches, such microbial cell factories, is mandatory. In this context, the precursor-directed biosynthesis of vindoline from tabersonine in yeast-expressing heterologous biosynthetic genes is of particular interest but has not reached high production scales to date. To circumvent production bottlenecks, the metabolic flux was channeled towards the MIA of interest by modulating the copy number of the first two genes of the vindoline biosynthetic pathway, namely tabersonine 16-hydroxylase and tabersonine-16-O-methyltransferase. Increasing gene copies resulted in an optimized methoxylation of tabersonine and overcame the competition for tabersonine access with the third enzyme of the pathway, tabersonine 3-oxygenase, which exhibits a high substrate promiscuity. Through this approach, we successfully created a yeast strain that produces the fourth biosynthetic intermediate of vindoline without accumulation of other intermediates or undesired side-products. This optimization will probably pave the way towards the future development of yeast cell factories to produce vindoline at an industrial scale.
Collapse
Affiliation(s)
- Pamela Lemos Cruz
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Natalja Kulagina
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Grégory Guirimand
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
- Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans & Tours, France
| | - Johan-Owen De Craene
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Sébastien Besseau
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Audrey Oudin
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Nathalie Giglioli-Guivarc’h
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, F-49000 Angers, France;
| | - Marc Clastre
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Vincent Courdavault
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| |
Collapse
|
15
|
Dinan L, Dioh W, Veillet S, Lafont R. 20-Hydroxyecdysone, from Plant Extracts to Clinical Use: Therapeutic Potential for the Treatment of Neuromuscular, Cardio-Metabolic and Respiratory Diseases. Biomedicines 2021; 9:492. [PMID: 33947076 PMCID: PMC8146789 DOI: 10.3390/biomedicines9050492] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/02/2022] Open
Abstract
There is growing interest in the pharmaceutical and medical applications of 20-hydroxyecdysone (20E), a polyhydroxylated steroid which naturally occurs in low but very significant amounts in invertebrates, where it has hormonal roles, and in certain plant species, where it is believed to contribute to the deterrence of invertebrate predators. Studies in vivo and in vitro have revealed beneficial effects in mammals: anabolic, hypolipidemic, anti-diabetic, anti-inflammatory, hepatoprotective, etc. The possible mode of action in mammals has been determined recently, with the main mechanism involving the activation of the Mas1 receptor, a key component of the renin-angiotensin system, which would explain many of the pleiotropic effects observed in the different animal models. Processes have been developed to produce large amounts of pharmaceutical grade 20E, and regulatory preclinical studies have assessed its lack of toxicity. The effects of 20E have been evaluated in early stage clinical trials in healthy volunteers and in patients for the treatment of neuromuscular, cardio-metabolic or respiratory diseases. The prospects and limitations of developing 20E as a drug are discussed, including the requirement for a better evaluation of its safety and pharmacological profile and for developing a production process compliant with pharmaceutical standards.
Collapse
Affiliation(s)
- Laurence Dinan
- Biophytis, Sorbonne Université, BC9, 4 place Jussieu, 75005 Paris, France; (L.D.); (W.D.); (S.V.)
| | - Waly Dioh
- Biophytis, Sorbonne Université, BC9, 4 place Jussieu, 75005 Paris, France; (L.D.); (W.D.); (S.V.)
| | - Stanislas Veillet
- Biophytis, Sorbonne Université, BC9, 4 place Jussieu, 75005 Paris, France; (L.D.); (W.D.); (S.V.)
| | - Rene Lafont
- Biophytis, Sorbonne Université, BC9, 4 place Jussieu, 75005 Paris, France; (L.D.); (W.D.); (S.V.)
- BIOSIPE, IBPS, Sorbonne Université, UPMC, 75005 Paris, France
| |
Collapse
|
16
|
Peng H, Wang Y, Jiang K, Chen X, Zhang W, Zhang Y, Deng Z, Qu X. A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haidong Peng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Yaya Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Kai Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Xinru Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Wenlu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Yanan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
17
|
Peng H, Wang Y, Jiang K, Chen X, Zhang W, Zhang Y, Deng Z, Qu X. A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors. Angew Chem Int Ed Engl 2021; 60:5414-5420. [PMID: 33258169 DOI: 10.1002/anie.202015462] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 12/15/2022]
Abstract
4-Androstenedione (4-AD) and progesterone (PG) are two of the most important precursors for synthesis of steroid drugs, however their current manufacturing processes suffer from low efficiency and severe environmental issues. In this study, we decipher a dual-role reductase (mnOpccR) in the phytosterols catabolism, which engages in two different metabolic branches to produce the key intermediate 20-hydroxymethyl pregn-4-ene-3-one (4-HBC) through a 4-e reduction of 3-oxo-4-pregnene-20-carboxyl-CoA (3-OPC-CoA) and 2-e reduction of 3-oxo-4-pregnene-20-carboxyl aldehyde (3-OPA), respectively. Inactivation or overexpression of mnOpccR in the Mycobacterium neoaurum can achieve exclusive production of either 4-AD or 4-HBC from phytosterols. By utilizing a two-step synthesis, 4-HBC can be efficiently converted into PG in a scalable manner (100 gram scale). This study deciphers a pivotal biosynthetic mechanism of phytosterol catabolism and provides very efficient production routes of 4-AD and PG.
Collapse
Affiliation(s)
- Haidong Peng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Yaya Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Kai Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Xinru Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Wenlu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Yanan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| |
Collapse
|
18
|
Efimova VS, Isaeva LV, Orekhov PS, Bozdaganyan ME, Rubtsov MA, Novikova LA. Using a viral 2A peptide-based strategy to reconstruct the bovine P450scc steroidogenic system in S. cerevisiae: Bovine P450scc system expression using 2A peptides. J Biotechnol 2020; 325:186-195. [PMID: 33157198 DOI: 10.1016/j.jbiotec.2020.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Cytochrome P450scc system performs the first rate-limiting stage of steroidogenesis in mammals. The bovine P450scc system was reconstructed in Saccharomyces cerevisiae, using a foot-and-mouth disease virus 2A peptide (F2A)-based construct, to co-express cytochrome P450scc, adrenodoxin (Adx), and adrenodoxin reductase (AdR). During the translation of the self-processing fusion protein P450scc-F2A-Adx-F2A-AdR, the first and the second linkers are cleaved with different efficiencies (96 % and 11 %, respectively), resulting in the unbalanced expression of individual proteins. The low cleavage efficiency and the relative Adx and AdR protein levels were increased through replacing the second F2A peptide with different sequences and changing the order of Adx and AdR. The P450scc, AdR, and Adx sequences located upstream of the F2A affected F2A processing, to various degrees. Moreover, using molecular dynamics (MD) simulations, we showed that the 2A peptide fused to the C-terminus of Adx formed the steric hindrance during enzymatic complex formation, resulting in the reduction of catalytic activity. Thus, the functional activity of the reconstructed P450scc system was determined not only by the efficiency of 2A peptides but also by the overall sequence of the expressed 2A-polyprotein. Our results can be applied to the development of 2A-based co-translation strategies, to produce other multicomponent protein systems.
Collapse
Affiliation(s)
- Vera S Efimova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia
| | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia
| | - Philipp S Orekhov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia; Department of Biochemistry, Institute for Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st. 2, Moscow, 119991 Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, 141701, Russia
| | - Marine E Bozdaganyan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, 141701, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow, 119991, Russia
| | - Mikhail A Rubtsov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia; Department of Biochemistry, Institute for Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st. 2, Moscow, 119991 Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia.
| |
Collapse
|
19
|
Guirimand G, Kulagina N, Papon N, Hasunuma T, Courdavault V. Innovative Tools and Strategies for Optimizing Yeast Cell Factories. Trends Biotechnol 2020; 39:488-504. [PMID: 33008642 DOI: 10.1016/j.tibtech.2020.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic engineering (ME) aims to develop efficient microbial cell factories that can produce a wide variety of valuable compounds, ideally at the highest yield and from various feedstocks. We summarize recent developments in ME methods for tailoring different yeast cell factories (YCFs). In particular, we highlight the most timely and cutting-edge molecular tools and strategies for biosynthetic pathway optimization (including genome-editing tools), combinatorial transcriptional and post-transcriptional engineering (cis/trans regulators), dynamic control of metabolic fluxes (e.g., rewiring of primary metabolism), and spatial reconfiguration of metabolic pathways. Finally, we discuss challenges and perspectives for adaptive laboratory evolution (ALE) of yeast to advance ME of microbial cell factories.
Collapse
Affiliation(s)
- Gregory Guirimand
- Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe, Japan; Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France
| | - Natalja Kulagina
- Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), EA 3142, Université Angers and Université Brest, Structure Féderative de Recherche (SFR) 4208 Interactions Cellulaires et Applications Thérapeutiques (ICAT), Angers, France
| | - Tomohisa Hasunuma
- Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe, Japan; Engineering Biology Research Center, Kobe University, Kobe, Japan.
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France.
| |
Collapse
|
20
|
Başlar MS, Sakallı T, Güralp G, Kestevur Doğru E, Haklı E, Surmeli NB. Development of an improved Amplex Red peroxidation activity assay for screening cytochrome P450 variants and identification of a novel mutant of the thermophilic CYP119. J Biol Inorg Chem 2020; 25:949-962. [PMID: 32924072 DOI: 10.1007/s00775-020-01816-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
Biocatalysts are increasingly utilized in the synthesis of drugs and agrochemicals as an alternative to chemical catalysis. They are preferred in the synthesis of enantiopure products due to their high regioselectivity and enantioselectivity. Cytochrome P450 (P450) oxygenases are valuable biocatalysts, since they catalyze the oxidation of carbon-hydrogen bonds with high efficiency and selectivity. However, practical use of P450s is limited due to their need for expensive cofactors and electron transport partners. P450s can employ hydrogen peroxide (H2O2) as an oxygen and electron donor, but the reaction with H2O2 is inefficient. The development of P450s that can use H2O2 will expand their applications. Here, an assay that utilizes Amplex Red peroxidation, to rapidly screen H2O2-dependent activity of P450 mutants in cell lysate was developed. This assay was employed to identify mutants of CYP119, a thermophilic P450 from Sulfolobus acidocaldarius, with increased peroxidation activity. A mutant library of CYP119 containing substitutions in the heme active site was constructed via combinatorial active-site saturation test and screened for improved activity. Screening of 158 colonies led to five mutants with higher activity. Among improved variants, T213R/T214I was characterized. T213R/T214I exhibited fivefold higher kcat for Amplex Red peroxidation and twofold higher kcat for styrene epoxidation. T213R/T214I showed higher stability towards heme degradation by H2O2. While the Km for H2O2 and styrene were not altered by the mutation, a fourfold decrease in the affinity for another substrate, lauric acid, was observed. In conclusion, Amplex Red peroxidation screening of CYP119 mutants yielded enzymes with increased peroxide-dependent activity.
Collapse
Affiliation(s)
- M Semih Başlar
- Department of Bioengineering, İzmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Tuğçe Sakallı
- Program in Biotechnology and Bioengineering, İzmir Institute of Technology, Gülbahce, Urla, Izmir, Turkey
| | - Gülce Güralp
- Department of Bioengineering, İzmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Ekin Kestevur Doğru
- Department of Bioengineering, İzmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Emre Haklı
- Program in Biotechnology and Bioengineering, İzmir Institute of Technology, Gülbahce, Urla, Izmir, Turkey
| | - Nur Basak Surmeli
- Department of Bioengineering, İzmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey.
| |
Collapse
|
21
|
Microbial Chassis Development for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:779-796. [DOI: 10.1016/j.tibtech.2020.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
|
22
|
Increased campesterol synthesis by improving lipid content in engineered Yarrowia lipolytica. Appl Microbiol Biotechnol 2020; 104:7165-7175. [DOI: 10.1007/s00253-020-10743-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
|
23
|
Zhang R, Zhang Y, Wang Y, Yao M, Zhang J, Liu H, Zhou X, Xiao W, Yuan Y. Pregnenolone Overproduction in Yarrowia lipolytica by Integrative Components Pairing of the Cytochrome P450scc System. ACS Synth Biol 2019; 8:2666-2678. [PMID: 31621297 DOI: 10.1021/acssynbio.9b00018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbial production of steroid drugs exhibits great potentials in much greener and more sustainable manners, in which engineering multiple cytochrome P450s is the prerequisite requirement. The pairing of multicomponents of P450 systems is a tremendous challenge. Herein, biosynthesis of pregnenolone (a common precursor of steroid drugs) in Yarrowia lipolytica was taken as a typical instance to explore the engineering strategy of the cytochrome P450 side-chain cleavage enzyme (P450scc) system. The mature forms of the components belonging to P450scc system, CYP11A1, adrenodoxin (Adx), and adrenodoxin reductase (AdR), were coexpressed in a former constructed campesterol producing strain. To maximize pregnenolone production, an integrative components pairing strategy was proposed for pairing the component sources and balancing the expression levels of CYP11A1, Adx, and AdR. Led by the above approaches, a 2344-fold improvement of pregnenolone titer was achieved at the shake flask level. Consequently, a highest reported pregnenolone titer of 78.0 mg/L in microbes was obtained in a 5 L bioreactor. Our study not only highlights the integrative components pairing of cytochrome P450scc as a general strategy for engineering other cytochrome P450s, but also provides a feasible and efficient platform of Y. lipolytica for other steroids production.
Collapse
Affiliation(s)
- Ruosi Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yu Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Jinlai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Hong Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xiao Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
24
|
Rieck C, Geiger D, Munkert J, Messerschmidt K, Petersen J, Strasser J, Meitinger N, Kreis W. Biosynthetic approach to combine the first steps of cardenolide formation in Saccharomyces cerevisiae. Microbiologyopen 2019; 8:e925. [PMID: 31436030 PMCID: PMC6925150 DOI: 10.1002/mbo3.925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022] Open
Abstract
A yeast expression plasmid was constructed containing a cardenolide biosynthetic module, referred to as CARD II, using the AssemblX toolkit, which enables the assembly of large DNA constructs. The genes cloned into the vector were (a) a Δ5‐3β‐hydroxysteroid dehydrogenase gene from Digitalis lanata, (b) a steroid Δ5‐isomerase gene from Comamonas testosteronii, (c) a mutated steroid‐5β‐reductase gene from Arabidopsis thaliana, and (d) a steroid 21‐hydroxylase gene from Mus musculus. A second plasmid bearing an ADR/ADX fusion gene from Bos taurus was also constructed. A Saccharomyces cerevisiae strain bearing these two plasmids was generated. This strain, termed “CARD II yeast”, was capable of producing 5β‐pregnane‐3β,21‐diol‐20‐one, a central intermediate in 5β‐cardenolide biosynthesis, starting from pregnenolone which was added to the culture medium. Using this approach, five consecutive steps in cardenolide biosynthesis were realized in baker's yeast.
Collapse
Affiliation(s)
- Christoph Rieck
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Geiger
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jennifer Munkert
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Jan Petersen
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Juliane Strasser
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Nadine Meitinger
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Kreis
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
25
|
Spady ES, Wyche TP, Rollins NJ, Clardy J, Way JC, Silver PA. Mammalian Cells Engineered To Produce New Steroids. Chembiochem 2018; 19:1827-1833. [PMID: 29931794 PMCID: PMC6156985 DOI: 10.1002/cbic.201800214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 11/12/2022]
Abstract
Steroids can be difficult to modify through traditional organic synthesis methods, but many enzymes regio- and stereoselectively process a wide variety of steroid substrates. We tested whether steroid-modifying enzymes could make novel steroids from non-native substrates. Numerous genes encoding steroid-modifying enzymes, including some bacterial enzymes, were expressed in mammalian cells by transient transfection and found to be active. We made three unusual steroids by stable expression, in HEK293 cells, of the 7α-hydroxylase CYP7B1, which was selected because of its high native product yield. These cells made 7α,17α-dihydroxypregnenolone and 7β,17α-dihydroxypregnenolone from 17α-hydroxypregnenolone and produced 11α,16α-dihydroxyprogesterone from 16α-hydroxyprogesterone. The last two products were the result of CYP7B1-catalyzed hydroxylation at previously unobserved sites. A Rosetta docking model of CYP7B1 suggested that these substrates' D-ring hydroxy groups might prevent them from binding in the same way as the native substrates, bringing different carbon atoms close to the active ferryl oxygen atom. This new approach could potentially use other enzymes and substrates to produce many novel steroids for drug candidate testing.
Collapse
Affiliation(s)
- Emma S. Spady
- Department of Systems Biology, Harvard Medical School – Boston, MA 02115, United States
- Laboratory of Systems Pharmacology, Harvard University – Boston, MA 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University – Boston, MA 02115, United States
| | - Thomas P. Wyche
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School – Boston, MA 02115, United States
| | - Nathanael J. Rollins
- Department of Systems Biology, Harvard Medical School – Boston, MA 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University – Boston, MA 02115, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School – Boston, MA 02115, United States
| | - Jeffrey C. Way
- Department of Systems Biology, Harvard Medical School – Boston, MA 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University – Boston, MA 02115, United States
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School – Boston, MA 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University – Boston, MA 02115, United States
| |
Collapse
|
26
|
D'Ambrosio V, Jensen MK. Lighting up yeast cell factories by transcription factor-based biosensors. FEMS Yeast Res 2018; 17:4157790. [PMID: 28961766 PMCID: PMC5812511 DOI: 10.1093/femsyr/fox076] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
Our ability to rewire cellular metabolism for the sustainable production of chemicals, fuels and therapeutics based on microbial cell factories has advanced rapidly during the last two decades. Especially the speed and precision by which microbial genomes can be engineered now allow for more advanced designs to be implemented and tested. However, compared to the methods developed for engineering cell factories, the methods developed for testing the performance of newly engineered cell factories in high throughput are lagging far behind, which consequently impacts the overall biomanufacturing process. For this purpose, there is a need to develop new techniques for screening and selection of best-performing cell factory designs in multiplex. Here we review the current status of the sourcing, design and engineering of biosensors derived from allosterically regulated transcription factors applied to the biotechnology work-horse budding yeast Saccharomyces cerevisiae. We conclude by providing a perspective on the most important challenges and opportunities lying ahead in order to harness the full potential of biosensor development for increasing both the throughput of cell factory development and robustness of overall bioprocesses.
Collapse
Affiliation(s)
- Vasil D'Ambrosio
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Fernández-Cabezón L, Galán B, García JL. New Insights on Steroid Biotechnology. Front Microbiol 2018; 9:958. [PMID: 29867863 PMCID: PMC5962712 DOI: 10.3389/fmicb.2018.00958] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Nowadays steroid manufacturing occupies a prominent place in the pharmaceutical industry with an annual global market over $10 billion. The synthesis of steroidal active pharmaceutical ingredients (APIs) such as sex hormones (estrogens, androgens, and progestogens) and corticosteroids is currently performed by a combination of microbiological and chemical processes. Several mycobacterial strains capable of naturally metabolizing sterols (e.g., cholesterol, phytosterols) are used as biocatalysts to transform phytosterols into steroidal intermediates (synthons), which are subsequently used as key precursors to produce steroidal APIs in chemical processes. These synthons can also be modified by other microbial strains capable of introducing regio- and/or stereospecific modifications (functionalization) into steroidal molecules. Most of the industrial microbial strains currently available have been improved through traditional technologies based on physicochemical mutagenesis and selection processes. Surprisingly, Synthetic Biology and Systems Biology approaches have hardly been applied for this purpose. This review attempts to highlight the most relevant research on Steroid Biotechnology carried out in last decades, focusing specially on those works based on recombinant DNA technologies, as well as outlining trends and future perspectives. In addition, the need to construct new microbial cell factories (MCF) to design more robust and bio-sustainable bioprocesses with the ultimate aim of producing steroids à la carte is discussed.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
28
|
Improved campesterol production in engineered Yarrowia lipolytica strains. Biotechnol Lett 2017; 39:1033-1039. [DOI: 10.1007/s10529-017-2331-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
29
|
Le-Huu P, Petrović D, Strodel B, Urlacher VB. One-Pot, Two-Step Hydroxylation of the Macrocyclic Diterpenoid β-Cembrenediol Catalyzed by P450 BM3 Mutants. ChemCatChem 2016. [DOI: 10.1002/cctc.201600973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Priska Le-Huu
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; Universitätsstrasse 1, Bldg. 26.42.U1 40225 Düsseldorf Germany
| | - Dušan Petrović
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
- Institute of Theoretical and Computational Chemistry; Heinrich-Heine University Düsseldorf; Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; Universitätsstrasse 1, Bldg. 26.42.U1 40225 Düsseldorf Germany
| |
Collapse
|
30
|
Lin H, Travisano M, Kazlauskas RJ. The Fungus Trichoderma Regulates Submerged Conidiation Using the Steroid Pregnenolone. ACS Chem Biol 2016; 11:2568-75. [PMID: 27413801 DOI: 10.1021/acschembio.6b00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In previous work, we evolved a population of Trichoderma citrinoviride in liquid cultures to speed up its asexual development cycle. The evolved population, called T-6, formed conidia 3 times sooner and in >1000-fold greater numbers. Here, we identify the steroid pregnenolone as a molecular signal for this different behavior. Media in which the ancestral T. citrinoviride population was grown (called ancestral spent media) contained a submerged conidiation inhibitor. Growing the evolved population T-6 in ancestral spent media eliminated the abundant formation of conidia. This inhibition depended on the amount and age of the ancestral spent medium and the time that the ancestral spent medium was added to the T-6 culture. Fractionation of the ancestral spent medium identified a hydrophobic inhibiting compound with a molecular weight less than 2000 g/mol. A combination of GC-MS, ELISA, and reaction with cholesterol oxidase identified it as pregnenolone. The addition of pregnenolone to cultures of T-6 inhibited submerged conidiation by inhibiting formation of conidiophores, while 10 other analogous steroids did not. Pregnenolone also inhibited submerged conidiation of Fusarium graminearum PH-1, a plant pathogen that causes head blight in wheat and barley. This identification of steroids as signal molecules in fungi creates opportunities to disrupt this signaling to control fungal behavior.
Collapse
Affiliation(s)
- Hui Lin
- The Biotechnology Institute, ‡Department of Ecology, Evolution & Behavior, and §Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, Minnesota 55108, United States
| | - Michael Travisano
- The Biotechnology Institute, ‡Department of Ecology, Evolution & Behavior, and §Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, Minnesota 55108, United States
| | - Romas J. Kazlauskas
- The Biotechnology Institute, ‡Department of Ecology, Evolution & Behavior, and §Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
31
|
Engineering Yarrowia lipolytica for Campesterol Overproduction. PLoS One 2016; 11:e0146773. [PMID: 26751680 PMCID: PMC4709189 DOI: 10.1371/journal.pone.0146773] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022] Open
Abstract
Campesterol is an important precursor for many sterol drugs, e.g. progesterone and hydrocortisone. In order to produce campesterol in Yarrowia lipolytica, C-22 desaturase encoding gene ERG5 was disrupted and the heterologous 7-dehydrocholesterol reductase (DHCR7) encoding gene was constitutively expressed. The codon-optimized DHCR7 from Rallus norvegicus, Oryza saliva and Xenapus laevis were explored and the strain with the gene DHCR7 from X. laevis achieved the highest titer of campesterol due to D409 in substrate binding sites. In presence of glucose as the carbon source, higher biomass conversion yield and product yield were achieved in shake flask compared to that using glycerol and sunflower seed oil. Nevertheless, better cell growth rate was observed in medium with sunflower seed oil as the sole carbon source. Through high cell density fed-batch fermentation under carbon source restriction strategy, a titer of 453±24.7 mg/L campesterol was achieved with sunflower seed oil as the carbon source, which is the highest reported microbial titer known. Our study has greatly enhanced campesterol accumulation in Y. lipolytica, providing new insight into producing complex and desired molecules in microbes.
Collapse
|
32
|
Feng J, Jester BW, Tinberg CE, Mandell DJ, Antunes MS, Chari R, Morey KJ, Rios X, Medford JI, Church GM, Fields S, Baker D. A general strategy to construct small molecule biosensors in eukaryotes. eLife 2015; 4. [PMID: 26714111 PMCID: PMC4739774 DOI: 10.7554/elife.10606] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022] Open
Abstract
Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes. DOI:http://dx.doi.org/10.7554/eLife.10606.001 Small molecules play essential roles in organisms, and so methods to sense these molecules within living cells could have wide-ranging uses in both biology and biotechnology. However, current methods for making new “biosensors” are limited and only a narrow range of small molecules can be detected. One approach to biosensor design in yeast and other eukaryotic organisms uses proteins called ligand-binding domains, which bind to small molecules. Here, Feng, Jester, Tinberg, Mandell et al. have developed a new method to make biosensors from ligand-binding domains that could, in principle, be applied to any target small molecule. The new method involves taking a ligand-binding domain that is either engineered or occurs in nature and linking it to something that can be readily detected, such as a protein that fluoresces or that controls gene expression. This combined biosensor protein is then engineered, via mutations, such that it is unstable unless it binds to the small molecule. This means that, in the absence of the small molecule, these proteins are destroyed inside living cells. However, the binding of a target molecule to one of these proteins protects it from degradation, which allows the signal to be detected. Feng, Jester, Tinberg, Mandell et al. use this method to create biosensors for a human hormone called progesterone and a drug called digoxin, which is used to treat heart disease. Further experiments used the biosensors to optimize the production of progesterone in yeast and to regulate the activity of a gene editing protein called Cas9 in human cells. The biosensors can be also used to produce long-term environmental sensors in plant cells. This approach makes it possible to produce a wide variety of biosensors for different organisms. The next step is to continue to explore the ability of various proteins to be converted into biosensors, and to find out how easy it is to transfer a biosensor produced in one species to another. DOI:http://dx.doi.org/10.7554/eLife.10606.002
Collapse
Affiliation(s)
- Justin Feng
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Benjamin W Jester
- Department of Genome Sciences, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Christine E Tinberg
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Daniel J Mandell
- Department of Genetics, Harvard Medical School, Boston, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, United States
| | - Mauricio S Antunes
- Department of Biology, Colorado State University, Fort Collins, United States
| | - Raj Chari
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Kevin J Morey
- Department of Biology, Colorado State University, Fort Collins, United States
| | - Xavier Rios
- Department of Genetics, Harvard Medical School, Boston, United States
| | - June I Medford
- Department of Biology, Colorado State University, Fort Collins, United States
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, United States
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States.,Department of Medicine, University of Washington, Seattle, United States
| | - David Baker
- Howard Hughes Medical Institute, University of Washington, Seattle, United States.,Department of Biochemistry, University of Washington, Seattle, United States
| |
Collapse
|
33
|
Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine. Nat Commun 2015; 6:8224. [PMID: 26345617 PMCID: PMC4569842 DOI: 10.1038/ncomms9224] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/29/2015] [Indexed: 11/29/2022] Open
Abstract
Baker's yeast Saccharomyces cerevisiae is an attractive cell factory for production of chemicals and biofuels. Many different products have been produced in this cell factory by reconstruction of heterologous biosynthetic pathways; however, endogenous metabolism by itself involves many metabolites of industrial interest, and de-regulation of endogenous pathways to ensure efficient carbon channelling to such metabolites is therefore of high interest. Furthermore, many of these may serve as precursors for the biosynthesis of complex natural products, and hence strains overproducing certain pathway intermediates can serve as platform cell factories for production of such products. Here we implement a modular pathway rewiring (MPR) strategy and demonstrate its use for pathway optimization resulting in high-level production of L-ornithine, an intermediate of L-arginine biosynthesis and a precursor metabolite for a range of different natural products. The MPR strategy involves rewiring of the urea cycle, subcellular trafficking engineering and pathway re-localization, and improving precursor supply either through attenuation of the Crabtree effect or through the use of controlled fed-batch fermentations, leading to an L-ornithine titre of 1,041±47 mg l−1 with a yield of 67 mg (g glucose)−1 in shake-flask cultures and a titre of 5.1 g l−1 in fed-batch cultivations. Our study represents the first comprehensive study on overproducing an amino-acid intermediate in yeast, and our results demonstrate the potential to use yeast more extensively for low-cost production of many high-value amino-acid-derived chemicals. The complexity of yeast amino acid metabolism has limited carbon channelling to produce valuable chemical metabolites. Here, the authors implement a yeast customized pathway optimization strategy and demonstrate its use for overproduction of L-ornithine, an intermediate of L-arginine biosynthesis.
Collapse
|
34
|
Functionalized PHB granules provide the basis for the efficient side-chain cleavage of cholesterol and analogs in recombinant Bacillus megaterium. Microb Cell Fact 2015. [PMID: 26215140 PMCID: PMC4517628 DOI: 10.1186/s12934-015-0300-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Cholesterol, the precursor of all steroid hormones, is the most abundant steroid in vertebrates and exhibits highly hydrophobic properties, rendering it a difficult substrate for aqueous microbial biotransformations. In the present study, we developed a Bacillus megaterium based whole-cell system that allows the side-chain cleavage of this sterol and investigated the underlying physiological basis of the biocatalysis. Results CYP11A1, the side-chain cleaving cytochrome P450, was recombinantly expressed in the Gram-positive soil bacterium B. megaterium combined with the required electron transfer proteins. By applying a mixture of 2-hydroxypropyl-β-cyclodextrin and Quillaja saponin as solubilizing agents, the zoosterols cholesterol and 7-dehydrocholesterol, as well as the phytosterol β-sitosterol could be efficiently converted to pregnenolone or 7-dehydropregnenolone. Fluorescence-microscopic analysis revealed that cholesterol accumulates in the carbon and energy storage-serving poly(3-hydroxybutyrate) (PHB) bodies and that the membrane proteins CYP11A1 and its redox partner adrenodoxin reductase (AdR) are likewise localized to their surrounding phospholipid/protein monolayer. The capacity to store cholesterol was absent in a mutant strain devoid of the PHB-producing polymerase subunit PhaC, resulting in a drastically decreased cholesterol conversion rate, while no effect on the expression of the recombinant proteins could be observed. Conclusion We established a whole-cell system based on B. megaterium, which enables the conversion of the steroid hormone precursor cholesterol to pregnenolone in substantial quantities. We demonstrate that the microorganism’s PHB granules, aggregates of bioplastic coated with a protein/phospholipid monolayer, are crucial for the high conversion rate by serving as substrate storage. This microbial system opens the way for an industrial conversion of the abundantly available cholesterol to any type of steroid hormones, which represent one of the biggest groups of drugs for the treatment of a wide variety of diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0300-y) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Guidelines for development and implementation of biocatalytic P450 processes. Appl Microbiol Biotechnol 2015; 99:2465-83. [PMID: 25652652 DOI: 10.1007/s00253-015-6403-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/17/2023]
Abstract
Biocatalytic reactions performed by cytochrome P450 monooxygenases are interesting in pharmaceutical research since they are involved in human drug metabolism. Furthermore, they are potentially interesting as biocatalysts for synthetic chemistry because of the exquisite selectivity of the chemistry they undertake. For example, selective hydroxylation can be undertaken on a highly functionalized molecule without the need for functional group protection. Recent progress in the discovery of novel P450s as well as protein engineering of these enzymes strongly encourages further development of their application, including use in synthetic processes. The biological characteristics of P450s (e.g., cofactor dependence) motivate the use of whole-cell systems for synthetic processes, and those processes implemented in industry are so far dominated by growing cells and native host systems. However, for an economically feasible process, the expression of P450 systems in a heterologous host with sufficient biocatalyst yield (g/g cdw) for non-growing systems or space-time yield (g/L/h) for growing systems remains a major challenge. This review summarizes the opportunities to improve P450 whole-cell processes and strategies in order to apply and implement them in industrial processes, both from a biological and process perspective. Indeed, a combined approach of host selection and cell engineering, integrated with process engineering, is suggested as the most effective route to implementation.
Collapse
|
36
|
Bernhardt R, Urlacher VB. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 2014; 98:6185-203. [PMID: 24848420 DOI: 10.1007/s00253-014-5767-7] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 01/08/2023]
Abstract
Cytochromes P450 (CYPs) belong to the superfamily of heme b containing monooxygenases with currently more than 21,000 members. These enzymes accept a vast range of organic molecules and catalyze diverse reactions. These extraordinary capabilities of CYP systems that are unmet by other enzymes make them attractive for biotechnology. However, the complexity of these systems due to the need of electron transfer from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) via redox partner proteins for the initial hydroxylation step limits a broader technical implementation of CYP enzymes. There have been several reviews during the past years tackling the potential CYPs for synthetic application. The aim of this review is to give a critical overview about possibilities and chances for application of these interesting catalysts as well as to discuss drawbacks and problems related to their use. Solutions to overcome these limitations will be demonstrated, and several selected examples of successful CYP applications under industrial conditions will be reviewed.
Collapse
Affiliation(s)
- Rita Bernhardt
- Institute of Biochemistry, Saarland University, 66123, Saarbrücken, Germany,
| | | |
Collapse
|
37
|
Escherichia coli kduD encodes an oxidoreductase that converts both sugar and steroid substrates. Appl Microbiol Biotechnol 2014; 98:5471-85. [DOI: 10.1007/s00253-014-5551-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 11/24/2022]
|
38
|
Marc J, Feria-Gervasio D, Mouret JR, Guillouet SE. Impact of oleic acid as co-substrate of glucose on "short" and "long-term" Crabtree effect in Saccharomyces cerevisiae. Microb Cell Fact 2013; 12:83. [PMID: 24059537 PMCID: PMC3851978 DOI: 10.1186/1475-2859-12-83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/04/2013] [Indexed: 11/16/2022] Open
Abstract
Background Optimization of industrial biomass directed processes requires the highest biomass yield as possible. Yet, some useful yeasts like Saccharomyces cerevisiae are subject to the Crabtree effect under glucose excess. This phenomenon can occur in large scale tank where heterogeneities in glucose concentrations exist. Therefore yeasts encounter local environments with glucose excess leading to ethanol production to the detriment of biomass formation. We previously demonstrated that oleic acid as a co-substrate in glucose-limited chemostat allowed to delay and modulate the “short-term” Crabtree effect in Saccharomyces cerevisiae. Here we further investigated the effect of oleic acid as a modulator of the Crabtree effect. Results The impact of oleic acid as co-substrate on the Crabtree effect was investigated in terms of i) strain specificity, ii) reversibility of the potential effect with aerobic glucose-excess batches and iii) durability and maximal capacities under high ethanol stress with glucose-excess fed-batches. First, the addition of oleic acid resulted in an increase of the critical dilution rate by 8% and the specific carbon uptake rate by 18%. Furthermore, a delay was observed for the onset of ethanol production when a batch was inoculated with cells previously grown in glucose-oleate chemostat. Finally, the culture of adapted cells in a glucose-oleate fed-batch led to a redirection of the carbon flux toward biomass production, with a 73% increase in the biomass yield. Conclusions This work demonstrated clearly that the perturbation by oleic acid as co-substrate resulted in a decrease in the “short-term” and “long-term” Crabtree effects. This impact was not strain dependent and reversible. Thus, industrial applications of this biochemical strategy could be envisaged to tackle heterogeneities issues in large scale tanks or to prepare starter yeasts for various applications.
Collapse
Affiliation(s)
- Jillian Marc
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National des Sciences Appliquées (INSA), UMR INSA/CNRS 5504, UMR INSA/INRA 792, 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France.
| | | | | | | |
Collapse
|
39
|
Elsebai MF, Kehraus S, König GM. Caught between triterpene- and steroid-metabolism: 4α-carboxylic pregnane-derivative from the marine alga-derived fungus Phaeosphaeria spartinae. Steroids 2013; 78:880-3. [PMID: 23684924 DOI: 10.1016/j.steroids.2013.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Investigation of the fungus Phaeosphaeria spartinae, an endophyte of the marine red alga Ceramium sp., led to the isolation of spartopregnenolone (1), a metabolite whose structure includes features of triterpenes and steroids, i.e. a Δ(8,9) double bond as occurring in lanosterol type triterpenoids, a carboxyl group at C-4 which is characteristic for intermediates on the way from triterpenes to steroids and an acetyl side chain as typical for pregnane type steroids. The unusual structure of compound 1 was established from extensive spectroscopic investigations and is best described as a 4α-carboxy-8,9-pregnene derivative.
Collapse
|
40
|
Wriessnegger T, Pichler H. Yeast metabolic engineering – Targeting sterol metabolism and terpenoid formation. Prog Lipid Res 2013; 52:277-93. [DOI: 10.1016/j.plipres.2013.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/28/2022]
|
41
|
Mauersberger S, Novikova LA, Shkumatov VM. Cytochrome P450 Expression in Yarrowia lipolytica and Its Use in Steroid Biotransformation. YARROWIA LIPOLYTICA 2013. [DOI: 10.1007/978-3-642-38583-4_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Armstrong CT, Watkins DW, Anderson JLR. Constructing manmade enzymes for oxygen activation. Dalton Trans 2012; 42:3136-50. [PMID: 23076271 DOI: 10.1039/c2dt32010j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Natural oxygenases catalyse the insertion of oxygen into an impressive array of organic substrates with exquisite efficiency, specificity and power unparalleled by current biomimetic catalysts. However, their true potential to provide tailor-made oxygenation catalysts remains largely untapped, perhaps a consequence of the evolutionary complexity imprinted into their three-dimensional structures through millennia of exposure to parallel selective pressures. In this perspective we describe how we may take inspiration from natural enzymes to design manmade oxygenase enzymes free from such complexity. We explore the differing chemistries accessed by natural oxygenases and outline a stepwise methodology whereby functional elements key to oxygenase catalysis are assembled within artificially designed protein scaffolds.
Collapse
Affiliation(s)
- Craig T Armstrong
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
43
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
44
|
García JL, Uhía I, Galán B. Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol 2012; 5:679-99. [PMID: 22309478 PMCID: PMC3815891 DOI: 10.1111/j.1751-7915.2012.00331.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials.
Collapse
Affiliation(s)
- J L García
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, C/ Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | | | | |
Collapse
|
45
|
Siddiqui MS, Thodey K, Trenchard I, Smolke CD. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 2012; 12:144-70. [PMID: 22136110 DOI: 10.1111/j.1567-1364.2011.00774.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 12/11/2022] Open
Abstract
Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways.
Collapse
Affiliation(s)
- Michael S Siddiqui
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
46
|
Larsen AT, May EM, Auclair K. Predictable Stereoselective and Chemoselective Hydroxylations and Epoxidations with P450 3A4. J Am Chem Soc 2011; 133:7853-8. [PMID: 21528858 DOI: 10.1021/ja200551y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aaron T. Larsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - Erin M. May
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| |
Collapse
|
47
|
Janocha S, Bichet A, Zöllner A, Bernhardt R. Substitution of lysine with glutamic acid at position 193 in bovine CYP11A1 significantly affects protein oligomerization and solubility but not enzymatic activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:126-31. [DOI: 10.1016/j.bbapap.2010.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/19/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
|
48
|
Ewen KM, Kleser M, Bernhardt R. Adrenodoxin: the archetype of vertebrate-type [2Fe-2S] cluster ferredoxins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:111-25. [PMID: 20538075 DOI: 10.1016/j.bbapap.2010.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/28/2010] [Accepted: 06/01/2010] [Indexed: 11/15/2022]
Abstract
Adrenodoxin is probably the best characterized member of the vertebrate-type [2Fe-2S]-cluster ferredoxins. It has been in the spotlight of scientific interest for many years due to its essential role in mammalian steroid hormone biosynthesis, where it acts as electron mediator between the NADPH-dependent adrenodoxin reductase and several mitochondrial cytochromes P450. In this review we will focus on the present knowledge about protein-protein recognition in the mitochondrial cytochrome P450 system and the modulation of the electron transfer between Adx and its redox partners, AdR and CYP(s). We also intend to point out the potential biotechnological applications of Adx as a versatile electron donor to different cytochromes P450, both in vitro and in vivo. Finally we will address the comparison between the mammalian cytochrome P450-associated adrenodoxin and ferredoxins involved in iron-sulfur-cluster biosynthesis. Despite their different functions, these proteins display an amazing similarity regarding their primary sequence, tertiary structure and biophysical features.
Collapse
Affiliation(s)
- Kerstin Maria Ewen
- Department of Biochemistry, Saarland University, D-66041 Saarbrücken, Germany
| | | | | |
Collapse
|
49
|
Metabolism of mono- and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl Microbiol Biotechnol 2010; 86:773-80. [DOI: 10.1007/s00253-009-2413-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Novikova LA, Faletrov YV, Kovaleva IE, Mauersberger S, Luzikov VN, Shkumatov VM. From structure and functions of steroidogenic enzymes to new technologies of gene engineering. BIOCHEMISTRY (MOSCOW) 2010; 74:1482-504. [DOI: 10.1134/s0006297909130057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|