1
|
Kang Y, Xiao K, Wang D, Peng Z, Luo R, Liu X, Hu L, Hu G. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of l-Pipecolic Acid from Glucose. ACS Synth Biol 2024; 13:3378-3388. [PMID: 39267441 DOI: 10.1021/acssynbio.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
l-Pipecolic acid (L-PA), an essential chiral cyclic nonprotein amino acid, is gaining prominence in the food and pharmaceutical sectors due to its wide-ranging biological and pharmacological properties. Historically, L-PA has been synthesized chemically for commercial purposes. This study introduces a novel and efficient microbial production method for L-PA using engineered strain Saccharomyces cerevisiae BY4743. Initially, an optimized biosynthetic pathway was constructed within S. cerevisiae, converting glucose to L-PA with a yield of 0.60 g/L in a 250 mL shake flask in vivo. Subsequently, a multifaceted engineering strategy was implemented to enhance L-PA production: substrate-enzyme affinity modification, global transcription machinery engineering modification, and Kozak sequence optimization for enhanced L-PA production. Approaches above led to an impressive 8.6-fold increase in L-PA yield, reaching 5.47 g/L in shake flask cultures. Further scaling up in a 5 L fed-batch fermenter achieved a remarkable L-PA concentration of 74.54 g/L. This research offers innovative insights into the industrial-scale production of L-PA.
Collapse
Affiliation(s)
- Yaqi Kang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Kaixing Xiao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Zhiyao Peng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Ruoshi Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Xuemei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Lin Hu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Ge Hu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| |
Collapse
|
2
|
Dimitrov R, Gouliamova D, Guéorguiev B, Smith M, Groenewald M, Boekhout T. First DNA Barcoding Survey in Bulgaria Unveiled Huge Diversity of Yeasts in Insects. INSECTS 2024; 15:566. [PMID: 39194771 DOI: 10.3390/insects15080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
In this study, we conducted a comprehensive survey aimed at assessing the diversity of yeast species inhabiting the guts of various insect species collected mainly from two Bulgarian National Parks, namely, Rila, and Pirin. The insect specimens encompass a broad taxonomic spectrum, including representatives from Coleoptera, Orthoptera, Lepidoptera, Hymenoptera, Dermaptera, Isopoda, and Collembola. Yeast strains were identified with DNA barcoding using the ribosomal markers, specifically, the D1/D2 domains of the ribosomal large subunit (LSU) and the internal transcribed spacers regions ITS 1 + 2 (ITS). The analysis unveiled the presence of 89 ascomycetous and 18 basidiomycetous yeast isolates associated with the insect specimens. Furthermore, our study identified 18 hitherto unknown yeast species.
Collapse
Affiliation(s)
- Roumen Dimitrov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, G. Bonchev 8, 1113 Sofia, Bulgaria
| | - Dilnora Gouliamova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, G. Bonchev 26, 1113 Sofia, Bulgaria
| | - Borislav Guéorguiev
- National Museum of Natural History, Bulgarian Academy of Sciences, bul. "Tsar Osvoboditel" 1, 1000 Sofia, Bulgaria
| | - Maudy Smith
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Teun Boekhout
- The Yeast Foundation, 1015 JR Amsterdam, The Netherlands
- College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Opulente DA, LaBella AL, Harrison MC, Wolters JF, Liu C, Li Y, Kominek J, Steenwyk JL, Stoneman HR, VanDenAvond J, Miller CR, Langdon QK, Silva M, Gonçalves C, Ubbelohde EJ, Li Y, Buh KV, Jarzyna M, Haase MAB, Rosa CA, Čadež N, Libkind D, DeVirgilio JH, Hulfachor AB, Kurtzman CP, Sampaio JP, Gonçalves P, Zhou X, Shen XX, Groenewald M, Rokas A, Hittinger CT. Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts. Science 2024; 384:eadj4503. [PMID: 38662846 PMCID: PMC11298794 DOI: 10.1126/science.adj4503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Two general paradigms have been proposed to explain this variation: (i) trade-offs between performance efficiency and breadth and (ii) the joint influence of extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic, and ecological data from nearly all known species of the ancient fungal subphylum Saccharomycotina (1154 yeast strains from 1051 species), grown in 24 different environmental conditions, to examine niche breadth evolution. We found that large differences in the breadth of carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific metabolic pathways, but we found limited evidence for trade-offs. These comprehensive data argue that intrinsic factors shape niche breadth variation in microbes.
Collapse
Affiliation(s)
- Dana A. Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department Villanova University, Villanova, PA 19085, USA
| | - Abigail Leavitt LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- North Carolina Research Center (NCRC), Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - John F. Wolters
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Chao Liu
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Yonglin Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jacek Kominek
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- LifeMine Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hayley R. Stoneman
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jenna VanDenAvond
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Caroline R. Miller
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Quinn K. Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Margarida Silva
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Emily J. Ubbelohde
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Kelly V. Buh
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Martin Jarzyna
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Graduate Program in Neuroscience and Department of Biology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Max A. B. Haase
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Vilcek Institute of Graduate Biomedical Sciences and Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Neža Čadež
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Jeremy H. DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Cletus P. Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - José Paulo Sampaio
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | | | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
4
|
Liu JJ, Hou YK, Wang X, Zhou XT, Yin JY, Nie SP. Recent advances in the biosynthesis of fungal glucan structural diversity. Carbohydr Polym 2024; 329:121782. [PMID: 38286552 DOI: 10.1016/j.carbpol.2024.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Glucans are the most abundant class of macromolecule polymers in fungi, which are commonly found in Ascomycota and Basidiomycota. Fungal glucans are not only essential for cell integrity and function but also crucial for the immense industrial interest in high value applications. They present a variety of structural characteristics at the nanoscale due to the high regulation of genes and the involvement of stochastic processes in synthesis. However, although recent findings have demonstrated the genes of glucans synthesis are relatively conserved across diverse fungi, the formation and organization of diverse glucan structures is still unclear in fungi. Here, we summarize the structural features of fungal glucans and the recent developments in the mechanisms of glucans biosynthesis. Furthermore, we propose the engineering strategies of targeted glucan synthesis and point out the remaining challenges in the synthetic process. Understanding the synthesis process of diverse glucans is necessary for tailoring high value glucan towards specific applications. This engineering strategy contributes to enable the sustainable and efficient production of glucan diversity.
Collapse
Affiliation(s)
- Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Yu-Ke Hou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xing-Tao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China; Food Laboratory of Zhongyuan, Luo he 462300, Henan, China.
| |
Collapse
|
5
|
Barragán-Trinidad M, Buitrón G. Pretreatment of agave bagasse with ruminal fluid to improve methane recovery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:52-61. [PMID: 38159368 DOI: 10.1016/j.wasman.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Agave bagasse, a lignocellulosic waste that results from the milling and juice extraction of Agave tequilana var azul pineapples, is a suitable substrate for the production of methane through anaerobic digestion. However, it is necessary to apply a pretreatment to convert the bagasse into energy. In this context, this paper proposes using ruminal microorganisms to hydrolyze agave bagasse. This study evaluated the effect of the initial agave bagasse to ruminal fluid (S0/X0) ratio (0.33, 0.5, 1, and 2) on the hydrolysis efficiency. Subsequently, the supernatant was used for methane production. The hydrolysis efficiency increased as the S0/X0 ratio decreased. A hydrolysis efficiency of 60 % was achieved using an S0/X0 ratio of 0.33. The S0/X0 ratio of 0.33 optimally improved the specific methane production and energy recovery (155 ± 2 mL CH4/g TS and 6.1 ± 0.1 kJ/g TS) compared to raw biomass. The most abundant hydrolytic bacteria were Prevotella, Ruminococcus and Fibrobacter, and Engyodontium was the most abundant proteolytic fungus.
Collapse
Affiliation(s)
- Martín Barragán-Trinidad
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
| |
Collapse
|
6
|
Barros KO, Mader M, Krause DJ, Pangilinan J, Andreopoulos B, Lipzen A, Mondo SJ, Grigoriev IV, Rosa CA, Sato TK, Hittinger CT. Oxygenation influences xylose fermentation and gene expression in the yeast genera Spathaspora and Scheffersomyces. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:20. [PMID: 38321504 PMCID: PMC10848558 DOI: 10.1186/s13068-024-02467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Cost-effective production of biofuels from lignocellulose requires the fermentation of D-xylose. Many yeast species within and closely related to the genera Spathaspora and Scheffersomyces (both of the order Serinales) natively assimilate and ferment xylose. Other species consume xylose inefficiently, leading to extracellular accumulation of xylitol. Xylitol excretion is thought to be due to the different cofactor requirements of the first two steps of xylose metabolism. Xylose reductase (XR) generally uses NADPH to reduce xylose to xylitol, while xylitol dehydrogenase (XDH) generally uses NAD+ to oxidize xylitol to xylulose, creating an imbalanced redox pathway. This imbalance is thought to be particularly consequential in hypoxic or anoxic environments. RESULTS We screened the growth of xylose-fermenting yeast species in high and moderate aeration and identified both ethanol producers and xylitol producers. Selected species were further characterized for their XR and XDH cofactor preferences by enzyme assays and gene expression patterns by RNA-Seq. Our data revealed that xylose metabolism is more redox balanced in some species, but it is strongly affected by oxygen levels. Under high aeration, most species switched from ethanol production to xylitol accumulation, despite the availability of ample oxygen to accept electrons from NADH. This switch was followed by decreases in enzyme activity and the expression of genes related to xylose metabolism, suggesting that bottlenecks in xylose fermentation are not always due to cofactor preferences. Finally, we expressed XYL genes from multiple Scheffersomyces species in a strain of Saccharomyces cerevisiae. Recombinant S. cerevisiae expressing XYL1 from Scheffersomyces xylosifermentans, which encodes an XR without a cofactor preference, showed improved anaerobic growth on xylose as the primary carbon source compared to S. cerevisiae strain expressing XYL genes from Scheffersomyces stipitis. CONCLUSION Collectively, our data do not support the hypothesis that xylitol accumulation occurs primarily due to differences in cofactor preferences between xylose reductase and xylitol dehydrogenase; instead, gene expression plays a major role in response to oxygen levels. We have also identified the yeast Sc. xylosifermentans as a potential source for genes that can be engineered into S. cerevisiae to improve xylose fermentation and biofuel production.
Collapse
Affiliation(s)
- Katharina O Barros
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Megan Mader
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Krause
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bill Andreopoulos
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Computer Science, San Jose State University, One Washington Square, San Jose, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Plant and Microbial Department, University of California Berkeley, Berkeley, CA, USA
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Gao M, Zhao Y, Yao Z, Su Q, Van Beek P, Shao Z. Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production. Nat Commun 2023; 14:7797. [PMID: 38016984 PMCID: PMC10684500 DOI: 10.1038/s41467-023-43049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Plant-sourced aromatic amino acid (AAA) derivatives are a vast group of compounds with broad applications. Here, we present the development of a yeast consortium for efficient production of (S)-norcoclaurine, the key precursor for benzylisoquinoline alkaloid biosynthesis. A xylose transporter enables the concurrent mixed-sugar utilization in Scheffersomyces stipitis, which plays a crucial role in enhancing the flux entering the highly regulated shikimate pathway located upstream of AAA biosynthesis. Two quinate permeases isolated from Aspergillus niger facilitates shikimate translocation to the co-cultured Saccharomyces cerevisiae that converts shikimate to (S)-norcoclaurine, resulting in the maximal titer (11.5 mg/L), nearly 110-fold higher than the titer reported for an S. cerevisiae monoculture. Our findings magnify the potential of microbial consortium platforms for the economical de novo synthesis of complex compounds, where pathway modularization and compartmentalization in distinct specialty strains enable effective fine-tuning of long biosynthetic pathways and diminish intermediate buildup, thereby leading to increases in production.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Zhanyi Yao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Qianhe Su
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Payton Van Beek
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA.
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA.
- Bioeconomy Institute, Iowa State University, Ames, IA, USA.
- The Ames Laboratory, Ames, IA, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
8
|
The virtual microbiome: A computational framework to evaluate microbiome analyses. PLoS One 2023; 18:e0280391. [PMID: 36753469 PMCID: PMC9907852 DOI: 10.1371/journal.pone.0280391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/28/2022] [Indexed: 02/09/2023] Open
Abstract
Microbiomes have been the focus of a substantial research effort in the last decades. The composition of microbial populations is normally determined by comparing DNA sequences sampled from those populations with the sequences stored in genomic databases. Therefore, the amount of information available in databanks should be expected to constrain the accuracy of microbiome analyses. Albeit normally ignored in microbiome studies, this constraint could severely compromise the reliability of microbiome data. To test this hypothesis, we generated virtual bacterial populations that exhibit the ecological structure of real-world microbiomes. Confronting the analyses of virtual microbiomes with their original composition revealed critical issues in the current approach to characterizing microbiomes, issues that were empirically confirmed by analyzing the microbiome of Galleria mellonella larvae. To reduce the uncertainty of microbiome data, the effort in the field must be channeled towards significantly increasing the amount of available genomic information and optimizing the use of this information.
Collapse
|
9
|
Identification of traits to improve co-assimilation of glucose and xylose by adaptive evolution of Spathaspora passalidarum and Scheffersomyces stipitis yeasts. Appl Microbiol Biotechnol 2023; 107:1143-1157. [PMID: 36625916 DOI: 10.1007/s00253-023-12362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/21/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
Lignocellulosic biomass is a renewable raw material for producing several high-value-added chemicals and fuels. In general, xylose and glucose are the major sugars in biomass hydrolysates, and their efficient utilization by microorganisms is critical for an economical production process. Yeasts capable of co-consuming mixed sugars might lead to higher yields and productivities in industrial fermentation processes. Herein, we performed adaptive evolution assays with two xylose-fermenting yeasts, Spathaspora passalidarum and Scheffersomyces stipitis, to obtain derived clones with improved capabilities of glucose and xylose co-consumption. Adapted strains were obtained after successive growth selection using xylose and the non-metabolized glucose analog 2-deoxy-D-glucose as a selective pressure. The co-fermentation capacity of evolved and parental strains was evaluated on xylose-glucose mixtures. Our results revealed an improved co-assimilation capability by the evolved strains; however, xylose and glucose consumption were observed at slower rates than the parental yeasts. Genome resequencing of the evolved strains revealed genes affected by non-synonymous variants that might be involved with the co-consumption phenotype, including the HXT2.4 gene that encodes a putative glucose transporter in Sp. passalidarum. Expression of this mutant HXT2.4 in Saccharomyces cerevisiae improved the cells' co-assimilation of glucose and xylose. Therefore, our results demonstrated the successful improvement of co-fermentation through evolutionary engineering and the identification of potential targets for further genetic engineering of different yeast strains. KEY POINTS: • Laboratory evolution assay was used to obtain improved sugar co-consumption of non-Saccharomyces strains. • Evolved Sp. passalidarum and Sc. stipitis were able to more efficiently co-ferment glucose and xylose. • A mutant Hxt2.4 permease, which co-transports xylose and glucose, was identified.
Collapse
|
10
|
Kim DH, Choi HJ, Lee YR, Kim SJ, Lee S, Lee WH. Comprehensive Characterization of Mutant Pichia stipitis Co-Fermenting Cellobiose and Xylose through Genomic and Transcriptomic Analyses. J Microbiol Biotechnol 2022; 32:1485-1495. [PMID: 36317418 PMCID: PMC9720078 DOI: 10.4014/jmb.2209.09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
The development of a yeast strain capable of fermenting mixed sugars efficiently is crucial for producing biofuels and value-added materials from cellulosic biomass. Previously, a mutant Pichia stipitis YN14 strain capable of co-fermenting xylose and cellobiose was developed through evolutionary engineering of the wild-type P. stipitis CBS6054 strain, which was incapable of cofermenting xylose and cellobiose. In this study, through genomic and transcriptomic analyses, we sought to investigate the reasons for the improved sugar metabolic performance of the mutant YN14 strain in comparison with the parental CBS6054 strain. Unfortunately, comparative wholegenome sequencing (WGS) showed no mutation in any of the genes involved in the cellobiose metabolism between the two strains. However, comparative RNA sequencing (RNA-seq) revealed that the YN14 strain had 101.2 times and 5.9 times higher expression levels of HXT2.3 and BGL2 genes involved in cellobiose metabolism, and 6.9 times and 75.9 times lower expression levels of COX17 and SOD2.2 genes involved in respiration, respectively, compared with the CBS6054 strain. This may explain how the YN14 strain enhanced cellobiose metabolic performance and shifted the direction of cellobiose metabolic flux from respiration to fermentation in the presence of cellobiose compared with the CBS6054 strain.
Collapse
Affiliation(s)
- Dae-Hwan Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea,Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyo-Jin Choi
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea,Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yu Rim Lee
- Interdisciplinary Program of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea,Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea,
S.M. Lee Phone: +82-62-717-2425 Fax: +82-62-717-2453 E-mail:
| | - Won-Heong Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea,Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea,Interdisciplinary Program of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea,Corresponding authors W.H. Lee Phone: +82-62-530-2046 Fax: +82-62-530-2047 E-mail:
| |
Collapse
|
11
|
Salzberg LI, Martos AAR, Lombardi L, Jermiin LS, Blanco A, Byrne KP, Wolfe KH. A widespread inversion polymorphism conserved among Saccharomyces species is caused by recurrent homogenization of a sporulation gene family. PLoS Genet 2022; 18:e1010525. [PMID: 36441813 PMCID: PMC9731477 DOI: 10.1371/journal.pgen.1010525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/08/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces genomes are highly collinear and show relatively little structural variation, both within and between species of this yeast genus. We investigated the only common inversion polymorphism known in S. cerevisiae, which affects a 24-kb 'flip/flop' region containing 15 genes near the centromere of chromosome XIV. The region exists in two orientations, called reference (REF) and inverted (INV). Meiotic recombination in this region is suppressed in crosses between REF and INV orientation strains such as the BY x RM cross. We find that the inversion polymorphism is at least 17 million years old because it is conserved across the genus Saccharomyces. However, the REF and INV isomers are not ancient alleles but are continually being re-created by re-inversion of the region within each species. Inversion occurs due to continual homogenization of two almost identical 4-kb sequences that form an inverted repeat (IR) at the ends of the flip/flop region. The IR consists of two pairs of genes that are specifically and strongly expressed during the late stages of sporulation. We show that one of these gene pairs, YNL018C/YNL034W, codes for a protein that is essential for spore formation. YNL018C and YNL034W are the founder members of a gene family, Centroid, whose members in other Saccharomycetaceae species evolve fast, duplicate frequently, and are preferentially located close to centromeres. We tested the hypothesis that Centroid genes are a meiotic drive system, but found no support for this idea.
Collapse
Affiliation(s)
- Letal I. Salzberg
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexandre A. R. Martos
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Lisa Lombardi
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Lars S. Jermiin
- School of Medicine, University College Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Alfonso Blanco
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Kevin P. Byrne
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Kenneth H. Wolfe
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
12
|
Lv Y, Zhou S, Zhang X, Xu Y. A smart self-balancing biosystem with reversible competitive adsorption of in-situ anion exchange resin for whole-cell catalysis preparation of lignocellulosic xylonic acid. BIORESOURCE TECHNOLOGY 2022; 363:127998. [PMID: 36150427 DOI: 10.1016/j.biortech.2022.127998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Xylonic acid (XA) bioproduction via whole-cell catalysis of Gluconobacter oxydans is a promising strategy for xylose bioconversion, which is hindered by inhibitor formation during lignocellulosic hydrolysates. Therefore, it is important to develop a catalytic system that can directly utilize hydrolysate and efficiently produce XA. Determination of the dynamic adsorption characteristics of 335 anion exchange resin resulted in a unique and interesting reversible competitive adsorption between acetic acid-like bioinhibitor, fermentable sugar and XA. Xylose in crude lignocellulosic hydrolysates was completely oxidized to 52.52 g/L XA in unprecedented self-balancing biological system through reversible competition. The obtained results showed that in-situ resin adsorption significantly affected the direct utilization of crude lignocellulosic hydrolysate for XA bioproduction (p ≤ 0.05). In addition, the resin adsorbed ca. 90 % of XA during bioconversion. The study achieved a multiple functions and integrated system, "detoxification, neutralization and product separation" for one-pot bioreaction of lignocellulosic hydrolysate.
Collapse
Affiliation(s)
- Yang Lv
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Shaonuo Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Xiaolei Zhang
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China.
| |
Collapse
|
13
|
Integrated bioinformatics, modelling, and gene expression analysis of the putative pentose transporter from Candida tropicalis during xylose fermentation with and without glucose addition. Appl Microbiol Biotechnol 2022; 106:4587-4606. [PMID: 35708749 DOI: 10.1007/s00253-022-12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The transport of substrates across the cell membrane plays an essential role in nutrient assimilation by yeasts. The establishment of an efficient microbial cell factory, based on the maximum use of available carbon sources, can generate new technologies that allow the full use of lignocellulosic constituents. These technologies are of interest because they could promote the formation of added-value products with economic feasibility. In silico analyses were performed to investigate gene sequences capable of encoding xylose transporter proteins in the Candida tropicalis genome. The current study identified 11 putative transport proteins that have not yet been functionally characterized. A phylogenetic tree highlighted the potential C. tropicalis xylose-transporter proteins CtXUT1, CtXUT4, CtSTL1, CtSTL2, and CtGXT2, which were homologous to previously characterized and reported xylose transporters. Their expression was quantified through real-time qPCR at defined times, determined through a kinetic analysis of the microbial growth curve in the absence/presence of glucose supplemented with xylose as the main carbon source. The results indicated different mRNA expression levels for each gene. CtXUT1 mRNA expression was only found in the absence of glucose in the medium. Maximum CtXUT1 expression was observed in intervals of the highest xylose consumption (21 to 36 h) that corresponded to consumption rates of 1.02 and 0.82 g/L/h in the formulated media, with xylose as the only carbon source and with glucose addition. These observations indicate that CtXUT1 is an important xylose transporter in C. tropicalis. KEY POINTS: • Putative xylose transporter proteins were identified in Candida tropicalis; • The glucose concentration in the cultivation medium plays a key role in xylose transporter regulation; • The transporter gene CtXUT1 has an important role in xylose consumption by Candida tropicalis.
Collapse
|
14
|
Šuchová K, Fehér C, Ravn JL, Bedő S, Biely P, Geijer C. Cellulose- and xylan-degrading yeasts: Enzymes, applications and biotechnological potential. Biotechnol Adv 2022; 59:107981. [DOI: 10.1016/j.biotechadv.2022.107981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023]
|
15
|
Boisramé A, Neuvéglise C. Development of a Vector Set for High or Inducible Gene Expression and Protein Secretion in the Yeast Genus Blastobotrys. J Fungi (Basel) 2022; 8:jof8050418. [PMID: 35628674 PMCID: PMC9144253 DOI: 10.3390/jof8050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Converting lignocellulosic biomass into value-added products is one of the challenges in developing a sustainable economy. Attempts to engineer fermenting yeasts to recover plant waste are underway. Although intensive metabolic engineering has been conducted to obtain Saccharomyces cerevisiae strains capable of metabolising pentose sugars mainly found in hemicellulose, enzymatic hydrolysis after pretreatment is still required. Blastobotrys raffinosifermentans, which naturally assimilates xylose and arabinose and displays numerous glycoside hydrolases, is a good candidate for direct and efficient conversion of renewable biomass. However, a greater diversity of tools for genetic engineering is needed. Here, we report the characterisation of four new promising promoters, a new dominant marker, and two vectors for the secretion of epitope tagged proteins along with a straightforward transformation protocol. The TDH3 promoter is a constitutive promoter stronger than TEF1, and whose activity is maintained at high temperature or in the presence of ethanol. The regulated promoters respond to high temperature for HSP26, gluconeogenic sources for PCK1 or presence of xylose oligomers for XYL1. Two expression/secretion vectors were designed based on pTEF1 and pTDH3, two endogenous signal peptides from an α-arabinanase and an α-glucuronidase, and two epitopes. A heterologous α-arabinoxylan hydrolase from Apiotrichum siamense was efficiently secreted using these two vectors.
Collapse
Affiliation(s)
- Anita Boisramé
- SPO, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France;
- AgroParisTech, Université Paris-Saclay, 75005 Paris, France
- Correspondence:
| | - Cécile Neuvéglise
- SPO, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France;
| |
Collapse
|
16
|
Ueki G, Zhang SN, Zhu XJ, Wen XJ, Tojo K, Kubota K. Lateral Transmission of Yeast Symbionts Among Lucanid Beetle Taxa. Front Microbiol 2022; 12:794904. [PMID: 34970248 PMCID: PMC8712881 DOI: 10.3389/fmicb.2021.794904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
To deepen understanding the evolutionary process of lucanid–yeast association, the lateral transmission process of yeast symbionts among stag beetle genera Platycerus and Prismognathus around the border between Japan and South Korea was estimated based on molecular analyses and species distribution modelings. Phylogenetic analyses were based on yeast ITS and IGS sequences and beetle COI sequences using Prismognathus dauricus from the Tsushima Islands and Pr. angularis from Kyushu, Japan, as well as other sequence data from our previous studies. The range overlap based on the species distribution model (SDM) and differentiation in ecological space were analyzed. Based on the IGS sequences, Clade II yeast symbionts were shared by Platycerus hongwonpyoi and Pr. dauricus in South Korea and the Tsushima Islands, and Platycerus viridicuprus in Japan. Clade III yeasts were shared by Pr. dauricus from the Tsushima Islands and Pr. angularis in Japan. During the Last Interglacial period when the land bridge between Japan and the Korean Peninsula existed, range overlap was predicted to occur between Pl. viridicuprus and Pr. dauricus in Kyushu and between Pr. dauricus and Pr. angularis in Kyushu and the Tsushima Islands. The ecological space of Pl. hongwonpyoi was differentiated from that of Pl. viridicuprus and Pr. angularis. We demonstrated the paleogeographical lateral transmission process of Scheffersomyces yeast symbionts among lucanid genera and species: putative transmission of yeasts from Pr. dauricus to Pl. viridicuprus in Kyushu and from Pr. angularis to Pr. dauricus in Kyushu or the Tsushima Islands. We also found that the yeast symbionts are likely being replaced in Pr. dauricus on the Tsushima Islands. We present novel estimates of the lateral transmission process of microbial symbionts based on phylogenetic, SDM and environmental analyses among lucanid beetles.
Collapse
Affiliation(s)
- Gaku Ueki
- Department of Biology, Graduate Faculty of Science, Shinshu University, Matsumoto, Japan
| | - Sheng-Nan Zhang
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Xue-Jiao Zhu
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan.,Guandong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiu-Jun Wen
- Guandong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Koji Tojo
- Department of Biology, Graduate Faculty of Science, Shinshu University, Matsumoto, Japan
| | - Kôhei Kubota
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
17
|
Oh SH, Schliep K, Isenhower A, Rodriguez-Bobadilla R, Vuong VM, Fields CJ, Hernandez AG, Hoyer LL. Using Genomics to Shape the Definition of the Agglutinin-Like Sequence ( ALS) Family in the Saccharomycetales. Front Cell Infect Microbiol 2021; 11:794529. [PMID: 34970511 PMCID: PMC8712946 DOI: 10.3389/fcimb.2021.794529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
The Candida albicans agglutinin-like sequence (ALS) family is studied because of its contribution to cell adhesion, fungal colonization, and polymicrobial biofilm formation. The goal of this work was to derive an accurate census and sequence for ALS genes in pathogenic yeasts and other closely related species, while probing the boundaries of the ALS family within the Order Saccharomycetales. Bioinformatic methods were combined with laboratory experimentation to characterize 47 novel ALS loci from 8 fungal species. AlphaFold predictions suggested the presence of a conserved N-terminal adhesive domain (NT-Als) structure in all Als proteins reported to date, as well as in S. cerevisiae alpha-agglutinin (Sag1). Lodderomyces elongisporus, Meyerozyma guilliermondii, and Scheffersomyces stipitis were notable because each species had genes with C. albicans ALS features, as well as at least one that encoded a Sag1-like protein. Detection of recombination events between the ALS family and gene families encoding other cell-surface proteins such as Iff/Hyr and Flo suggest widespread domain swapping with the potential to create cell-surface diversity among yeast species. Results from the analysis also revealed subtelomeric ALS genes, ALS pseudogenes, and the potential for yeast species to secrete their own soluble adhesion inhibitors. Information presented here supports the inclusion of SAG1 in the ALS family and yields many experimental hypotheses to pursue to further reveal the nature of the ALS family.
Collapse
Affiliation(s)
- Soon-Hwan Oh
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Klaus Schliep
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Allyson Isenhower
- Department of Biology, Millikin University, Decatur, IL, United States
| | | | - Vien M. Vuong
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Christopher J. Fields
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Lois L. Hoyer
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
18
|
Kobayashi Y, Inokuma K, Matsuda M, Kondo A, Hasunuma T. Resveratrol production from several types of saccharide sources by a recombinant Scheffersomyces stipitis strain. Metab Eng Commun 2021; 13:e00188. [PMID: 34888140 PMCID: PMC8637140 DOI: 10.1016/j.mec.2021.e00188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 11/24/2021] [Indexed: 10/25/2022] Open
Abstract
Resveratrol is a plant-derived aromatic compound with a wide range of beneficial properties including antioxidant and anti-aging effects. The resveratrol currently available on the market is predominantly extracted from certain plants such as grape and the Japanese knotweed Polygonum cuspidatum. Due to the unstable harvest of these plants and the low resveratrol purity obtained, it is necessary to develop a stable production process of high-purity resveratrol from inexpensive feedstocks. Here, we attempted to produce resveratrol from a wide range of sugars as carbon sources by a using the genetically-engineered yeast Scheffersomyces stipitis (formerly known as Pichia stipitis), which possesses a broad sugar utilization capacity. First, we constructed the resveratrol producing strain by introducing genes coding the essential enzymes for resveratrol biosynthesis [tyrosine ammonia-lyase 1 derived from Herpetosiphon aurantiacus (HaTAL1), 4-coumarate: CoA ligase 2 derived from Arabidopsis thaliana (At4CL2), and stilbene synthase 1 derived from Vitis vinifera (VvVST1)]. Subsequently, a feedback-insensitive allele of chorismate mutase was overexpressed in the constructed strain to improve resveratrol production. The constructed strain successfully produced resveratrol from a broad range of biomass-derived sugars [glucose, fructose, xylose, N-acetyl glucosamine (GlcNAc), galactose, cellobiose, maltose, and sucrose] in shake flask cultivation. Significant resveratrol titers were detected in cellobiose and sucrose fermentation (529.8 and 668.6 mg/L after 120 h fermentation, respectively), twice above the amount obtained with glucose (237.6 mg/L). Metabolomic analysis revealed an altered profile of the metabolites involved in the glycolysis and shikimate pathways, and also of cofactors and metabolites of energy metabolisms, depending on the substrate used. The levels of resveratrol precursors such as L-tyrosine increased in cellobiose and sucrose-grown cells. The results indicate that S. stipitis is an attractive microbial platform for resveratrol production from broad types of biomass-derived sugars and the selection of suitable substrates is crucial for improving resveratrol productivity of this yeast.
Collapse
Affiliation(s)
- Yuma Kobayashi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.,Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
19
|
Vega-Estévez S, Armitage A, Bates HJ, Harrison RJ, Buscaino A. The Genome of the CTG(Ser1) Yeast Scheffersomyces stipitis Is Plastic. mBio 2021; 12:e0187121. [PMID: 34488452 PMCID: PMC8546629 DOI: 10.1128/mbio.01871-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Microorganisms need to adapt to environmental changes, and genome plasticity can lead to rapid adaptation to hostile environments by increasing genetic diversity. Here, we investigate genome plasticity in the CTG(Ser1) yeast Scheffersomyces stipitis, an organism with an enormous potential for second-generation biofuel production. We demonstrate that S. stipitis has an intrinsically plastic genome and that different S. stipitis isolates have genomes with distinct chromosome organizations. Real-time evolution experiments show that S. stipitis genome plasticity is common and rapid since extensive genomic changes with fitness benefits are detected following in vitro evolution experiments. Hybrid MinION Nanopore and Illumina genome sequencing identify retrotransposons as major drivers of genome diversity. Indeed, the number and position of retrotransposons are different in different S. stipitis isolates, and retrotransposon-rich regions of the genome are sites of chromosome rearrangements. Our findings provide important insights into the adaptation strategies of the CTG(Ser1) yeast clade and have critical implications in the development of second-generation biofuels. These data highlight that genome plasticity is an essential factor for developing sustainable S. stipitis platforms for second-generation biofuels production. IMPORTANCE Genomes contain genes encoding the information needed to build the organism and allow it to grow and develop. Genomes are described as stable structures where genes have specific positions within a chromosome. Changes in gene dosage and position are viewed as harmful. However, it is becoming increasingly clear that genome plasticity can benefit microbial organisms that need to adapt rapidly to environmental changes. Mechanisms of genome plasticity are still poorly understood. This study focuses on Scheffersomyces stipitis, a yeast that holds great potential for second-generation biofuel production generated from forestry and agriculture waste. We demonstrate that S. stipitis chromosomes are easily reshuffled and that chromosome reshuffling is linked to adaptation to hostile environments. Genome sequencing demonstrates that mobile genetic elements, called transposons, mediate S. stipitis genome reshuffling. These data highlight that understanding genome plasticity is important for developing sustainable S. stipitis platforms for second-generation biofuels production.
Collapse
Affiliation(s)
- Samuel Vega-Estévez
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent, United Kingdom
| | - Andrew Armitage
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| | | | | | - Alessia Buscaino
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent, United Kingdom
| |
Collapse
|
20
|
Kuanyshev N, Deewan A, Jagtap SS, Liu J, Selvam B, Chen LQ, Shukla D, Rao CV, Jin YS. Identification and analysis of sugar transporters capable of co-transporting glucose and xylose simultaneously. Biotechnol J 2021; 16:e2100238. [PMID: 34418308 DOI: 10.1002/biot.202100238] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022]
Abstract
Simultaneous co-fermentation of glucose and xylose is a key desired trait of engineered Saccharomyces cerevisiae for efficient and rapid production of biofuels and chemicals. However, glucose strongly inhibits xylose transport by endogenous hexose transporters of S. cerevisiae. We identified structurally distant sugar transporters (Lipomyces starkeyi LST1_205437 and Arabidopsis thaliana AtSWEET7) capable of co-transporting glucose and xylose from previously unexplored oleaginous yeasts and plants. Kinetic analysis showed that LST1_205437 had lenient glucose inhibition on xylose transport and AtSWEET7 transported glucose and xylose simultaneously with no inhibition. Modelling studies of LST1_205437 revealed that Ala335 residue at sugar binding site can accommodates both glucose and xylose. Docking studies with AtSWEET7 revealed that Trp59, Trp183, Asn145, and Asn179 residues stabilized the interactions with sugars, allowing both xylose and glucose to be co-transported. In addition, we altered sugar preference of LST1_205437 by single amino acid mutation at Asn365. Our findings provide a new mechanistic insight on glucose and xylose transport mechanism of sugar transporters and the identified sugar transporters can be employed to develop engineered yeast strains for producing cellulosic biofuels and chemicals.
Collapse
Affiliation(s)
- Nurzhan Kuanyshev
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anshu Deewan
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sujit Sadashiv Jagtap
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jingjing Liu
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Li-Qing Chen
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher V Rao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
21
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
22
|
Monteiro de Oliveira P, Aborneva D, Bonturi N, Lahtvee PJ. Screening and Growth Characterization of Non-conventional Yeasts in a Hemicellulosic Hydrolysate. Front Bioeng Biotechnol 2021; 9:659472. [PMID: 33996782 PMCID: PMC8116571 DOI: 10.3389/fbioe.2021.659472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomass is an attractive raw material for the sustainable production of chemicals and materials using microbial cell factories. Most of the existing bioprocesses focus on second-generation ethanol production using genetically modified Saccharomyces cerevisiae, however, this microorganism is naturally unable to consume xylose. Moreover, extensive metabolic engineering has to be carried out to achieve high production levels of industrially relevant building blocks. Hence, the use of non-Saccharomyces species, or non-conventional yeasts, bearing native metabolic routes, allows conversion of a wide range of substrates into different products, and higher tolerance to inhibitors improves the efficiency of biorefineries. In this study, nine non-conventional yeast strains were selected and screened on a diluted hemicellulosic hydrolysate from Birch. Kluyveromyces marxianus CBS 6556, Scheffersomyces stipitis CBS 5773, Lipomyces starkeyi DSM 70295, and Rhodotorula toruloides CCT 7815 were selected for further characterization, where their growth and substrate consumption patterns were analyzed under industrially relevant substrate concentrations and controlled environmental conditions in bioreactors. K. marxianus CBS 6556 performed poorly under higher hydrolysate concentrations, although this yeast was determined among the fastest-growing yeasts on diluted hydrolysate. S. stipitis CBS 5773 demonstrated a low growth and biomass production while consuming glucose, while during the xylose-phase, the specific growth and sugar co-consumption rates were among the highest of this study (0.17 h–1 and 0.37 g/gdw*h, respectively). L. starkeyi DSM 70295 and R. toruloides CCT 7815 were the fastest to consume the provided sugars at high hydrolysate conditions, finishing them within 54 and 30 h, respectively. R. toruloides CCT 7815 performed the best of all four studied strains and tested conditions, showing the highest specific growth (0.23 h–1), substrate co-consumption (0.73 ± 0.02 g/gdw*h), and xylose consumption (0.22 g/gdw*h) rates. Furthermore, R. toruloides CCT 7815 was able to produce 10.95 ± 1.37 gL–1 and 1.72 ± 0.04 mgL–1 of lipids and carotenoids, respectively, under non-optimized cultivation conditions. The study provides novel information on selecting suitable host strains for biorefinery processes, provides detailed information on substrate consumption patterns, and pinpoints to bottlenecks possible to address using metabolic engineering or adaptive evolution experiments.
Collapse
Affiliation(s)
| | - Daria Aborneva
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | |
Collapse
|
23
|
Chan J, Qinqin F, Jianwei L, Ying C, Machida S, Wei C, Yuan YA, Jobichen C. Structural and mechanistic insight into stem-loop RNA processing by yeast Pichia stipitis Dicer. Protein Sci 2021; 30:1210-1220. [PMID: 33884665 DOI: 10.1002/pro.4086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/11/2022]
Abstract
Dicer is a member of the ribonuclease III enzyme family and processes double-stranded RNA into small functional RNAs. The variation in the domain architecture of Dicer among different species whilst preserving its biological dicing function is intriguing. Here, we describe the structure and function of a novel catalytically active RNase III protein, a non-canonical Dicer (PsDCR1), found in budding yeast Pichia stipitis. The structure of the catalytically active region (the catalytic RNase III domain and double-stranded RNA-binding domain 1 [dsRBD1]) of DCR1 showed that RNaseIII domain is structurally similar to yeast RNase III (Rnt1p) but uniquely presents dsRBD1 in a diagonal orientation, forming a catalytic core made of homodimer and large RNA-binding surface. The second dsRNA binding domain at C-terminus, which is absent in Rnt1, enhances the RNA cleavage activity. Although the cleavage pattern of PsDCR1 anchors an apical loop similar to Rnt1, the cleavage activity depended on the sequence motif at the lower stem, not the apical loop, of hairpin RNA. Through RNA sequencing and RNA mutations, we showed that RNA cleavage by PsDCR1 is determined by the stem-loop structure of the RNA substrate, suggesting the possibility that stem-loop RNA-guided gene silencing pathway exists in budding yeast.
Collapse
Affiliation(s)
- JingRu Chan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Fu Qinqin
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Li Jianwei
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chen Ying
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Satoru Machida
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chen Wei
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Yuren Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Chacko Jobichen
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Zha J, Yuwen M, Qian W, Wu X. Yeast-Based Biosynthesis of Natural Products From Xylose. Front Bioeng Biotechnol 2021; 9:634919. [PMID: 33614617 PMCID: PMC7886706 DOI: 10.3389/fbioe.2021.634919] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 12/28/2022] Open
Abstract
Xylose is the second most abundant sugar in lignocellulosic hydrolysates. Transformation of xylose into valuable chemicals, such as plant natural products, is a feasible and sustainable route to industrializing biorefinery of biomass materials. Yeast strains, including Saccharomyces cerevisiae, Scheffersomyces stipitis, and Yarrowia lipolytica, display some paramount advantages in expressing heterologous enzymes and pathways from various sources and have been engineered extensively to produce natural products. In this review, we summarize the advances in the development of metabolically engineered yeasts to produce natural products from xylose, including aromatics, terpenoids, and flavonoids. The state-of-the-art metabolic engineering strategies and representative examples are reviewed. Future challenges and perspectives are also discussed on yeast engineering for commercial production of natural products using xylose as feedstocks.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | | | | | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| |
Collapse
|
25
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
26
|
Li J, Rong L, Zhao Y, Li S, Zhang C, Xiao D, Foo JL, Yu A. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnol Adv 2020; 43:107605. [DOI: 10.1016/j.biotechadv.2020.107605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
|
27
|
Correia K, Mahadevan R. Pan‐Genome‐Scale Network Reconstruction: Harnessing Phylogenomics Increases the Quantity and Quality of Metabolic Models. Biotechnol J 2020; 15:e1900519. [DOI: 10.1002/biot.201900519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/22/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Kevin Correia
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto 164 College Street Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
28
|
da Silva JM, Ribeiro KC, Teles GH, Ribeiro E, de Morais Junior MA, de Barros Pita W. Fermentation profiles of the yeast Brettanomyces bruxellensis in d-xylose and l-arabinose aiming its application as a second-generation ethanol producer. Yeast 2020; 37:597-608. [PMID: 32889766 DOI: 10.1002/yea.3519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/28/2020] [Accepted: 09/01/2020] [Indexed: 11/07/2022] Open
Abstract
The yeast Brettanomyces bruxellensis is able to ferment the main sugars used in first-generation ethanol production. However, its employment in this industry is prohibitive because the ethanol productivity reached is significantly lower than the observed for Saccharomyces cerevisiae. On the other hand, a possible application of B. bruxellensis in the second-generation ethanol production has been suggested because this yeast is also able to use d-xylose and l-arabinose, the major pentoses released from lignocellulosic material. Although the latter application seems to be reasonable, it has been poorly explored. Therefore, we aimed to evaluate whether or not different industrial strains of B. bruxellensis are able to ferment d-xylose and l-arabinose, both in aerobiosis and oxygen-limited conditions. Three out of nine tested strains were able to assimilate those sugars. When in aerobiosis, B. bruxellensis cells exclusively used them to support biomass formation, and no ethanol was produced. Moreover, whereas l-arabinose was not consumed under oxygen limitation, d-xylose was only slightly used, which resulted in low ethanol yield and productivity. In conclusion, our results showed that d-xylose and l-arabinose are not efficiently converted to ethanol by B. bruxellensis, most likely due to a redox imbalance in the assimilatory pathways of these sugars. Therefore, despite presenting other industrially relevant traits, the employment of B. bruxellensis in second-generation ethanol production depends on the development of genetic engineering strategies to overcome this metabolic bottleneck.
Collapse
Affiliation(s)
| | | | | | - Ester Ribeiro
- Department of Antibiotics, Federal University of Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
29
|
Libkind D, Čadež N, Opulente DA, Langdon QK, Rosa CA, Sampaio JP, Gonçalves P, Hittinger CT, Lachance MA. Towards yeast taxogenomics: lessons from novel species descriptions based on complete genome sequences. FEMS Yeast Res 2020; 20:5876348. [DOI: 10.1093/femsyr/foaa042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/23/2020] [Indexed: 01/23/2023] Open
Abstract
ABSTRACT
In recent years, ‘multi-omic’ sciences have affected all aspects of fundamental and applied biological research. Yeast taxonomists, though somewhat timidly, have begun to incorporate complete genomic sequences into the description of novel taxa, taking advantage of these powerful data to calculate more reliable genetic distances, construct more robust phylogenies, correlate genotype with phenotype and even reveal cryptic sexual behaviors. However, the use of genomic data in formal yeast species descriptions is far from widespread. The present review examines published examples of genome-based species descriptions of yeasts, highlights relevant bioinformatic approaches, provides recommendations for new users and discusses some of the challenges facing the genome-based systematics of yeasts.
Collapse
Affiliation(s)
- D Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) – CONICET / Universidad Nacional del Comahue, Bariloche, Argentina
| | - N Čadež
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - D A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Q K Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - C A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270–901, Brazil
| | - J P Sampaio
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - P Gonçalves
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - C T Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - M A Lachance
- Department of Biology, University of Western Ontario, London N6A 5B7, Ontario, Canada
| |
Collapse
|
30
|
Zhao Y, Yao Z, Ploessl D, Ghosh S, Monti M, Schindler D, Gao M, Cai Y, Qiao M, Yang C, Cao M, Shao Z. Leveraging the Hermes Transposon to Accelerate the Development of Nonconventional Yeast-based Microbial Cell Factories. ACS Synth Biol 2020; 9:1736-1752. [PMID: 32396718 DOI: 10.1021/acssynbio.0c00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We broadened the usage of DNA transposon technology by demonstrating its capacity for the rapid creation of expression libraries for long biochemical pathways, which is beyond the classical application of building genome-scale knockout libraries in yeasts. This strategy efficiently leverages the readily available fine-tuning impact provided by the diverse transcriptional environment surrounding each random integration locus. We benchmark the transposon-mediated integration against the nonhomologous end joining-mediated strategy. The latter strategy was demonstrated for achieving pathway random integration in other yeasts but is associated with a high false-positive rate in the absence of a high-throughput screening method. Our key innovation of a nonreplicable circular DNA platform increased the possibility of identifying top-producing variants to 97%. Compared to the classical DNA transposition protocol, the design of a nonreplicable circular DNA skipped the step of counter-selection for plasmid removal and thus not only reduced the time required for the step of library creation from 10 to 5 d but also efficiently removed the "transposition escapers", which undesirably represented almost 80% of the entire population as false positives. Using one endogenous product (i.e., shikimate) and one heterologous product (i.e., (S)-norcoclaurine) as examples, we presented a streamlined procedure to rapidly identify high-producing variants with titers significantly higher than the reported data in the literature. We selected Scheffersomyces stipitis, a representative nonconventional yeast, as a demo, but the strategy can be generalized to other nonconventional yeasts. This new exploration of transposon technology, therefore, adds a highly versatile tool to accelerate the development of novel species as microbial cell factories for producing value-added chemicals.
Collapse
Affiliation(s)
- Yuxin Zhao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Zhanyi Yao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Saptarshi Ghosh
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Marco Monti
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Daniel Schindler
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Yizhi Cai
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingfeng Cao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, United States
- Bioeconomy Institute, Iowa State University, Ames, Iowa, United States
- Interdepartmental Microbiology Program, Iowa State University, Ames, Iowa, United States
- The Ames Laboratory, Ames, Iowa, United States
| |
Collapse
|
31
|
Kubota K, Watanabe K, Zhu XJ, Kawakami K, Tanahashi M, Fukatsu T. Evolutionary Relationship Between Platycerus Stag Beetles and Their Mycangium-Associated Yeast Symbionts. Front Microbiol 2020; 11:1436. [PMID: 32695086 PMCID: PMC7338584 DOI: 10.3389/fmicb.2020.01436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/03/2020] [Indexed: 11/13/2022] Open
Abstract
Adult females of stag beetles (Coleoptera: Lucanidae) possess an ovipositor-associated mycangium for conveying symbiotic microorganisms. In most lucanid species, their mycangium contains yeast symbionts of the genus Scheffersomyces Kurtzman and Suzuki that are known for their xylose-fermenting capability. The lucanid genus Platycerus Geoffroy, 1762 is a group of small blue stag beetles, in which ten Japanese species constitute a monophyletic clade. Here we examined the evolutionary relationships of these Japanese Platycerus species and their yeast symbionts, together with a Korean Platycerus species and other lucanid species as outgroup taxa. Based on the internal transcribed spacer (ITS) and the intergenic spacer (IGS) sequences, the yeast symbionts of all Platycerus species were closely related to each other and formed a monophyletic clade. There is no variation in ITS sequences of the yeast symbionts of the Japanese Platycerus species. Based on IGS sequences, the yeast symbionts formed clusters that largely reflected the geographic distribution of the host insects, being shared by sympatric Platycerus species except for P. delicatulus Lewis, 1883 and P. viridicuprus Kubota & Otobe, The symbiont phylogeny was globally not congruent with the host COI-based phylogeny, although some local congruences were observed. Statistically significant correlations were detected between the genetic distances of COI sequences of the host insects and those of IGS sequences of the yeast symbionts in Japan. These results suggest that, at least to some extent, the host insects and the yeast symbionts may have experienced co-evolutionary associations. While the Japanese Platycerus species formed a monophyletic clade in the COI phylogeny, the yeast symbionts of Japanese P. viridicuprus were very closely related to those of Korean P. hongwonpyoi Imura & Choe, 1989, suggesting the possibility that a recent secondary contact of the two beetle species during a marine withdrawal, e.g., in the last glacial period, might have resulted in an inter-specific horizontal transmission of the yeast symbiont.
Collapse
Affiliation(s)
- Kôhei Kubota
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kana Watanabe
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Xue-Jiao Zhu
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kako Kawakami
- Laboratory of Forest Zoology, Course of Applied Life Sciences, Faculty of Agriculture, The University of Tokyo, Tokyo, Japan
| | - Masahiko Tanahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
32
|
Abstract
In this study, we evaluate potato pulp waste as a potential raw material for obtaining yeast biomass. A portion of the carbohydrates in the potato pulp waste can thereby be converted into more valuable protein. The potato pulp waste was analyzed in terms of protein and ash content, dry mass, simple sugars, and starch content. Two kinds of hydrolysis were performed (thermo-acidic and enzymatic) to produce media for cultivating Candida guilliermondii and Pichia stipitis. The hydrolysates and post-cultivation leachates were analyzed by High Performance Liquid Chromatography (HPLC). The highest biomass yield after 48 h (39.3%) was noted for Candida guilliermondii yeast grown on enzymatic hydrolysate-based medium. Our results prove that potato waste pulp is a promising raw material for the production of yeast single-cell protein (SCP).
Collapse
|
33
|
Dokuzparmak C, Colak A, Kolcuoglu Y, Akatin MY, Ertunga NS, Tuncay FO. Development of Some Properties of a Thermophilic Recombinant Glucose Isomerase by Mutation. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820020052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Morais CG, Sena LMF, Lopes MR, Santos ARO, Barros KO, Alves CR, Uetanabaro APT, Lachance MA, Rosa CA. Production of ethanol and xylanolytic enzymes by yeasts inhabiting rotting wood isolated in sugarcane bagasse hydrolysate. Fungal Biol 2020; 124:639-647. [PMID: 32540187 DOI: 10.1016/j.funbio.2020.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/23/2023]
Abstract
Yeasts associated with rotting wood from four Atlantic Rain forest sites in Brazil were investigated using a culture medium based on sugarcane bagasse hydrolysate. A total of 330 yeast strains were isolated. Pichia manshurica, Candida pseudolambica, and Wickerhamomyces sp. 3 were the most frequently isolated species. Fourteen novel species were obtained in this study. All isolates were tested for their ability to ferment d-xylose and to produce xylanases. In the fermentation assays using d-xylose (30 g L-1), the main ethanol producers were Scheffersomyces stipitis (14.08 g L-1), Scheffersomyces sp. (7.94 g L-1) and Spathaspora boniae (7.16 g L-1). Sc. stipitis showed the highest ethanol yield (0.42 g g-1) and the highest productivity (0.39 g L-1h-1). The fermentation results using hemicellulosic hydrolysate showed that Sc. stipitis was the best ethanol producer, achieving a yield of 0.32 g g-1, while Sp. boniae and Scheffersomyces sp. were excellent xylitol producers. The best xylanase-producing yeasts at 50 °C belonged to the species Su. xylanicola (0.487 U mg-1) and Saitozyma podzolica (0.384 U mg-1). The results showed that rotting wood collected from the Atlantic Rainforest is a valuable source of yeasts able to grow in sugarcane bagasse hydrolysate, including species with promising biotechnological properties.
Collapse
Affiliation(s)
- Camila G Morais
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Letícia M F Sena
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana R Lopes
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Raquel O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Katharina O Barros
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camila R Alves
- Programa de Pós-Graduação em Botânica, Laboratório de Micologia, Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Ana Paula T Uetanabaro
- Departamento de Ciências Biológicas e Agroindústria, Universidade Estadual Santa Cruz, Ilhéus, BA 45662-900, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
35
|
The Xylose Metabolizing Yeast Spathaspora passalidarum is a Promising Genetic Treasure for Improving Bioethanol Production. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6010033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Currently, the fermentation technology for recycling agriculture waste for generation of alternative renewable biofuels is getting more and more attention because of the environmental merits of biofuels for decreasing the rapid rise of greenhouse gas effects compared to petrochemical, keeping in mind the increase of petrol cost and the exhaustion of limited petroleum resources. One of widely used biofuels is bioethanol, and the use of yeasts for commercial fermentation of cellulosic and hemicellulosic agricultural biomasses is one of the growing biotechnological trends for bioethanol production. Effective fermentation and assimilation of xylose, the major pentose sugar element of plant cell walls and the second most abundant carbohydrate, is a bottleneck step towards a robust biofuel production from agricultural waste materials. Hence, several attempts were implemented to engineer the conventional Saccharomyces cerevisiae yeast to transport and ferment xylose because naturally it does not use xylose, using genetic materials of Pichia stipitis, the pioneer native xylose fermenting yeast. Recently, the nonconventional yeast Spathaspora passalidarum appeared as a founder member of a new small group of yeasts that, like Pichia stipitis, can utilize and ferment xylose. Therefore, the understanding of the molecular mechanisms regulating the xylose assimilation in such pentose fermenting yeasts will enable us to eliminate the obstacles in the biofuels pipeline, and to develop industrial strains by means of genetic engineering to increase the availability of renewable biofuel products from agricultural biomass. In this review, we will highlight the recent advances in the field of native xylose metabolizing yeasts, with special emphasis on S. passalidarum for improving bioethanol production.
Collapse
|
36
|
Berezka K, Semkiv M, Borbuliak M, Blomqvist J, Linder T, Ruchała J, Dmytruk K, Passoth V, Sibirny A. Insertional tagging of the Scheffersomyces stipitis gene HEM25 involved in regulation of glucose and xylose alcoholic fermentation. Cell Biol Int 2020; 45:507-517. [PMID: 31829471 DOI: 10.1002/cbin.11284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/10/2019] [Indexed: 11/10/2022]
Abstract
Amid known microbial bioethanol producers, the yeast Scheffersomyces (Pichia) stipitis is particularly promising in terms of alcoholic fermentation of both glucose and xylose, the main constituents of lignocellulosic biomass hydrolysates. However, the ethanol yield and productivity, especially from xylose, are still insufficient to meet the requirements of a feasible industrial technology; therefore, the construction of more efficient S. stipitis ethanol producers is of great significance. The aim of this study was to isolate the insertional mutants of S. stipitis with altered ethanol production from glucose and xylose and to identify the disrupted gene(s). Mutants obtained by random insertional mutagenesis were screened for their growth abilities on solid media with different sugars and for resistance to 3-bromopyruvate. Of more than 1,300 screened mutants, 17 were identified to have significantly changed ethanol yields during the fermentation. In one of the best fermenting strains (strain 4.6), insertion was found to occur within the ORF of a homolog to the Saccharomyces cerevisiae gene HEM25 (YDL119C), encoding a mitochondrial glycine transporter required for heme synthesis. The role of HEM25 in heme accumulation, respiration, and alcoholic fermentation in the yeast S. stipitis was studied using strain 4.6, the complementation strain Comp-a derivative from the 4.6 strain with expression of the WT HEM25 allele and the deletion strain hem25Δ. As hem25Δ produced lower amounts of ethanol than strain 4.6, we assume that the phenotype of strain 4.6 may be caused not only by HEM25 disruption but additionally by some point mutation.
Collapse
Affiliation(s)
- Krzysztof Berezka
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, Rzeszow, 35-601, Poland
| | - Marta Semkiv
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str.14/16, Lviv, 79005, Ukraine
| | - Mariia Borbuliak
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str.14/16, Lviv, 79005, Ukraine
| | - Johanna Blomqvist
- Department Molecular Sciences, Swedish University of Agricultural Sciences, BioCentre, Almas allé 5, Uppsala, 750-07, Sweden
| | - Tomas Linder
- Department Molecular Sciences, Swedish University of Agricultural Sciences, BioCentre, Almas allé 5, Uppsala, 750-07, Sweden
| | - Justyna Ruchała
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, Rzeszow, 35-601, Poland
| | - Kostyantyn Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str.14/16, Lviv, 79005, Ukraine
| | - Volkmar Passoth
- Department Molecular Sciences, Swedish University of Agricultural Sciences, BioCentre, Almas allé 5, Uppsala, 750-07, Sweden
| | - Andriy Sibirny
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, Rzeszow, 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str.14/16, Lviv, 79005, Ukraine
| |
Collapse
|
37
|
Genome Assemblies of Two Rare Opportunistic Yeast Pathogens: Diutina rugosa (syn. Candida rugosa) and Trichomonascus ciferrii (syn. Candida ciferrii). G3-GENES GENOMES GENETICS 2019; 9:3921-3927. [PMID: 31575637 PMCID: PMC6893180 DOI: 10.1534/g3.119.400762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infections caused by opportunistic yeast pathogens have increased over the last years. These infections can be originated by a large number of diverse yeast species of varying incidence, and with distinct clinically relevant phenotypic traits, such as different susceptibility profiles to antifungal drugs, which challenge diagnosis and treatment. Diutina rugosa (syn. Candida rugosa) and Trichomonascus ciferrii (syn. Candida ciferrii) are two opportunistic rare yeast pathogens, which low incidence (< 1%) limits available clinical experience. Furthermore, these yeasts have elevated Minimum Inhibitory Concentration (MIC) levels to at least one class of antifungal agents. This makes it more difficult to manage their infections, and thus they are associated with high rates of mortality and clinical failure. With the aim of improving our knowledge on these opportunistic pathogens, we assembled and annotated their genomes. A phylogenomics approach revealed that genes specifically duplicated in each of the two species are often involved in transmembrane transport activities. These genomes and the reconstructed complete catalog of gene phylogenies and homology relationships constitute useful resources for future studies on these pathogens.
Collapse
|
38
|
Bioprospection of Enzymes and Microorganisms in Insects to Improve Second-Generation Ethanol Production. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2019.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
39
|
Eliodório KP, Cunha GCDGE, Müller C, Lucaroni AC, Giudici R, Walker GM, Alves SL, Basso TO. Advances in yeast alcoholic fermentations for the production of bioethanol, beer and wine. ADVANCES IN APPLIED MICROBIOLOGY 2019; 109:61-119. [PMID: 31677647 DOI: 10.1016/bs.aambs.2019.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yeasts have a long-standing relationship with humankind that has widened in recent years to encompass production of diverse foods, beverages, fuels and medicines. Here, key advances in the field of yeast fermentation applied to alcohol production, which represents the predominant product of industrial biotechnology, will be presented. More specifically, we have selected industries focused in producing bioethanol, beer and wine. In these bioprocesses, yeasts from the genus Saccharomyces are still the main players, with Saccharomyces cerevisiae recognized as the preeminent industrial ethanologen. However, the growing demand for new products has opened the door to diverse yeasts, including non-Saccharomyces strains. Furthermore, the development of synthetic media that successfully simulate industrial fermentation medium will be discussed along with a general overview of yeast fermentation modeling.
Collapse
Affiliation(s)
| | | | - Caroline Müller
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Ana Carolina Lucaroni
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Reinaldo Giudici
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil
| | | | - Sérgio Luiz Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Thiago Olitta Basso
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
40
|
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 2019; 47:109-132. [PMID: 31637550 PMCID: PMC6970964 DOI: 10.1007/s10295-019-02242-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
41
|
Patiño MA, Ortiz JP, Velásquez M, Stambuk BU. d-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: A review. Yeast 2019; 36:541-556. [PMID: 31254359 DOI: 10.1002/yea.3429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/21/2019] [Indexed: 01/24/2023] Open
Abstract
Xylose is the second most abundant sugar in nature. Its efficient fermentation has been considered as a critical factor for a feasible conversion of renewable biomass resources into biofuels and other chemicals. The yeast Saccharomyces cerevisiae is of exceptional industrial importance due to its excellent capability to ferment sugars. However, although S. cerevisiae is able to ferment xylulose, it is considered unable to metabolize xylose, and thus, a lot of research has been directed to engineer this yeast with heterologous genes to allow xylose consumption and fermentation. The analysis of the natural genetic diversity of this yeast has also revealed some nonrecombinant S. cerevisiae strains that consume or even grow (modestly) on xylose. The genome of this yeast has all the genes required for xylose transport and metabolism through the xylose reductase, xylitol dehydrogenase, and xylulokinase pathway, but there seems to be problems in their kinetic properties and/or required expression. Self-cloning industrial S. cerevisiae strains overexpressing some of the endogenous genes have shown interesting results, and new strategies and approaches designed to improve these S. cerevisiae strains for ethanol production from xylose will also be presented in this review.
Collapse
Affiliation(s)
- Margareth Andrea Patiño
- Instituto de Biotecnología.,Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan Pablo Ortiz
- Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - Mario Velásquez
- Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Boris U Stambuk
- Departamento de Bioquímica, Universidad Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
42
|
Correia K, Yu SM, Mahadevan R. AYbRAH: a curated ortholog database for yeasts and fungi spanning 600 million years of evolution. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5403499. [PMID: 30893420 PMCID: PMC6425859 DOI: 10.1093/database/baz022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
Abstract
Budding yeasts inhabit a range of environments by exploiting various metabolic traits. The genetic bases for these traits are mostly unknown, preventing their addition or removal in a chassis organism for metabolic engineering. Insight into the evolution of orthologs, paralogs and xenologs in the yeast pan-genome can help bridge these genotypes; however, existing phylogenomic databases do not span diverse yeasts, and sometimes cannot distinguish between these homologs. To help understand the molecular evolution of these traits in yeasts, we created Analyzing Yeasts by Reconstructing Ancestry of Homologs (AYbRAH), an open-source database of predicted and manually curated ortholog groups for 33 diverse fungi and yeasts in Dikarya, spanning 600 million years of evolution. OrthoMCL and OrthoDB were used to cluster protein sequence into ortholog and homolog groups, respectively; MAFFT and PhyML reconstructed the phylogeny of all homolog groups. Ortholog assignments for enzymes and small metabolite transporters were compared to their phylogenetic reconstruction, and curated to resolve any discrepancies. Information on homolog and ortholog groups can be viewed in the AYbRAH web portal (https://lmse.github.io/aybrah/), including functional annotations, predictions for mitochondrial localization and transmembrane domains, literature references and phylogenetic reconstructions. Ortholog assignments in AYbRAH were compared to HOGENOM, KEGG Orthology, OMA, eggNOG and PANTHER. PANTHER and OMA had the most congruent ortholog groups with AYbRAH, while the other phylogenomic databases had greater amounts of under-clustering, over-clustering or no ortholog annotations for proteins. Future plans are discussed for AYbRAH, and recommendations are made for other research communities seeking to create curated ortholog databases.
Collapse
Affiliation(s)
- Kevin Correia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, College Street, Toronto, ON, Canada
| | - Shi M Yu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, College Street, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, College Street, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, College Street, Toronto, ON, Canada
| |
Collapse
|
43
|
Bewick S, Gurarie E, Weissman JL, Beattie J, Davati C, Flint R, Thielen P, Breitwieser F, Karig D, Fagan WF. Trait-based analysis of the human skin microbiome. MICROBIOME 2019; 7:101. [PMID: 31277701 PMCID: PMC6612184 DOI: 10.1186/s40168-019-0698-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 05/19/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND The past decade of microbiome research has concentrated on cataloging the diversity of taxa in different environments. The next decade is poised to focus on microbial traits and function. Most existing methods for doing this perform pathway analysis using reference databases. This has both benefits and drawbacks. Function can go undetected if reference databases are coarse-grained or incomplete. Likewise, detection of a pathway does not guarantee expression of the associated function. Finally, function cannot be connected to specific microbial constituents, making it difficult to ascertain the types of organisms exhibiting particular traits-something that is important for understanding microbial success in specific environments. A complementary approach to pathway analysis is to use the wealth of microbial trait information collected over years of lab-based, culture experiments. METHODS Here, we use journal articles and Bergey's Manual of Systematic Bacteriology to develop a trait-based database for 971 human skin bacterial taxa. We then use this database to examine functional traits that are over/underrepresented among skin taxa. Specifically, we focus on three trait classes-binary, categorical, and quantitative-and compare trait values among skin taxa and microbial taxa more broadly. We compare binary traits using a Chi-square test, categorical traits using randomization trials, and quantitative traits using a nonparametric relative effects test based on global rankings using Tukey contrasts. RESULTS We find a number of traits that are over/underrepresented within the human skin microbiome. For example, spore formation, acid phosphatase, alkaline phosphatase, pigment production, catalase, and oxidase are all less common among skin taxa. As well, skin bacteria are less likely to be aerobic, favoring, instead, a facultative strategy. They are also less likely to exhibit gliding motility, less likely to be spirillum or rod-shaped, and less likely to grow in chains. Finally, skin bacteria have more difficulty at high pH, prefer warmer temperatures, and are much less resilient to hypotonic conditions. CONCLUSIONS Our analysis shows how an approach that relies on information from culture experiments can both support findings from pathway analysis, and also generate new insights into the structuring principles of microbial communities.
Collapse
Affiliation(s)
- Sharon Bewick
- Department of Biological Sciences, Clemson University, Clemson, SC 29631 USA
| | - Eliezer Gurarie
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| | - JL Weissman
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| | - Jess Beattie
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| | - Cyrus Davati
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| | - Rachel Flint
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| | - Peter Thielen
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723 USA
| | - Florian Breitwieser
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - David Karig
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723 USA
- Department of Bioengineering, Clemson University, Clemson, SC 29631 USA
| | - William F. Fagan
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
44
|
Borelli G, Fiamenghi MB, dos Santos LV, Carazzolle MF, Pereira GAG, José J. Positive Selection Evidence in Xylose-Related Genes Suggests Methylglyoxal Reductase as a Target for the Improvement of Yeasts' Fermentation in Industry. Genome Biol Evol 2019; 11:1923-1938. [PMID: 31070742 PMCID: PMC6637916 DOI: 10.1093/gbe/evz036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Xylose assimilation and fermentation are important traits for second generation ethanol production. However, some genomic features associated with this pentose sugar's metabolism remain unknown in yeasts. Comparative genomics studies have led to important insights in this field, but we are still far from completely understanding endogenous yeasts' xylose metabolism. In this work, we carried out a deep evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Our investigation detected positive selection fingerprints at this clade not only among sequences of important genes for xylose metabolism, such as xylose reductase and xylitol dehydrogenase, but also in genes expected to undergo neutral evolution, such as the glycolytic gene phosphoglycerate mutase. In addition, we present expansion, positive selection marks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the little studied methylglyoxal reductases. We propose a metabolic model suggesting that selected codons among these proteins caused a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance. These findings provide a wider look into pentose metabolism of yeasts and add this previously overlooked piece into the intricate puzzle of oxidative imbalance. Although being extensively discussed in evolutionary works the awareness of selection patterns is recent in biotechnology researches, rendering insights to surpass the reached status quo in many of its subareas.
Collapse
Affiliation(s)
- Guilherme Borelli
- Genomics and bioEnergy Laboratory (LGE), Institute of Biology, Unicamp, São Paulo, Campinas, Brazil
| | - Mateus Bernabe Fiamenghi
- Genomics and bioEnergy Laboratory (LGE), Institute of Biology, Unicamp, São Paulo, Campinas, Brazil
| | - Leandro Vieira dos Santos
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Marcelo Falsarella Carazzolle
- Genomics and bioEnergy Laboratory (LGE), Institute of Biology, Unicamp, São Paulo, Campinas, Brazil
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Genomics and bioEnergy Laboratory (LGE), Institute of Biology, Unicamp, São Paulo, Campinas, Brazil
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Juliana José
- Genomics and bioEnergy Laboratory (LGE), Institute of Biology, Unicamp, São Paulo, Campinas, Brazil
| |
Collapse
|
45
|
Trichez D, Steindorff AS, Soares CEVF, Formighieri EF, Almeida JRM. Physiological and comparative genomic analysis of new isolated yeasts Spathaspora sp. JA1 and Meyerozyma caribbica JA9 reveal insights into xylitol production. FEMS Yeast Res 2019; 19:5480466. [DOI: 10.1093/femsyr/foz034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/25/2019] [Indexed: 12/30/2022] Open
Abstract
ABSTRACT
Xylitol is a five-carbon polyol of economic interest that can be produced by microbial xylose reduction from renewable resources. The current study sought to investigate the potential of two yeast strains, isolated from Brazilian Cerrado biome, in the production of xylitol as well as the genomic characteristics that may impact this process. Xylose conversion capacity by the new isolates Spathaspora sp. JA1 and Meyerozyma caribbica JA9 was evaluated and compared with control strains on xylose and sugarcane biomass hydrolysate. Among the evaluated strains, Spathaspora sp. JA1 was the strongest xylitol producer, reaching product yield and productivity as high as 0.74 g/g and 0.20 g/(L.h) on xylose, and 0.58 g/g and 0.44 g/(L.h) on non-detoxified hydrolysate. Genome sequences of Spathaspora sp. JA1 and M. caribbica JA9 were obtained and annotated. Comparative genomic analysis revealed that the predicted xylose metabolic pathway is conserved among the xylitol-producing yeasts Spathaspora sp. JA1, M. caribbica JA9 and Meyerozyma guilliermondii, but not in Spathaspora passalidarum, an efficient ethanol-producing yeast. Xylitol-producing yeasts showed strictly NADPH-dependent xylose reductase and NAD+-dependent xylitol-dehydrogenase activities. This imbalance of cofactors favors the high xylitol yield shown by Spathaspora sp. JA1, which is similar to the most efficient xylitol producers described so far.
Collapse
Affiliation(s)
- Débora Trichez
- Embrapa Agroenergia. Parque Estação Biológica, PqEB – W3 Norte Final, Postal code 70.770–901, Brasília-DF, Brazil
| | - Andrei S Steindorff
- Embrapa Agroenergia. Parque Estação Biológica, PqEB – W3 Norte Final, Postal code 70.770–901, Brasília-DF, Brazil
| | - Carlos E V F Soares
- Embrapa Agroenergia. Parque Estação Biológica, PqEB – W3 Norte Final, Postal code 70.770–901, Brasília-DF, Brazil
- Graduate Program in Chemical and Biological Technologies, Institute of Chemistry, University of Brasília, Campus Darcy Ribeiro, Postal code 70.910-900, Brasília-DF, Brazil
| | - Eduardo F Formighieri
- Embrapa Agroenergia. Parque Estação Biológica, PqEB – W3 Norte Final, Postal code 70.770–901, Brasília-DF, Brazil
| | - João R M Almeida
- Embrapa Agroenergia. Parque Estação Biológica, PqEB – W3 Norte Final, Postal code 70.770–901, Brasília-DF, Brazil
- Graduate Program in Chemical and Biological Technologies, Institute of Chemistry, University of Brasília, Campus Darcy Ribeiro, Postal code 70.910-900, Brasília-DF, Brazil
| |
Collapse
|
46
|
Abstract
Production of fuels and chemicals from renewable lignocellulosic feedstocks is a promising alternative to petroleum-derived compounds. Due to the complexity of lignocellulosic feedstocks, microbial conversion of all potential substrates will require substantial metabolic engineering. Non-model microbes offer desirable physiological traits, but also increase the difficulty of heterologous pathway engineering and optimization. The development of modular design principles that allow metabolic pathways to be used in a variety of novel microbes with minimal strain-specific optimization will enable the rapid construction of microbes for commercial production of biofuels and bioproducts. In this review, we discuss variability of lignocellulosic feedstocks, pathways for catabolism of lignocellulose-derived compounds, challenges to heterologous engineering of catabolic pathways, and opportunities to apply modular pathway design. Implementation of these approaches will simplify the process of modifying non-model microbes to convert diverse lignocellulosic feedstocks.
Collapse
|
47
|
Online monitoring of the redox potential in microaerobic and anaerobic Scheffersomyces stipitis fermentations. Biotechnol Lett 2019; 41:753-761. [DOI: 10.1007/s10529-019-02674-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
|
48
|
Coughlan AY, Wolfe KH. The reported point centromeres of
Scheffersomyces stipitis
are retrotransposon long terminal repeats. Yeast 2019; 36:275-283. [DOI: 10.1002/yea.3375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/20/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Aisling Y. Coughlan
- UCD Conway Institute, School of MedicineUniversity College Dublin Dublin 4 Ireland
| | - Kenneth H. Wolfe
- UCD Conway Institute, School of MedicineUniversity College Dublin Dublin 4 Ireland
| |
Collapse
|
49
|
Guo Z, Wang Y, Hou Q, Li W, Zhao H, Sun Z, Zhang Z. Halobasidium xiangyangense gen. nov., sp. nov., a new xylose-utilizing yeast in the family Cystobasidiaceae, isolated from the pickling sauce used to make Datoucai, a high-salt fermented food. Int J Syst Evol Microbiol 2019; 69:139-145. [PMID: 30614783 DOI: 10.1099/ijsem.0.003119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we describe a new genus and species of yeast with high-salt tolerance. The strain was isolated from the pickling sauce used to make Datoucai, a traditional fermented food made from Brassica juncea in Xiangyang, China. Phylogenetic analysis of sequences from the D1/D2 region of the LSU rRNA gene and from the ITS region demonstrated that the strain, reference HBUAS51001T, was most closely related to members of the genera Occultifur and Cystobasidium. However, the greatest similarities between the D1/D2 and ITS nucleotide sequences of strain HBUAS51001T and the most closely related type strains from Occultifur and Cystobasidium were only 91 and 92 %, respectively. This suggests that strain HBUAS51001T does not belong to any currently described species. Strain HBUAS51001T grew readily on media in which xylose was the sole carbon source. The major ubiquinone was Q9. The genome of strain HBUAS51001T was 42.42 Mb with a G+C content of 53.93 mol%. Three candidate genes associated with xylose metabolism were identified. On the basis of genotypic and phenotypic data, strain HBUAS51001T can be considered as both a new species and a new genus, for which the name Halobasidium xiangyangense gen. nov., sp. nov. is proposed. The type strain is HBUAS51001T (=KCTC27810T=GDMCC 2.231T=CCTCC AY 2018002T).
Collapse
Affiliation(s)
- Zhuang Guo
- 1Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Yurong Wang
- 1Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Qiangchuan Hou
- 2Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Weicheng Li
- 2Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Huijun Zhao
- 1Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Zhihong Sun
- 2Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Zhendong Zhang
- 1Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| |
Collapse
|
50
|
Kijpornyongpan T, Urbina H, Suh SO, Luangsa-ard J, Aime MC, Blackwell M. TheSuhomycesclade: from single isolate to multiple species to disintegrating sex loci. FEMS Yeast Res 2018; 19:5212297. [DOI: 10.1093/femsyr/foy125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/27/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Teeratas Kijpornyongpan
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette IN 47907-2054, USA
| | - Hector Urbina
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette IN 47907-2054; Florida Department of Agriculture & Consumer Services, Division of Plant Industry, Gainesville, Florida 32608-7100, USA
| | - Sung-Oui Suh
- Manufacturing Science and Technology Program, ATCC, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Jennifer Luangsa-ard
- Microbe Interaction and Ecology Laboratory, BIOTEC, 113 Thailand Science Park, Phahonyothin Rd., Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette IN 47907-2054, USA
| | - Meredith Blackwell
- Department of Biological Sciences, Louisiana State University; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|