1
|
Dabla PK, Dabas A. Transformative impact of point-of-care testing in critical care. World J Crit Care Med 2025; 14:100623. [PMID: 40491889 PMCID: PMC11891844 DOI: 10.5492/wjccm.v14.i2.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
The advent of point-of-care testing (POCT) has revolutionized the approach to patient management, especially for pediatric care. POCT provides rapid, on-the-spot biochemical and microbiological evaluations, bypassing delays typically associated with central laboratory testing, enabling swift clinical decision-making. Additionally, POCT has proven to be a valuable prognostic tool for monitoring electrolyte, lactate, creatinine levels, often a marker of severe illness and poor outcomes. POCT enables its faster identification, allowing for prompt interventions. This capability is essential in managing conditions like sepsis, where timely treatment can significantly impact survival rates. However, the implementation of POCT is not without its challenges. Variability in sample handling, particularly with heparinized syringes, can affect the accuracy of certain measurements, such as potassium levels. The absence of comprehensive follow-up data and cost-effectiveness analyses in some studies indicate the need for continued research to optimize the use of POCT. In conclusion, POCT is a transformative tool in critical care, offering prompt and reliable assessments that significantly enhance patient management. As technology advances, the integration of POCT into emergency departments and intensive critical care units holds great promise for improving the quality of healthcare and patient survival rates.
Collapse
Affiliation(s)
- Pradeep K Dabla
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Education and Research, Associated Maulana Azad Medical College, New Delhi 110002, Delhi, India
| | - Aashima Dabas
- Department of Pediatrics, Maulana Azad Medical College and associated Lok Nayak Hospital, New Delhi 110002, Delhi, India
| |
Collapse
|
2
|
Lan Z, Chen R, Zou D, Zhao C. Microfluidic Nanoparticle Separation for Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411278. [PMID: 39632600 PMCID: PMC11775552 DOI: 10.1002/advs.202411278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Indexed: 12/07/2024]
Abstract
A deeper understanding of disease heterogeneity highlights the urgent need for precision medicine. Microfluidics, with its unique advantages, such as high adjustability, diverse material selection, low cost, high processing efficiency, and minimal sample requirements, presents an ideal platform for precision medicine applications. As nanoparticles, both of biological origin and for therapeutic purposes, become increasingly important in precision medicine, microfluidic nanoparticle separation proves particularly advantageous for handling valuable samples in personalized medicine. This technology not only enhances detection, diagnosis, monitoring, and treatment accuracy, but also reduces invasiveness in medical procedures. This review summarizes the fundamentals of microfluidic nanoparticle separation techniques for precision medicine, starting with an examination of nanoparticle properties essential for separation and the core principles that guide various microfluidic methods. It then explores passive, active, and hybrid separation techniques, detailing their principles, structures, and applications. Furthermore, the review highlights their contributions to advancements in liquid biopsy and nanomedicine. Finally, it addresses existing challenges and envisions future development spurred by emerging technologies such as advanced materials science, 3D printing, and artificial intelligence. These interdisciplinary collaborations are anticipated to propel the platformization of microfluidic separation techniques, significantly expanding their potential in precision medicine.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Rui Chen
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Da Zou
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Chun‐Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| |
Collapse
|
3
|
Guo Z, Jiang H, Song A, Liu X, Wang X. Progress and challenges in bacterial infection theranostics based on functional metal nanoparticles. Adv Colloid Interface Sci 2024; 332:103265. [PMID: 39121833 DOI: 10.1016/j.cis.2024.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The rapid proliferation and infection of bacteria, especially multidrug-resistant bacteria, have become a great threat to global public health. Focusing on the emergence of "super drug-resistant bacteria" caused by the abuse of antibiotics and the insufficient and delayed early diagnosis of bacterial diseases, it is of great research significance to develop new technologies and methods for early targeted detection and treatment of bacterial infection. The exceptional effects of metal nanoparticles based on their unique physical and chemical properties make such systems ideal for the detection and treatment of bacterial infection both in vitro and in vivo. Metal nanoparticles also have admirable clinical application prospects due to their broad antibacterial spectrum, various antibacterial mechanisms and excellent biocompatibility. Herein, we summarized the research progress concerning the mechanism of metal nanoparticles in terms of antibacterial activity together with the detection of bacterial. Representative achievements are selected to illustrate the proof-of-concept in vitro and in vivo applications. Based on these observations, we also give a brief discussion on the current problems and perspective outlook of metal nanoparticles in the diagnosis and treatment of bacterial infection.
Collapse
Affiliation(s)
- Zengchao Guo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
4
|
Djisalov M, Janjušević L, Léguillier V, Šašić Zorić L, Farre C, Anba-Mondoloni J, Vidic J, Gadjanski I. Loop-mediated isothermal amplification (LAMP) assay coupled with gold nanoparticles for colorimetric detection of Trichoderma spp. in Agaricus bisporus cultivation substrates. Sci Rep 2024; 14:15539. [PMID: 38969670 PMCID: PMC11226595 DOI: 10.1038/s41598-024-65971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
One of the significant challenges in organic cultivation of edible mushrooms is the control of invasive Trichoderma species that can hinder the mushroom production and lead to economic losses. Here, we present a novel loop-mediated isothermal amplification (LAMP) assay coupled with gold nanoparticles (AuNPs) for rapid colorimetric detection of Trichoderma spp. The specificity of LAMP primers designed on the tef1 gene was validated in silico and through gel-electrophoresis on Trichoderma harzianum and non-target soil-borne fungal and bacterial strains. LAMP amplification of genomic DNA templates was performed at 65 °C for only 30 min. The results were rapidly visualized in a microplate format within less than 5 min. The assay is based on salt-induced aggregation of AuNPs that is being prevented by the amplicons produced in case of positive LAMP reaction. As the solution color changes from red to violet upon nanoparticle aggregation can be observed with the naked eye, the developed LAMP-AuNPs assay can be easily operated to provide a simple initial screening for the rapid detection of Trichoderma in button mushroom cultivation substrate.
Collapse
Affiliation(s)
- Mila Djisalov
- BioSense Institute, University of Novi Sad, Novi Sad, Serbia.
| | | | - Vincent Léguillier
- Micalis Institute, INRAE, AgroParisTech, UMR 1319, Université Paris-Saclay, Jouy en Josas, France
| | | | - Carole Farre
- CNRS, Institute of Analytical Science, Université Claude-Bernard Lyon 1, 69100, Villeurbanne, France
| | - Jamila Anba-Mondoloni
- Micalis Institute, INRAE, AgroParisTech, UMR 1319, Université Paris-Saclay, Jouy en Josas, France
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, UMR 1319, Université Paris-Saclay, Jouy en Josas, France.
| | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|
5
|
Bucher T, Ruimy R, Tsesses S, Dahan R, Bartal G, Vanacore GM, Kaminer I. Free-electron Ramsey-type interferometry for enhanced amplitude and phase imaging of nearfields. SCIENCE ADVANCES 2023; 9:eadi5729. [PMID: 38134276 PMCID: PMC10745688 DOI: 10.1126/sciadv.adi5729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
The complex range of interactions between electrons and electromagnetic fields gave rise to countless scientific and technological advances. A prime example is photon-induced nearfield electron microscopy (PINEM), enabling the detection of confined electric fields in illuminated nanostructures with unprecedented spatial resolution. However, PINEM is limited by its dependence on strong fields, making it unsuitable for sensitive samples, and its inability to resolve complex phasor information. Here, we leverage the nonlinear, overconstrained nature of PINEM to present an algorithmic microscopy approach, achieving far superior nearfield imaging capabilities. Our algorithm relies on free-electron Ramsey-type interferometry to produce orders-of-magnitude improvement in sensitivity and ambiguity-immune nearfield phase reconstruction, both of which are optimal when the electron exhibits a fully quantum behavior. Our results demonstrate the potential of combining algorithmic approaches with state-of-the-art modalities in electron microscopy and may lead to various applications from imaging sensitive biological samples to performing full-field tomography of confined light.
Collapse
Affiliation(s)
- Tomer Bucher
- Andrew and Erna Viterbi Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ron Ruimy
- Andrew and Erna Viterbi Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Shai Tsesses
- Andrew and Erna Viterbi Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raphael Dahan
- Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Guy Bartal
- Andrew and Erna Viterbi Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Giovanni Maria Vanacore
- Department of Material Science, University of Milano-Bicocca, Via Cozzi 55, 20121 Milano, Italy
| | - Ido Kaminer
- Andrew and Erna Viterbi Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
6
|
Katrivas L, Ben-Menachem A, Gupta S, Kotlyar AB. Ultrasmall ATP-Coated Gold Nanoparticles Specifically Bind to Non-Hybridized Regions in DNA. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3080. [PMID: 38132978 PMCID: PMC10745773 DOI: 10.3390/nano13243080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Here we report the synthesis of ultrasmall (2 nm in diameter) ATP-coated gold nanoparticles, ATP-NPs. ATP-NPs can be enlarged in a predictable manner by the surface-catalyzed reduction of gold ions with ascorbate, yielding uniform gold nanoparticles ranging in size from 2 to 5 nm in diameter. Using atomic force microscopy (AFM), we demonstrate that ATP-NPs can efficiently and selectively bind to a short non-hybridized 5A/5A region (composed of a 5A-nucleotide on each strand of the double helix) inserted into a circular double-stranded plasmid, Puc19. Neither small (1.4 nm in diameter) commercially available nanoparticles nor 5 nm citrate-protected ones are capable of binding to the plasmid. The unique ability to specifically target DNA regions characterized by local structural alterations of the double helix can pave the way for applications of the particles in the detection of genomic DNA regions containing mismatches and mutations that are common for cancer cells.
Collapse
Affiliation(s)
| | | | | | - Alexander B. Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and Nanotechnology Center, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel; (L.K.); (A.B.-M.); (S.G.)
| |
Collapse
|
7
|
Dong C, Ren J. Resonance Light-Scattering Correlation Spectroscopy and Its Application in Analytical Chemistry for Life Science. Acc Chem Res 2023; 56:2582-2594. [PMID: 37706459 DOI: 10.1021/acs.accounts.3c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Resonance light-scattering correlation spectroscopy (RLSCS) is a new single-particle detection method with its working principle being like fluorescence correlation spectroscopy (FCS). RLSCS is obtained by autocorrelation function analysis on the measured fluctuation of the resonance light scattering (RLS) intensity occurring within a subfemtoliter volume when a single nanoparticle (such as gold nanoparticles (NPs) or silver (SNPs)) freely diffuses through the volume. The RLSCS technique can detect such parameters as concentration, diffusion coefficient (translation and rotation), etc. Compared with the FCS technique, the correlated fluorescence intensity signal in RLSCS is replaced with the RLS signal of the nanoparticles, overcoming some limits of the fluorescent probes such as photobleaching under high-intensity or long-term illumination. In this Account, we showcase RLSCS methods, theoretical models at different optical configurations, and some key applications. First, the RLSCS optical detection system was constructed based on the confocal optics, its theoretical model was proposed, and the diffusion behaviors of the nanoparticles in the solution were studied including the rotational and translational diffusion. And, methods were developed to measure the concentration, size, aspect ratio, and size distribution of the NPs. Second, based on the RLSCS methods, some detection strategies were developed for homogeneous DNA detection, immunoassay, apoptosis assay, self-thermophoresis of the nanomotor, and quantitative assay in single living cells. Meanwhile, a new fluorescence/scattering cross-correlation spectroscopy (FSCCS) method was proposed for monitoring the molecule-particle interaction. This method enriched the conventional fluorescence/fluorescence cross-correlation spectroscopy (FCCS) method. Third, using the EMCCD with high sensitivity and rapid response as an optical detector, two temporospatially resolved scattering correlation spectroscopy methods and their theoretical models were developed: total internal reflection (TIR) configuration-based spatially resolved scattering correlation spectroscopy (SRSCS) and dark-field illumination-based scattering correlation spectroscopy (DFSCS). These methods extended single-spot confocal RLSCS to imaging RLSCS, which makes RLSCS have the ability for multiple channel detection with temporospatial resolution. The method was successfully used for investigating the dynamic behaviors of gold NPs in live cells and obtained its temporospatial concentration distribution and diffusion behaviors. The final section of this Account outlines future directions in the development of RLSCS.
Collapse
Affiliation(s)
- Chaoqing Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
8
|
Mehrabi MR, Soltani M, Chiani M, Raahemifar K, Farhangi A. Nanomedicine: New Frontiers in Fighting Microbial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:483. [PMID: 36770443 PMCID: PMC9920255 DOI: 10.3390/nano13030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microbes have dominated life on Earth for the past two billion years, despite facing a variety of obstacles. In the 20th century, antibiotics and immunizations brought about these changes. Since then, microorganisms have acquired resistance, and various infectious diseases have been able to avoid being treated with traditionally developed vaccines. Antibiotic resistance and pathogenicity have surpassed antibiotic discovery in terms of importance over the course of the past few decades. These shifts have resulted in tremendous economic and health repercussions across the board for all socioeconomic levels; thus, we require ground-breaking innovations to effectively manage microbial infections and to provide long-term solutions. The pharmaceutical and biotechnology sectors have been radically altered as a result of nanomedicine, and this trend is now spreading to the antibacterial research community. Here, we examine the role that nanomedicine plays in the prevention of microbial infections, including topics such as diagnosis, antimicrobial therapy, pharmaceutical administration, and immunizations, as well as the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Mohammad Reza Mehrabi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Ali Farhangi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| |
Collapse
|
9
|
Benelmekki M, Kim JH. Stimulus-Responsive Ultrathin Films for Bioapplications: A Concise Review. Molecules 2023; 28:molecules28031020. [PMID: 36770701 PMCID: PMC9921802 DOI: 10.3390/molecules28031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The term "nanosheets" has been coined recently to describe supported and free-standing "ultrathin film" materials, with thicknesses ranging from a single atomic layer to a few tens of nanometers. Owing to their physicochemical properties and their large surface area with abundant accessible active sites, nanosheets (NSHs) of inorganic materials such as Au, amorphous carbon, graphene, and boron nitride (BN) are considered ideal building blocks or scaffolds for a wide range of applications encompassing electronic and optical devices, membranes, drug delivery systems, and multimodal contrast agents, among others. A wide variety of synthetic methods are employed for the manufacturing of these NSHs, and they can be categorized into (1) top-down approaches involving exfoliation of layered materials, or (2) bottom-up approaches where crystal growth of nanocomposites takes place in a liquid or gas phase. Of note, polymer template liquid exfoliation (PTLE) methods are the most suitable as they lead to the fabrication of high-performance and stable hybrid NSHs and NSH composites with the appropriate quality, solubility, and properties. Moreover, PTLE methods allow for the production of stimulus-responsive NSHs, whose response is commonly driven by a favorable growth in the appropriate polymer chains onto one side of the NSHs, resulting in the ability of the NSHs to roll up to form nanoscrolls (NSCs), i.e., open tubular structures with tunable interlayer gaps between their walls. On the other hand, this review gives insight into the potential of the stimulus-responsive nanostructures for biosensing and controlled drug release systems, illustrating the last advances in the PTLE methods of synthesis of these nanostructures and their applications.
Collapse
Affiliation(s)
- Maria Benelmekki
- Nanomaterials Lab, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK
- Correspondence:
| | - Jeong-Hwan Kim
- Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
10
|
Akiyama Y, Kimura K, Komatsu S, Takarada T, Maeda M, Kikuchi A. A Simple Colorimetric Assay of Bleomycin-Mediated DNA Cleavage Utilizing Double-Stranded DNA-Modified Gold Nanoparticles. Chembiochem 2023; 24:e202200451. [PMID: 36156837 PMCID: PMC10092608 DOI: 10.1002/cbic.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Indexed: 01/05/2023]
Abstract
A colorimetric assay of DNA cleavage by bleomycin (BLM) derivatives was developed utilizing high colloidal stability on double-stranded (ds) DNA-modified gold nanoparticles (dsDNA-AuNPs) possessing a cleavage site. The assay was performed using dsDNA-AuNPs treated with inactive BLM or activated BLM (Fe(II)⋅BLM). A 10-min exposure in dsDNA-AuNPs with inactive BLM treatment resulted in a rapid color change from red to purple because of salt-induced non-crosslinking aggregation of dsDNA-AuNPs. In contrast, the addition of active Fe(II)⋅BLM retained the red color, probably because of the formation of protruding structures at the outermost phase of dsDNA-AuNPs caused by BLM-mediated DNA cleavage. Furthermore, the results of our model experiments indicate that oxidative base release and DNA-cleavage pathways could be visually distinguished with color change. The present methodology was also applicable to model screening assays using several drugs with different mechanisms related to antitumor activity. These results strongly suggest that this assay with a rapid color change could lead to simple and efficient screening of potent antitumor agents.
Collapse
Affiliation(s)
- Yoshitsugu Akiyama
- Katsushika Division, Institute of Arts and Sciences, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan.,Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan
| | - Kazunori Kimura
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan
| | - Syuuhei Komatsu
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan
| | - Tohru Takarada
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, 351-0198, Wako, Saitama, Japan
| | - Mizuo Maeda
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, 351-0198, Wako, Saitama, Japan
| | - Akihiko Kikuchi
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan
| |
Collapse
|
11
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
12
|
Xiong Y, Hu H, Zhang T, Xu Y, Gao F, Chen W, Zheng G, Zhang S, Xu H. Quantitative and sensitive detection of alpha fetoprotein in serum by a plasmonic sensor. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4821-4829. [PMID: 39634743 PMCID: PMC11501717 DOI: 10.1515/nanoph-2022-0428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/13/2022] [Indexed: 12/07/2024]
Abstract
Quantitative molecular detection based on surface-enhanced Raman spectroscopy (SERS) is still a great challenge because of the highly nonuniform distribution of the SERS hot spots and the nondeterministic spatial and spectral overlap of the analyte with the hot spot. Here, we report a nanoparticle-on-mirror plasmonic sensor excited by surface plasmon polaritons for quantitative SERS detection of alpha fetoprotein in serum with ultrahigh sensitivity. The uniform gaps between the nanoparticles and gold film and the alignment of the gap modes relative to the excitation electric field endow this substrate with a uniform and strong SERS enhancement. The limit of detection reaches 1.45 fM, 697 times higher than that under normal excitation and 7800 times higher than a commercial enzyme-linked immunosorbent assay kit. This approach offers a potential solution to overcome the bottleneck in the field of SERS-based biosensing.
Collapse
Affiliation(s)
- Yang Xiong
- The Institute for Advanced Studies, Wuhan University, Wuhan430072, China
| | - Huatian Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan430072, China
| | - Tianzhu Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan430072, China
| | - Yuhao Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan430072, China
| | - Fei Gao
- Physics Teaching and Research Section, Zunyi Medical Univrsity, Zunyi563003, China
| | - Wen Chen
- Laboratory of Quantum and Nano-Optics, Ecole Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
| | - Guangchao Zheng
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou450052, China
| | - Shunping Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan430072, China
- Wuhan Institute of Quantum Technology, Wuhan430206, China
| | - Hongxing Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan430072, China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan430072, China
- Wuhan Institute of Quantum Technology, Wuhan430206, China
- School of Microelectronics, Wuhan University, Wuhan430072, China
| |
Collapse
|
13
|
Zhang J, Song C, Wang L. DNA-mediated dynamic plasmonic nanostructures: assembly, actuation, optical properties, and biological applications. Phys Chem Chem Phys 2022; 24:23959-23979. [PMID: 36168789 DOI: 10.1039/d2cp02100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in DNA technology have made it possible to combine with the plasmonics to fabricate reconfigurable dynamic nanodevices with extraordinary property and function. These DNA-mediated plasmonic nanostructures have been investigated for a variety of unique and beneficial physicochemical properties and their dynamic behavior has been controlled by endogenous or exogenous stimuli for a variety of interesting biological applications. In this perspective, the recent efforts to use the DNA nanostructures as molecular linkers for fabricating dynamic plasmonic nanostructures are reviewed. Next, the actuation media for triggering the dynamic behavior of plasmonic nanostructures and the dynamic response in optical features are summarized. Finally, the applications, remaining challenges and perspectives of the DNA-mediated dynamic plasmonic nanostructures are discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Chunyuan Song
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Lianhui Wang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
14
|
Li C, Zhu H, Guo Y, Ye S, Wang T, Fu Y, Zhang X. Hydrogen-Induced Aggregation of Au@Pd Nanoparticles for Eye-Readable Plasmonic Hydrogen Sensors. ACS Sens 2022; 7:2778-2787. [PMID: 36073785 DOI: 10.1021/acssensors.2c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmonic materials provide a promising platform for optical hydrogen detection, but their sensitivities remain limited. Herein, a new type of eye-readable H2 sensor based on Au@Pd core-shell nanoparticle arrays (NAs) is reported. After exposed to 2% H2, Au@Pd (16/2) NAs demonstrate a dramatic decrease in the optical extinction intensity, along with an obvious color change from turquoise to gray. Experimental results and theoretical calculations prove that the huge optical change resulted from the H2-induced aggregation of Au@Pd nanoparticles (NPs), which remarkably alters the plasmon coupling effect between NPs. Moreover, we optimize the sensing behavior from two aspects. The first is selecting appropriate substrates (either rigid glass substrate or flexible polyethylene terephthalate substrate) to offer moderate adhesion force to NAs, ensuring an efficient aggregation of Au@Pd NPs upon H2 exposure. The second is adjusting the Pd shell thickness to control the extent of NP aggregation and thus the detection range of the as-prepared sensors. This work highlights the advantage of designing eye-readable plasmonic H2 sensors from the aspect of tuning the interparticle plasmonic coupling in NP assemblies. Au@Pd NAs presented here have several advantages in terms of simple fabrication method, eye-readability in air background at room temperature, tunable detection range, and high cost-effectiveness.
Collapse
Affiliation(s)
- Chao Li
- College of Sciences, Northeastern University, Shenyang 110189, People's Republic of China
| | - Huili Zhu
- College of Sciences, Northeastern University, Shenyang 110189, People's Republic of China
| | - Yu Guo
- College of Sciences, Northeastern University, Shenyang 110189, People's Republic of China
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Tieqiang Wang
- College of Sciences, Northeastern University, Shenyang 110189, People's Republic of China
| | - Yu Fu
- College of Sciences, Northeastern University, Shenyang 110189, People's Republic of China
| | - Xuemin Zhang
- College of Sciences, Northeastern University, Shenyang 110189, People's Republic of China
| |
Collapse
|
15
|
Tanabe S, Itagaki S, Matsui K, Nishii S, Yamamoto Y, Sadanaga Y, Shiigi H. Simultaneous Optical Detection of Multiple Bacterial Species Using Nanometer-Scaled Metal-Organic Hybrids. Anal Chem 2022; 94:10984-10990. [PMID: 35877190 DOI: 10.1021/acs.analchem.2c01188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper describes a simple strategy to identify bacteria using the optical properties of the nanohybrid structures (NHs) of polymer-coated metal nanoparticles (NPs). NHs, in which many small NPs are encapsulated in polyaniline particles, are useful optical labels because they produce strong scattered light. The light-scattering characteristics of NHs are strongly dependent on the constituent metal elements of NPs. Gold NHs (AuNHs), silver NHs (AgNHs), and copper NHs (CuNHs) produce white, reddish, and bluish scattered light, respectively. Moreover, unlike NPs, the color of the scattered light does not change even when NHs are aggregated. Introducing an antibody into NHs induces antigen-specific binding to cells, enabling the identification of bacteria based on light scattering. Multiple bacterial species adsorbed on the slide can be identified within a single field of view under a dark field microscope based on the color of the scattered light. Therefore, it is a useful development for safety risk assessments at manufacturing sites, such as those for foods, beverages, and drugs, and environmental surveys that require rapid detection of multiple bacteria.
Collapse
Affiliation(s)
- So Tanabe
- Department of Applied Chemistry, Osaka Prefecture University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Satohiro Itagaki
- Department of Applied Chemistry, Osaka Prefecture University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Kyohei Matsui
- Department of Applied Chemistry, Osaka Prefecture University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Shigeki Nishii
- Department of Applied Chemistry, Osaka Prefecture University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Yojiro Yamamoto
- Department of Applied Chemistry, Osaka Prefecture University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Yasuhiro Sadanaga
- Department of Applied Chemistry, Osaka Prefecture University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan.,Osaka International Research Centre for Infectious Diseases, Osaka Prefecture University, 1-58 Rinku-Oraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
16
|
Xu Y, Xiao G, Chen B, He M, Hu B. Single Particle Inductively Coupled Plasma Mass Spectrometry-Based Homogeneous Detection of HBV DNA with Rolling Circle Amplification-Induced Gold Nanoparticle Agglomeration. Anal Chem 2022; 94:10011-10018. [PMID: 35786853 DOI: 10.1021/acs.analchem.2c00272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly sensitive and simple method based on rolling circle amplification (RCA) and single particle inductively coupled plasma mass spectrometry (spICP-MS) was proposed for the homogeneous detection of hepatitis B virus (HBV) deoxyribonucleic acid (DNA). In the presence of target DNA, long ssDNA possessing a large number of repeating sequence units was generated by RCA. DNA-labeled AuNP probes assembled into long chains based on complementary base pairing, further aggregating into large particles. Small Au NPs hardly produced pulse signals in spICP-MS; obvious pulse signals appeared in spICP-MS after the agglomeration of Au NPs caused by the addition of RCA products and spermidine. On the basis of this, the homogeneous detection of target DNA was realized by spICP-MS with high sensitivity. Under optimal conditions, the proposed method exhibited a good linear relationship between the frequency of the pulse signal of Au in spICP-MS and the concentration of target HBV DNA in the range of 10-2000 fmol L-1 (R = 0.997), the limit of detection was 5.1 fmol L-1, and the relative standard deviation was 3.7-6.8%. Recoveries of 94.2-108% were obtained for target DNA in spiked serum samples, demonstrating a good matrix tolerance ability for the method.
Collapse
Affiliation(s)
- Yan Xu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Guangyang Xiao
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Taguchi T, Ishikawa M, Ichikawa M, Tadenuma T, Hirakawa Y, Yoshino T, Maeda Y, Takeuchi H, Nojima D, Tanaami T, Matsunaga T, Tanaka T. Amplification-free detection of bacterial genes using a signaling probe-based DNA microarray. Biosens Bioelectron 2021; 194:113659. [PMID: 34571443 DOI: 10.1016/j.bios.2021.113659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/31/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
Abstract
In this study, we developed a novel DNA microarray system that does not require fluorophore-labeling, amplification, or washing of the target nucleic acid fragments. Two types of DNA probes (so-called "signaling probes") labeled with a fluorescence dye (Cy3) and quencher molecule (BHQ2) were spotted on the DNA microarray such that fluorescent signals of Cy3 could be quenched by BHQ2 due to duplex formation between the probes. The addition of the target DNA or RNA fragments disrupted the duplex formed by the probes, resulting in the generation of fluorescence signals. We examined the assay conditions of the signaling probe-based DNA microarray, including the design of the probes, hybridization temperatures, and methods for fragmentation of target molecules. Since this approach does not require time-consuming processes, including labeling, amplification, and washing, the assay achieved specific detection of 16S rDNA and 16S rRNA extracted from Escherichia coli within 60 min, which was significantly rapid compared to conventional PCR-dependent DNA microarrays.
Collapse
Affiliation(s)
- Tomoyuki Taguchi
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Machi Ishikawa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Momoko Ichikawa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Takashi Tadenuma
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Yuko Hirakawa
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan; Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hiyori Takeuchi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Daisuke Nojima
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Takeo Tanaami
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
19
|
Milewska S, Niemirowicz-Laskowska K, Siemiaszko G, Nowicki P, Wilczewska AZ, Car H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int J Nanomedicine 2021; 16:6593-6644. [PMID: 34611400 PMCID: PMC8487283 DOI: 10.2147/ijn.s323831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotherapy is a part of nanomedicine that involves nanoparticles as carriers to deliver drugs to target locations. This novel targeting approach has been found to resolve various problems, especially those associated with cancer treatment. In nanotherapy, the carrier plays a crucial role in handling many of the existing challenges, including drug protection before early-stage degradations of active substances, allowing them to reach targeted cells and overcome cell resistance mechanisms. The present review comprises the following sections: the first part presents the introduction of pharmacoeconomics as a branch of healthcare economics, the second part covers various beneficial aspects of the use of nanocarriers for in vitro, in vivo, and pre- and clinical studies, as well as discussion on drug resistance problem and present solutions to overcome it. In the third part, progress in drug manufacturing and optimization of the process of nanoparticle synthesis were discussed. Finally, pharmacokinetic and toxicological properties of nanoformulations due to up-to-date studies were summarized. In this review, the most recent developments in the field of nanotechnology's economic impact, particularly beneficial applications in medicine were presented. Primarily focus on cancer treatment, but also discussion on other fields of application, which are strongly associated with cancer epidemiology and treatment, was made. In addition, the current limitations of nanomedicine and its huge potential to improve and develop the health care system were presented.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | | | - Piotr Nowicki
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| |
Collapse
|
20
|
Abdou Mohamed MA, Kozlowski HN, Kim J, Zagorovsky K, Kantor M, Feld JJ, Mubareka S, Mazzulli T, Chan WCW. Diagnosing Antibiotic Resistance Using Nucleic Acid Enzymes and Gold Nanoparticles. ACS NANO 2021; 15:9379-9390. [PMID: 33970612 DOI: 10.1021/acsnano.0c09902] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid and accurate detection of antimicrobial resistance is critical to limiting the spread of infections and delivering effective treatments. Here, we developed a rapid, sensitive, and simple colorimetric nanodiagnostic platform to identify disease-causing pathogens and their associated antibiotic resistance genes within 2 h. The platform can detect bacteria from different biological samples (i.e., blood, wound swabs) with or without culturing. We validated the multicomponent nucleic acid enzyme-gold nanoparticle (MNAzyme-GNP) platform by screening patients with central line associated bloodstream infections and achieved a clinical sensitivity and specificity of 86% and 100%, respectively. We detected antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) in patient swabs with 90% clinical sensitivity and 95% clinical specificity. Finally, we identified mecA resistance genes in uncultured nasal, groin, axilla, and wound swabs from patients with 90% clinical sensitivity and 95% clinical specificity. The simplicity and versatility for detecting bacteria and antibiotic resistance markers make our platform attractive for the broad screening of microbial pathogens.
Collapse
Affiliation(s)
- Mohamed A Abdou Mohamed
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Hannah N Kozlowski
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Jisung Kim
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Kyryl Zagorovsky
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Melinda Kantor
- Department of Microbiology, Mount Sinai Hospital and University Health Network, Toronto, Ontario M5G 1X5, Canada
| | - Jordan J Feld
- Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Samira Mubareka
- Divisions of Microbiology and Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tony Mazzulli
- Department of Microbiology, Mount Sinai Hospital and University Health Network, Toronto, Ontario M5G 1X5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering. University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
21
|
Ruang-Areerate T, Sukphattanaudomchoke C, Thita T, Leelayoova S, Piyaraj P, Mungthin M, Suwannin P, Polpanich D, Tangchaikeeree T, Jangpatarapongsa K, Choowongkomon K, Siripattanapipong S. Development of loop-mediated isothermal amplification (LAMP) assay using SYBR safe and gold-nanoparticle probe for detection of Leishmania in HIV patients. Sci Rep 2021; 11:12152. [PMID: 34108543 PMCID: PMC8190085 DOI: 10.1038/s41598-021-91540-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/26/2021] [Indexed: 12/04/2022] Open
Abstract
Asymptomatic leishmaniasis cases have continuously increased, especially among patients with HIV who are at risk to develop further symptoms of cutaneous and visceral leishmaniasis. Thus, early diagnosis using a simple, sensitive and reliable diagnostic assay is important because populations at risk mostly reside in rural communities where laboratory equipment is limited. In this study, the highly sensitive and selective determination of Leishmania infection in asymptomatic HIV patients was achieved using dual indicators (SYBR safe and gold-nanoparticle probe; AuNP-probe) in one-step LAMP method based on basic instruments. The assay can be simply evaluated under the naked eye due to clear interpretation of fluorescent emission of LAMP-SYBR safe dye-complex and colorimetric precipitate of specific AuNP-probes. The sensitivities and specificities of fluorescent SYBR safe dye and AuNP-probe indicators were equal, which were as high as 94.1 and 97.1%, respectively. Additionally, detection limits were 102 parasites/mL (0.0147 ng/µL), ten times more sensitivity than other related studies. To empower leishmaniasis surveillance, this inexpensive one-step SYBR safe and AuNP-LAMP assay is reliably fast and simple for field diagnostics to point-of-care settings, which can be set up in all levels of health care facilities including resource limited areas, especially in low to middle income countries.
Collapse
Affiliation(s)
- Toon Ruang-Areerate
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand.
| | | | - Thanyapit Thita
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Phunlerd Piyaraj
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Patcharapan Suwannin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Duangporn Polpanich
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Tienrat Tangchaikeeree
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kulachart Jangpatarapongsa
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | |
Collapse
|
22
|
Kim Y, Yang J, Hur H, Oh S, Lee HH. Highly Sensitive Colorimetric Assay of Cortisol Using Cortisol Antibody and Aptamer Sandwich Assay. BIOSENSORS-BASEL 2021; 11:bios11050163. [PMID: 34065214 PMCID: PMC8160784 DOI: 10.3390/bios11050163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
In this study, cortisol, which is a key stress hormone, could be detected sensitively via the colorimetric assay of a polycarbonate (PC) and glass substrate by the sandwich assay of cortisol monoclonal antibody (c-Mab) and cortisol specific binding aptamer (c-SBA). A highly sensitive change in colorimetry with a limit of detection (LOD) of cortisol of 100 fM could be attained on the optically transparent substrate using the antibody aptamer sandwich (AAS) assay by corresponding stacks of 5 nm gold nanoparticles (Au NPs). The Au NPs were conjugated by the c-SBA and the c-Mab was tethered on the PC and glass substrates. For the AAS method, a simple UV-Vis spectrophotometer was adopted to quantify the cortisol concentrations at an absorbance wavelength of 520 nm. Therefore, this study demonstrates the versatility of the AAS method to measure very low concentrations of cortisol in diagnostic applications.
Collapse
|
23
|
Qiao SP, Liu ZN, Li HC, He X, Pan H, Gao YZ. Construction of a CRISPR-Biolayer Interferometry Platform for Real-Time, Sensitive, and Specific DNA Detection. Chembiochem 2021; 22:1974-1984. [PMID: 33682991 DOI: 10.1002/cbic.202100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Indexed: 12/26/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) technology has been widely applied for nucleic acid detection because of its high specificity. By using the highly specific and irreversible bond between HaloTag and its alkane chlorine ligand, we modified dCas9 (deactivated CRISPR/Cas9) with biotin as a biosensor to detect nucleic acids. The CRISPR biosensor was facilely prepared to adequately maintain its DNA-recognition capability. Furthermore, by coupling biolayer interferometry (BLI) with the CRISPR biosensor, a real-time, sensitive, and rapid digital system called CRISPR-BLI was established for the detection of double-stranded DNA. The CRISPR biosensor immobilised on the biolayer could recruit the target DNA onto the biosensor surface and change its optical thickness, resulting in a shift in the interference pattern and responding signal of the BLI. The CRISPR-BLI system was further applied to detect the ALP gene of Escherichia coli DH5α combined with a polymerase chain reaction, which demonstrated a linear range from 20 to 20 000 pg and a low detection limit (1.34 pg). The CRISPR-BLI system is a promising approach for rapid and sensitive detection of target DNA analytes.
Collapse
Affiliation(s)
- Shan-Peng Qiao
- Department of Changchun Institute of Engineering Technology, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 3333 Shengbei Street, Changchun, 130052, Jilin, P. R. China
| | - Zhen-Ni Liu
- Department of Changchun Institute of Engineering Technology, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 3333 Shengbei Street, Changchun, 130052, Jilin, P. R. China
| | - Hai-Chao Li
- Department of Changchun Institute of Engineering Technology, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 3333 Shengbei Street, Changchun, 130052, Jilin, P. R. China
| | - Xin He
- Department of Jilin City Institute of Biological Products, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 1228 Songjiangnan Road, Jilin, 132013, Jilin, P. R. China
| | - Hong Pan
- Department of Changchun Institute of Engineering Technology, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 3333 Shengbei Street, Changchun, 130052, Jilin, P. R. China
| | - Yu-Zhou Gao
- Department of Changchun Institute of Engineering Technology, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 3333 Shengbei Street, Changchun, 130052, Jilin, P. R. China.,Department of Jinan Institute of Engineering Technology, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 3 Gangxing Road, Jinan, 250000, Shandong, P. R. China
| |
Collapse
|
24
|
Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Nanotools for Sepsis Diagnosis and Treatment. Adv Healthc Mater 2021; 10:e2001378. [PMID: 33236524 PMCID: PMC11469323 DOI: 10.1002/adhm.202001378] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Sepsis is one of the leading causes of death worldwide with high mortality rates and a pathological complexity hindering early and accurate diagnosis. Today, laboratory culture tests are the epitome of pathogen recognition in sepsis. However, their consistency remains an issue of controversy with false negative results often observed. Clinically used blood markers, C reactive protein (CRP) and procalcitonin (PCT) are indicators of an acute-phase response and thus lack specificity, offering limited diagnostic efficacy. In addition to poor diagnosis, inefficient drug delivery and the increasing prevalence of antibiotic-resistant microorganisms constitute significant barriers in antibiotic stewardship and impede effective therapy. These challenges have prompted the exploration for alternative strategies that pursue accurate diagnosis and effective treatment. Nanomaterials are examined for both diagnostic and therapeutic purposes in sepsis. The nanoparticle (NP)-enabled capture of sepsis causative agents and/or sepsis biomarkers in biofluids can revolutionize sepsis diagnosis. From the therapeutic point of view, currently existing nanoscale drug delivery systems have proven to be excellent allies in targeted therapy, while many other nanotherapeutic applications are envisioned. Herein, the most relevant applications of nanomedicine for the diagnosis, prognosis, and treatment of sepsis is reviewed, providing a critical assessment of their potentiality for clinical translation.
Collapse
Affiliation(s)
- Lana Papafilippou
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
| | - Andrew Claxton
- Department of Critical CareSalford Royal Foundation TrustStott LaneSalfordM6 8HDUK
| | - Paul Dark
- Manchester NIHR Biomedical Research CentreDivision of InfectionImmunity and Respiratory MedicineUniversity of ManchesterManchesterM13 9PTUK
| | - Kostas Kostarelos
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Campus UABBellaterraBarcelona08193Spain
| | - Marilena Hadjidemetriou
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
| |
Collapse
|
25
|
Abstract
As one kind of noble metal nanostructures, the plasmonic gold nanostructures possess unique optical properties as well as good biocompatibility, satisfactory stability, and multiplex functionality. These distinctive advantages make the plasmonic gold nanostructures an ideal medium in developing methods for biosensing and bioimaging. In this review, the optical properties of the plasmonic gold nanostructures were firstly introduced, and then biosensing in vitro based on localized surface plasmon resonance, Rayleigh scattering, surface-enhanced fluorescence, and Raman scattering were summarized. Subsequently, application of the plasmonic gold nanostructures for in vivo bioimaging based on scattering, photothermal, and photoacoustic techniques has been also briefly covered. At last, conclusions of the selected examples are presented and an outlook of this research topic is given.
Collapse
|
26
|
Movilli J, Choudhury SS, Schönhoff M, Huskens J. Enhancement of Probe Density in DNA Sensing by Tuning the Exponential Growth Regime of Polyelectrolyte Multilayers. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:9155-9166. [PMID: 33191977 PMCID: PMC7659331 DOI: 10.1021/acs.chemmater.0c02454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Surface-based biosensing devices benefit from a dedicated design of the probe layer present at the transducing interface. The layer architecture, its physicochemical properties, and the embedding of the receptor sites affect the probability of binding the analyte. Here, the enhancement of the probe density at the sensing interface by tuning the exponential growth regime of polyelectrolyte multilayers (PEMs) is presented. PEMs were made of poly-l-lysine (PLL), with appended clickable dibenzocyclooctyne (DBCO) groups and oligo(ethylene glycol) chains, and poly(styrene sulfonate) (PSS). The DNA probe loading and target hybridization efficiencies of the PEMs were evaluated as a function of the PLL layer number and the growth regime by a quartz crystal microbalance (QCM). An amplification factor of 25 in the target DNA detection was found for a 33-layer exponentially grown PEM compared to a monolayer. A Voigt-based model showed that DNA probe binding to the DBCO groups is more efficient in the open, exponentially grown films, while the hybridization efficiencies appeared to be high for all layer architectures. These results show the potential of such engineered gel-like structures to increase the detection of bio-relevant analytes in biosensing systems.
Collapse
Affiliation(s)
- Jacopo Movilli
- Molecular
NanoFabrication group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Salmeen Shakil Choudhury
- Molecular
NanoFabrication group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Monika Schönhoff
- Institute
of Physical Chemistry, and Center for Soft Nanoscience, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Jurriaan Huskens
- Molecular
NanoFabrication group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
27
|
Oliveira BB, Veigas B, Carlos FF, Sánchez-Melsió A, Balcázar JL, Borrego CM, Baptista PV. Water safety screening via multiplex LAMP-Au-nanoprobe integrated approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140447. [PMID: 32887010 DOI: 10.1016/j.scitotenv.2020.140447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Contaminated water resources remain a major global concern regarding public health. The majority of water safety protocols include indicators of microbial contamination to evaluate the potential risk to public health and are key elements of quality guidelines. Among these, markers for total coliforms and fecal coliforms are strong indicators of co-contamination with other pathogens. Traditional methods, recurring to slow and cumbersome culture-based approaches, have been gradually replaced by molecular methods, capable of faster and more specific screening. These are usually PCR-based methods that may allow for multiple pathogen detection but require dedicated laboratory equipment, hindering the rapid on-site assessment. Here, we used a multiplex Loop-Mediated Isothermal Amplification (mLAMP) strategy for the amplification of two markers associated with the contamination by total and fecal coliforms (e.g. Escherichia coli) - lacZ and uidA genes, respectively - thus allowing for single tube multiplex detection. The mLAMP products were then subject to an Au-nanoprobe colorimetric detection assay for precise discrimination of targets. This approach was validated in 22 water samples that were also screened for the presence of lacZ and uidA using standard and quantitative PCR, with the capability for discriminating the contamination level, e.g. a semi-quantitative evaluation of water quality.
Collapse
Affiliation(s)
- Beatriz B Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Bruno Veigas
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; i3N|CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Fábio Ferreira Carlos
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandre Sánchez-Melsió
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003 Girona, (Spain)
| | - José Luís Balcázar
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003 Girona, (Spain)
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003 Girona, (Spain); Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, M. Aurèlia Capmany 40, E-17003, Girona, (Spain)
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
28
|
Shen L, Pan V, Li H, Zhang Y, Wang P, Ke Y. Programmable assembly of gold nanoparticle nanoclusters and lattices. J Mater Chem B 2020; 8:6810-6813. [PMID: 32490482 DOI: 10.1039/d0tb00807a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Deterministic assembly of metallic nanoparticles (e.g. gold nanoparticles) into prescribed configurations has promising applications in many fields such as biosensing and drug delivery. DNA-directed bottom-up assembly has demonstrated unparalleled capability to precisely organize metallic nanoparticles into assemblies of designer configurations. However, the fabrication of assemblies comprising delicate nanoparticle arrangements, especially across large dimensions (e.g. micron size), has remained challenging. In this report, we have designed DNA origami hexagon tiles that are capable of assembling into higher-order networks of honeycomb arrays or tubes with dimensions up to several microns. The versatile addressability of the unit tile enables precise and periodic positioning of nanoparticles onto these higher-order DNA origami frame structures. Overall, we have constructed a series of 9 gold nanoparticle architectures with programmable configurations ranging from nanometer-sized clusters to micrometer-sized lattices. We believe these architectures shall hold great application potential in numerous biomedical fields.
Collapse
Affiliation(s)
- Luyao Shen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | | | | | | | | | | |
Collapse
|
29
|
Tatulli G, Pompa PP. An amplification-free colorimetric test for sensitive DNA detection based on the capturing of gold nanoparticle clusters. NANOSCALE 2020; 12:15604-15610. [PMID: 32672272 DOI: 10.1039/d0nr03517c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
PCR-free or amplification-free strategies for DNA detection provide an interesting alternative to classical molecular biology techniques, opening new possibilities for on-site diagnostics. In this framework, we present herein an amplification-free colorimetric test for DNA detection, based on the capture of multiple gold nanoparticle (AuNP) clusters onto the surface of magnetic microbeads, leading to an increase of the plasmonic signal and, thus, of the overall sensitivity. Noteworthy, the assay allows the detection of as low as 15 attomoles of target DNA by simple visual inspection. The AuNP-cluster capturing mechanism was investigated by UV-vis, SEM, TEM, and EDX analysis. In a case study of E. coli contamination, the colorimetric test achieves a performance comparable to the reference instrumental PCR technique, enabling the naked-eye detection of 7.5 × 102 CFU μL-1.
Collapse
Affiliation(s)
- Giuseppina Tatulli
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | | |
Collapse
|
30
|
Baek SH, Song HW, Lee S, Kim JE, Kim YH, Wi JS, Ok JG, Park JS, Hong S, Kwak MK, Lee HJ, Nam SW. Gold Nanoparticle-Enhanced and Roll-to-Roll Nanoimprinted LSPR Platform for Detecting Interleukin-10. Front Chem 2020; 8:285. [PMID: 32528922 PMCID: PMC7264386 DOI: 10.3389/fchem.2020.00285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
Localized surface plasmon resonance (LSPR) is a powerful platform for detecting biomolecules including proteins, nucleotides, and vesicles. Here, we report a colloidal gold (Au) nanoparticle-based assay that enhances the LSPR signal of nanoimprinted Au strips. The binding of the colloidal Au nanoparticle on the Au strip causes a red-shift of the LSPR extinction peak, enabling the detection of interleukin-10 (IL-10) cytokine. For LSPR sensor fabrication, we employed a roll-to-roll nanoimprinting process to create nanograting structures on polyethylene terephthalate (PET) film. By the angled deposition of Au on the PET film, we demonstrated a double-bent Au structure with a strong LSPR extinction peak at ~760 nm. Using the Au LSPR sensor, we developed an enzyme-linked immunosorbent assay (ELISA) protocol by forming a sandwich structure of IL-10 capture antibody/IL-10/IL-10 detection antibody. To enhance the LSPR signal, we introduced colloidal Au nanocube (AuNC) to be cross-linked with IL-10 detection antibody for immunogold assay. Using IL-10 as a model protein, we successfully achieved nanomolar sensitivity. We confirmed that the shift of the extinction peak was improved by 450% due to plasmon coupling between AuNC and Au strip. We expect that the AuNC-assisted LSPR sensor platform can be utilized as a diagnostic tool by providing convenient and fast detection of the LSPR signal.
Collapse
Affiliation(s)
- Seung Hee Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun Woo Song
- Department of Mechanical Engineering, School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea
| | - Sunwoong Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yeo Hyang Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung-Sub Wi
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, South Korea
| | - Jun Seok Park
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seonki Hong
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Moon Kyu Kwak
- Department of Mechanical Engineering, School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea
| | - Hye Jin Lee
- Department of Chemistry and Green Nano Materials Research Center, Kyungpook National University, Daegu, South Korea
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
31
|
Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Protein corona fingerprinting to differentiate sepsis from non-infectious systemic inflammation. NANOSCALE 2020; 12:10240-10253. [PMID: 32356537 DOI: 10.1039/d0nr02788j] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid and accurate diagnosis of sepsis remains clinically challenging. The lack of specific biomarkers that can differentiate sepsis from non-infectious systemic inflammatory diseases often leads to excessive antibiotic treatment. Novel diagnostic tests are urgently needed to rapidly and accurately diagnose sepsis and enable effective treatment. Despite investment in cutting-edge technologies available today, the discovery of disease-specific biomarkers in blood remains extremely difficult. The highly dynamic environment of plasma restricts access to vital diagnostic information that can be obtained by proteomic analysis. Here, we employed clinically used lipid-based nanoparticles (AmBisome®) as an enrichment platform to analyze the human plasma proteome in the setting of sepsis. We exploited the spontaneous interaction of plasma proteins with nanoparticles (NPs) once in contact, called the 'protein corona', to discover previously unknown disease-specific biomarkers for sepsis diagnosis. Plasma samples obtained from non-infectious acute systemic inflammation controls and sepsis patients were incubated ex vivo with AmBisome® liposomes, and the resultant protein coronas were thoroughly characterised and compared by mass spectrometry (MS)-based proteomics. Our results demonstrate that the proposed nanoparticle enrichment technology enabled the discovery of 67 potential biomarker proteins that could reproducibly differentiate non-infectious acute systemic inflammation from sepsis. This study provides proof-of-concept evidence that nanoscale-based 'omics' enrichment technologies have the potential to substantially improve plasma proteomics analysis and to uncover novel biomarkers in a challenging clinical setting.
Collapse
Affiliation(s)
- Lana Papafilippou
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, UK.
| | | | | | | | | |
Collapse
|
32
|
RNA Quantification Using Noble Metal Nanoprobes: Simultaneous Identification of Several Different mRNA Targets Using Color Multiplexing and Application to Chronic Myeloid Leukemia Diagnostics. Methods Mol Biol 2020. [PMID: 32152985 DOI: 10.1007/978-1-0716-0319-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nanotechnology provides new tools for gene expression analysis that allow for sensitive and specific characterization of prognostic signatures related to cancer. Cancer is a complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus allows for a more accurate indication into the degree of cancerous activity than either locus alone. Metal nanoparticles have been widely used as labels for in vitro identification and quantification of target sequences.Here we describe the synthesis of nanoparticles with different noble metal compositions in an alloy format that are then functionalized with thiol-modified ssDNA (nanoprobes). We also show how such nanoprobes are used in a non-cross-linking colorimetric method for the direct detection and quantification of specific mRNA targets, without the need for enzymatic amplification or reverse-transcription steps. The different metals in the alloy provide for distinct absorption spectra due to their characteristic plasmon resonance peaks. The color multiplexing allows for simultaneous identification of different mRNA targets involved in cancer development. A comparison of the absorption spectra of the nanoprobe mixtures taken before and after induced aggregation of metal nanoparticles allows to both identify and quantify each mRNA target. We describe the use of gold and gold-silver alloy nanoprobes for the development of the non-cross-linking method to detect a specific BCR-ABL fusion gene (e.g., e1a2 and e14a2) mRNA target associated with chronic myeloid leukemia (CML) using 10 ng/μL of unamplified total human RNA. Additionally, we demonstrate the use of this approach for the direct diagnostics of CML. This simple methodology takes less than 50 min to complete after total RNA extraction with comparable specificity and sensitivity to the more commonly used methods.
Collapse
|
33
|
Bisso S, Leroux JC. Nanopharmaceuticals: A focus on their clinical translatability. Int J Pharm 2020; 578:119098. [DOI: 10.1016/j.ijpharm.2020.119098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
|
34
|
Sato K, Hosokawa K, Maeda M. Characterizing the non-crosslinked aggregation of DNA-modified gold nanoparticles: effects of DNA length and terminal base pair. Analyst 2020; 144:5580-5588. [PMID: 31418003 DOI: 10.1039/c9an00822e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We previously reported that fully complementary DNA duplexes formed on gold nanoparticle (GNP) surfaces aggregate at high salt concentrations. We previously reported that DNA-functionalized gold nanoparticles (GNPs) aggregate by hybridization with fully complementary DNA at high salt concentrations. Although this behavior has been applied to some precise naked-eye colorimetric analyses of DNA-related molecules, the aggregation mechanism is still unclear and comprehensive studies are needed. In this paper, we reveal the key factors that influence GNP aggregation. The effects of temperature, electrolyte concentration, probe length, and particle size, which control the stabilities of double-stranded DNAs and GNPs, were investigated. Larger GNPs aggregated more easily, and GNP aggregates were easily formed with ∼15-mer-long probes, while longer probes prevented aggregation, perhaps by preventing the formation of rigid double-stranded DNA layers, compared to shorter probes. Furthermore, GNPs with purine bases at their 5' ends aggregated more easily than those with these bases at their 3' ends. This phenomenon is different from that based on the melting-temperature trend calculated using the nearest-neighbor method.
Collapse
Affiliation(s)
- Kae Sato
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo, Tokyo 112-8681, Japan.
| | | | | |
Collapse
|
35
|
Early detection of cancer: Focus on antibody coated metal and magnetic nanoparticle-based biosensors. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
36
|
|
37
|
Rubira RJG, Camacho SA, Martin CS, Mejía-Salazar JR, Reyes Gómez F, da Silva RR, de Oliveira Junior ON, Alessio P, Constantino CJL. Designing Silver Nanoparticles for Detecting Levodopa (3,4-Dihydroxyphenylalanine, L-Dopa) Using Surface-Enhanced Raman Scattering (SERS). SENSORS (BASEL, SWITZERLAND) 2019; 20:E15. [PMID: 31861443 PMCID: PMC6982777 DOI: 10.3390/s20010015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023]
Abstract
Detection of the drug Levodopa (3,4-dihydroxyphenylalanine, L-Dopa) is essential for the medical treatment of several neural disorders, including Parkinson's disease. In this paper, we employed surface-enhanced Raman scattering (SERS) with three shapes of silver nanoparticles (nanostars, AgNS; nanospheres, AgNP; and nanoplates, AgNPL) to detect L-Dopa in the nanoparticle dispersions. The sensitivity of the L-Dopa SERS signal depended on both nanoparticle shape and L-Dopa concentration. The adsorption mechanisms of L-Dopa on the nanoparticles inferred from a detailed analysis of the Raman spectra allowed us to determine the chemical groups involved. For instance, at concentrations below/equivalent to the limit found in human plasma (between 10-7-10-8 mol/L), L-Dopa adsorbs on AgNP through its ring, while at 10-5-10-6 mol/L adsorption is driven by the amino group. At even higher concentrations, above 10-4 mol/L, L-Dopa polymerization predominates. Therefore, our results show that adsorption depends on both the type of Ag nanoparticles (shape and chemical groups surrounding the Ag surface) and the L-Dopa concentration. The overall strategy based on SERS is a step forward to the design of nanostructures to detect analytes of clinical interest with high specificity and at varied concentration ranges.
Collapse
Affiliation(s)
- Rafael Jesus Gonçalves Rubira
- School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900 SP, Brazil; (C.S.M.); (P.A.); (C.J.L.C.)
| | - Sabrina Alessio Camacho
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis 19806-900 SP, Brazil;
| | - Cibely Silva Martin
- School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900 SP, Brazil; (C.S.M.); (P.A.); (C.J.L.C.)
| | | | - Faustino Reyes Gómez
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, São Carlos 13560-970 SP, Brazil; (F.R.G.); (R.R.d.S.)
| | - Robson Rosa da Silva
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, São Carlos 13560-970 SP, Brazil; (F.R.G.); (R.R.d.S.)
| | | | - Priscila Alessio
- School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900 SP, Brazil; (C.S.M.); (P.A.); (C.J.L.C.)
| | - Carlos José Leopoldo Constantino
- School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900 SP, Brazil; (C.S.M.); (P.A.); (C.J.L.C.)
| |
Collapse
|
38
|
Li S, Li K, Li X, Chen Z. Colorimetric Electronic Tongue for Rapid Discrimination of Antioxidants Based on the Oxidation Etching of Nanotriangular Silver by Metal Ions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37371-37378. [PMID: 31538470 DOI: 10.1021/acsami.9b14522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a simple, rapid, and effe/ctive colorimetric sensor array (or colorimetric electronic tongue) for discrimination of antioxidants, which is based on the oxidation etching of triangular silver nanoparticles (TriAgNPs) by three metal ions (Se2+, Sn4+, and Ni2+) as array's recognition elements and the inhibition of TriAgNP etching by antioxidants. Since highly reactive edges/tips of TriAgNPs are easier to be etched than other regions, the morphology of TriAgNPs undergoes a transition from nanoprism to nanodisk, accompanied by a color change from blue to yellow. The addition of diverse antioxidants inhibits TriAgNP etching in varying degrees, forming different etching morphologies with rainbowlike color. Surface plasmon resonance peak shift (Δλ) values of final TriAgNPs were captured as colorimetric signal outputs for further data processes. Linear discriminant analysis, hierarchical clustering analysis, heat map, etc. were adopted in the further data analysis process, showing the excellent discrimination ability of the sensor array for six antioxidants at 1 nM level. Moreover, selectivity experiments and practical application tests show that our sensor array had considerable selectivity and great potential in real samples.
Collapse
Affiliation(s)
- Siqun Li
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Kai Li
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Xin Li
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Zhengbo Chen
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| |
Collapse
|
39
|
Hwu S, Blickenstorfer Y, Tiefenauer RF, Gonnelli C, Schmidheini L, Lüchtefeld I, Hoogenberg BJ, Gisiger AB, Vörös J. Dark-Field Microwells toward High-Throughput Direct miRNA Sensing with Gold Nanoparticles. ACS Sens 2019; 4:1950-1956. [PMID: 31310098 DOI: 10.1021/acssensors.9b00946] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNA (miRNA) is a class of short RNA that is emerging as an ideal biomarker, as its expression level has been found to correlate with different types of diseases including diabetes and cancer. The detection of miRNA is highly beneficial for early diagnostics and disease monitoring. However, miRNA sensing remains difficult because of its small size and low expression levels. Common techniques such as quantitative real-time polymerase chain reaction (qRT-PCR), in situ hybridization and Northern blotting have been developed to quantify miRNA in a given sample. Nevertheless, these methods face common challenges in point-of-care practice as they either require complicated sample handling and expensive equipment, or suffer from low sensitivity. Here we present a new tool based on dark-field microwells to overcome these challenges in miRNA sensing. This miniaturized device enables the readout of a gold nanoparticle assay without the need of a dark-field microscope. We demonstrate the feasibility of the dark-field microwells to detect miRNA in both buffer solution and cell lysate. The dark-field microwells allow affordable miRNA sensing at a high throughput which make them a promising tool for point-of-care diagnostics.
Collapse
Affiliation(s)
- Stephanie Hwu
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Yves Blickenstorfer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Raphael F. Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Claudio Gonnelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Lukas Schmidheini
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Ines Lüchtefeld
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Bas-Jan Hoogenberg
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Andrea B. Gisiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
40
|
Mohammed AS, Nagarjuna R, Khaja MN, Ganesan R, Ray Dutta J. Effects of free patchy ends in ssDNA and dsDNA on gold nanoparticles in a colorimetric gene sensor for Hepatitis C virus RNA. Mikrochim Acta 2019; 186:566. [DOI: 10.1007/s00604-019-3685-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/07/2019] [Indexed: 12/21/2022]
|
41
|
Lei Z, Ju Y, Lin Y, Bai X, Hu W, Wang Y, Luo H, Tong Z. Reactive Oxygen Species Synergistic pH/H2O2-Responsive Poly(l-lactic acid)-block-poly(sodium 4-styrenesulfonate)/Citrate-Fe(III)@ZIF-8 Hybrid Nanocomposites for Controlled Drug Release. ACS APPLIED BIO MATERIALS 2019; 2:3648-3658. [DOI: 10.1021/acsabm.9b00497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Dharanivasan G, Jesse DM, Rajamuthuramalingam T, Rajendran G, Shanthi S, Kathiravan K. Scanometric Detection of Tomato Leaf Curl New Delhi Viral DNA Using Mono- and Bifunctional AuNP-Conjugated Oligonucleotide Probes. ACS OMEGA 2019; 4:10094-10107. [PMID: 31460102 PMCID: PMC6648060 DOI: 10.1021/acsomega.9b00340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/15/2019] [Indexed: 05/07/2023]
Abstract
Scanometric detection of tomato leaf curl New Delhi viral DNA using AuNP-conjugated mono- and bifunctional oligo probes through direct DNA hybridization assay (DDH assay) and sandwich DNA hybridization assay (SDH assay) with silver enhancement was developed. Tomato leaf curl New Delhi virus (ToLCNDV) coat protein gene-specific thiol-modified ssoligo probes were used for the preparation of mono- and bifunctional AuNP-ssoligo probe conjugates (signal probes). ssDNA arrays were prepared using polymerase chain reaction (PCR), rolling circle amplification (RCA), genomic DNAs fragments, and phosphate-modified positive control/capture probes through 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/1-methylimidazole conjugation on the amine-modified glass slide (GS) surface. In the DDH assay, signal probes were directly hybridized with ssDNA array of positive control and ToLCNDV DNA samples and the detection signals were amplified by silver enhancement. Dark black/gray colors were developed on the GS by the result of Ag enhancement, which can be visualized and discriminated by the naked eye. The images were captured using a simple flatbed scanner, and the determined amounts of signal probes were hybridized with their target DNA. Similarly, the SDH assay also performed through two rounds of hybridization between capture probes and target DNA; target DNA and signal probes followed by silver enhancement. The detection signals were found higher in the PCR sample than the RCA and genomic DNA samples because of the presence of increased copy numbers of complementary DNAs in PCR samples. Further, bifunctional AuNP-ssoligo probe shows higher intensity of detection signal than monofunctional probes because it can be hybridized with both strands of dsDNA targets. Moreover, the DDH-based scanometric method showed higher detection sensitivity than the SDH assay-based scanometric method. Overall, bifunctional signal probes showed more detection sensitivity than monofunctional probes in scanometric methods based on both DDH and SDH assays. The limit of detection of this developed scanometric method was optimized (100 zM to 100 pM concentration). Further, DDH assay-based scanometric method shows significant advantages over the SDH assay method, such as cost-effectiveness, because it requires only single probes (signal probes), less time-consuming by the need of only single-step hybridization, and higher detection sensitivity (up to zM). To the best of our knowledge, this is the first attempt made to develop a scanometric-based nanoassay method for the detection of plant viral DNA. This approach will be a remarkable milestone for the application of nanotechnology in the development of nanobiosensor for plant pathogen detection.
Collapse
Affiliation(s)
- Gunasekaran Dharanivasan
- Department
of Biotechnology and Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil
Nadu, India
| | - Denison Michael
Immanuel Jesse
- Department
of Biotechnology and Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil
Nadu, India
| | - Thangavelu Rajamuthuramalingam
- Department
of Biotechnology and Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil
Nadu, India
| | - Ganapathy Rajendran
- Department
of Biotechnology and Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil
Nadu, India
| | - Sathappan Shanthi
- Department
of Biotechnology and Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil
Nadu, India
| | - Krishnan Kathiravan
- Department
of Biotechnology and Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil
Nadu, India
| |
Collapse
|
43
|
Hajian R, Balderston S, Tran T, deBoer T, Etienne J, Sandhu M, Wauford NA, Chung JY, Nokes J, Athaiya M, Paredes J, Peytavi R, Goldsmith B, Murthy N, Conboy IM, Aran K. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 2019; 3:427-437. [PMID: 31097816 PMCID: PMC6556128 DOI: 10.1038/s41551-019-0371-x] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 02/19/2019] [Indexed: 12/25/2022]
Abstract
Most methods for the detection of nucleic acids require many reagents and expensive and bulky instrumentation. Here, we report the development and testing of a graphene-based field-effect transistor that uses clustered regularly interspaced short palindromic repeats (CRISPR) technology to enable the digital detection of a target sequence within intact genomic material. Termed CRISPR-Chip, the biosensor uses the gene-targeting capacity of catalytically deactivated CRISPR-associated protein 9 (Cas9) complexed with a specific single-guide RNA and immobilized on the transistor to yield a label-free nucleic-acid-testing device whose output signal can be measured with a simple handheld reader. We used CRISPR-Chip to analyse DNA samples collected from HEK293T cell lines expressing blue fluorescent protein, and clinical samples of DNA with two distinct mutations at exons commonly deleted in individuals with Duchenne muscular dystrophy. In the presence of genomic DNA containing the target gene, CRISPR-Chip generates, within 15 min, with a sensitivity of 1.7 fM and without the need for amplification, a significant enhancement in output signal relative to samples lacking the target sequence. CRISPR-Chip expands the applications of CRISPR-Cas9 technology to the on-chip electrical detection of nucleic acids.
Collapse
Affiliation(s)
- Reza Hajian
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Sarah Balderston
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Thanhtra Tran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Tara deBoer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jessy Etienne
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Mandeep Sandhu
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Noreen A Wauford
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jing-Yi Chung
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Mitre Athaiya
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Jacobo Paredes
- Tecnun, School of Engineering, University of Navarra, San Sebastián, Spain
| | | | | | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Irina M Conboy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Nanosens Innovations, San Diego, CA, USA.
| |
Collapse
|
44
|
Shah KW, Zheng L. Microwave-assisted Synthesis of Hexagonal Gold Nanoparticles Reduced by Organosilane (3-Mercaptopropyl)trimethoxysilane. MATERIALS 2019; 12:ma12101680. [PMID: 31126101 PMCID: PMC6566174 DOI: 10.3390/ma12101680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022]
Abstract
A novel synthesis of hexagonal gold nanoparticles (Au NPs) via hydrolyzed organosilane (3-mercaptopropyl)trimethoxysilane (MPTMS) using an ultrafast and environmentally friendly method is presented in this study. For the first time, organosilane MPTMS is used for chemical reduction of auric acid under ultrafast microwave irradiation. To the best of our knowledge, the use of organosilane for the synthesis of Au NPs has not been reported. The entire one-step process is convenient, rapid and cost-effective, as well as eco-friendly under alcohol-free aqueous media. Different characterization methods were carried out to investigate the properties of synthesized gold nanoparticles. transmission electron microscopy and scanning electron microscopy were used to investigate the morphology of as-synthesized Au NPs, while X-ray powder diffraction was applied to obtain the crystalline nature. Nuclear magnetic resonance was used to track the hydrolysis of organosilane MPTMS, which is employed for the first time as a reducing agent for the synthesis of Au NPs. The impact from microwave irradiation time and power, as well as the catalytic property of as-synthesized Au NPs, was investigated via ultraviolet-visible spectroscopy. The as-synthesized products include gold nanohexagon and two-dimensional hexagonal gold nanoplatelets, both of which are single-crystal with (1 1 1) planes as basal surfaces. From UV-vis spectra, it is found that the facile water-based fabrication of hexagonal Au NPs began within seconds of microwave irradiation and the size growth increased with the microwave power and time. Moreover, the efficient reduction of 4-nitrophenol to 4-aminophenol in the presence of as-synthesized Au NPs was observed, exhibiting a remarkable catalytic activity. The present simple, rapid and convenient one-step microwave process possess high scalability and useful for future applications such as catalysis, medical, biological, plasmonic sensors and electronics.
Collapse
Affiliation(s)
- Kwok Wei Shah
- School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore.
| | - Long Zheng
- School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore.
| |
Collapse
|
45
|
Rani E, Mohshim SA, Ahmad MZ, Goodacre R, Alang Ahmad SA, Wong LS. Polymer Pen Lithography-Fabricated DNA Arrays for Highly Sensitive and Selective Detection of Unamplified Ganoderma Boninense DNA. Polymers (Basel) 2019; 11:polym11030561. [PMID: 30960545 PMCID: PMC6474127 DOI: 10.3390/polym11030561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/18/2023] Open
Abstract
There is an increasing demand for lithography methods to enable the fabrication of diagnostic devices for the biomedical and agri-food sectors. In this regard, scanning probe lithography methods have emerged as a possible approach for this purpose, as they are not only convenient, robust and accessible, but also enable the deposition of “soft” materials such as complex organic molecules and biomolecules. In this report, the use of polymer pen lithography for the fabrication of DNA oligonucleotide arrays is described, together with the application of the arrays for the sensitive and selective detection of Ganoderma boninense, a fungal pathogen of the oil palm. When used in a sandwich assay format with DNA-conjugated gold nanoparticles, this system is able to generate a visually observable result in the presence of the target DNA. This assay is able to detect as little as 30 ng of Ganoderma-derived DNA without any pre-amplification and without the need for specialist laboratory equipment or training.
Collapse
Affiliation(s)
- Ekta Rani
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Siti Akhtar Mohshim
- Department of Chemistry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang 43400, Selangor, Malaysia.
| | - Muhammad Zamharir Ahmad
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang 43400, Selangor, Malaysia.
| | - Royston Goodacre
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Shahrul Ainliah Alang Ahmad
- Department of Chemistry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Lu Shin Wong
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
46
|
Chen XY, Ha W, Shi YP. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles. Talanta 2019; 194:475-484. [DOI: 10.1016/j.talanta.2018.10.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/16/2018] [Accepted: 10/21/2018] [Indexed: 01/07/2023]
|
47
|
Cheng S, Shen B, Yuan W, Zhou X, Liu Q, Kong M, Shi Y, Yang P, Feng W, Li F. Time-Gated Ratiometric Detection with the Same Working Wavelength To Minimize the Interferences from Photon Attenuation for Accurate in Vivo Detection. ACS CENTRAL SCIENCE 2019; 5:299-307. [PMID: 30834318 PMCID: PMC6396381 DOI: 10.1021/acscentsci.8b00763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 05/07/2023]
Abstract
Luminescence imaging, exhibiting noninvasive, sensitive, rapid, and versatile properties, plays an important role in biomedical applications. It is usually unsuitable for direct biodetection, because the detected luminescence intensity can be influenced by various factors such as the luminescent substance concentration, the depth of the luminescent substance in the organism, etc. Ratiometric imaging may eliminate the interference due to the luminescent substance concentration on the working signal. However, the conventional ratiometric imaging mode has a limited capacity for in vivo signal acquisition and fidelity due to the highly variable and wavelength-dependent scattering and absorption process in biotissue. In this work, we demonstrate a general imaging mode in which two signals with the same working wavelength are used to perform ratiometric sensing ignoring the depth of the luminescent substance in the organism. Dual-channel decoding is achieved by time-gated imaging technology, in which the signals from lanthanide ions and fluorescent dyes are distinguished by their different luminescent lifetimes. The ratiometric signal is proven to be nonsensitive to the detection depth and excitation power densities; thus, we could utilize the working curve measured in vitro to determine the amount of target substance (hypochlorous acid) in vivo.
Collapse
|
48
|
Rout A, Boltaev GS, Ganeev RA, Fu Y, Maurya SK, Kim VV, Rao KS, Guo C. Nonlinear Optical Studies of Gold Nanoparticle Films. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E291. [PMID: 30791417 PMCID: PMC6409993 DOI: 10.3390/nano9020291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/03/2019] [Accepted: 02/07/2019] [Indexed: 12/01/2022]
Abstract
Gold films are widely used for different applications. We present the results of third- and high-order nonlinear optical studies of the thin films fabricated from Au nanoparticle solutions by spin-coating methods. These nanoparticles were synthesized by laser ablation of bulk gold in pure water using 200 ps, 800 nm pulses. The highest values of the nonlinear absorption coefficient (9 × 10-6 cm W-1), nonlinear refractive index (3 × 10-11 cm² W-1), and saturation intensity (1.3 × 1010 W cm-2) were achieved using 35 fs, 400 nm pulses. We also determined the relaxation time constants for transient absorption (220 fs and 1.6 ps) at 400 nm. The high-order harmonic generation was studied during propagation of 35 fs, 800 nm pulses through the plasma during the ablation of gold nanoparticle film and bulk gold. The highest harmonic cutoff (29th order) was observed in the plasma containing gold nanoparticles.
Collapse
Affiliation(s)
- Anuradha Rout
- The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | - Ganjaboy S Boltaev
- The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | - Rashid A Ganeev
- The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | - Yue Fu
- The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | - Sandeep Kumar Maurya
- The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | - Vyacheslav V Kim
- The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | - Konda Srinivasa Rao
- The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | - Chunlei Guo
- The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
49
|
Ding Y, Liu Y, Chen Y, Huang Y, Gao Y. Photochemical Vapor Generation for Colorimetric Speciation of Inorganic Selenium. Anal Chem 2019; 91:3508-3515. [PMID: 30719906 DOI: 10.1021/acs.analchem.8b05117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanoparticles (AuNPs) are widely used as optical probes in colorimetric detection, thanks to their high molar extinction coefficient. However, sample matrixes of high salinity or strong acidity/alkalinity often break the electrostatic repulsion of AuNPs suspension, or/and the surface functionality of AuNPs, causing strong and unfavorable interferences. Photochemical vapor generation (PVG) is an efficient technique for the sample matrix separation. Besides, it possesses distinct features of green reducing reagent, reduced interferences from concomitant elements, and direct speciation by the assistance of photocatalyst. Herein, we developed a photochemical vapor generation (PVG) method for the green and direct speciation analysis of inorganic selenium (i.e., Se(IV) and Se(VI)), by colorimetric or visual monitoring of unmodified AuNPs. The generated Se species from PVG were directed into the AuNPs solution for a reaction to take place, which produced a specific new absorption band at 600 nm for detection. The experimental parameters, including the concentration of organic acid, the sample flow rate, the concentration of AuNPs, and the flow rate of carries gas, were optimized in detail. Under optimized conditions, the limits of detection (LOD) for Se(IV) and Se(VI) were 0.007 and 0.006 μg mL-1 by UV-vis detection, respectively. It is worth mentioning that 0.08 μg mL-1 Se can induce an obvious color change, which can be directly observed with the naked eye. Relative standard deviations (RSDs) of 4.5% and 4.3% were obtained from seven replicate measurements of 0.15 μg mL-1 Se(IV) and Se(VI) standard solution, respectively. The developed assay has been successfully applied for the speciation of Se in a dietary supplement sample and environmental water samples including lake water, seawater, simulated water reference materials, and tap water.
Collapse
|
50
|
Gill AAS, Singh S, Thapliyal N, Karpoormath R. Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review. Mikrochim Acta 2019; 186:114. [PMID: 30648216 DOI: 10.1007/s00604-018-3186-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for a number of life-threatening complications in humans. Mutations in the genetic sequence of S. aureus due to the presence of certain genes results in resistance against β-lactamases. Thus, there is an urgent need for developing highly sensitive techniques for the early detection of MRSA to counter the rise in resistant strains. This review (142 refs.) extensively covers literature reports on nanomaterial-based optical and electrochemical sensors from the year 1983 to date, with particularly emphasis on recent advances in electrochemical sensing (such as voltammetry and impedimetric) and optical sensing (such as colorimetry and fluorometry) techniques. Among the electrochemical methods, various nanomaterials were employed for the modification of electrodes. Whereas, in optical assays, formats such as enzyme linked immunosorbent assay, lateral flow assays or in optical fiber systems are common. In addition, novel sensing platforms are reported by applying advanced nanomaterials which include gold nanoparticles, nanotitania, graphene, graphene-oxide, cadmium telluride and related quantum dots, nanocomposites, upconversion nanoparticles and bacteriophages. Finally, closing remarks and an outlook conclude the review. Graphical abstract Schematic of the diversity of nanomaterial-based methods for detection of methicillin-resistant Staphylococcus aureus (MRSA). AuNPs: gold nanoparticles; QDs: quantum dots; PVL: Panton-Valentine leukocidin; mecA gene: mec-gene complex encoding methicillin resistance.
Collapse
Affiliation(s)
- Atal A S Gill
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Sima Singh
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Neeta Thapliyal
- Department of Applied Science, Women Institute of Technology, Sudhowala, Dehradun, Uttarakhand, 248007, India
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| |
Collapse
|