1
|
Javed R, Mari M, Trosdal E, Duque T, Paddar MA, Allers L, Mudd MH, Claude-Taupin A, Akepati PR, Hendrix E, He Y, Salemi M, Phinney B, Uchiyama Y, Reggiori F, Deretic V. ATG9A facilitates the closure of mammalian autophagosomes. J Cell Biol 2025; 224:e202404047. [PMID: 39745851 PMCID: PMC11694768 DOI: 10.1083/jcb.202404047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025] Open
Abstract
Canonical autophagy captures within specialized double-membrane organelles, termed autophagosomes, an array of cytoplasmic components destined for lysosomal degradation. An autophagosome is completed when the growing phagophore undergoes ESCRT-dependent membrane closure, a prerequisite for its subsequent fusion with endolysosomal organelles and degradation of the sequestered cargo. ATG9A, a key integral membrane protein of the autophagy pathway, is best known for its role in the formation and expansion of phagophores. Here, we report a hitherto unappreciated function of mammalian ATG9A in directing autophagosome closure. ATG9A partners with IQGAP1 and key ESCRT-III component CHMP2A to facilitate this final stage in autophagosome formation. Thus, ATG9A is a central hub governing all major aspects of autophagosome membrane biogenesis, from phagophore formation to its closure, and is a unique ATG factor with progressive functionalities affecting the physiological outputs of autophagy.
Collapse
Affiliation(s)
- Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Muriel Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Einar Trosdal
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Thabata Duque
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Michal H. Mudd
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Aurore Claude-Taupin
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Prithvi Reddy Akepati
- Gastroenterology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Emily Hendrix
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Yi He
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Brett Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
2
|
Ji F, Dai E, Kang R, Klionsky DJ, Liu T, Hu Y, Tang D, Zhu K. Mammalian nucleophagy: process and function. Autophagy 2025:1-17. [PMID: 39827882 DOI: 10.1080/15548627.2025.2455158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
The nucleus is a highly specialized organelle that houses the cell's genetic material and regulates key cellular activities, including growth, metabolism, protein synthesis, and cell division. Its structure and function are tightly regulated by multiple mechanisms to ensure cellular integrity and genomic stability. Increasing evidence suggests that nucleophagy, a selective form of autophagy that targets nuclear components, plays a critical role in preserving nuclear integrity by clearing dysfunctional nuclear materials such as nuclear proteins (lamins, SIRT1, and histones), DNA-protein crosslinks, micronuclei, and chromatin fragments. Impaired nucleophagy has been implicated in aging and various pathological conditions, including cancer, neurodegeneration, autoimmune disorders, and neurological injury. In this review, we focus on nucleophagy in mammalian cells, discussing its mechanisms, regulation, and cargo selection, as well as evaluating its therapeutic potential in promoting human health and mitigating disease.Abbreviations: 5-FU: 5-fluorouracil; AMPK, AMP-activated protein kinase; ATG, autophagy related; CMA, chaperone-mediated autophagy; DRPLA: dentatorubral-pallidoluysian atrophy; ER, endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; HOPS, homotypic fusion and vacuole protein sorting; LIR: LC3-interacting region; MEFs: mouse embryonic fibroblasts; mRNA: messenger RNA; MTORC1: mechanistic target of rapamycin kinase complex 1; PCa: prostate cancer; PE: phosphatidylethanolamine; PI3K, phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; rRNA: ribosomal RNA; SCI: spinal cord injury; SCLC: small cell lung cancer; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SupraT: supraphysiological levels of testosterone; TOP1cc: TOP1 cleavage complexes.
Collapse
Affiliation(s)
- Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enyong Dai
- 2nd ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tong Liu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yu Hu
- Department of Pathology, Chian-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kun Zhu
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Onwah SS, Uzonna JE, Ghavami S. Assessment of Autophagy in Leishmania Parasites. Methods Mol Biol 2025; 2879:207-217. [PMID: 38441724 DOI: 10.1007/7651_2024_517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Leishmaniasis is a neglected tropical disease caused by numerous species of Leishmania parasites, including Leishmania major. The parasite is transmitted by several species of sandfly vectors and infects myeloid cells leading to a myriad of inflammatory responses, immune dysregulations, and disease manifestations. Every cell undergoes autophagy, a self-regulated degradative process that permits the cells to recycle damaged or worn-out organelles in order to maintain cellular health and homeostasis. Studies have shown that Leishmania modulates their host cell autophagic machinery and there are indications that the parasite-specific autophagic processes may be valuable for parasite virulence and survival. However, the role of autophagy in Leishmania is inconclusive because of the limited tools available to study the Leishmania-specific autophagic machinery. Here, we describe methods to study and definitively confirm autophagy in Leishmania major. Transmission electron microscopy (TEM) allowed us to visualize Leishmania autophagosomes, especially those containing damaged mitochondrial content, as well as dividing mitochondria with ongoing fusion/fission processes. Flow cytometry enabled us to identify the amount of acridine orange dye accumulating in the acidic vacuolar compartments in Leishmania major by detecting fluorescence in the red laser when autophagic inhibitors or enhancers were included. These methods will advance studies that aim to understand autophagic regulation in Leishmania parasites that could provide insights into developing improved therapeutic targets against leishmaniasis.
Collapse
Affiliation(s)
- Somtochukwu S Onwah
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
- Academy of Silesia, Faculty of Medicine, Katowice, Poland.
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Dragowska WH, Singh J, Wehbe M, Anantha M, Edwards K, Gorski SM, Bally MB, Leung AWY. Liposomal Formulation of Hydroxychloroquine Can Inhibit Autophagy In Vivo. Pharmaceutics 2024; 17:42. [PMID: 39861690 PMCID: PMC11768354 DOI: 10.3390/pharmaceutics17010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Preclinical studies have shown that the anti-malarial drug hydroxychloroquine (HCQ) improves the anti-cancer effects of various therapeutic agents by impairing autophagy. These findings are difficult to translate in vivo as reaching an effective HCQ concentration at the tumor site for extended times is challenging. Previously, we found that free HCQ in combination with gefitinib (Iressa®, ZD1839) significantly reduced tumor volume in immunocompromised mice bearing gefitinib-resistant JIMT-1 breast cancer xenografts. Here, we sought to evaluate whether a liposomal formulation of HCQ could effectively modulate autophagy in vivo and augment treatment outcomes in the same tumor model. Methods: We developed two liposomal formulations of HCQ: a pH-loaded formulation and a formulation based on copper complexation. The pharmacokinetics of each formulation was evaluated in CD1 mice following intravenous administration. An efficacy study was performed in immunocompromised mice bearing established JIMT-1tumors. Autophagy markers in tumor tissue harvested after four weeks of treatment were assessed by Western blot. Results: The liposomal formulations engendered ~850-fold increases in total drug exposure over time relative to the free drug. Both liposomal and free HCQ in combination with gefitinib provided comparable therapeutic benefits (p > 0.05). An analysis of JIMT-1 tumor tissue indicated that the liposomal HCQ and gefitinib combination augmented the inhibition of autophagy in vivo compared to the free HCQ and gefitinib combination as demonstrated by increased LC3-II and p62/SQSTM1 (p62) protein levels. Conclusions: The results suggest that liposomal HCQ has a greater potential to modulate autophagy in vivo compared to free HCQ; however, this did not translate to better therapeutic effects when used in combination with gefitinib to treat a gefitinib-resistant tumor model.
Collapse
Affiliation(s)
- Wieslawa H. Dragowska
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (W.H.D.); (M.A.); (M.B.B.)
| | - Jagbir Singh
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (W.H.D.); (M.A.); (M.B.B.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Mohamed Wehbe
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (W.H.D.); (M.A.); (M.B.B.)
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Malathi Anantha
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (W.H.D.); (M.A.); (M.B.B.)
| | - Katarina Edwards
- Department of Chemistry, Ångström Laboratory, Uppsala University, 751 20 Uppsala, Sweden;
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC V5A 1S6, Canada
| | - Marcel B. Bally
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (W.H.D.); (M.A.); (M.B.B.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals Inc., Vancouver, BC V6T 1Z3, Canada
| | - Ada W. Y. Leung
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (W.H.D.); (M.A.); (M.B.B.)
- Cuprous Pharmaceuticals Inc., Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
El Fissi N, Rosenberger FA, Chang K, Wilhalm A, Barton-Owen T, Hansen FM, Golder Z, Alsina D, Wedell A, Mann M, Chinnery PF, Freyer C, Wredenberg A. Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster. Nat Commun 2024; 15:10719. [PMID: 39715749 DOI: 10.1038/s41467-024-55559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain cellular homeostasis, their chronic activation can permanently affect cellular metabolism and signalling, ultimately impairing cell function. Here, we use a Drosophila melanogaster model expressing a proofreading-deficient mtDNA polymerase (POLγexo-) in a genetic screen to find genes that mitigate the harmful accumulation of mtDNA mutations. We identify critical pathways associated with nutrient sensing, insulin signalling, mitochondrial protein import, and autophagy that can rescue the lethal phenotype of the POLγexo- flies. Rescued flies, hemizygous for dilp1, atg2, tim14 or melted, normalise their autophagic flux and proteasome function and adapt their metabolism. Mutation frequencies remain high with the exception of melted-rescued flies, suggesting that melted may act early in development. Treating POLγexo- larvae with the autophagy activator rapamycin aggravates their lethal phenotype, highlighting that excessive autophagy can significantly contribute to the pathophysiology of mitochondrial diseases. Moreover, we show that the nucleation process of autophagy is a critical target for intervention.
Collapse
Affiliation(s)
- Najla El Fissi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Florian A Rosenberger
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Kai Chang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Alissa Wilhalm
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Tom Barton-Owen
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Fynn M Hansen
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Zoe Golder
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - David Alsina
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
- Faculty of Health Sciences, NNF Centre for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
6
|
Schwalm MP, Dopfer J, Kumar A, Greco FA, Bauer N, Löhr F, Heering J, Cano-Franco S, Lechner S, Hanke T, Jaser I, Morasch V, Lenz C, Fearon D, Marples PG, Tomlinson CWE, Brunello L, Saxena K, Adams NBP, von Delft F, Müller S, Stolz A, Proschak E, Kuster B, Knapp S, Rogov VV. Critical assessment of LC3/GABARAP ligands used for degrader development and ligandability of LC3/GABARAP binding pockets. Nat Commun 2024; 15:10204. [PMID: 39587067 PMCID: PMC11589570 DOI: 10.1038/s41467-024-54409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
Recent successes in developing small molecule degraders that act through the ubiquitin system have spurred efforts to extend this technology to other mechanisms, including the autophagosomal-lysosomal pathway. Therefore, reports of autophagosome tethering compounds (ATTECs) have received considerable attention from the drug development community. ATTECs are based on the recruitment of targets to LC3/GABARAP, a family of ubiquitin-like proteins that presumably bind to the autophagosome membrane and tether cargo-loaded autophagy receptors into the autophagosome. In this work, we rigorously tested the target engagement of the reported ATTECs to validate the existing LC3/GABARAP ligands. Surprisingly, we were unable to detect interaction with their designated target LC3 using a diversity of biophysical methods. Intrigued by the idea of developing ATTECs, we evaluated the ligandability of LC3/GABARAP by in silico docking and large-scale crystallographic fragment screening. Data based on approximately 1000 crystal structures revealed that most fragments bound to the HP2 but not to the HP1 pocket within the LIR docking site, suggesting a favorable ligandability of HP2. Through this study, we identified diverse validated LC3/GABARAP ligands and fragments as starting points for chemical probe and ATTEC development.
Collapse
Affiliation(s)
- Martin P Schwalm
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
- German Cancer Consortium (DKTK) / German Cancer Research Center (DKFZ), DKTK site Frankfurt-Mainz, 69120, Heidelberg, Germany
| | - Johannes Dopfer
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Adarsh Kumar
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Francesco A Greco
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Nicolas Bauer
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Frank Löhr
- Institute for Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
| | - Sara Cano-Franco
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Severin Lechner
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Thomas Hanke
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Ivana Jaser
- NanoTemper Technologies GmbH, Flößergasse 4, 81369, Munich, Germany
| | - Viktoria Morasch
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Christopher Lenz
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Peter G Marples
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Charles W E Tomlinson
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Lorene Brunello
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Krishna Saxena
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Nathan B P Adams
- NanoTemper Technologies GmbH, Flößergasse 4, 81369, Munich, Germany
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Susanne Müller
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Alexandra Stolz
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Ewgenij Proschak
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany.
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany.
- German Cancer Consortium (DKTK) / German Cancer Research Center (DKFZ), DKTK site Frankfurt-Mainz, 69120, Heidelberg, Germany.
| | - Vladimir V Rogov
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany.
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany.
| |
Collapse
|
7
|
Park J, Sim J, Yi HJ, Rhee SG, Woo HA. Cisplatin induces kidney damage through the down-regulation of Prx I by autophagic degradation. Free Radic Biol Med 2024; 225:236-246. [PMID: 39366472 DOI: 10.1016/j.freeradbiomed.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
In this study, we investigated the potential role of PrxI in cis-diamminedichloroplatinum (cisplatin)-induced renal damage in mice. The anticancer drug cisplatin is a chemotherapeutic agent that is widely used to treat solid tumors. Cisplatin-induced nephrotoxicity is a serious dose-limiting side effect, primarily caused by oxidative stress. The oxidative stress further damages DNA, membranes, and mitochondria, and increases endoplasmic reticulum (ER) stress. Cisplatin produces reactive oxygen species (ROS) through Cytochrome P450 2E1 (CYP2E1) and localizes to the surface of the ER, where CYP2E1 is located. Among the six Prx isoforms, Prx I was selectively degraded in cisplatin-treated kidneys during severe renal function damage. Prx I degradation is blocked in mouse proximal tubular cells treated with 3-methyladenine, an autophagy inhibitor, and in MEF lacking ATG7. Moreover, increased ROS levels on the ER surface due to CYP2E1 overexpression further accelerated Prx I degradation. These results suggest that Prx I degradation is largely mediated through autophagy, which is promoted by cisplatin-induced ER stress. Ablation of Prx I exacerbated cisplatin-induced nephrotoxicity and significantly increased the abundance of oxidative stress, ER stress, and inflammatory markers in the kidney, indicating that Prx I plays a protective role against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea; Fluorescence Core Imaging Center, Department of Life Science, Ewha Womans University, Seoul, South Korea.
| | - Juhyun Sim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea; National Forensic Service, 26460, 10 Ipchun-ro, Wonju, Gangwon-do, South Korea.
| | - Ho Jin Yi
- College of Pharmacy, Graduate School of Applied Science and Technology for Skin Health and Aesthetics, Ewha Womans University, Seoul, 120-750, South Korea.
| | - Sue Goo Rhee
- Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea; College of Pharmacy, Graduate School of Applied Science and Technology for Skin Health and Aesthetics, Ewha Womans University, Seoul, 120-750, South Korea.
| |
Collapse
|
8
|
Maghsoudloo M, Mokhtari K, Jamali B, Gholamzad A, Entezari M, Hashemi M, Fu J. Multifaceted role of TRIM28 in health and disease. MedComm (Beijing) 2024; 5:e790. [PMID: 39534556 PMCID: PMC11554878 DOI: 10.1002/mco2.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB-ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28's multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial-to-mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28's complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Behdokht Jamali
- Department of Microbiology and GeneticKherad Institute of Higher EducationBusheherIran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
9
|
Attri K, Chudasama B, Mahajan RL, Choudhury D. Perturbation of hyperthermia resistance in gastric cancer by hyperstimulation of autophagy using artemisinin-protected iron-oxide nanoparticles. RSC Adv 2024; 14:34565-34577. [PMID: 39479497 PMCID: PMC11520311 DOI: 10.1039/d4ra05611f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
In a bid to overcome hyperthermia resistance, a major obstacle in cancer treatment, this study explores manipulating autophagy, a cellular recycling mechanism, within the context of gastric cancer. We designed artemisinin-protected magnetic iron-oxide nanoparticles (ART-MNPs) to hyperactivate autophagy, potentially sensitizing cancer cells to hyperthermia. The synthesized ART-MNPs exhibited magnetic properties and the capability of raising the temperature by 7 °C at 580.3 kHz. Importantly, ART-MNPs displayed significant cytotoxicity against human gastric cancer cells (AGS), with an IC50 value of 1.9 μg mL-1, demonstrating synergistic effects compared to either MNPs or ART treatment alone (IC50 for MNPs is 9.7 μg mL-1 and for ART is 9.4 μg mL-1 respectively). Combination index studies further supported this synergy. Mechanistic analysis revealed a significant increase in autophagy level (13.58- and 15.08-fold increase compared to artemisinin and MNPs, respectively) upon ART-MNP treatment, suggesting that this hyperactivation is responsible for hyperthermia sensitization and minimized resistance (as evidenced by changes in viability compared to control under hyperthermic conditions). This work offers a promising strategy to modulate autophagy and overcome hyperthermia resistance, paving the way for developing hyperthermia as a standalone therapy for gastric cancer.
Collapse
Affiliation(s)
- Komal Attri
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India +91-8196949843
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| | - Bhupendra Chudasama
- Department of Physics and Material Sciences, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India +91-9781966136
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| | - Roop L Mahajan
- Department of Mechanical Engineering, Department of Materials Science & Engineering, Virginia Tech Blacksburg VA 24061 USA +1-5402312597
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India +91-8196949843
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| |
Collapse
|
10
|
Chang HH, Liou YS, Sun DS. Unraveling the interplay between inflammation and stem cell mobilization or homing: Implications for tissue repair and therapeutics. Tzu Chi Med J 2024; 36:349-359. [PMID: 39421490 PMCID: PMC11483098 DOI: 10.4103/tcmj.tcmj_100_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammation and stem cell mobilization or homing play pivotal roles in tissue repair and regeneration. This review explores their intricate interplay, elucidating their collaborative role in maintaining tissue homeostasis and responding to injury or disease. While examining the fundamentals of stem cells, we detail the mechanisms underlying inflammation, including immune cell recruitment and inflammatory mediator release, highlighting their self-renewal and differentiation capabilities. Central to our exploration is the modulation of hematopoietic stem cell behavior by inflammatory cues, driving their mobilization from the bone marrow niche into circulation. Key cytokines, chemokines, growth factors, and autophagy, an intracellular catabolic mechanism involved in this process, are discussed alongside their clinical relevance. Furthermore, mesenchymal stem cell homing in response to inflammation contributes to tissue repair processes. In addition, we discuss stem cell resilience in the face of inflammatory challenges. Moreover, we examine the reciprocal influence of stem cells on the inflammatory milieu, shaping immune responses and tissue repair. We underscore the potential of targeting inflammation-induced stem cell mobilization for regenerative therapies through extensive literature analysis and clinical insights. By unraveling the complex interplay between inflammation and stem cells, this review advances our understanding of tissue repair mechanisms and offers promising avenues for clinical translation in regenerative medicine.
Collapse
Affiliation(s)
- Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
11
|
Mokarram P, Ghavami S. Autophagy unveiled: New horizons in health and disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167289. [PMID: 38871032 DOI: 10.1016/j.bbadis.2024.167289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
12
|
Song MH, Sun Y, Qiu XB. Hijacking autophagy for infection by flaviviruses. Virus Res 2024; 347:199422. [PMID: 38901564 PMCID: PMC11252935 DOI: 10.1016/j.virusres.2024.199422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a lysosomal degradative pathway, which regulates the homeostasis of eukaryotic cells. This pathway can degrade misfolded or aggregated proteins, clear damaged organelles, and eliminate intracellular pathogens, including viruses, bacteria, and parasites. But, not all types of viruses are eliminated by autophagy. Flaviviruses (e.g., Yellow fever, Japanese encephalitis, Hepatitis C, Dengue, Zika, and West Nile viruses) are single-stranded and enveloped RNA viruses, and transmitted to humans primarily through the bites of arthropods, leading to severe and widespread illnesses. Like the coronavirus SARS-CoV-II, flaviviruses hijack autophagy for their infection and escape from host immune clearance. Thus, it is possible to control these viral infections by inhibiting autophagy. In this review, we summarize recent research progresses on hijacking of autophagy by flaviviruses and discuss the feasibility of antiviral therapies using autophagy inhibitors.
Collapse
Affiliation(s)
- Ming-Hui Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China.
| |
Collapse
|
13
|
Yan Y, Yu W, Guo M, Zhu N, Chen X, Li N, Zhong C, Wang G. Autophagy regulates apoptosis of colorectal cancer cells based on signaling pathways. Discov Oncol 2024; 15:367. [PMID: 39182013 PMCID: PMC11344751 DOI: 10.1007/s12672-024-01250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer is a common malignant tumor of the digestive system. Its morbidity and mortality rank among the highest in the world. Cancer development is associated with aberrant signaling pathways. Autophagy is a process of cell self-digestion that maintains the intracellular environment and has a bidirectional regulatory role in cancer. Apoptosis is one of the important death programs in cancer cells and is able to inhibit cancer development. Studies have shown that a variety of substances can regulate autophagy and apoptosis in colorectal cancer cells through signaling pathways, and participate in the regulation of autophagy on apoptosis. In this paper, we focus on the relevant research on autophagy in colorectal cancer cells based on the involvement of related signaling pathways in the regulation of apoptosis in order to provide new research ideas and therapeutic directions for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yuwei Yan
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Wenyan Yu
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Min Guo
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Naicheng Zhu
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xiudan Chen
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Nanxin Li
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chen Zhong
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Guojuan Wang
- Oncology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, No.445, Bayi Avenue, Nanchang, 330006, China.
| |
Collapse
|
14
|
Cong J, Li JY, Zou W. Mechanism and treatment of intracerebral hemorrhage focus on mitochondrial permeability transition pore. Front Mol Neurosci 2024; 17:1423132. [PMID: 39156127 PMCID: PMC11328408 DOI: 10.3389/fnmol.2024.1423132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is the second most common subtype of stroke, characterized by high mortality and a poor prognosis. Despite various treatment methods, there has been limited improvement in the prognosis of ICH over the past decades. Therefore, it is imperative to identify a feasible treatment strategy for ICH. Mitochondria are organelles present in most eukaryotic cells and serve as the primary sites for aerobic respiration and energy production. Under unfavorable cellular conditions, mitochondria can induce changes in permeability through the opening of the mitochondrial permeability transition pore (mPTP), ultimately leading to mitochondrial dysfunction and contributing to various diseases. Recent studies have demonstrated that mPTP plays a role in the pathological processes associated with several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke and ischemia-reperfusion injury, among others. However, there is limited research on mPTP involvement specifically in ICH. Therefore, this study comprehensively examines the pathological processes associated with mPTP in terms of oxidative stress, apoptosis, necrosis, autophagy, ferroptosis, and other related mechanisms to elucidate the potential mechanism underlying mPTP involvement in ICH. This research aims to provide novel insights for the treatment of secondary injury after ICH.
Collapse
Affiliation(s)
- Jing Cong
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing-Yi Li
- The Second School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
15
|
Baek S, Chang JW, Yoo SM, Choo J, Jung S, Nah J, Jung YK. TMEM9 activates Rab9-dependent alternative autophagy through interaction with Beclin1. Cell Mol Life Sci 2024; 81:322. [PMID: 39078420 PMCID: PMC11335249 DOI: 10.1007/s00018-024-05366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024]
Abstract
Transmembrane protein 9 (TMEM9) is a transmembrane protein that regulates lysosomal acidification by interacting with the v-type ATPase complex. However, the role of TMEM9 in the lysosome-dependent autophagy machinery has yet to be identified. In this study, we demonstrate that the lysosomal protein TMEM9, which is involved in vesicle acidification, regulates Rab9-dependent alternative autophagy through its interaction with Beclin1. The cytosolic domain of TMEM9 interacts with Beclin1 via its Bcl-2-binding domain. This interaction between TMEM9 and Beclin1 dissociates Bcl-2, an autophagy-inhibiting partner, from Beclin1, thereby activating LC3-independent and Rab9-dependent alternative autophagy. Late endosomal and lysosomal TMEM9 apparently colocalizes with Rab9 but not with LC3. Furthermore, we show that multiple glycosylation of TMEM9, essential for lysosomal localization, is essential for its interaction with Beclin1 and the activation of Rab9-dependent alternative autophagy. These findings reveal that TMEM9 recruits and activates the Beclin1 complex at the site of Rab9-dependent autophagosome to induce alternative autophagy.
Collapse
Affiliation(s)
- Sohyeon Baek
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jae-Woong Chang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seung-Min Yoo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - JeongRim Choo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sunmin Jung
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jihoon Nah
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, South Korea.
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, South Korea.
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
16
|
Zhang J, Jiang Y, Dong X, Meng Z, Ji L, Kang Y, Liu M, Zhou W, Song W. Alpha-lipoic acid alleviates cognitive deficits in transgenic APP23/PS45 mice through a mitophagy-mediated increase in ADAM10 α-secretase cleavage of APP. Alzheimers Res Ther 2024; 16:160. [PMID: 39030577 PMCID: PMC11264788 DOI: 10.1186/s13195-024-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Alpha-lipoic acid (ALA) has a neuroprotective effect on neurodegenerative diseases. In the clinic, ALA can improve cognitive impairments in patients with Alzheimer's disease (AD) and other dementias. Animal studies have confirmed the anti-amyloidosis effect of ALA, but its underlying mechanism remains unclear. In particular, the role of ALA in amyloid-β precursor protein (APP) metabolism has not been fully elucidated. OBJECTIVE To investigate whether ALA can reduce the amyloidogenic effect of APP in a transgenic mouse model of AD, and to study the mechanism underlying this effect. METHODS ALA was infused into 2-month-old APP23/PS45 transgenic mice for 4 consecutive months and their cognitive function and AD-like pathology were then evaluated. An ALA drug concentration gradient was applied to 20E2 cells in vitro to evaluate its effect on the expression of APP proteolytic enzymes and metabolites. The mechanism by which ALA affects APP processing was studied using GI254023X, an inhibitor of A Disintegrin and Metalloproteinase 10 (ADAM10), as well as the mitochondrial toxic drug carbonyl cyanide m-chlorophenylhydrazone (CCCP). RESULTS Administration of ALA ameliorated amyloid plaque neuropathology in the brain tissue of APP23/PS45 mice and reduced learning and memory impairment. ALA also increased the expression of ADAM10 in 20E2 cells and the non-amyloidogenic processing of APP to produce the 83 amino acid C-terminal fragment (C83). In addition to activating autophagy, ALA also significantly promoted mitophagy. BNIP3L-knockdown reduced the mat/pro ratio of ADAM10. By using CCCP, ALA was found to regulate BNIP3L-mediated mitophagy, thereby promoting the α-cleavage of APP. CONCLUSIONS The enhanced α-secretase cleavage of APP by ADAM10 is the primary mechanism through which ALA ameliorates the cognitive deficits in APP23/PS45 transgenic mice. BNIP3L-mediated mitophagy contributes to the anti-amyloid properties of ALA by facilitating the maturation of ADAM10. This study provides novel experimental evidence for the treatment of AD with ALA.
Collapse
Affiliation(s)
- Jie Zhang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanshuang Jiang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liangye Ji
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Kang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjing Liu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, China.
| |
Collapse
|
17
|
Esrefoglu M. Harnessing autophagy: A potential breakthrough in digestive disease treatment. World J Gastroenterol 2024; 30:3036-3043. [PMID: 38983959 PMCID: PMC11230060 DOI: 10.3748/wjg.v30.i24.3036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
Autophagy, a conserved cellular degradation process, is crucial for various cellular processes such as immune responses, inflammation, metabolic and oxidative stress adaptation, cell proliferation, development, and tissue repair and remodeling. Dysregulation of autophagy is suspected in numerous diseases, including cancer, neurodegenerative diseases, digestive disorders, metabolic syndromes, and infectious and inflammatory diseases. If autophagy is disrupted, for example, this can have serious consequences and lead to chronic inflammation and tissue damage, as occurs in diseases such as Chron's disease and ulcerative colitis. On the other hand, the influence of autophagy on the development and progression of cancer is not clear. Autophagy can both suppress and promote the progression and metastasis of cancer at various stages. From inflammatory bowel diseases to gastrointestinal cancer, researchers are discovering the intricate role of autophagy in maintaining gut health and its potential as a therapeutic target. Researchers should carefully consider the nature and progression of diseases such as cancer when trying to determine whether inhibiting or stimulating autophagy is likely to be beneficial. Multidisciplinary approaches that combine cutting-edge research with clinical expertise are key to unlocking the full therapeutic potential of autophagy in digestive diseases.
Collapse
Affiliation(s)
- Mukaddes Esrefoglu
- Department of Histology and Embryology, Bezmialem Vakif University Medical Faculty, Istanbul 34093, Türkiye
| |
Collapse
|
18
|
Goudarzi ST, Vousooghi N, Verdi J, Mehdizadeh A, Aslanian-Kalkhoran L, Yousefi M. Autophagy genes and signaling pathways in endometrial decidualization and pregnancy complications. J Reprod Immunol 2024; 163:104223. [PMID: 38489930 DOI: 10.1016/j.jri.2024.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Autophagy is a process that occurs in almost all eukaryotic cells and this process is controlled by several molecular processes. Its biological roles include the provision of energy, the maintenance of cell homeostasis, and the promotion of aberrant cell death. The importance of autophagy in pregnancy is gradually becoming recognized. In literature, it has been indicated that autophagy has three different effects on the onset and maintenance of pregnancy: embryo (embryonic development), feto-maternal immune crosstalk, and maternal (decidualization). In humans, proper decidualization is a major predictor of pregnancy accomplishment and it can be influenced by different factors. This review highlights the genes, pathways, regulation, and function of autophagy in endometrial decidualization and other involved factors in this process.
Collapse
Affiliation(s)
- Saeedeh Torabi Goudarzi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lida Aslanian-Kalkhoran
- Department of Immunology, school of medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Dowaidar M. Guidelines for the role of autophagy in drug delivery vectors uptake pathways. Heliyon 2024; 10:e30238. [PMID: 38707383 PMCID: PMC11066435 DOI: 10.1016/j.heliyon.2024.e30238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The process of autophagy refers to the intracellular absorption of cytoplasm (such as proteins, nucleic acids, tiny molecules, complete organelles, and so on) into the lysosome, followed by the breakdown of that cytoplasm. The majority of cellular proteins are degraded by a process called autophagy, which is both a naturally occurring activity and one that may be induced by cellular stress. Autophagy is a system that can save cells' integrity in stressful situations by restoring metabolic basics and getting rid of subcellular junk. This happens as a component of an endurance response. This mechanism may have an effect on disease, in addition to its contribution to the homeostasis of individual cells and tissues as well as the control of development in higher species. The main aim of this study is to discuss the guidelines for the role of autophagy in drug delivery vector uptake pathways. In this paper, we discuss the meaning and concept of autophagy, the mechanism of autophagy, the role of autophagy in drug delivery vectors, autophagy-modulating drugs, nanostructures for delivery systems of autophagy modulators, etc. Later in this paper, we talk about how to deliver chemotherapeutics, siRNA, and autophagy inducers and inhibitors. We also talk about how hard it is to make a drug delivery system that takes nanocarriers' roles as autophagy modulators into account.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
20
|
Xu Y, Liu W, Sun Z, Yu Y, Yang T, Lu X, Zhang G, Jiao J, Duan X. The two autophagy-related proteins 8a and 8b play distinct physiological roles in Drosophila. Genomics 2024; 116:110853. [PMID: 38701988 DOI: 10.1016/j.ygeno.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Atg8 family proteins play crucial roles in autophagy to maintain cellular homeostasis. However, the physiological roles of Atg8 family proteins have not been systematically determined. In this study, we generated Atg8a and Atg8b (homologs of Atg8 in Drosophila melanogaster) knockout flies. We found that the loss of Atg8a affected autophagy and resulted in partial lethality, abnormal wings, decreased lifespan, and decreased climbing ability in flies. Furthermore, the loss of Atg8a resulted in reduced muscle integrity and the progressive degeneration of the neuron system. We also found that the phosphorylation at Ser88 of Atg8a is important for autophagy and neuronal integrity. The loss of Atg8b did not affect autophagy but induced male sterility in flies. Here, we take full advantage of the fly system to elucidate the physiological function of Atg8a and Atg8b in Drosophila.
Collapse
Affiliation(s)
- Yuchen Xu
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wei Liu
- College of Basic Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhaolin Sun
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yurun Yu
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tianhao Yang
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xirui Lu
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Guiqiang Zhang
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiuying Duan
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
21
|
Wei B, Fu Y, Li X, Chen F, Zhang Y, Chen H, Tong M, Li L, Pan Y, Zhang S, Chen S, Liu X, Zhong Q. ANKFY1 bridges ATG2A-mediated lipid transfer from endosomes to phagophores. Cell Discov 2024; 10:43. [PMID: 38622126 PMCID: PMC11018839 DOI: 10.1038/s41421-024-00659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024] Open
Abstract
Macroautophagy is a process that cells engulf cytosolic materials by autophagosomes and deliver them to lysosomes for degradation. The biogenesis of autophagosomes requires ATG2 as a lipid transfer protein to transport lipids from existing membranes to phagophores. It is generally believed that endoplasmic reticulum is the main source for lipid supply of the forming autophagosomes; whether ATG2 can transfer lipids from other organelles to phagophores remains elusive. In this study, we identified a new ATG2A-binding protein, ANKFY1. Depletion of this endosome-localized protein led to the impaired autophagosome growth and the reduced autophagy flux, which largely phenocopied ATG2A/B depletion. A pool of ANKFY1 co-localized with ATG2A between endosomes and phagophores and depletion of UVRAG, ANKFY1 or ATG2A/B led to reduction of PI3P distribution on phagophores. Purified recombinant ANKFY1 bound to PI3P on membrane through its FYVE domain and enhanced ATG2A-mediated lipid transfer between PI3P-containing liposomes. Therefore, we propose that ANKFY1 recruits ATG2A to PI3P-enriched endosomes and promotes ATG2A-mediated lipid transfer from endosomes to phagophores. This finding implicates a new lipid source for ATG2A-mediated phagophore expansion, where endosomes donate PI3P and other lipids to phagophores via lipid transfer.
Collapse
Affiliation(s)
- Bin Wei
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhui Fu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuzhi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanmo Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mindan Tong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linsen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Pan
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Zhang W, Cao F, Li M, Xu Z, Sun J, Huang Z, Shi P. The involvement of calcium in the toxic effect of 4-methylethcathinone on SH-SY5Y cells. J Appl Toxicol 2024; 44:553-563. [PMID: 37950502 DOI: 10.1002/jat.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Neurotoxicity induced by psychoactive substances is often accompanied by an imbalance of intracellular calcium ions. It is unclear whether calcium ions play a role in the toxicity induced by psychoactive substances. In the present study, we aimed to evaluate the occurrence of calcium dysregulation and its contribution to cytotoxicity in human neurotypic SH-SY5Y cells challenged with a recently developed psychoactive substance 4-methylethcathinone (4-MEC). An increase in the intracellular calcium was detected by inductively coupled plasma atomic emission spectrometry and Fluo-3 AM dye in SH-SY5Y cells after being treated with 4-MEC. The increase of intracellular Ca2+ level mediated G0/G1 cell cycle arrest and ROS/endoplasmic reticulum stress-autophagy signaling pathways to achieve the toxicity of 4-MEC. In particular, N-acetyl-L-cysteine, a classical antioxidant, was found to be a potential treatment for 4-MEC-induced toxicity. Taken together, our results demonstrate that an increase in intracellular calcium content is one of the mechanisms of 4-MEC-induced toxicity. This study provides a molecular basis for the toxicity mechanism and therapeutic intervention of psychoactive substances.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fangqi Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Ming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiwen Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, China
| | - Zhiwei Huang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
23
|
Wang XR, Cull B, Oliver JD, Kurtti TJ, Munderloh UG. The role of autophagy in tick-endosymbiont interactions: insights from Ixodes scapularis and Rickettsia buchneri. Microbiol Spectr 2024; 12:e0108623. [PMID: 38038450 PMCID: PMC10783069 DOI: 10.1128/spectrum.01086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Ticks are second only to mosquitoes in their importance as vectors of disease agents; however, tick-borne diseases (TBDs) account for the majority of all vector-borne disease cases in the United States (approximately 76.5%), according to Centers for Disease Control and Prevention reports. Newly discovered tick species and their associated disease-causing pathogens, and anthropogenic and demographic factors also contribute to the emergence and re-emergence of TBDs. Thus, incorporating different tick control approaches based on a thorough knowledge of tick biology has great potential to prevent and eliminate TBDs in the future. Here we demonstrate that replication of a transovarially transmitted rickettsial endosymbiont depends on the tick's autophagy machinery but not on apoptosis. Our findings improve our understanding of the role of symbionts in tick biology and the potential to discover tick control approaches to prevent or manage TBDs.
Collapse
Affiliation(s)
- Xin-Ru Wang
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
- SUNY Center for Vector-Borne Diseases, Upstate Medical University, Syracuse, New York, USA
- Institute for Global Health and Translational Sciences, Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
| | - Benjamin Cull
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | | |
Collapse
|
24
|
Sari D, Gozuacik D, Akkoc Y. Role of autophagy in cancer-associated fibroblast activation, signaling and metabolic reprograming. Front Cell Dev Biol 2024; 11:1274682. [PMID: 38234683 PMCID: PMC10791779 DOI: 10.3389/fcell.2023.1274682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
Tumors not only consist of cancerous cells, but they also harbor several normal-like cell types and non-cellular components. cancer-associated fibroblasts (CAFs) are one of these cellular components that are found predominantly in the tumor stroma. Autophagy is an intracellular degradation and quality control mechanism, and recent studies provided evidence that autophagy played a critical role in CAF formation, metabolic reprograming and tumor-stroma crosstalk. Therefore, shedding light on the autophagy and its role in CAF biology might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the exploitation of more efficient cancer diagnosis and treatment. Here, we provide an overview about the involvement of autophagy in CAF-related pathways, including transdifferentiation and activation of CAFs, and further discuss the implications of targeting tumor stroma as a treatment option.
Collapse
Affiliation(s)
- Dyana Sari
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Department of Medical Biology, School of Medicine, Koç University, Istanbul, Türkiye
- Department of Biotechnology, SUNUM Nanotechnology Research and Application Center, Istanbul, Türkiye
| | - Yunus Akkoc
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| |
Collapse
|
25
|
Beilankouhi EAV, Valilo M, Dastmalchi N, Teimourian S, Safaralizadeh R. The Function of Autophagy in the Initiation, and Development of Breast Cancer. Curr Med Chem 2024; 31:2974-2990. [PMID: 37138421 DOI: 10.2174/0929867330666230503145319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
Autophagy is a significant catabolic procedure that increases in stressful conditions. This mechanism is mostly triggered after damage to the organelles, the presence of unnatural proteins, and nutrient recycling in reaction to these stresses. One of the key points in this article is that cleaning and preserving damaged organelles and accumulated molecules through autophagy in normal cells helps prevent cancer. Since dysfunction of autophagy is associated with various diseases, including cancer, it has a dual function in tumor suppression and expansion. It has newly become clear that the regulation of autophagy can be used for the treatment of breast cancer, which has a promising effect of increasing the efficiency of anticancer treatment in a tissue- and cell-type-specific manner by affecting the fundamental molecular mechanisms. Regulation of autophagy and its function in tumorigenesis is a vital part of modern anticancer techniques. This study discusses the current advances related to the mechanisms that describe essential modulators of autophagy involved in the metastasis of cancers and the development of new breast cancer treatments.
Collapse
Affiliation(s)
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
26
|
Schwalm MP, Dopfer J, Knapp S, Rogov VV. High-Throughput Screening for LC3/GABARAP Binders Utilizing the Fluorescence Polarization Assay. Methods Mol Biol 2024; 2845:203-218. [PMID: 39115669 DOI: 10.1007/978-1-0716-4067-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The characterization of interactions between autophagy modifiers (Atg8-family proteins) and their natural ligands (peptides and proteins) or small molecules is important for a detailed understanding of selective autophagy mechanisms and for the design of potential Atg8 inhibitors that affect the autophagy processes in cells. The fluorescence polarization (FP) assay is a rapid, cost-effective, and robust method that provides affinity and selectivity information for small molecules and peptide ligands targeting human Atg8 proteins.This chapter introduces the basic principles of FP assays. In addition, a case study on peptide interaction with human Atg8 proteins (LC3/GABARAPs) is described. Finally, data analysis and quality control of FP assays are discussed for the proper calculation of Ki values for the measured compounds.
Collapse
Affiliation(s)
- Martin P Schwalm
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany
| | - Johannes Dopfer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany
| | - Vladimir V Rogov
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
27
|
Sakurai HT, Arakawa S, Yamaguchi H, Torii S, Honda S, Shimizu S. An Overview of Golgi Membrane-Associated Degradation (GOMED) and Its Detection Methods. Cells 2023; 12:2817. [PMID: 38132137 PMCID: PMC10741765 DOI: 10.3390/cells12242817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Autophagy is a cellular mechanism that utilizes lysosomes to degrade its own components and is performed using Atg5 and other molecules originating from the endoplasmic reticulum membrane. On the other hand, we identified an alternative type of autophagy, namely, Golgi membrane-associated degradation (GOMED), which also utilizes lysosomes to degrade its own components, but does not use Atg5 originating from the Golgi membranes. The GOMED pathway involves Ulk1, Wipi3, Rab9, and other molecules, and plays crucial roles in a wide range of biological phenomena, such as the regulation of insulin secretion and neuronal maintenance. We here describe the overview of GOMED, methods to detect autophagy and GOMED, and to distinguish GOMED from autophagy.
Collapse
Affiliation(s)
- Hajime Tajima Sakurai
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
- Department of Biochemistry and Molecular Biology, Graduate School of Science, University of Hyogo, Harima Science Garden City, Himeji 678-1205, Hyogo, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Hirofumi Yamaguchi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Shinya Honda
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| |
Collapse
|
28
|
Taninaka A, Kurokawa H, Kamiyanagi M, Ochiai T, Arashida Y, Takeuchi O, Matsui H, Shigekawa H. Polphylipoprotein-induced autophagy mechanism with high performance in photodynamic therapy. Commun Biol 2023; 6:1212. [PMID: 38017279 PMCID: PMC10684771 DOI: 10.1038/s42003-023-05598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Polphylipoprotein (PLP) is a recently developed nanoparticle with high biocompatibility and tumor selectivity, and which has demonstrated unprecedentedly high performance photosensitizer in photodynamic therapy (PDT) and photodynamic diagnosis. On the basis of these discoveries, PLP is anticipated to have a very high potential for PDT. However, the mechanism by which PLP kills cancer cells effectively has not been sufficiently clarified. To comprehensively understand the PLP-induced PDT processes, we conduct multifaceted experiments using both normal cells and cancer cells originating from the same sources, namely, RGM1, a rat gastric epithelial cell line, and RGK1, a rat gastric mucosa-derived cancer-like mutant. We reveal that PLP enables highly effective cancer treatment through PDT by employing a unique mechanism that utilizes the process of autophagy. The dynamics of PLP-accumulated phagosomes immediately after light irradiation are found to be completely different between normal cells and cancer cells, and it becomes clear that this difference results in the manifestation of the characteristic effect of PDT when using PLP. Since PLP is originally developed as a drug delivery agent, this study also suggests the potential for intracellular drug delivery processes through PLP-induced autophagy.
Collapse
Affiliation(s)
- Atsushi Taninaka
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- TAKANO Co. LTD. Miyada-mura, Kamiina-gun, Nagano, 399-4301, Japan
| | - Hiromi Kurokawa
- Fuculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Mayuka Kamiyanagi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Takahiro Ochiai
- TAKANO Co. LTD. Miyada-mura, Kamiina-gun, Nagano, 399-4301, Japan
| | - Yusuke Arashida
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Osamu Takeuchi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Hirofumi Matsui
- Fuculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hidemi Shigekawa
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
29
|
Shang R, Miao J. Mechanisms and effects of metformin on skeletal muscle disorders. Front Neurol 2023; 14:1275266. [PMID: 37928155 PMCID: PMC10621799 DOI: 10.3389/fneur.2023.1275266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Skeletal muscle disorders are mostly genetic and include several rare diseases. With disease progression, muscle fibrosis and adiposis occur, resulting in limited mobility. The long course of these diseases combined with limited treatment options affect patients both psychologically and economically, hence the development of novel treatments for neuromuscular diseases is crucial to obtain a better quality of life. As a widely used hypoglycemic drug in clinical practice, metformin not only has anti-inflammatory, autophagy-regulating, and mitochondrial biogenesis-regulating effects, but it has also been reported to improve the symptoms of neuromuscular diseases, delay hypokinesia, and regulate skeletal muscle mass. However, metformin's specific mechanism of action in neuromuscular diseases requires further elucidation. This review summarizes the evidence showing that metformin can regulate inflammation, autophagy, and mitochondrial biogenesis through different pathways, and further explores its mechanism of action in Duchenne muscular dystrophy, statin-associated muscle disorders, and age-related sarcopenia. This review clarifies the directions of future research on therapy for neuromuscular diseases.
Collapse
Affiliation(s)
| | - Jing Miao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Kim HG, Ro MH, Lee M. Atg5 knockout induces alternative autophagy via the downregulation of Akt expression. Toxicol Res 2023; 39:637-647. [PMID: 37779593 PMCID: PMC10541375 DOI: 10.1007/s43188-023-00191-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 10/03/2023] Open
Abstract
Autophagy play contradictory roles in cellular transformation. We previously found that the knockout (KO) of autophagy-related 5 (Atg5), which is essential for autophagy, leads to the malignant transformation of NIH 3T3 cells. In this study, we explored the mechanism by which autophagy contributes to this malignant transformation using two transformed cell lines, Atg5 KO and Ras-NIH 3T3. Monomeric red fluorescent protein-green fluorescent protein-light chain 3 reporter and Cyto-ID staining revealed that Ras-NIH 3T3 cells exhibited higher basal autophagy activity than NIH 3T3 cells. Additionally, transformed cells, regardless of their Atg5 KO status, were more sensitive to autophagy inhibitors (SBI-0206965, chloroquine, and obatoclax) than the untransformed NIH 3T3 cells, suggesting that the transformed cells are more autophagy-dependent than the normal cells. Loss of Atg5 improved the cell viability and mobility, especially in Ras-NIH 3T3 cells. Furthermore, we discovered that autophagy was alternatively induced in a Rab9-dependent manner in Ras-NIH 3T3 and NIH 3T3/Atg5 KO cells. In particular, Atg5 KO cells showed reduced mTOR-mediated phosphorylation of Akt (pAkt S473), indicating the mTOR-independent occurrence of alternative autophagy in Atg5 KO cells. Therefore, our study provides evidence that alternative autophagy may contribute to tumorigenesis in cells with an impaired Atg5-dependent autophagy pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00191-3.
Collapse
Affiliation(s)
- Hye-Gyo Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-Ro, Yeonsu-Gu, Incheon, 22012 Republic of Korea
| | - Myeong-Han Ro
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-Ro, Yeonsu-Gu, Incheon, 22012 Republic of Korea
| | - Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-Ro, Yeonsu-Gu, Incheon, 22012 Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|
31
|
Xia X, Li H, Xu X, Zhao G, Du M. Facilitating Pro-survival Mitophagy for Alleviating Parkinson's Disease via Sequence-Targeted Lycopene Nanodots. ACS NANO 2023; 17:17979-17995. [PMID: 37714739 DOI: 10.1021/acsnano.3c04308] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The pathogenesis of Parkinson's disease is closely linked to impaired mitochondrial function and abnormal mitophagy. Biocompatible natural antioxidants effectively protect dopaminergic neurons. However, the main challenge in using natural antioxidants for Parkinson's disease therapy is creating a delivery platform to achieve neuron-targeted enrichment. Herein, we synthesized rationally sequence-targeted lycopene nanodots using recombinant human H-ferritin nanocages with lycopene loading into the cavity and lipophilic triphenylphosphonium (TPP) coupling on the outer surface. The nanodots allow for the neural enrichment and mitochondrial regulation of lycopene through blood-brain barrier transcytosis and neuronal mitochondria-targeting capability. These anti-ROS nanodots protect neuronal mitochondrial function and promote PINK1/Parkin-mediated mitophagy in MPTP toxicity-induced neurons in vivo and in vitro, which favors the secretory efflux of pathogenic α-synuclein and the survival of dopaminergic neurons. Moreover, these nanodots restore the Parkinson-like motor symptoms in Parkinson's model mice. This noninvasive sequence-targeted delivery strategy with excellent biocompatibility for pro-survival mitophagy-mediated pathology alleviation makes it a promising approach for treating and preventing Parkinson's disease.
Collapse
Affiliation(s)
- Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
| | - Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
| | - Xianbing Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
| |
Collapse
|
32
|
Wang R, Fortier TM, Chai F, Miao G, Shen JL, Restrepo LJ, DiGiacomo JJ, Velentzas PD, Baehrecke EH. PINK1, Keap1, and Rtnl1 regulate selective clearance of endoplasmic reticulum during development. Cell 2023; 186:4172-4188.e18. [PMID: 37633267 PMCID: PMC10530463 DOI: 10.1016/j.cell.2023.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/27/2023] [Accepted: 08/07/2023] [Indexed: 08/28/2023]
Abstract
Selective clearance of organelles, including endoplasmic reticulum (ER) and mitochondria, by autophagy plays an important role in cell health. Here, we describe a developmentally programmed selective ER clearance by autophagy. We show that Parkinson's disease-associated PINK1, as well as Atl, Rtnl1, and Trp1 receptors, regulate ER clearance by autophagy. The E3 ubiquitin ligase Parkin functions downstream of PINK1 and is required for mitochondrial clearance while having the opposite function in ER clearance. By contrast, Keap1 and the E3 ubiquitin ligase Cullin3 function downstream of PINK1 to regulate ER clearance by influencing Rtnl1 and Atl. PINK1 regulates a change in Keap1 localization and Keap1-dependent ubiquitylation of the ER-phagy receptor Rtnl1 to facilitate ER clearance. Thus, PINK1 regulates the selective clearance of ER and mitochondria by influencing the balance of Keap1- and Parkin-dependent ubiquitylation of substrates that determine which organelle is removed by autophagy.
Collapse
Affiliation(s)
- Ruoxi Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tina M Fortier
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Fei Chai
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangyan Miao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - James L Shen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lucas J Restrepo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeromy J DiGiacomo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Panagiotis D Velentzas
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
33
|
Nakashima K, Ishida A. Regulation of autophagy in chick myotube cultures: Effect of uncoupling mitochondrial oxidative phosphorylation. J Poult Sci 2023; 60:2023022. [PMID: 37577336 PMCID: PMC10410138 DOI: 10.2141/jpsa.2023022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Abstracts: Skeletal muscles have a high demand for ATP, which is met largely through mitochondria oxidative phosphorylation. Autophagy is essential for the maintenance of skeletal muscle mass under catabolic conditions. This study investigated the effect of uncoupling mitochondrial oxidative phosphorylation on autophagy in chicken skeletal muscle. Chick myotubes were incubated with the mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP) at 25 μM for 3h. CCCP prevented the phosphorylation of p70 ribosomal S6 kinase 1 (Thr389), S6 ribosomal protein (Ser240/244), and eukaryotic translation initiation factor 4E-binding protein 1 (Thr37/46), which are the measures of the mechanistic target of rapamycin complex 1 (mTORC1) activity. CCCP significantly increased cytoplasmic and mitochondrial LC3-II content, which act as indices of index for autophagosome formation and mitophagy, respectively, but did not influence the expression of autophagy-related genes LC3B, GABARAPL1, and ATG12. Finally, surface sensing of translation method revealed that protein synthesis, a highly energy consuming process, was significantly decreased upon CCCP treatment. These results indicate that the uncoupling of mitochondrial oxidative phosphorylation stimulates autophagy and inhibits protein synthesis through mTORC1 signaling in chick myotube cultures.
Collapse
Affiliation(s)
- Kazuki Nakashima
- Institute of Livestock and
Grassland Science, NARO, Tsukuba 305-0901,
Japan
| | - Aiko Ishida
- Institute of Livestock and
Grassland Science, NARO, Tsukuba 305-0901,
Japan
| |
Collapse
|
34
|
Javed R, Jain A, Duque T, Hendrix E, Paddar MA, Khan S, Claude‐Taupin A, Jia J, Allers L, Wang F, Mudd M, Timmins G, Lidke K, Rusten TE, Akepati PR, He Y, Reggiori F, Eskelinen E, Deretic V. Mammalian ATG8 proteins maintain autophagosomal membrane integrity through ESCRTs. EMBO J 2023; 42:e112845. [PMID: 37272163 PMCID: PMC10350836 DOI: 10.15252/embj.2022112845] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
The canonical autophagy pathway in mammalian cells sequesters diverse cytoplasmic cargo within the double membrane autophagosomes that eventually convert into degradative compartments via fusion with endolysosomal intermediates. Here, we report that autophagosomal membranes show permeability in cells lacking principal ATG8 proteins (mATG8s) and are unable to mature into autolysosomes. Using a combination of methods including a novel in vitro assay to measure membrane sealing, we uncovered a previously unappreciated function of mATG8s to maintain autophagosomal membranes in a sealed state. The mATG8 proteins GABARAP and LC3A bind to key ESCRT-I components contributing, along with other ESCRTs, to the integrity and imperviousness of autophagic membranes. Autophagic organelles in cells lacking mATG8s are permeant, are arrested as amphisomes, and do not progress to functional autolysosomes. Thus, autophagosomal organelles need to be maintained in a sealed state in order to become lytic autolysosomes.
Collapse
Affiliation(s)
- Ruheena Javed
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Ashish Jain
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Thabata Duque
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Emily Hendrix
- Department of Chemistry & Chemical BiologyThe University of New MexicoAlbuquerqueNMUSA
| | - Masroor Ahmad Paddar
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Sajjad Khan
- Department of Physics and AstronomyThe University of New MexicoAlbuquerqueNMUSA
| | - Aurore Claude‐Taupin
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Jingyue Jia
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Lee Allers
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Fulong Wang
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Michal Mudd
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Graham Timmins
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Keith Lidke
- Department of Physics and AstronomyThe University of New MexicoAlbuquerqueNMUSA
| | | | - Prithvi Reddy Akepati
- Division of Gastroenterology and Hepatology, Department of Internal MedicineUniversity of New MexicoAlbuquerqueNMUSA
| | - Yi He
- Department of Chemistry & Chemical BiologyThe University of New MexicoAlbuquerqueNMUSA
| | - Fulvio Reggiori
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Aarhus Institute for Advanced Studies (AIAS)Aarhus UniversityAarhusDenmark
| | | | - Vojo Deretic
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| |
Collapse
|
35
|
Huang HJ, Lee YH, Sung LC, Chen YJ, Chiu YJ, Chiu HW, Zheng CM. Drug repurposing screens to identify potential drugs for chronic kidney disease by targeting prostaglandin E2 receptor. Comput Struct Biotechnol J 2023; 21:3490-3502. [PMID: 37484490 PMCID: PMC10362296 DOI: 10.1016/j.csbj.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Renal inflammation and fibrosis are significantly correlated with the deterioration of kidney function and result in chronic kidney disease (CKD). However, current therapies only delay disease progression and have limited treatment effects. Hence, the development of innovative therapeutic approaches to mitigate the progression of CKD has become an attractive issue. To date, the incidence of CKD is still increasing, and the biomarkers of the pathophysiologic processes of CKD are not clear. Therefore, the identification of novel therapeutic targets associated with the progression of CKD is an attractive issue. It is a critical necessity to discover new therapeutics as nephroprotective strategies to stop CKD progression. In this research, we focus on targeting a prostaglandin E2 receptor (EP2) as a nephroprotective strategy for the development of additional anti-inflammatory or antifibrotic strategies for CKD. The in silico study identified that ritodrine, dofetilide, dobutamine, and citalopram are highly related to EP2 from the results of chemical database virtual screening. Furthermore, we found that the above four candidate drugs increased the activation of autophagy in human kidney cells, which also reduced the expression level of fibrosis and NLRP3 inflammasome activation. It is hoped that these findings of the four candidates with anti-NLRP3 inflammasome activation and antifibrotic effects will lead to the development of novel therapies for patients with CKD in the future.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jie Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jhe Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Wen Chiu
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| |
Collapse
|
36
|
Wang F, Peters R, Jia J, Mudd M, Salemi M, Allers L, Javed R, Duque TLA, Paddar MA, Trosdal ES, Phinney B, Deretic V. ATG5 provides host protection acting as a switch in the atg8ylation cascade between autophagy and secretion. Dev Cell 2023; 58:866-884.e8. [PMID: 37054706 PMCID: PMC10205698 DOI: 10.1016/j.devcel.2023.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/26/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023]
Abstract
ATG5 is a part of the E3 ligase directing lipidation of ATG8 proteins, a process central to membrane atg8ylation and canonical autophagy. Loss of Atg5 in myeloid cells causes early mortality in murine models of tuberculosis. This in vivo phenotype is specific to ATG5. Here, we show using human cell lines that absence of ATG5, but not of other ATGs directing canonical autophagy, promotes lysosomal exocytosis and secretion of extracellular vesicles and, in murine Atg5fl/fl LysM-Cre neutrophils, their excessive degranulation. This is due to lysosomal disrepair in ATG5 knockout cells and the sequestration by an alternative conjugation complex, ATG12-ATG3, of ESCRT protein ALIX, which acts in membrane repair and exosome secretion. These findings reveal a previously undescribed function of ATG5 in its host-protective role in murine experimental models of tuberculosis and emphasize the significance of the branching aspects of the atg8ylation conjugation cascade beyond the canonical autophagy.
Collapse
Affiliation(s)
- Fulong Wang
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Ryan Peters
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Michal Mudd
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Thabata L A Duque
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Masroor A Paddar
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Einar S Trosdal
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Brett Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA.
| |
Collapse
|
37
|
Liang T, Smith CE, Hu Y, Zhang H, Zhang C, Xu Q, Lu Y, Qi L, Hu JCC, Simmer JP. Dentin defects caused by a Dspp -1 frameshift mutation are associated with the activation of autophagy. Sci Rep 2023; 13:6393. [PMID: 37076504 PMCID: PMC10115861 DOI: 10.1038/s41598-023-33362-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Dentin sialophosphoprotein (DSPP) is primarily expressed by differentiated odontoblasts (dentin-forming cells), and transiently expressed by presecretory ameloblasts (enamel-forming cells). Disease-causing DSPP mutations predominantly fall into two categories: 5' mutations affecting targeting and trafficking, and 3' - 1 frameshift mutations converting the repetitive, hydrophilic, acidic C-terminal domain into a hydrophobic one. We characterized the dental phenotypes and investigated the pathological mechanisms of DsppP19L and Dspp-1fs mice that replicate the two categories of human DSPP mutations. In DsppP19L mice, dentin is less mineralized but contains dentinal tubules. Enamel mineral density is reduced. Intracellular accumulation and ER retention of DSPP is observed in odontoblasts and ameloblasts. In Dspp-1fs mice, a thin layer of reparative dentin lacking dentinal tubules is deposited. Odontoblasts show severe pathosis, including intracellular accumulation and ER retention of DSPP, strong ubiquitin and autophagy activity, ER-phagy, and sporadic apoptosis. Ultrastructurally, odontoblasts show extensive autophagic vacuoles, some of which contain fragmented ER. Enamel formation is comparable to wild type. These findings distinguish molecular mechanisms underlying the dental phenotypes of DsppP19L and Dspp-1fs mice and support the recently revised Shields classification of dentinogenesis imperfecta caused by DSPP mutations in humans. The Dspp-1fs mice may be valuable for the study of autophagy and ER-phagy.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA.
| | - Charles E Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| |
Collapse
|
38
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
39
|
Lv X, Tang W, Qin J, Wang W, Dong J, Wei Y. The crosslinks between ferroptosis and autophagy in asthma. Front Immunol 2023; 14:1140791. [PMID: 37063888 PMCID: PMC10090423 DOI: 10.3389/fimmu.2023.1140791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is an evolutionarily conserved cellular process capable of degrading various biological molecules and organelles via the lysosomal pathway. Ferroptosis is a type of oxidative stress-dependent regulated cell death associated with the iron accumulation and lipid peroxidation. The crosslinks between ferroptosis and autophagy have been focused on since the dependence of ferroptosis on autophagy was discovered. Although the research and theories on the relationship between autophagy and ferroptosis remain scattered and fragmented, the crosslinks between these two forms of regulated cell death are closely related to the treatment of various diseases. Thereof, asthma as a chronic inflammatory disease has a tight connection with the occurrence of ferroptosis and autophagy since the crosslinked signal pathways may be the crucial regulators or exactly regulated by cells and secretion in the immune system. In addition, non-immune cells associated with asthma are also closely related to autophagy and ferroptosis. Further studies of cross-linking asthma inflammation with crosslinked signaling pathways may provide us with several key molecules that regulate asthma through specific regulators. The crosslinks between autophagy and ferroptosis provide us with a new perspective to interpret and understand the manifestations of asthma, potential drug discovery targets, and new therapeutic options to effectively intervene in the imbalance caused by abnormal inflammation in asthma. Herein, we introduce the main molecular mechanisms of ferroptosis, autophagy, and asthma, describe the role of crosslinks between ferroptosis and autophagy in asthma based on their common regulatory cells or molecules, and discuss potential drug discovery targets and therapeutic applications in the context of immunomodulatory and symptom alleviation.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Ying Wei, ; Jingcheng Dong,
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Ying Wei, ; Jingcheng Dong,
| |
Collapse
|
40
|
Ali FEM, Abd El-Aziz MK, Sharab EI, Bakr AG. Therapeutic interventions of acute and chronic liver disorders: A comprehensive review. World J Hepatol 2023; 15:19-40. [PMID: 36744165 PMCID: PMC9896501 DOI: 10.4254/wjh.v15.i1.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 01/16/2023] Open
Abstract
Liver disorders are one of the most common pathological problems worldwide. It affects more than 1.5 billion worldwide. Many types of hepatic cells have been reported to be involved in the initiation and propagation of both acute and chronic liver diseases, including hepatocytes, Kupffer cells, sinusoidal endothelial cells, and hepatic stellate cells (HSCs). In addition, oxidative stress, cytokines, fibrogenic factors, microRNAs, and autophagy are also involved. Understanding the molecular mechanisms of liver diseases leads to discovering new therapeutic interventions that can be used in clinics. Recently, antioxidant, anti-inflammatory, anti-HSCs therapy, gene therapy, cell therapy, gut microbiota, and nanoparticles have great potential for preventing and treating liver diseases. Here, we explored the recent possible molecular mechanisms involved in the pathogenesis of acute and chronic liver diseases. Besides, we overviewed the recent therapeutic interventions that targeted liver diseases and summarized the recent studies concerning liver disorders therapy.
Collapse
Affiliation(s)
- Fares EM Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | | | - Elham I Sharab
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
41
|
Yu P, Hua Z. To Kill or to Be Killed: How Does the Battle between the UPS and Autophagy Maintain the Intracellular Homeostasis in Eukaryotes? Int J Mol Sci 2023; 24:ijms24032221. [PMID: 36768543 PMCID: PMC9917186 DOI: 10.3390/ijms24032221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquitin-26S proteasome system and autophagy are two major protein degradation machineries encoded in all eukaryotic organisms. While the UPS is responsible for the turnover of short-lived and/or soluble misfolded proteins under normal growth conditions, the autophagy-lysosomal/vacuolar protein degradation machinery is activated under stress conditions to remove long-lived proteins in the forms of aggregates, either soluble or insoluble, in the cytoplasm and damaged organelles. Recent discoveries suggested an integrative function of these two seemly independent systems for maintaining the proteome homeostasis. One such integration is represented by their reciprocal degradation, in which the small 76-amino acid peptide, ubiquitin, plays an important role as the central signaling hub. In this review, we summarized the current knowledge about the activity control of proteasome and autophagosome at their structural organization, biophysical states, and turnover levels from yeast and mammals to plants. Through comprehensive literature studies, we presented puzzling questions that are awaiting to be solved and proposed exciting new research directions that may shed light on the molecular mechanisms underlying the biological function of protein degradation.
Collapse
Affiliation(s)
- Peifeng Yu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
42
|
Sun Y, Wang H, Qu T, Luo J, An P, Ren F, Luo Y, Li Y. mTORC2: a multifaceted regulator of autophagy. Cell Commun Signal 2023; 21:4. [PMID: 36604720 PMCID: PMC9814435 DOI: 10.1186/s12964-022-00859-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/06/2022] [Indexed: 01/06/2023] Open
Abstract
Autophagy is a multi-step catabolic process that delivers cellular components to lysosomes for degradation and recycling. The dysregulation of this precisely controlled process disrupts cellular homeostasis and leads to many pathophysiological conditions. The mechanistic target of rapamycin (mTOR) is a central nutrient sensor that integrates growth signals with anabolism to fulfil biosynthetic and bioenergetic requirements. mTOR nucleates two distinct evolutionarily conserved complexes (mTORC1 and mTORC2). However, only mTORC1 is acutely inhibited by rapamycin. Consequently, mTORC1 is a well characterized regulator of autophagy. While less is known about mTORC2, the availability of acute small molecule inhibitors and multiple genetic models has led to increased understanding about the role of mTORC2 in autophagy. Emerging evidence suggests that the regulation of mTORC2 in autophagy is mainly through its downstream effector proteins, and is variable under different conditions and cellular contexts. Here, we review recent advances that describe a role for mTORC2 in this catabolic process, and propose that mTORC2 could be a potential clinical target for the treatment of autophagy-related diseases. Video abstract.
Collapse
Affiliation(s)
- Yanan Sun
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Huihui Wang
- grid.411734.40000 0004 1798 5176College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070 China
| | - Taiqi Qu
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Junjie Luo
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Peng An
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Fazheng Ren
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Yongting Luo
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Yixuan Li
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
43
|
Bahamondes Lorca VA, Wu S. Ultraviolet Light, Unfolded Protein Response and Autophagy †. Photochem Photobiol 2023; 99:498-508. [PMID: 36591940 DOI: 10.1111/php.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023]
Abstract
The endoplasmic reticulum (ER) plays an important role in the regulation of protein synthesis. Alterations in the folding capacity of the ER induce stress, which activates three ER sensors that mediate the unfolded protein response (UPR). Components of the pathways regulated by these sensors have been shown to regulate autophagy. The last corresponds to a mechanism of self-eating and recycling important for proper cell maintenance. Ultraviolet radiation (UV) is an external damaging stimulus that is known for inducing oxidative stress, and DNA, lipid and protein damage. Many controversies exist regarding the role of UV-inducing ER stress or autophagy. However, a connection between the three of them has not been addressed. In this review, we will discuss the contradictory theories regarding the relationships between UV radiation with the induction of ER stress and autophagy, as well as hypothetic connections between UV, ER stress and autophagy.
Collapse
Affiliation(s)
- Verónica A Bahamondes Lorca
- Edison Biotechnology Institute, Ohio University, Athens, OH.,Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, OH.,Department of Chemistry and Biochemistry, Ohio University, Athens, OH
| |
Collapse
|
44
|
FUNDC1 Mediated Mitophagy in Epileptic Hippocampal Neuronal Injury Induced by Magnesium-Free Fluid. Neurochem Res 2023; 48:284-294. [PMID: 36094682 DOI: 10.1007/s11064-022-03749-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Mitophagy plays a key role in epileptic neuronal injury, and recent studies have shown that FUNDC1 plays an important role in regulating mitophagy. However, the specific effect of FUNDC1 on neuronal damage in epilepsy is unknown. In this study, we investigated the role of FUNDC1 in mitophagy and neuronal apoptosis using a hippocampal neuronal culture model of acquired epilepsy (AE) in vitro. We found that mitophagy levels were significantly increased in this model, as indicated by elevated LC3A/B ratios. FUNDC1 overexpression using lentiviral vectors enhanced mitophagy, whereas FUNDC1 down-regulation using lentiviral vectors impaired this process. Overexpression of FUNDC1 significantly decreased AE-induced superoxide anion, enhanced cell viability, reduced oxidative stress, and reduced neuronal apoptosis in epileptic hippocampus, while FUNDC1 down-regulation caused the opposite effect. In conclusion, we demonstrated that FUNDC1 is an important modulator of AE-induced neuronal apoptosis by controlling mitophagy function.
Collapse
|
45
|
Fan G, Li F, Wang P, Jin X, Liu R. Natural-Product-Mediated Autophagy in the Treatment of Various Liver Diseases. Int J Mol Sci 2022; 23:ijms232315109. [PMID: 36499429 PMCID: PMC9739742 DOI: 10.3390/ijms232315109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Autophagy is essential for the maintenance of hepatic homeostasis, and autophagic malfunction has been linked to the pathogenesis of substantial liver diseases. As a popular source of drug discovery, natural products have been used for centuries to effectively prevent the progression of various liver diseases. Emerging evidence has suggested that autophagy regulation is a critical mechanism underlying the therapeutic effects of these natural products. In this review, relevant studies are retrieved from scientific databases published between 2011 and 2022, and a novel scoring system was established to critically evaluate the completeness and scientific significance of the reviewed literature. We observed that numerous natural products were suggested to regulate autophagic flux. Depending on the therapeutic or pathogenic role autophagy plays in different liver diseases, autophagy-regulative natural products exhibit different therapeutic effects. According to our novel scoring system, in a considerable amount of the involved studies, convincing and reasonable evidence to elucidate the regulatory effects and underlying mechanisms of natural-product-mediated autophagy regulation was missing and needed further illustration. We highlight that autophagy-regulative natural products are valuable drug candidates with promising prospects for the treatment of liver diseases and deserve more attention in the future.
Collapse
Affiliation(s)
- Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Ping Wang
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xuejing Jin
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
- Correspondence: (X.J.); (R.L.); Tel.: +86-15632374331 (X.J.); +86-10-53912122 (R.L.)
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
- Correspondence: (X.J.); (R.L.); Tel.: +86-15632374331 (X.J.); +86-10-53912122 (R.L.)
| |
Collapse
|
46
|
Canonical and Noncanonical ER Stress-Mediated Autophagy Is a Bite the Bullet in View of Cancer Therapy. Cells 2022; 11:cells11233773. [PMID: 36497032 PMCID: PMC9738281 DOI: 10.3390/cells11233773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer cells adapt multiple mechanisms to counter intense stress on their way to growth. Tumor microenvironment stress leads to canonical and noncanonical endoplasmic stress (ER) responses, which mediate autophagy and are engaged during proteotoxic challenges to clear unfolded or misfolded proteins and damaged organelles to mitigate stress. In these conditions, autophagy functions as a cytoprotective mechanism in which malignant tumor cells reuse degraded materials to generate energy under adverse growing conditions. However, cellular protection by autophagy is thought to be complicated, contentious, and context-dependent; the stress response to autophagy is suggested to support tumorigenesis and drug resistance, which must be adequately addressed. This review describes significant findings that suggest accelerated autophagy in cancer, a novel obstacle for anticancer therapy, and discusses the UPR components that have been suggested to be untreatable. Thus, addressing the UPR or noncanonical ER stress components is the most effective approach to suppressing cytoprotective autophagy for better and more effective cancer treatment.
Collapse
|
47
|
Noguchi S, Shimizu S. Molecular mechanisms and biological roles of GOMED. FEBS J 2022; 289:7213-7220. [PMID: 34787961 DOI: 10.1111/febs.16281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023]
Abstract
We previously discovered an autophagy-like proteolysis mechanism that uses the Golgi membrane, namely, Golgi membrane-associated degradation (GOMED). Morphologically, GOMED resembles canonical autophagy, but the two mechanisms have different cellular functions, as they degrade different substrates and use different membrane sources. Furthermore, although the molecules involved partially overlap, the core molecules are completely different. GOMED preferentially degrades Golgi-trafficking proteins, including insulin granules in pancreatic β-cells and ceruloplasmin in neurons, and is involved in a wide variety of physiological events.
Collapse
Affiliation(s)
- Saori Noguchi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
48
|
Morishita H, Komatsu M. Role of autophagy in liver diseases. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Targeting autophagy regulation in NLRP3 inflammasome-mediated lung inflammation in COVID-19. Clin Immunol 2022; 244:109093. [PMID: 35944881 PMCID: PMC9356669 DOI: 10.1016/j.clim.2022.109093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated, which results in a cytokine storm at the late stage of COVID-19. Autophagy regulation is involved in the infection and replication of SARS-CoV-2 at the early stage and the inhibition of NLRP3 inflammasome-mediated lung inflammation at the late stage of COVID-19. Here, we discuss the autophagy regulation at different stages of COVID-19. Specifically, we highlight the therapeutic potential of autophagy activators in COVID-19 by inhibiting the NLRP3 inflammasome, thereby avoiding the cytokine storm. We hope this review provides enlightenment for the use of autophagy activators targeting the inhibition of the NLRP3 inflammasome, specifically the combinational therapy of autophagy modulators with the inhibitors of the NLRP3 inflammasome, antiviral drugs, or anti-inflammatory drugs in the fight against COVID-19.
Collapse
|
50
|
Kennedy A, Ren HY, Madden VJ, Cyr DM. Lysosome docking to WIPI1 rings and ER-connected phagophores occurs during DNAJB12- and GABARAP-dependent selective autophagy of misfolded P23H-rhodopsin. Mol Biol Cell 2022; 33:ar84. [PMID: 35704470 PMCID: PMC9582645 DOI: 10.1091/mbc.e21-10-0505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We report on how the endoplasmic reticulum (ER)-associated-autophagy pathway (ERAA) delivers P23H-rhodopsin (P23H-R) to the lysosome. P23H-R accumulates in an ERAD-resistant conformation that is stabilized in a detergent-soluble state by DNAJB12 and Hsp70. P23H-R, DNAJB12, and FIP200 colocalize in discrete foci that punctuate the rim of omegasome rings coated by WIPI1. Loss of DNAJB12 function prevents the association of P23H-R containing ER tubules with omegasomes. P23H-R tubules thread through the wall of WIPI1 rings into their central cavity. Transfer of P23H-R from ER-connected phagophores to lysosomes requires GABARAP and is associated with the transient docking of lysosomes to WIPI1 rings. After departure from WIPI1 rings, new patches of P23H-R are seen in the membranes of lysosomes. The absence of GABARAP prevents transfer of P23H-R from phagophores to lysosomes without interfering with docking. These data identify lysosome docking to omegasomes as an important step in the DNAJB12- and GABARAP-dependent autophagic disposal of dominantly toxic P23H-R.
Collapse
Affiliation(s)
- Andrew Kennedy
- Department of Cell Biology and Physiology, School of Medicine, and
| | - Hong Yu Ren
- Department of Cell Biology and Physiology, School of Medicine, and
| | - Victoria J. Madden
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Douglas M. Cyr
- Department of Cell Biology and Physiology, School of Medicine, and,*Address correspondence to: Douglas M. Cyr ()
| |
Collapse
|