1
|
Büki G, Antal G, Bene J. Rare Germline Variants in the Adenomatous Polyposis Coli Gene Associated with Dental and Osseous Anomalies. Int J Mol Sci 2024; 25:8189. [PMID: 39125758 PMCID: PMC11312143 DOI: 10.3390/ijms25158189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
APC is a tumor suppressor gene that exerts its effect through the regulation of the Wnt signaling pathway. Loss of function mutations of the gene are associated with familial adenomatous polyposis (FAP). Early diagnosis in FAP patients is essential to prevent the development of colorectal cancer. Extraintestinal manifestations often precede the formation of the polyposis; therefore, these manifestations may serve as a clinical indicator for the condition. The aim of this study was to assess genotype-phenotype associations between the location of APC mutations and various extraintestinal features, mainly focusing on osseous and dental anomalies. Analyses of our cases and the mutations available in the literature with these manifestations revealed that mutations in the N-terminal region (amino acids 1-~1000) of the protein are more frequently associated with only osseous anomalies, whereas dental manifestations are more prevalent in mutations in the middle region (amino acids 1000-~2100). In addition, supernumerary teeth were found to be the most common dental feature. Since dental abnormalities often precede intestinal polyposis, dentists have a crucial role in the early identification of patients at risk.
Collapse
Affiliation(s)
- Gergely Büki
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Gréta Antal
- Department of Dentistry, Oral and Maxillofacial Surgery, Clinical Center, Medical School, University of Pécs, 7623 Pécs, Hungary;
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary;
| |
Collapse
|
2
|
Wojnacki J, Quassollo G, Bordenave MD, Unsain N, Martínez GF, Szalai AM, Pertz O, Gundersen GG, Bartolini F, Stefani FD, Cáceres A, Bisbal M. Dual spatio-temporal regulation of axon growth and microtubule dynamics by RhoA signaling pathways. J Cell Sci 2024; 137:jcs261970. [PMID: 38910449 DOI: 10.1242/jcs.261970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024] Open
Abstract
RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only an inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localized in growth cones of undifferentiated neurites, whereas in developing axons it displayed a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevented axon initiation but had no effect on elongation, whereas formin inhibition reduced axon extension without significantly altering initial outgrowth. In addition, RhoA-mDia signaling promoted axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK signaling, which restrained growth cone microtubule assembly and protrusion.
Collapse
Affiliation(s)
- José Wojnacki
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Gonzalo Quassollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Martín D Bordenave
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Nicolás Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| | - Gaby F Martínez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - Alfredo Cáceres
- Centro Investigación Medicina Traslacional Severo R Amuchástegui (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Av. Naciones Unidas 440, Córdoba 5016, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| |
Collapse
|
3
|
Kim JY, Hwang HG, Jeon HJ, Kim SI, Kim MK, Kim JY. ARHGEF5 binds Drebrin and affects α-tubulin acetylation to direct neuronal morphogenesis and migration during mouse brain development. Front Mol Neurosci 2024; 17:1421932. [PMID: 38932934 PMCID: PMC11199874 DOI: 10.3389/fnmol.2024.1421932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Rho guanine nucleotide exchange factors (Rho GEFs) activate Rho GTPases, which act as molecular switches regulating various essential cellular functions. This study investigated the role of ARHGEF5, a Rho GEF known for its involvement in cell migration and invasion processes, in the context of brain development. We found that ARHGEF5 is essential for dendrite development during the early stages of neuronal growth. We also discovered that ARHGEF5 binds to Drebrin E, which is vital for coordinating actin and microtubule dynamics, and facilitates the interaction between Drebrin E and Cyclin-dependent kinase 5, which phosphorylates Drebrin E. Notably, ARHGEF5 deficiency resulted in a decrease in acetylated α-tubulin levels, and the expression of an α-tubulin acetylation mimetic mutant (K40Q) rescued the defects in dendrite development and neuronal migration, suggesting ARHGEF5's role in modulating microtubule stability. Additionally, ARHGEF5 was shown to influence Golgi positioning in the leading processes of migrating cortical neurons during brain development. Our study suggests that ARHGEF5 plays a crucial role in integrating cytoskeletal dynamics with neuronal morphogenesis and migration processes during brain development.
Collapse
Affiliation(s)
- Ji-ye Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hee-Gon Hwang
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hye-Jin Jeon
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Seung Il Kim
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Min-kyu Kim
- Divison of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Tobin MP, Pfeifer CR, Zhu PK, Hayes BH, Wang M, Vashisth M, Xia Y, Phan SH, Belt SA, Irianto J, Discher DE. Differences in cell shape, motility, and growth reflect chromosomal number variations that can be visualized with live-cell ChReporters. Mol Biol Cell 2023; 34:br19. [PMID: 37903225 PMCID: PMC10848937 DOI: 10.1091/mbc.e23-06-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
Chromosome numbers often change dynamically in tumors and cultured cells, which complicates therapy as well as understanding genotype-mechanotype relationships. Here we use a live-cell "ChReporter" method to identify cells with a single chromosomal loss in efforts to better understand differences in cell shape, motility, and growth. We focus on a standard cancer line and first show clonal populations that retain the ChReporter exhibit large differences in cell and nuclear morphology as well as motility. Phenotype metrics follow simple rules, including migratory persistence scaling with speed, and cytoskeletal differences are evident from drug responses, imaging, and single-cell RNA sequencing. However, mechanotype-genotype relationships between fluorescent ChReporter-positive clones proved complex and motivated comparisons of clones that differ only in loss or retention of a Chromosome-5 ChReporter. When lost, fluorescence-null cells show low expression of Chromosome-5 genes, including a key tumor suppressor APC that regulates microtubules and proliferation. Colonies are compact, nuclei are rounded, and cells proliferate more, with drug results implicating APC, and patient survival data indicating an association in multiple tumor-types. Visual identification of genotype with ChReporters can thus help clarify mechanotype and mechano-evolution.
Collapse
Affiliation(s)
- Michael P. Tobin
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | - Brandon H. Hayes
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Mai Wang
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Manasvita Vashisth
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Yuntao Xia
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Steven H. Phan
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Susanna A. Belt
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Jerome Irianto
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Dennis E. Discher
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
5
|
Yue Y, Hotta T, Higaki T, Verhey KJ, Ohi R. Microtubule detyrosination by VASH1/SVBP is regulated by the conformational state of tubulin in the lattice. Curr Biol 2023; 33:4111-4123.e7. [PMID: 37716348 PMCID: PMC10592207 DOI: 10.1016/j.cub.2023.07.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/18/2023]
Abstract
Tubulin, a heterodimer of α- and β-tubulin, is a GTPase that assembles into microtubule (MT) polymers whose dynamic properties are intimately coupled to nucleotide hydrolysis. In cells, the organization and dynamics of MTs are further tuned by post-translational modifications (PTMs), which control the ability of MT-associated proteins (MAPs) and molecular motors to engage MTs. Detyrosination is a PTM of α-tubulin, wherein its C-terminal tyrosine residue is enzymatically removed by either the vasohibin (VASH) or MT-associated tyrosine carboxypeptidase (MATCAP) peptidases. How these enzymes generate specific patterns of MT detyrosination in cells is not known. Here, we use a novel antibody-based probe to visualize the formation of detyrosinated MTs in real time and employ single-molecule imaging of VASH1 bound to its regulatory partner small-vasohibin binding protein (SVBP) to understand the process of MT detyrosination in vitro and in cells. We demonstrate that the activity, but not binding, of VASH1/SVBP is much greater on mimics of guanosine triphosphate (GTP)-MTs than on guanosine diphosphate (GDP)-MTs. Given emerging data showing that tubulin subunits in GTP-MTs are in expanded conformation relative to tubulin subunits in GDP-MTs, we reasoned that the lattice conformation of MTs is a key factor that gates the activity of VASH1/SVBP. We show that Taxol, a drug known to expand the MT lattice, promotes MT detyrosination and that CAMSAP2 and CAMSAP3 are two MAPs that spatially regulate detyrosination in cells. Collectively, our work shows that VASH1/SVBP detyrosination is regulated by the conformational state of tubulin in the MT lattice and that this is spatially determined in cells by the activity of MAPs.
Collapse
Affiliation(s)
- Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; International Research Organization in Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
7
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
8
|
Lavrsen K, Rajendraprasad G, Leda M, Eibes S, Vitiello E, Katopodis V, Goryachev AB, Barisic M. Microtubule detyrosination drives symmetry breaking to polarize cells for directed cell migration. Proc Natl Acad Sci U S A 2023; 120:e2300322120. [PMID: 37216553 PMCID: PMC10235987 DOI: 10.1073/pnas.2300322120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
To initiate directed movement, cells must become polarized, establishing a protrusive leading edge and a contractile trailing edge. This symmetry-breaking process involves reorganization of cytoskeleton and asymmetric distribution of regulatory molecules. However, what triggers and maintains this asymmetry during cell migration remains largely elusive. Here, we established a micropatterning-based 1D motility assay to investigate the molecular basis of symmetry breaking required for directed cell migration. We show that microtubule (MT) detyrosination drives cell polarization by directing kinesin-1-based transport of the adenomatous polyposis coli (APC) protein to cortical sites. This is essential for the formation of cell's leading edge during 1D and 3D cell migration. These data, combined with biophysical modeling, unveil a key role for MT detyrosination in the generation of a positive feedback loop linking MT dynamics and kinesin-1-based transport. Thus, symmetry breaking during cell polarization relies on a feedback loop driven by MT detyrosination that supports directed cell migration.
Collapse
Affiliation(s)
- Kirstine Lavrsen
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Marcin Leda
- Centre for Synthetic and Systems Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Susana Eibes
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Elisa Vitiello
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Vasileios Katopodis
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Andrew B. Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| |
Collapse
|
9
|
Innocenti M. Investigating Mammalian Formins with SMIFH2 Fifteen Years in: Novel Targets and Unexpected Biology. Int J Mol Sci 2023; 24:ijms24109058. [PMID: 37240404 DOI: 10.3390/ijms24109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The mammalian formin family comprises fifteen multi-domain proteins that regulate actin dynamics and microtubules in vitro and in cells. Evolutionarily conserved formin homology (FH) 1 and 2 domains allow formins to locally modulate the cell cytoskeleton. Formins are involved in several developmental and homeostatic processes, as well as human diseases. However, functional redundancy has long hampered studies of individual formins with genetic loss-of-function approaches and prevents the rapid inhibition of formin activities in cells. The discovery of small molecule inhibitor of formin homology 2 domains (SMIFH2) in 2009 was a disruptive change that provided a powerful chemical tool to explore formins' functions across biological scales. Here, I critically discuss the characterization of SMIFH2 as a pan-formin inhibitor, as well as growing evidence of unexpected off-target effects. By collating the literature and information hidden in public repositories, outstanding controversies and fundamental open questions about the substrates and mechanism of action of SMIFH2 emerge. Whenever possible, I propose explanations for these discrepancies and roadmaps to address the paramount open questions. Furthermore, I suggest that SMIFH2 be reclassified as a multi-target inhibitor for its appealing activities on proteins involved in pathological formin-dependent processes. Notwithstanding all drawbacks and limitations, SMIFH2 will continue to prove useful in studying formins in health and disease in the years to come.
Collapse
Affiliation(s)
- Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
10
|
Atkins M, Nicol X, Fassier C. Microtubule remodelling as a driving force of axon guidance and pruning. Semin Cell Dev Biol 2023; 140:35-53. [PMID: 35710759 DOI: 10.1016/j.semcdb.2022.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Accepted: 05/31/2022] [Indexed: 01/28/2023]
Abstract
The establishment of neuronal connectivity relies on the microtubule (MT) cytoskeleton, which provides mechanical support, roads for axonal transport and mediates signalling events. Fine-tuned spatiotemporal regulation of MT functions by tubulin post-translational modifications and MT-associated proteins is critical for the coarse wiring and subsequent refinement of neuronal connectivity. The defective regulation of these processes causes a wide range of neurodevelopmental disorders associated with connectivity defects. This review focuses on recent studies unravelling how MT composition, post-translational modifications and associated proteins influence MT functions in axon guidance and/or pruning to build functional neuronal circuits. We here summarise experimental evidence supporting the key role of this network as a driving force for growth cone steering and branch-specific axon elimination. We further provide a global overview of the MT-interactors that tune developing axon behaviours, with a special emphasis on their emerging versatility in the regulation of MT dynamics/structure. Recent studies establishing the key and highly selective role of the tubulin code in the regulation of MT functions in axon pathfinding are also reported. Finally, our review highlights the emerging molecular links between these MT regulation processes and guidance signals that wire the nervous system.
Collapse
Affiliation(s)
- Melody Atkins
- INSERM, UMR-S 1270, Institut du Fer à Moulin, Sorbonne Université, F-75005 Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
| | - Coralie Fassier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France.
| |
Collapse
|
11
|
Gu X, Jia C, Wang J. Advances in Understanding the Molecular Mechanisms of Neuronal Polarity. Mol Neurobiol 2023; 60:2851-2870. [PMID: 36738353 DOI: 10.1007/s12035-023-03242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
The establishment and maintenance of neuronal polarity are important for neural development and function. Abnormal neuronal polarity establishment commonly leads to a variety of neurodevelopmental disorders. Over the past three decades, with the continuous development and improvement of biological research methods and techniques, we have made tremendous progress in the understanding of the molecular mechanisms of neuronal polarity establishment. The activity of positive and negative feedback signals and actin waves are both essential in this process. They drive the directional transport and aggregation of key molecules of neuronal polarity, promote the spatiotemporal regulation of ordered and coordinated interactions of actin filaments and microtubules, stimulate the specialization and growth of axons, and inhibit the formation of multiple axons. In this review, we focus on recent advances in these areas, in particular the important findings about neuronal polarity in two classical models, in vitro primary hippocampal/cortical neurons and in vivo cortical pyramidal neurons, and discuss our current understanding of neuronal polarity..
Collapse
Affiliation(s)
- Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Gan NS, Oziębło D, Skarżyński H, Ołdak M. Monogenic Causes of Low-Frequency Non-Syndromic Hearing Loss. Audiol Neurootol 2023; 28:327-337. [PMID: 37121227 DOI: 10.1159/000529464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/23/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Low-frequency non-syndromic hearing loss (LFNSHL) is a rare form of hearing loss (HL). It is defined as HL at low frequencies (≤2,000 Hz) resulting in a characteristic ascending audiogram. LFNSHL is usually diagnosed postlingually and is progressive, leading to HL affecting other frequencies as well. Sometimes it occurs with tinnitus. Around half of the diagnosed prelingual HL cases have a genetic cause and it is usually inherited in an autosomal recessive mode. Postlingual HL caused by genetic changes generally has an autosomal dominant pattern of inheritance and its incidence remains unknown. SUMMARY To date, only a handful of genes have been found as causing LFNSHL: well-established WFS1 and, reported in some cases, DIAPH1, MYO7A, TNC, and CCDC50 (respectively, responsible for DFNA6/14/38, DFNA1, DFNA11, DFNA56, and DFNA44). In this review, we set out audiological phenotypes, causative genetic changes, and molecular mechanisms leading to the development of LFNSHL. KEY MESSAGES LFNSHL is most commonly caused by pathogenic variants in the WFS1 gene, but it is also important to consider changes in other HL genes, which may result in similar audiological phenotype.
Collapse
Affiliation(s)
- Nina Sara Gan
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| |
Collapse
|
13
|
Rodgers NC, Lawrence EJ, Sawant AV, Efimova N, Gonzalez-Vasquez G, Hickman TT, Kaverina I, Zanic M. CLASP2 facilitates dynamic actin filament organization along the microtubule lattice. Mol Biol Cell 2023; 34:br3. [PMID: 36598814 PMCID: PMC10011731 DOI: 10.1091/mbc.e22-05-0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Coordination between the microtubule and actin networks is essential for cell motility, neuronal growth cone guidance, and wound healing. Members of the CLASP (cytoplasmic linker-associated protein) family of proteins have been implicated in the cytoskeletal cross-talk between microtubules and actin networks; however, the molecular mechanisms underlying the role of CLASP in cytoskeletal coordination are unclear. Here, we investigate CLASP2α's cross-linking function with microtubules and F-actin. Our results demonstrate that CLASP2α cross-links F-actin to the microtubule lattice in vitro. We find that the cross-linking ability is retained by L-TOG2-S, a minimal construct containing the TOG2 domain and serine-arginine-rich region of CLASP2α. Furthermore, CLASP2α promotes the accumulation of multiple actin filaments along the microtubule, supporting up to 11 F-actin landing events on a single microtubule lattice region. CLASP2α also facilitates the dynamic organization of polymerizing actin filaments templated by the microtubule network, with F-actin forming bridges between individual microtubules. Finally, we find that depletion of CLASPs in vascular smooth muscle cells results in disorganized actin fibers and reduced coalignment of actin fibers with microtubules, suggesting that CLASP and microtubules contribute to higher-order actin structures. Taken together, our results indicate that CLASP2α can directly cross-link F-actin to microtubules and that this microtubule-CLASP-actin interaction may influence overall cytoskeletal organization in cells.
Collapse
Affiliation(s)
- N. C. Rodgers
- Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, TN 37232
| | - E. J. Lawrence
- Department of Cell and Development Biology, Vanderbilt University, Nashville, TN 37232
| | - A. V. Sawant
- Department of Cell and Development Biology, Vanderbilt University, Nashville, TN 37232
| | - N. Efimova
- Department of Cell and Development Biology, Vanderbilt University, Nashville, TN 37232
| | - G. Gonzalez-Vasquez
- Interdisciplinary Graduate Program, Vanderbilt University, Nashville, TN 37232
| | - T. T. Hickman
- Quantitative and Chemical Biology Graduate Program, Vanderbilt University, Nashville, TN 37232
| | - I. Kaverina
- Department of Cell and Development Biology, Vanderbilt University, Nashville, TN 37232
| | - M. Zanic
- Department of Cell and Development Biology, Vanderbilt University, Nashville, TN 37232
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
14
|
Ahangar P, Cowin AJ. Reforming the Barrier: The Role of Formins in Wound Repair. Cells 2022; 11:cells11182779. [PMID: 36139355 PMCID: PMC9496773 DOI: 10.3390/cells11182779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
The restoration of an intact epidermal barrier after wound injury is the culmination of a highly complex and exquisitely regulated physiological process involving multiple cells and tissues, overlapping dynamic events and protein synthesis and regulation. Central to this process is the cytoskeleton, a system of intracellular proteins that are instrumental in regulating important processes involved in wound repair including chemotaxis, cytokinesis, proliferation, migration, and phagocytosis. One highly conserved family of cytoskeletal proteins that are emerging as major regulators of actin and microtubule nucleation, polymerization, and stabilization are the formins. The formin family includes 15 different proteins categorized into seven subfamilies based on three formin homology domains (FH1, FH2, and FH3). The formins themselves are regulated in different ways including autoinhibition, activation, and localization by a range of proteins, including Rho GTPases. Herein, we describe the roles and effects of the formin family of cytoskeletal proteins on the fundamental process of wound healing and highlight recent advances relating to their important functions, mechanisms, and regulation at the molecular and cellular levels.
Collapse
|
15
|
Triantopoulou N, Vidaki M. Local mRNA translation and cytoskeletal reorganization: Mechanisms that tune neuronal responses. Front Mol Neurosci 2022; 15:949096. [PMID: 35979146 PMCID: PMC9376447 DOI: 10.3389/fnmol.2022.949096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.
Collapse
Affiliation(s)
- Nikoletta Triantopoulou
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marina Vidaki
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
- *Correspondence: Marina Vidaki,
| |
Collapse
|
16
|
Müller M, Gorek L, Kamm N, Jacob R. Manipulation of the Tubulin Code Alters Directional Cell Migration and Ciliogenesis. Front Cell Dev Biol 2022; 10:901999. [PMID: 35903547 PMCID: PMC9315229 DOI: 10.3389/fcell.2022.901999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Conjunction of epithelial cells into monolayer sheets implies the ability to migrate and to undergo apicobasal polarization. Both processes comprise reorganization of cytoskeletal elements and rearrangements of structural protein interactions. We modulated expression of tubulin tyrosin ligase (TTL), the enzyme that adds tyrosine to the carboxy terminus of detyrosinated α-tubulin, to study the role of tubulin detyrosination/-tyrosination in the orientation of cell motility and in epithelial morphogenesis. Oriented cell migration and the organization of focal adhesions significantly lose directionality with diminishing amounts of microtubules enriched in detyrosinated tubulin. On the other hand, increasing quantities of detyrosinated tubulin results in faster plus end elongation of microtubules in migrating and in polarized epithelial cells. These plus ends are decorated by the plus end binding protein 1 (EB1), which mediates interaction between microtubules enriched in detyrosinated tubulin and the integrin-ILK complex at focal adhesions. EB1 accumulates at the apical cell pole at the base of the primary cilium following apicobasal polarization. Polarized cells almost devoid of detyrosinated tubulin form stunted primary cilia and multiluminal cysts in 3D-matrices. We conclude that the balance between detyrosinated and tyrosinated tubulin alters microtubule dynamics, affects the orientation of focal adhesions and determines the organization of primary cilia on epithelial cells.
Collapse
Affiliation(s)
- Manuel Müller
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Lena Gorek
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | - Natalia Kamm
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
- *Correspondence: Ralf Jacob,
| |
Collapse
|
17
|
Tilburg J, Becker IC, Italiano JE. Don't you forget about me(gakaryocytes). Blood 2022; 139:3245-3254. [PMID: 34582554 PMCID: PMC9164737 DOI: 10.1182/blood.2020009302] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Platelets (small, anucleate cell fragments) derive from large precursor cells, megakaryocytes (MKs), that reside in the bone marrow. MKs emerge from hematopoietic stem cells in a complex differentiation process that involves cytoplasmic maturation, including the formation of the demarcation membrane system, and polyploidization. The main function of MKs is the generation of platelets, which predominantly occurs through the release of long, microtubule-rich proplatelets into vessel sinusoids. However, the idea of a 1-dimensional role of MKs as platelet precursors is currently being questioned because of advances in high-resolution microscopy and single-cell omics. On the one hand, recent findings suggest that proplatelet formation from bone marrow-derived MKs is not the only mechanism of platelet production, but that it may also occur through budding of the plasma membrane and in distant organs such as lung or liver. On the other hand, novel evidence suggests that MKs not only maintain physiological platelet levels but further contribute to bone marrow homeostasis through the release of extracellular vesicles or cytokines, such as transforming growth factor β1 or platelet factor 4. The notion of multitasking MKs was reinforced in recent studies by using single-cell RNA sequencing approaches on MKs derived from adult and fetal bone marrow and lungs, leading to the identification of different MK subsets that appeared to exhibit immunomodulatory or secretory roles. In the following article, novel insights into the mechanisms leading to proplatelet formation in vitro and in vivo will be reviewed and the hypothesis of MKs as immunoregulatory cells will be critically discussed.
Collapse
Affiliation(s)
- Julia Tilburg
- Vascular Biology Program, Boston Children's Hospital, Boston, MA
| | | | | |
Collapse
|
18
|
Szikora S, Görög P, Mihály J. The Mechanisms of Thin Filament Assembly and Length Regulation in Muscles. Int J Mol Sci 2022; 23:5306. [PMID: 35628117 PMCID: PMC9140763 DOI: 10.3390/ijms23105306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The actin containing tropomyosin and troponin decorated thin filaments form one of the crucial components of the contractile apparatus in muscles. The thin filaments are organized into densely packed lattices interdigitated with myosin-based thick filaments. The crossbridge interactions between these myofilaments drive muscle contraction, and the degree of myofilament overlap is a key factor of contractile force determination. As such, the optimal length of the thin filaments is critical for efficient activity, therefore, this parameter is precisely controlled according to the workload of a given muscle. Thin filament length is thought to be regulated by two major, but only partially understood mechanisms: it is set by (i) factors that mediate the assembly of filaments from monomers and catalyze their elongation, and (ii) by factors that specify their length and uniformity. Mutations affecting these factors can alter the length of thin filaments, and in human cases, many of them are linked to debilitating diseases such as nemaline myopathy and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Péter Görög
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Doctoral School of Multidisciplinary Medical Science, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
19
|
Wu YFO, Miller RA, Alberico EO, Huang YAP, Bryant AT, Nelson NT, Jonasson EM, Goodson HV. The CLIP-170 N-terminal domain binds directly to both F-actin and microtubules in a mutually exclusive manner. J Biol Chem 2022; 298:101820. [PMID: 35283190 PMCID: PMC9062740 DOI: 10.1016/j.jbc.2022.101820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022] Open
Abstract
The cooperation between the actin and microtubule (MT) cytoskeletons is important for cellular processes such as cell migration and muscle cell development. However, a full understanding of how this cooperation occurs has yet to be sufficiently developed. The MT plus-end tracking protein CLIP-170 has been implicated in this actin-MT coordination by associating with the actin-binding signaling protein IQGAP1 and by promoting actin polymerization through binding with formins. Thus far, the interactions of CLIP-170 with actin were assumed to be indirect. Here, we demonstrate using high-speed cosedimentation assays that CLIP-170 can bind to filamentous actin (F-actin) directly. We found that the affinity of this binding is relatively weak but strong enough to be significant in the actin-rich cortex, where actin concentrations can be extremely high. Using CLIP-170 fragments and mutants, we show that the direct CLIP-170-F-actin interaction is independent of the FEED domain, the region that mediates formin-dependent actin polymerization, and that the CLIP-170 F-actin-binding region overlaps with the MT-binding region. Consistent with these observations, in vitro competition assays indicate that CLIP-170-F-actin and CLIP-170-MT interactions are mutually exclusive. Taken together, these observations lead us to speculate that direct CLIP-170-F-actin interactions may function to reduce the stability of MTs in actin-rich regions of the cell, as previously proposed for MT end-binding protein 1.
Collapse
Affiliation(s)
- Yueh-Fu O Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel A Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Emily O Alberico
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yaobing A P Huang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Annamarie T Bryant
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nora T Nelson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Erin M Jonasson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Holly V Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
20
|
Molecular Dissection of DAAM Function during Axon Growth in Drosophila Embryonic Neurons. Cells 2022; 11:cells11091487. [PMID: 35563792 PMCID: PMC9102401 DOI: 10.3390/cells11091487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Axonal growth is mediated by coordinated changes of the actin and microtubule (MT) cytoskeleton. Ample evidence suggests that members of the formin protein family are involved in the coordination of these cytoskeletal rearrangements, but the molecular mechanisms of the formin-dependent actin–microtubule crosstalk remains largely elusive. Of the six Drosophila formins, DAAM was shown to play a pivotal role during axonal growth in all stages of nervous system development, while FRL was implicated in axonal development in the adult brain. Here, we aimed to investigate the potentially redundant function of these two formins, and we attempted to clarify which molecular activities are important for axonal growth. We used a combination of genetic analyses, cellular assays and biochemical approaches to demonstrate that the actin-processing activity of DAAM is indispensable for axonal growth in every developmental condition. In addition, we identified a novel MT-binding motif within the FH2 domain of DAAM, which is required for proper growth and guidance of the mushroom body axons, while being dispensable during embryonic axon development. Together, these data suggest that DAAM is the predominant formin during axonal growth in Drosophila, and highlight the contribution of multiple formin-mediated mechanisms in cytoskeleton coordination during axonal growth.
Collapse
|
21
|
LPA suppresses T cell function by altering the cytoskeleton and disrupting immune synapse formation. Proc Natl Acad Sci U S A 2022; 119:e2118816119. [PMID: 35394866 PMCID: PMC9169816 DOI: 10.1073/pnas.2118816119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cancer and chronic infections often increase levels of the bioactive lipid, lysophosphatidic acid (LPA), that we have demonstrated acts as an inhibitory ligand upon binding LPAR5 on CD8 T cells, suppressing cytotoxic activity and tumor control. This study, using human and mouse primary T lymphocytes, reveals how LPA disrupts antigen-specific CD8 T cell:target cell immune synapse (IS) formation and T cell function via competing for cytoskeletal regulation. Specifically, we find upon antigen-specific T cell:target cell formation, IP3R1 localizes to the IS by a process dependent on mDia1 and actin and microtubule polymerization. LPA not only inhibited IP3R1 from reaching the IS but also altered T cell receptor (TCR)–induced localization of RhoA and mDia1 impairing F-actin accumulation and altering the tubulin code. Consequently, LPA impeded calcium store release and IS-directed cytokine secretion. Thus, targeting LPA signaling in chronic inflammatory conditions may rescue T cell function and promote antiviral and antitumor immunity.
Collapse
|
22
|
Fang X, Svitkina TM. Adenomatous polyposis coli (APC) in cell migration. Eur J Cell Biol 2022; 101:151228. [DOI: 10.1016/j.ejcb.2022.151228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
|
23
|
Zhang W, Ciorraga M, Mendez P, Retana D, Boumedine-Guignon N, Achón B, Russier M, Debanne D, Garrido JJ. Formin Activity and mDia1 Contribute to Maintain Axon Initial Segment Composition and Structure. Mol Neurobiol 2021; 58:6153-6169. [PMID: 34458961 PMCID: PMC8639558 DOI: 10.1007/s12035-021-02531-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/11/2021] [Indexed: 10/29/2022]
Abstract
The axon initial segment (AIS) is essential for maintaining neuronal polarity, modulating protein transport into the axon, and action potential generation. These functions are supported by a distinctive actin and microtubule cytoskeleton that controls axonal trafficking and maintains a high density of voltage-gated ion channels linked by scaffold proteins to the AIS cytoskeleton. However, our knowledge of the mechanisms and proteins involved in AIS cytoskeleton regulation to maintain or modulate AIS structure is limited. In this context, formins play a significant role in the modulation of actin and microtubules. We show that pharmacological inhibition of formins modifies AIS actin and microtubule characteristics in cultured hippocampal neurons, reducing F-actin density and decreasing microtubule acetylation. Moreover, formin inhibition diminishes sodium channels, ankyrinG and βIV-spectrin AIS density, and AIS length, in cultured neurons and brain slices, accompanied by decreased neuronal excitability. We show that genetic downregulation of the mDia1 formin by interference RNAs also decreases AIS protein density and shortens AIS length. The ankyrinG decrease and AIS shortening observed in pharmacologically inhibited neurons and neuron-expressing mDia1 shRNAs were impaired by HDAC6 downregulation or EB1-GFP expression, known to increase microtubule acetylation or stability. However, actin stabilization only partially prevented AIS shortening without affecting AIS protein density loss. These results suggest that mDia1 maintain AIS composition and length contributing to the stability of AIS microtubules.
Collapse
Affiliation(s)
- Wei Zhang
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- Present Address: College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | | | | | | | | - Michaël Russier
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015 Marseille, France
| | - Dominique Debanne
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015 Marseille, France
| | - Juan José Garrido
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- Alzheimer’s Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
24
|
GSK3 as a Regulator of Cytoskeleton Architecture: Consequences for Health and Disease. Cells 2021; 10:cells10082092. [PMID: 34440861 PMCID: PMC8393567 DOI: 10.3390/cells10082092] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) was initially isolated as a critical protein in energy metabolism. However, subsequent studies indicate that GSK-3 is a multi-tasking kinase that links numerous signaling pathways in a cell and plays a vital role in the regulation of many aspects of cellular physiology. As a regulator of actin and tubulin cytoskeleton, GSK3 influences processes of cell polarization, interaction with the extracellular matrix, and directional migration of cells and their organelles during the growth and development of an animal organism. In this review, the roles of GSK3–cytoskeleton interactions in brain development and pathology, migration of healthy and cancer cells, and in cellular trafficking of mitochondria will be discussed.
Collapse
|
25
|
Rabbolini D, Liang HPH, Morel-Kopp MC, Connor D, Whittaker S, Dunkley S, Donikian D, Kondo M, Chen W, Stevenson WS, Campbell H, Joseph J, Ward C, Brighton T, Chen VM. Building platelet phenotypes: diaphanous-related formin 1 (DIAPH1)-related disorder. Platelets 2021; 33:432-442. [PMID: 34223798 DOI: 10.1080/09537104.2021.1937593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Variants of the Diaphanous-Related Formin 1 (DIAPH-1) gene have recently been reported causing inherited macrothrombocytopenia. The essential/"diagnostic" characteristics associated with the disorder are emerging; however, robust and complete criteria are not established. Here, we report the first cases of DIAPH1-related disorder in Australia caused by the autosomal dominant gain-of-function DIAPH1 R1213X variant formed by truncation of the protein within the diaphanous auto-regulatory domain (DAD) with loss of regulatory motifs responsible for autoinhibitory interactions within the DIAPH1 protein. We affirm phenotypic changes induced by the DIAPH1 R1213X variant to include macrothrombocytopenia, early-onset progressive sensorineural hearing loss, and mild asymptomatic neutropenia. High-resolution microscopy confirms perturbations of cytoskeletal dynamics caused by the DIAPH1 variant and we extend the repertoire of changes generated by this variant to include alteration of procoagulant platelet formation and possible dental anomalies.
Collapse
Affiliation(s)
- David Rabbolini
- Department of Haematology, Lismore Base Hospital, Lismore, NSW, Australia.,Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Hai Po Helena Liang
- Platelets, Thrombosis and Cancer Research Laboratory, ANZAC Research Institute and Concord Repatriation Hospital, Concord, NSW, Australia
| | - Marie-Christine Morel-Kopp
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - David Connor
- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Shane Whittaker
- Platelets, Thrombosis and Cancer Research Laboratory, ANZAC Research Institute and Concord Repatriation Hospital, Concord, NSW, Australia
| | - Scott Dunkley
- Department of Haematology, The Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Dea Donikian
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, Australia.,Haematology NSW Health Pathology Randwick, Sydney, NSW, Australia
| | - Mayuko Kondo
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, Australia.,Haematology NSW Health Pathology Randwick, Sydney, NSW, Australia
| | - Walter Chen
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - William S Stevenson
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Heather Campbell
- Platelets, Thrombosis and Cancer Research Laboratory, ANZAC Research Institute and Concord Repatriation Hospital, Concord, NSW, Australia
| | - Joanne Joseph
- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.,Department of Haematology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Christopher Ward
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Timothy Brighton
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, Australia.,Haematology NSW Health Pathology Randwick, Sydney, NSW, Australia
| | - Vivien M Chen
- Platelets, Thrombosis and Cancer Research Laboratory, ANZAC Research Institute and Concord Repatriation Hospital, Concord, NSW, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, NSW, Australia
| |
Collapse
|
26
|
Noe O, Filipiak L, Royfman R, Campbell A, Lin L, Hamouda D, Stanbery L, Nemunaitis J. Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 2021; 15:534. [PMID: 34267890 PMCID: PMC8256374 DOI: 10.4081/oncol.2021.534] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APCmutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the b-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3b, and CK1. In the event of an APC mutation, b-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.
Collapse
Affiliation(s)
- Olivia Noe
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Louis Filipiak
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Rachel Royfman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Austin Campbell
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
27
|
Zhang L, Smertenko T, Fahy D, Koteyeva N, Moroz N, Kuchařová A, Novák D, Manoilov E, Smertenko P, Galva C, Šamaj J, Kostyukova AS, Sedbrook JC, Smertenko A. Analysis of formin functions during cytokinesis using specific inhibitor SMIFH2. PLANT PHYSIOLOGY 2021; 186:945-963. [PMID: 33620500 PMCID: PMC8195507 DOI: 10.1093/plphys/kiab085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 05/10/2023]
Abstract
The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.
Collapse
Affiliation(s)
- Laining Zhang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Nuria Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg 197376, Russia
| | - Natalia Moroz
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Anna Kuchařová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Dominik Novák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Eduard Manoilov
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Petro Smertenko
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Charitha Galva
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Alla S. Kostyukova
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - John C. Sedbrook
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
28
|
Barisic M, Rajendraprasad G, Steblyanko Y. The metaphase spindle at steady state - Mechanism and functions of microtubule poleward flux. Semin Cell Dev Biol 2021; 117:99-117. [PMID: 34053864 DOI: 10.1016/j.semcdb.2021.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
The mitotic spindle is a bipolar cellular structure, built from tubulin polymers, called microtubules, and interacting proteins. This macromolecular machine orchestrates chromosome segregation, thereby ensuring accurate distribution of genetic material into the two daughter cells during cell division. Powered by GTP hydrolysis upon tubulin polymerization, the microtubule ends exhibit a metastable behavior known as the dynamic instability, during which they stochastically switch between the growth and shrinkage phases. In the context of the mitotic spindle, dynamic instability is furthermore regulated by microtubule-associated proteins and motor proteins, which enables the spindle to undergo profound changes during mitosis. This highly dynamic behavior is essential for chromosome capture and congression in prometaphase, as well as for chromosome alignment to the spindle equator in metaphase and their segregation in anaphase. In this review we focus on the mechanisms underlying microtubule dynamics and sliding and their importance for the maintenance of shape, structure and dynamics of the metaphase spindle. We discuss how these spindle properties are related to the phenomenon of microtubule poleward flux, highlighting its highly cooperative molecular basis and role in keeping the metaphase spindle at a steady state.
Collapse
Affiliation(s)
- Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Yulia Steblyanko
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark
| |
Collapse
|
29
|
Actin/microtubule crosstalk during platelet biogenesis in mice is critically regulated by Twinfilin1 and Cofilin1. Blood Adv 2021; 4:2124-2134. [PMID: 32407474 DOI: 10.1182/bloodadvances.2019001303] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/13/2020] [Indexed: 01/24/2023] Open
Abstract
Rearrangements of the microtubule (MT) and actin cytoskeleton are pivotal for platelet biogenesis. Hence, defects in actin- or MT-regulatory proteins are associated with platelet disorders in humans and mice. Previous studies in mice revealed that loss of the actin-depolymerizing factor homology (ADF-H) protein Cofilin1 (Cof1) in megakaryocytes (MKs) results in a moderate macrothrombocytopenia but normal MK numbers, whereas deficiency in another ADF-H protein, Twinfilin1 (Twf1), does not affect platelet production or function. However, recent studies in yeast have indicated a critical synergism between Twf1 and Cof1 in the regulation of actin dynamics. We therefore investigated platelet biogenesis and function in mice lacking both Twf1 and Cof1 in the MK lineage. In contrast to single deficiency in either protein, Twf1/Cof1 double deficiency (DKO) resulted in a severe macrothrombocytopenia and dramatically increased MK numbers in bone marrow and spleen. DKO MKs exhibited defective proplatelet formation in vitro and in vivo as well as impaired spreading and altered assembly of podosome-like structures on collagen and fibrinogen in vitro. These defects were associated with aberrant F-actin accumulation and, remarkably, the formation of hyperstable MT, which appears to be caused by dysregulation of the actin- and MT-binding proteins mDia1 and adenomatous polyposis coli. Surprisingly, the mild functional defects described for Cof1-deficient platelets were only slightly aggravated in DKO platelets suggesting that both proteins are largely dispensable for platelet function in the peripheral blood. In summary, these findings reveal critical redundant functions of Cof1 and Twf1 in ensuring balanced actin/microtubule crosstalk during thrombopoiesis in mice and possibly humans.
Collapse
|
30
|
Lau EOC, Damiani D, Chehade G, Ruiz-Reig N, Saade R, Jossin Y, Aittaleb M, Schakman O, Tajeddine N, Gailly P, Tissir F. DIAPH3 deficiency links microtubules to mitotic errors, defective neurogenesis, and brain dysfunction. eLife 2021; 10:e61974. [PMID: 33899739 PMCID: PMC8102060 DOI: 10.7554/elife.61974] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Diaphanous (DIAPH) three (DIAPH3) is a member of the formin proteins that have the capacity to nucleate and elongate actin filaments and, therefore, to remodel the cytoskeleton. DIAPH3 is essential for cytokinesis as its dysfunction impairs the contractile ring and produces multinucleated cells. Here, we report that DIAPH3 localizes at the centrosome during mitosis and regulates the assembly and bipolarity of the mitotic spindle. DIAPH3-deficient cells display disorganized cytoskeleton and multipolar spindles. DIAPH3 deficiency disrupts the expression and/or stability of several proteins including the kinetochore-associated protein SPAG5. DIAPH3 and SPAG5 have similar expression patterns in the developing brain and overlapping subcellular localization during mitosis. Knockdown of SPAG5 phenocopies DIAPH3 deficiency, whereas its overexpression rescues the DIAHP3 knockdown phenotype. Conditional inactivation of Diaph3 in mouse cerebral cortex profoundly disrupts neurogenesis, depleting cortical progenitors and neurons, leading to cortical malformation and autistic-like behavior. Our data uncover the uncharacterized functions of DIAPH3 and provide evidence that this protein belongs to a molecular toolbox that links microtubule dynamics during mitosis to aneuploidy, cell death, fate determination defects, and cortical malformation.
Collapse
Affiliation(s)
- Eva On-Chai Lau
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Devid Damiani
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Georges Chehade
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Rana Saade
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Yves Jossin
- Université catholique de Louvain, Institute of Neuroscience, Mammalian Development and Cell BiologyBrusselsBelgium
| | | | - Olivier Schakman
- Université catholique de Louvain, Institute of Neuroscience, Cell PhysiologyBrusselsBelgium
| | - Nicolas Tajeddine
- Université catholique de Louvain, Institute of Neuroscience, Cell PhysiologyBrusselsBelgium
| | - Philippe Gailly
- Université catholique de Louvain, Institute of Neuroscience, Cell PhysiologyBrusselsBelgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
- College of Health and Life Sciences, HBKUDohaQatar
| |
Collapse
|
31
|
Nonredundant roles of DIAPHs in primary ciliogenesis. J Biol Chem 2021; 296:100680. [PMID: 33872598 PMCID: PMC8122175 DOI: 10.1016/j.jbc.2021.100680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Primary cilia are hubs for several signaling pathways, and disruption in cilia function and formation leads to a range of diseases collectively known as ciliopathies. Both ciliogenesis and cilia maintenance depend on vesicle trafficking along a network of microtubules and actin filaments toward the basal body. The DIAPH (Diaphanous-related) family of formins promote both actin polymerization and microtubule (MT) stability. Recently, we showed that the formin DIAPH1 is involved in ciliogenesis. However, the role of other DIAPH family members in ciliogenesis had not been investigated. Here we show that depletion of either DIAPH2 or DIAPH3 also disrupted ciliogenesis and cilia length. DIAPH3 depletion also reduced trafficking within cilia. To specifically examine the role of DIAPH3 at the base, we used fused full-length DIAPH3 to centrin, which targeted DIAPH3 to the basal body, causing increased trafficking to the ciliary base, an increase in cilia length, and formation of bulbs at the tips of cilia. Additionally, we confirmed that the microtubule-stabilizing properties of DIAPH3 are important for its cilia length functions and trafficking. These results indicate the importance of DIAPH proteins in regulating cilia maintenance. Moreover, defects in ciliogenesis caused by DIAPH depletion could only be rescued by expression of the specific family member depleted, indicating nonredundant roles for these proteins.
Collapse
|
32
|
Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal Transport, Reorganization, and Fusion Regulation in Mast Cell-Stimulus Secretion Coupling. Front Cell Dev Biol 2021; 9:652077. [PMID: 33796537 PMCID: PMC8007931 DOI: 10.3389/fcell.2021.652077] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mast cells are well known for their role in allergies and many chronic inflammatory diseases. They release upon stimulation, e.g., via the IgE receptor, numerous bioactive compounds from cytoplasmic secretory granules. The regulation of granule secretion and its interaction with the cytoskeleton and transport mechanisms has only recently begun to be understood. These studies have provided new insight into the interaction between the secretory machinery and cytoskeletal elements in the regulation of the degranulation process. They suggest a tight coupling of these two systems, implying a series of specific signaling effectors and adaptor molecules. Here we review recent knowledge describing the signaling events regulating cytoskeletal reorganization and secretory granule transport machinery in conjunction with the membrane fusion machinery that occur during mast cell degranulation. The new insight into MC biology offers novel strategies to treat human allergic and inflammatory diseases targeting the late steps that affect harmful release from granular stores leaving regulatory cytokine secretion intact.
Collapse
Affiliation(s)
- Gaël Ménasché
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Cyril Longé
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
33
|
Perez T, Bergès R, Maccario H, Oddoux S, Honoré S. Low concentrations of vorinostat decrease EB1 expression in GBM cells and affect microtubule dynamics, cell survival and migration. Oncotarget 2021; 12:304-315. [PMID: 33659042 PMCID: PMC7899546 DOI: 10.18632/oncotarget.27892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiform (GBM) is the most frequent primitive brain tumor with a high recurrence and mortality. Histone deacetylase inhibitors (HDACi) have evoked great interest because they are able to change transcriptomic profiles to promote tumor cell death but also induce side effects due to the lack of selectivity. We show in this paper new anticancer properties and mechanisms of action of low concentrations of vorinostat on various GBM cells which acts by affecting microtubule cytoskeleton in a non-histone 3 (H3) manner. Indeed, vorinostat induces tubulin acetylation and detyrosination, affects EB stabilizing cap on microtubule plus ends and suppresses microtubule dynamic instability. We previously identified EB1 overexpression as a marker of bad prognostic in GBM. Interestingly, we show for the first time to our knowledge, a strong decrease of EB1 expression in GBM cells by a drug. Altogether, our results suggest that low dose vorinostat, which is more selective for HDAC6 inhibition, could therefore represent an interesting therapeutic option for GBM especially in patients with EB1 overexpressing tumor with lower expected side effects. A validation of our hypothesis is needed during future clinical trials with this drug in GBM.
Collapse
Affiliation(s)
- Thomas Perez
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Raphaël Bergès
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Hélène Maccario
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Sarah Oddoux
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Stéphane Honoré
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| |
Collapse
|
34
|
Chanez B, Ostacolo K, Badache A, Thuault S. EB1 Restricts Breast Cancer Cell Invadopodia Formation and Matrix Proteolysis via FAK. Cells 2021; 10:cells10020388. [PMID: 33668531 PMCID: PMC7918453 DOI: 10.3390/cells10020388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/07/2023] Open
Abstract
Regulation of microtubule dynamics by plus-end tracking proteins (+TIPs) plays an essential role in cancer cell migration. However, the role of +TIPs in cancer cell invasion has been poorly addressed. Invadopodia, actin-rich protrusions specialized in extracellular matrix degradation, are essential for cancer cell invasion and metastasis, the leading cause of death in breast cancer. We, therefore, investigated the role of the End Binding protein, EB1, a major hub of the +TIP network, in invadopodia functions. EB1 silencing increased matrix degradation by breast cancer cells. This was recapitulated by depletion of two additional +TIPs and EB1 partners, APC and ACF7, but not by the knockdown of other +TIPs, such as CLASP1/2 or CLIP170. The knockdown of Focal Adhesion Kinase (FAK) was previously proposed to similarly promote invadopodia formation as a consequence of a switch of the Src kinase from focal adhesions to invadopodia. Interestingly, EB1-, APC-, or ACF7-depleted cells had decreased expression/activation of FAK. Remarkably, overexpression of wild type FAK, but not of FAK mutated to prevent Src recruitment, prevented the increased degradative activity induced by EB1 depletion. Overall, we propose that EB1 restricts invadopodia formation through the control of FAK and, consequently, the spatial regulation of Src activity.
Collapse
Affiliation(s)
| | | | - Ali Badache
- Correspondence: (A.B.); (S.T.); Tel.: +33-(0)4-8697-7352 (S.T.)
| | - Sylvie Thuault
- Correspondence: (A.B.); (S.T.); Tel.: +33-(0)4-8697-7352 (S.T.)
| |
Collapse
|
35
|
Zong H, Hazelbaker M, Moe C, Ems-McClung SC, Hu K, Walczak CE. Spatial regulation of MCAK promotes cell polarization and focal adhesion turnover to drive robust cell migration. Mol Biol Cell 2021; 32:590-604. [PMID: 33566676 PMCID: PMC8101467 DOI: 10.1091/mbc.e20-05-0301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The asymmetric distribution of microtubule (MT) dynamics in migrating cells is important for cell polarization, yet the underlying regulatory mechanisms remain underexplored. Here, we addressed this question by studying the role of the MT depolymerase, MCAK (mitotic centromere-associated kinesin), in the highly persistent migration of RPE-1 cells. MCAK knockdown leads to slowed migration and poor directional movement. Fixed and live cell imaging revealed that MCAK knockdown results in excessive membrane ruffling as well as defects in cell polarization and the maintenance of a major protrusive front. Additionally, loss of MCAK increases the lifetime of focal adhesions by decreasing their disassembly rate. These functions correlate with a spatial distribution of MCAK activity, wherein activity is higher in the trailing edge of cells compared with the leading edge. Overexpression of Rac1 has a dominant effect over MCAK activity, placing it downstream of or in a parallel pathway to MCAK function in migration. Together, our data support a model in which the polarized distribution of MCAK activity and subsequent differential regulation of MT dynamics contribute to cell polarity, centrosome positioning, and focal adhesion dynamics, which all help facilitate robust directional migration.
Collapse
Affiliation(s)
- Hailing Zong
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Mark Hazelbaker
- Medical Sciences, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405
| | - Christina Moe
- Department of Biology, Indiana University, Bloomington, IN 47405
| | | | - Ke Hu
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Claire E Walczak
- Medical Sciences, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405
| |
Collapse
|
36
|
Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
|
37
|
Shan Y, Farmer SM, Wray S. Drebrin regulates cytoskeleton dynamics in migrating neurons through interaction with CXCR4. Proc Natl Acad Sci U S A 2021; 118:e2009493118. [PMID: 33414275 PMCID: PMC7826346 DOI: 10.1073/pnas.2009493118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stromal cell-derived factor-1 (SDF-1) and chemokine receptor type 4 (CXCR4) are regulators of neuronal migration (e.g., GnRH neurons, cortical neurons, and hippocampal granule cells). However, how SDF-1/CXCR4 alters cytoskeletal components remains unclear. Developmentally regulated brain protein (drebrin) stabilizes actin polymerization, interacts with microtubule plus ends, and has been proposed to directly interact with CXCR4 in T cells. The current study examined, in mice, whether CXCR4 under SDF-1 stimulation interacts with drebrin to facilitate neuronal migration. Bioinformatic prediction of protein-protein interaction highlighted binding sites between drebrin and crystallized CXCR4. In migrating GnRH neurons, drebrin, CXCR4, and the microtubule plus-end binding protein EB1 were localized close to the cell membrane. Coimmunoprecipitation (co-IP) confirmed a direct interaction between drebrin and CXCR4 using wild-type E14.5 whole head and a GnRH cell line. Analysis of drebrin knockout (DBN1 KO) mice showed delayed migration of GnRH cells into the brain. A decrease in hippocampal granule cells was also detected, and co-IP confirmed a direct interaction between drebrin and CXCR4 in PN4 hippocampi. Migration assays on primary neurons established that inhibiting drebrin (either pharmacologically or using cells from DBN1 KO mice) prevented the effects of SDF-1 on neuronal movement. Bioinformatic prediction then identified binding sites between drebrin and the microtubule plus end protein, EB1, and super-resolution microscopy revealed decreased EB1 and drebrin coexpression after drebrin inhibition. Together, these data show a mechanism by which a chemokine, via a membrane receptor, communicates with the intracellular cytoskeleton in migrating neurons during central nervous system development.
Collapse
Affiliation(s)
- Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Matthew Farmer
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
38
|
Phull MS, Jadav SS, Gundla R, Mainkar PS. A perspective on medicinal chemistry approaches towards adenomatous polyposis coli and Wnt signal based colorectal cancer inhibitors. Eur J Med Chem 2021; 212:113149. [PMID: 33445154 DOI: 10.1016/j.ejmech.2020.113149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of carcinogenic mortality in numbers only after lung and breast cancers. The mutations in adenomatous polyposis coli (APC) gene leads to formation of colorectal polyps in the colonic region and which develop as a malignant tumour upon coalition with patient related risk factors. The protein-protein interaction (PPI) of APC with Asef (A Rac specific guanine nucleotide exchange factor) overwhelms the patient's conditions by rapidly spreading in the entire colorectal region. Most mutations in APC gene occur in mutated cluster region (MCR), where it specifically binds with the cytosolic β-catenin to regulate the Wnt signalling pathway required for CRC cell adhesion, invasion, progression, differentiation and stemness in initial cell cycle phages. The current broad spectrum perspective is attempted to elaborate the sources of identification, development of selective APC inhibitors by targeting emopamil-binding protein (EBP) & dehydrocholesterol reductase-7 & 24 (DHCR-7 & 24); APC-Asef, β-catenin/APC, Wnt/β-catenin, β-catenin/TCF4 PPI inhibitors with other vital Wnt signal cellular proteins and APC/Pol-β interface of colorectal cancer. In this context, this perspective would serve as a platform for design of new medicinal agents by targeting cellular essential components which could accelerate anti-colorectal potential candidates.
Collapse
Affiliation(s)
- Manjinder Singh Phull
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Surender Singh Jadav
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Prathama S Mainkar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Utter Pradesh, India.
| |
Collapse
|
39
|
The actin polymerization factor Diaphanous and the actin severing protein Flightless I collaborate to regulate sarcomere size. Dev Biol 2021; 469:12-25. [PMID: 32980309 DOI: 10.1016/j.ydbio.2020.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022]
Abstract
The sarcomere is the basic contractile unit of muscle, composed of repeated sets of actin thin filaments and myosin thick filaments. During muscle development, sarcomeres grow in size to accommodate the growth and function of muscle fibers. Failure in regulating sarcomere size results in muscle dysfunction; yet, it is unclear how the size and uniformity of sarcomeres are controlled. Here we show that the formin Diaphanous is critical for the growth and maintenance of sarcomere size: Dia sets sarcomere length and width through regulation of the number and length of the actin thin filaments in the Drosophila flight muscle. To regulate thin filament length and sarcomere size, Dia interacts with the Gelsolin superfamily member Flightless I (FliI). We suggest that these actin regulators, by controlling actin dynamics and turnover, generate uniformly sized sarcomeres tuned for the muscle contractions required for flight.
Collapse
|
40
|
Rong Y, Gao J, Kuang T, Chen J, Li JA, Huang Y, Xin H, Fang Y, Han X, Sun LQ, Deng YZ, Li Z, Lou W. DIAPH3 promotes pancreatic cancer progression by activating selenoprotein TrxR1-mediated antioxidant effects. J Cell Mol Med 2020; 25:2163-2175. [PMID: 33345387 PMCID: PMC7882936 DOI: 10.1111/jcmm.16196] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a highly malignant tumour of the digestive tract which is difficult to diagnose and treat. Approximately 90% of cases arise from ductal adenocarcinoma of the glandular epithelium. The morbidity and mortality of the disease have increased significantly in recent years. Its 5‐year survival rate is <1% and has one of the worst prognoses amongst malignant tumours. Pancreatic cancer has a low rate of early‐stage diagnosis, high surgical mortality and low cure rate. Selenium compounds produced by selenoamino acid metabolism may promote a large amount of oxidative stress and subsequent unfolded reactions and endoplasmic reticulum stress by consuming the NADPH in cells, and eventually lead to apoptosis, necrosis or necrotic cell death. In this study, we first identified DIAPH3 as a highly expressed protein in the tissues of patients with pancreatic cancer, and confirmed that DIAPH3 promoted the proliferation, anchorage‐independent growth and invasion of pancreatic cancer cells using overexpression and interference experiments. Secondly, bioinformatics data mining showed that the potential proteins interacted with DIAPH3 were involved in selenoamino acid metabolism regulation. Selenium may be incorporated into selenoprotein synthesis such as TrxR1 and GPX4, which direct reduction of hydroperoxides or resist ferroptosis, respectively. Our following validation confirmed that DIAPH3 promoted selenium content and interacted with the selenoprotein RPL6, a ribosome protein subunit involved in selenoamino acid metabolism. In addition, we verified that DIAPH3 could down‐regulate cellular ROS level via up‐regulating TrxR1 expression. Finally, nude mice xenograft model experimental results demonstrate DIAPH3 knock down could decrease tumour growth and TrxR1 expression and ROS levels in vivo. Collectively, our observations indicate DIAPH3 could promote pancreatic cancer progression by activating selenoprotein TrxR1‐mediated antioxidant effects.
Collapse
Affiliation(s)
- Yefei Rong
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Gao
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Tiantao Kuang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianlin Chen
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Jian-Ang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufeng Huang
- Department of Oncology, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, China
| | - Haiguang Xin
- Department of Infectious Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Fang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lun-Quan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Yue-Zhen Deng
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Zhi Li
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Koeller DR, Schwartz A, Manning DK, Dong F, Lindeman NI, Garber JE, Ghazani AA. Novel Pathogenic Germline Variant of the Adenomatous Polyposis Coli (APC) Gene, p.S2627Gfs*12 Identified in a Mild Phenotype of APC-Associated Polyposis: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e927293. [PMID: 33303731 PMCID: PMC7737709 DOI: 10.12659/ajcr.927293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Patient: Male, 80-year-old Final Diagnosis: Attenuated APC-associated polyposis Symptoms: Colon polyps • renal carcinoma Medication: — Clinical Procedure: — Specialty: Genetics
Collapse
Affiliation(s)
- Diane R Koeller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alison Schwartz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Fei Dong
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Arezou A Ghazani
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
42
|
Juanes MA, Fees C, Hoeprich GJ, Jaiswal R, Goode BL. EB1 Directly Regulates APC-Mediated Actin Nucleation. Curr Biol 2020; 30:4763-4772.e8. [PMID: 33007249 PMCID: PMC7726095 DOI: 10.1016/j.cub.2020.08.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/07/2020] [Accepted: 08/26/2020] [Indexed: 02/01/2023]
Abstract
EB1 was discovered 25 years ago as a binding partner of the tumor suppressor adenomatous polyposis coli (APC) [1]; however, the significance of EB1-APC interactions has remained poorly understood. EB1 functions at the center of a network of microtubule end-tracking proteins (+TIPs) [2-5], and APC binding to EB1 promotes EB1 association with microtubule ends and microtubule stabilization [6, 7]. Whether EB1 interactions govern functions of APC beyond microtubule regulation has not been explored. The C-terminal basic domain of APC (APC-B) directly nucleates actin assembly, and this activity is required in vivo for directed cell migration and for maintaining normal levels of F-actin [8-10]. Here, we show that EB1 binds APC-B and inhibits its actin nucleation function by blocking actin monomer recruitment. Consistent with these biochemical observations, knocking down EB1 increases F-actin levels in cells, and this can be rescued by disrupting APC-mediated actin nucleation. Conversely, overexpressing EB1 decreases F-actin levels and impairs directed cell migration without altering microtubule organization and independent of its direct binding interactions with microtubules. Overall, our results define a new function for EB1 in negatively regulating APC-mediated actin assembly. Combining these findings with other recent studies showing that APC interactions regulate EB1-dependent effects on microtubule dynamics [7], we propose that EB1-APC interactions govern bidirectional cytoskeletal crosstalk by coordinating microtubule and actin dynamics.
Collapse
Affiliation(s)
- Maria Angeles Juanes
- Biology Department, Brandeis University, 415 South street, Waltham MA 02454, USA,School of Health and Life Science, Teesside University, Middlesbrough, TS1 3BX, United Kingdom,For correspondence: (Lead Contact),
| | - Colby Fees
- Biology Department, Brandeis University, 415 South street, Waltham MA 02454, USA
| | - Gregory J. Hoeprich
- Biology Department, Brandeis University, 415 South street, Waltham MA 02454, USA
| | - Richa Jaiswal
- Biology Department, Brandeis University, 415 South street, Waltham MA 02454, USA
| | - Bruce L. Goode
- Biology Department, Brandeis University, 415 South street, Waltham MA 02454, USA,For correspondence: (Lead Contact),
| |
Collapse
|
43
|
Théry M, Blanchoin L. Microtubule self-repair. Curr Opin Cell Biol 2020; 68:144-154. [PMID: 33217636 DOI: 10.1016/j.ceb.2020.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
The stochastic switching between microtubule growth and shrinkage is a fascinating and unique process in the regulation of the cytoskeleton. To understand it, almost all attention has been focused on the microtubule ends. However, recent research has revived the idea that tubulin dimers can also be exchanged in protofilaments along the microtubule shaft, thus repairing the microtubule and protecting it from disassembly. Here, we review the research describing this phenomenon, the mechanisms regulating the removal and insertion of tubulin dimers, as well as the potential implications for key functions of the microtubule network, such as intracellular transport and cell polarization.
Collapse
Affiliation(s)
- Manuel Théry
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, 38054, France; University of Paris, INSERM, CEA, Institut de Recherche Saint Louis, U976, HIPI, CytoMorpho Lab, Paris, 75010, France.
| | - Laurent Blanchoin
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, 38054, France; University of Paris, INSERM, CEA, Institut de Recherche Saint Louis, U976, HIPI, CytoMorpho Lab, Paris, 75010, France.
| |
Collapse
|
44
|
Finding MEMO-Emerging Evidence for MEMO1's Function in Development and Disease. Genes (Basel) 2020; 11:genes11111316. [PMID: 33172038 PMCID: PMC7694686 DOI: 10.3390/genes11111316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Although conserved throughout animal kingdoms, the protein encoded by the gene Mediator of ERBB2 Driven Cell Motility 1 or MEMO1, has only recently come into focus. True to its namesake, MEMO1 first emerged from a proteomic screen of molecules bound to the ERBB2 receptor and was found to be necessary for efficient cell migration upon receptor activation. While initially placed within the context of breast cancer metastasis—a pathological state that has provided tremendous insight into MEMO1′s cellular roles—MEMO1′s function has since expanded to encompass additional cancer cell types, developmental processes during embryogenesis and homeostatic regulation of adult organ systems. Owing to MEMO1′s deep conservation, a variety of model organisms have been amenable to uncovering biological facets of this multipurpose protein; facets ranging from the cellular (e.g., receptor signaling, cytoskeletal regulation, redox flux) to the organismal (e.g., mineralization and mineral homeostasis, neuro/gliogenesis, vasculogenesis) level. Although these facets emerge at the intersection of numerous biological and human disease processes, how and if they are interconnected remains to be resolved. Here, we review our current understanding of this ‘enigmatic’ molecule, its role in development and disease and open questions emerging from these previous studies.
Collapse
|
45
|
Saltini M, Mulder BM. Microtubule-based actin transport and localization in a spherical cell. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201730. [PMID: 33391819 PMCID: PMC7735335 DOI: 10.1098/rsos.201730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 06/12/2023]
Abstract
The interaction between actin filaments and microtubules is crucial for many eukaryotic cellular processes, such as, among others, cell polarization, cell motility and cellular wound healing. The importance of this interaction has long been recognized, yet very little is understood about both the underlying mechanisms and the consequences for the spatial (re)organization of the cellular cytoskeleton. At the same time, understanding the causes and the consequences of the interaction between different biomolecular components are key questions for in vitro research involving reconstituted biomolecular systems, especially in the light of current interest in creating minimal synthetic cells. In this light, recent in vitro experiments have shown that the actin-microtubule interaction mediated by the cytolinker TipAct, which binds to actin lattice and microtubule tips, causes the directed transport of actin filaments. We develop an analytical theory of dynamically unstable microtubules, nucleated from the centre of a spherical cell, in interaction with actin filaments. We show that, depending on the balance between the diffusion of unbound actin filaments and propensity to bind microtubules, actin is either concentrated in the centre of the cell, where the density of microtubules is highest, or becomes localized to the cell cortex.
Collapse
|
46
|
Palander O, Trimble WS. DIAPH1 regulates ciliogenesis and trafficking in primary cilia. FASEB J 2020; 34:16516-16535. [PMID: 33124112 DOI: 10.1096/fj.202001178r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
Primary cilia are critical hubs for several signaling pathways, and defects in ciliogenesis or cilia maintenance produce a range of diseases collectively known as ciliopathies. Ciliogenesis requires vesicle trafficking along a network of microtubules and actin filaments to the basal body. The DIAPH1 (Diaphanous-related formin) family of formins promotes both actin polymerization and EB1-dependent microtubule (MT) stability. EB1 and EB3 have previously been implicated in cilia biogenesis to carry out centrosome-related functions. However, the role of DIAPH1 proteins had not been examined. Here we show that the depletion of DIAPH1 decreased ciliogenesis, cilia length, and reduced trafficking within cilia. Additionally, both actin nucleating and microtubule-stabilizing properties of DIAPH1 are important for their cilia functions. To assess their roles in ciliogenesis in isolation, we targeted DIAPH1 specifically to the basal body, which caused an increase in cilia length and increased trafficking within cilia. Intriguingly, expression of DIAPH1 mutants associated with human deafness and microcephaly impaired ciliation and caused cilia elongation and bulb formation. These results suggest that the actin and microtubule functions of DIAPH1 proteins regulate cilia maintenance in part by regulating vesicular trafficking to the base of the primary cilia.
Collapse
Affiliation(s)
- Oliva Palander
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Lin SJ, Huang CF, Wu TS, Li CC, Lee FJS. Arl4D-EB1 interaction promotes centrosomal recruitment of EB1 and microtubule growth. Mol Biol Cell 2020; 31:2348-2362. [PMID: 32755434 PMCID: PMC7851962 DOI: 10.1091/mbc.e18-10-0611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
ADP-ribosylation factor (Arf)-like 4D (Arl4D), one of the Arf-like small GTPases, functions in the regulation of cell morphology, cell migration, and actin cytoskeleton remodeling. End-binding 1 (EB1) is a microtubule (MT) plus-end tracking protein that preferentially localizes at the tips of the plus ends of growing MTs and at the centrosome. EB1 depletion results in many centrosome-related defects. Here, we report that Arl4D promotes the recruitment of EB1 to the centrosome and regulates MT nucleation. We first showed that Arl4D interacts with EB1 in a GTP-dependent manner. This interaction is dependent on the C-terminal EB homology region of EB1 and partially dependent on an SxLP motif of Arl4D. We found that Arl4D colocalized with γ-tubulin in centrosomes and the depletion of Arl4D resulted in a centrosomal MT nucleation defect. We further demonstrated that abolishing Arl4D-EB1 interaction decreased MT nucleation rate and diminished the centrosomal recruitment of EB1 without affecting MT growth rate. In addition, Arl4D binding to EB1 increased the association between the p150 subunit of dynactin and the EB1, which is important for MT stabilization. Together, our results indicate that Arl4D modulates MT nucleation through regulation of the EB1–p150 association at the centrosome.
Collapse
Affiliation(s)
- Shin-Jin Lin
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, National Taiwan University, 100225 Taipei, Taiwan
| | - Chun-Fang Huang
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan
| | - Tsung-Sheng Wu
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan
| | - Chun-Chun Li
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, 100225 Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, National Taiwan University, 100225 Taipei, Taiwan
| |
Collapse
|
48
|
Seetharaman S, Etienne-Manneville S. Cytoskeletal Crosstalk in Cell Migration. Trends Cell Biol 2020; 30:720-735. [DOI: 10.1016/j.tcb.2020.06.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/15/2023]
|
49
|
Te Molder L, Hoekman L, Kreft M, Bleijerveld O, Sonnenberg A. Comparative interactomics analysis reveals potential regulators of α6β4 distribution in keratinocytes. Biol Open 2020; 9:bio.054155. [PMID: 32709696 PMCID: PMC7438003 DOI: 10.1242/bio.054155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The integrin α6β4 and cytoskeletal adaptor plectin are essential components of type I and type II hemidesmosomes (HDs). We recently identified an alternative type II HD adhesion complex that also contains CD151 and the integrin α3β1. Here, we have taken a BioID proximity labeling approach to define the proximity protein environment for α6β4 in keratinocytes. We identified 37 proteins that interacted with both α6 and β4, while 20 and 78 proteins specifically interacted with the α6 and β4 subunits, respectively. Many of the proximity interactors of α6β4 are components of focal adhesions (FAs) and the cortical microtubule stabilizing complex (CMSC). Though the close association of CMSCs with α6β4 in HDs was confirmed by immunofluorescence analysis, CMSCs have no role in the assembly of HDs. Analysis of the β4 interactome in the presence or absence of CD151 revealed that they are strikingly similar; only 11 different interactors were identified. One of these was the integrin α3β1, which interacted with α6β4 more strongly in the presence of CD151 than in its absence. These findings indicate that CD151 does not significantly contribute to the interactome of α6β4, but suggest a role of CD151 in linking α3β1 and α6β4 together in tetraspanin adhesion structures. Summary: Comparative interactomics analysis reveals close proximity of HDs, FAs and CMSCs, and a role of CD151 in linking α3β1 and α6β4 together in an alternative type II HD-like adhesion complex.
Collapse
Affiliation(s)
- Lisa Te Molder
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Liesbeth Hoekman
- Mass Spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Onno Bleijerveld
- Mass Spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
50
|
Swiatlowska P, Sanchez-Alonso JL, Mansfield C, Scaini D, Korchev Y, Novak P, Gorelik J. Short-term angiotensin II treatment regulates cardiac nanomechanics via microtubule modifications. NANOSCALE 2020; 12:16315-16329. [PMID: 32720664 DOI: 10.1039/d0nr02474k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mechanical properties of single myocytes contribute to the whole heart performance, but the measurement of mechanics in living cells at high resolution with minimal force interaction remains challenging. Angiotensin II (AngII) is a peptide hormone that regulates a number of physiological functions, including heart performance. It has also been shown to contribute to cell mechanics by inducing cell stiffening. Using non-contact high-resolution Scanning Ion Conductance Microscopy (SICM), we determine simultaneously cell topography and membrane transverse Young's modulus (YM) by a constant pressure application through a nanopipette. While applying pressure, the vertical position is recorded and a deformation map is generated from which YM can be calculated and corrected for the uneven geometry. High resolution of this method also allows studying specific membrane subdomains, such as Z-grooves and crests. We found that short-term AngII treatment reduces the transversal YM in isolated adult rat cardiomyocytes acting via an AT1 receptor. Blocking either a TGF-β1 receptor or Rho kinase abolishes this effect. Analysis of the cytoskeleton showed that AngII depletes microtubules by decreasing long-lived detyrosinated and acetylated microtubule populations. Interestingly, in the failing cardiomyocytes, which are stiffer than controls, the short-term AngII treatment also reduces the YM, thus normalizing the mechanical state of cells. This suggests that the short-term softening effect of AngII on cardiac cells is opposite to the well-characterized long-term hypertrophic effect. In conclusion, we generate a precise nanoscale indication map of location-specific transverse cortical YM within the cell and this can substantially advance our understanding of cellular mechanics in a physiological environment, for example in isolated cardiac myocytes.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Jose L Sanchez-Alonso
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Catherine Mansfield
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Denis Scaini
- Department of Medicine, Imperial College London, London, UK and International School for Advanced Studies, Trieste, Italy
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London, UK and Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Pavel Novak
- Department of Medicine, Imperial College London, London, UK and National University of Science and Technology, MISiS, Leninskiy prospect 4, Moscow, 119991, Russia
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|