1
|
Lu YR, Tian X, Sinclair DA. The Information Theory of Aging. NATURE AGING 2023; 3:1486-1499. [PMID: 38102202 DOI: 10.1038/s43587-023-00527-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/02/2023] [Indexed: 12/17/2023]
Abstract
Information storage and retrieval is essential for all life. In biology, information is primarily stored in two distinct ways: the genome, comprising nucleic acids, acts as a foundational blueprint and the epigenome, consisting of chemical modifications to DNA and histone proteins, regulates gene expression patterns and endows cells with specific identities and functions. Unlike the stable, digital nature of genetic information, epigenetic information is stored in a digital-analog format, susceptible to alterations induced by diverse environmental signals and cellular damage. The Information Theory of Aging (ITOA) states that the aging process is driven by the progressive loss of youthful epigenetic information, the retrieval of which via epigenetic reprogramming can improve the function of damaged and aged tissues by catalyzing age reversal.
Collapse
Affiliation(s)
- Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Jones RG, Dimet-Wiley A, Haghani A, da Silva FM, Brightwell CR, Lim S, Khadgi S, Wen Y, Dungan CM, Brooke RT, Greene NP, Peterson CA, McCarthy JJ, Horvath S, Watowich SJ, Fry CS, Murach KA. A molecular signature defining exercise adaptation with ageing and in vivo partial reprogramming in skeletal muscle. J Physiol 2023; 601:763-782. [PMID: 36533424 PMCID: PMC9987218 DOI: 10.1113/jp283836] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks. A comparison of the murine soleus transcriptome after late-life exercise training to the soleus transcriptome after OKSM induction revealed an overlapping signature that included higher JunB and Sun1. Also, within this signature, downregulation of specific mitochondrial and muscle-enriched genes was conserved in skeletal muscle of long-term exercise-trained humans; among these was muscle-specific Abra/Stars. Myc is the OKSM factor most induced by exercise in muscle and was elevated following exercise training in aged mice. A pulse of MYC rewired the global soleus muscle methylome, and the transcriptome after a MYC pulse partially recapitulated OKSM induction. A common signature also emerged in the murine MYC-controlled and exercise adaptation transcriptomes, including lower muscle-specific Melusin and reactive oxygen species-associated Romo1. With Myc, OKSM and exercise training in mice, as well habitual exercise in humans, the complex I accessory subunit Ndufb11 was lower; low Ndufb11 is linked to longevity in rodents. Collectively, exercise shares similarities with genetic in vivo partial reprogramming. KEY POINTS: Advances in the last decade related to cellular epigenetic reprogramming (e.g. DNA methylome remodelling) toward a pluripotent state via the Yamanaka transcription factors Oct3/4, Klf4, Sox2 and Myc (OKSM) provide a window into potential mechanisms for combatting the deleterious effects of cellular ageing. Using global gene expression analysis, we compared the effects of in vivo OKSM-mediated partial reprogramming in skeletal muscle fibres of mice to the effects of late-life murine exercise training in muscle. Myc is the Yamanaka factor most induced by exercise in skeletal muscle, and so we compared the MYC-controlled transcriptome in muscle to Yamanaka factor-mediated and exercise adaptation mRNA landscapes in mice and humans. A single pulse of MYC is sufficient to remodel the muscle methylome. We identify partial reprogramming-associated genes that are innately altered by exercise training and conserved in humans, and propose that MYC contributes to some of these responses.
Collapse
Affiliation(s)
- Ronald G. Jones
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | | | - Amin Haghani
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Francielly Morena da Silva
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Camille R. Brightwell
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Seongkyun Lim
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Sabin Khadgi
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Yuan Wen
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | - Cory M. Dungan
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | | | - Nicholas P. Greene
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Charlotte A. Peterson
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - John J. McCarthy
- Altos Labs, San Diego, CA, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - Steve Horvath
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Stanley J. Watowich
- Ridgeline Therapeutics, Houston, TX, USA
- University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Galveston, TX, USA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Kevin A. Murach
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| |
Collapse
|
3
|
Malpotra S, Goel P, Shyam S, Singh MK, Palta P. Global DNA methylation profiles of buffalo (Bubalus bubalis) preimplantation embryos produced by handmade cloning and in vitro fertilization. Sci Rep 2022; 12:5161. [PMID: 35338228 PMCID: PMC8956680 DOI: 10.1038/s41598-022-09207-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Somatic cell nuclear transfer technique (SCNT) has proved to be an outstanding method of multiplication of elite animals but accompanied with low efficiency and live birth rate of cloned animals. Epigenetic alterations of DNA has been one of the culprits behind this issue. Cloned embryos are found to deviate slightly from regular pattern of demethylation and re-methylation at the time of nuclear reprogramming and embryonic development when compared with embryos produced by in vitro fertilization (IVF). Thus, the present study was aimed at evaluating global DNA methylation profiles of cloned embryos at 2-cell, 8-cell and blastocyst stages and compare it with corresponding stages of embryos produced by IVF by using MeDIP-Sequencing on Illumina-based platform. We found out that cloned embryos exhibited significantly different DNA methylation pattern as compared to IVF embryos with respect to distribution of differentially methylated regions in different components of genome, CpG islands distribution and methylation status, gene ontological profiles and pathways affected throughout the developmental stages. The data generated from MeDIP-Seq was validated at blastocyst stage cloned and IVF embryos by bisulfite-sequencing PCR on five randomly selected gene regions.
Collapse
Affiliation(s)
- Shivani Malpotra
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India.
| | - Pallavi Goel
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Songyukta Shyam
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Prabhat Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| |
Collapse
|
4
|
Zhang X, Li T, Niu Q, Qin CJ, Zhang M, Wu GM, Li HZ, Li Y, Wang C, Du WF, Wang CY, Zhao Q, Zhao XD, Wang XL, Zhu JB. Genome-wide analysis of cell-Free DNA methylation profiling with MeDIP-seq identified potential biomarkers for colorectal cancer. World J Surg Oncol 2022; 20:21. [PMID: 35065650 PMCID: PMC8783473 DOI: 10.1186/s12957-022-02487-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer is the most common malignancy and the third leading cause of cancer-related death worldwide. This study aimed to identify potential diagnostic biomarkers for colorectal cancer by genome-wide plasma cell-free DNA (cfDNA) methylation analysis. Methods Peripheral blood from colorectal cancer patients and healthy controls was collected for cfDNA extraction. Genome-wide cfDNA methylation profiling, especially differential methylation profiling between colorectal cancer patients and healthy controls, was performed by methylated DNA immunoprecipitation coupled with high-throughput sequencing (MeDIP-seq). Logistic regression models were established, and the accuracy of this diagnostic model for colorectal cancer was verified using tissue-sourced data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) due to the lack of cfDNA methylation data in public datasets. Results Compared with the control group, 939 differentially methylated regions (DMRs) located in promoter regions were found in colorectal cancer patients; 16 of these DMRs were hypermethylated, and the remaining 923 were hypomethylated. In addition, these hypermethylated genes, mainly PRDM14, RALYL, ELMOD1, and TMEM132E, were validated and confirmed in colorectal cancer by using publicly available DNA methylation data. Conclusions MeDIP-seq can be used as an optimal approach for analyzing cfDNA methylomes, and 12 probes of four differentially methylated genes identified by MeDIP-seq (PRDM14, RALYL, ELMOD1, and TMEM132E) could serve as potential biomarkers for clinical application in patients with colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02487-4.
Collapse
Affiliation(s)
- Xin Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, No. 1158 Gongyuan East Road, Qingpu District, Shanghai, 201700, China
| | - Tao Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Qiang Niu
- Department of General Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200433, China
| | - Chang-Jiang Qin
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Ming Zhang
- General Surgery, The People's Hospital of Wuhai, Wuhai, 010600, Inner Mongolia, China
| | - Guang-Ming Wu
- General Surgery, The People's Hospital of Wuhai, Wuhai, 010600, Inner Mongolia, China
| | - Hua-Zhong Li
- General Surgery, The People's Hospital of Wuhai, Wuhai, 010600, Inner Mongolia, China
| | - Yan Li
- Digestive Internal, The People's Hospital of Wuhai, No. 29 Huanghe East Street, Haibowan District, Wuhai, 010600, Inner Mongolia, China
| | - Chen Wang
- Digestive Internal, The People's Hospital of Wuhai, No. 29 Huanghe East Street, Haibowan District, Wuhai, 010600, Inner Mongolia, China
| | - Wen-Fei Du
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen-Yang Wang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Dong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Liang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, No. 1158 Gongyuan East Road, Qingpu District, Shanghai, 201700, China. .,Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| | - Jian-Bin Zhu
- Digestive Internal, The People's Hospital of Wuhai, No. 29 Huanghe East Street, Haibowan District, Wuhai, 010600, Inner Mongolia, China.
| |
Collapse
|
5
|
Basu A, Tiwari VK. Epigenetic reprogramming of cell identity: lessons from development for regenerative medicine. Clin Epigenetics 2021; 13:144. [PMID: 34301318 PMCID: PMC8305869 DOI: 10.1186/s13148-021-01131-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms are known to define cell-type identity and function. Hence, reprogramming of one cell type into another essentially requires a rewiring of the underlying epigenome. Cellular reprogramming can convert somatic cells to induced pluripotent stem cells (iPSCs) that can be directed to differentiate to specific cell types. Trans-differentiation or direct reprogramming, on the other hand, involves the direct conversion of one cell type into another. In this review, we highlight how gene regulatory mechanisms identified to be critical for developmental processes were successfully used for cellular reprogramming of various cell types. We also discuss how the therapeutic use of the reprogrammed cells is beginning to revolutionize the field of regenerative medicine particularly in the repair and regeneration of damaged tissue and organs arising from pathological conditions or accidents. Lastly, we highlight some key challenges hindering the application of cellular reprogramming for therapeutic purposes.
Collapse
Affiliation(s)
- Amitava Basu
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
6
|
Liu X, Khan A, Li H, Wang S, Chen X, Huang H. Ascorbic acid in epigenetic reprogramming. Curr Stem Cell Res Ther 2021; 17:13-25. [PMID: 34264189 DOI: 10.2174/1574888x16666210714152730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
Emerging evidence suggests that ascorbic acid (vitamin C) enhances the reprogramming process by multiple mechanisms. This is primarily due to its cofactor role in Fe(II) and 2-oxoglutarate-dependent dioxygenases, including the DNA demethylases Ten Eleven Translocase (TET) and histone demethylases. Epigenetic variations have been shown to play a critical role in somatic cell reprogramming. DNA methylation and histone methylation are extensively recognized as barriers to somatic cell reprogramming. N6-methyladenosine (m6A), known as RNA methylation, is an epigenetic modification of mRNAs and has also been shown to play a role in regulating cellular reprogramming. Multiple cofactors are reported to promote the activity of demethylases, including vitamin C. This review focuses on examining the evidence and mechanism of vitamin C in DNA and histone demethylation and highlights its potential involvement in regulating m6A demethylation. It also shows the significant contribution of vitamin C in epigenetic regulation and the affiliation of demethylases with vitamin C-facilitated epigenetic reprogramming.
Collapse
Affiliation(s)
- Xinhui Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Aamir Khan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Huan Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Shensen Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Xuechai Chen
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Hua Huang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
In Response to Abiotic Stress, DNA Methylation Confers EpiGenetic Changes in Plants. PLANTS 2021; 10:plants10061096. [PMID: 34070712 PMCID: PMC8227271 DOI: 10.3390/plants10061096] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Epigenetics involves the heritable changes in patterns of gene expression determined by developmental and abiotic stresses, i.e., drought, cold, salinity, trace metals, and heat. Gene expression is driven by changes in DNA bases, histone proteins, the biogenesis of ncRNA, and changes in the nucleotide sequence. To cope with abiotic stresses, plants adopt certain changes driven by a sophisticated biological system. DNA methylation is a primary mechanism for epigenetic variation, which can induce phenotypic alterations in plants under stress. Some of the stress-driven changes in plants are temporary, while some modifications may be stable and inheritable to the next generations to allow them to cope with such extreme stress challenges in the future. In this review, we discuss the pivotal role of epigenetically developed phenotypic characteristics in plants as an evolutionary process participating in adaptation and tolerance responses to abiotic and biotic stresses that alter their growth and development. We emphasize the molecular process underlying changes in DNA methylation, differential variation for different species, the roles of non-coding RNAs in epigenetic modification, techniques for studying DNA methylation, and its role in crop improvement in tolerance to abiotic stress (drought, salinity, and heat). We summarize DNA methylation as a significant future research priority for tailoring crops according to various challenging environmental issues.
Collapse
|
8
|
Arabacı DH, Terzioğlu G, Bayırbaşı B, Önder TT. Going up the hill: chromatin-based barriers to epigenetic reprogramming. FEBS J 2020; 288:4798-4811. [PMID: 33190371 DOI: 10.1111/febs.15628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/20/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022]
Abstract
The establishment and maintenance of cellular identity are crucial during development and tissue homeostasis. Epigenetic mechanisms based largely on DNA methylation and histone modifications serve to reinforce and safeguard differentiated cell states. Somatic cell nuclear transfer (SCNT) or transcription factors such as Oct4, Sox2, Klf4, c-MYC (OSKM) can erase somatic cell identity and reprogram the cells to a pluripotent state. In doing so, reprogramming must reset the chromatin landscape, silence somatic-specific gene expression programs, and, in their place, activate the pluripotency network. In this viewpoint, we consider the major chromatin-based barriers for reprogramming of somatic cells to pluripotency. Among these, repressive chromatin modifications such as DNA methylation, H3K9 methylation, variant histone deposition, and histone deacetylation generally block the activation of pluripotency genes. In contrast, active transcription-associated chromatin marks such as DOT1L-catalyzed H3K79 methylation, FACT-mediated histone turnover, active enhancer SUMOylation, and EP300/CBP bromodomain-mediated interactions act to maintain somatic-specific gene expression programs. We highlight how genetic or chemical inhibition of both types of barriers can enhance the kinetics and/or efficiency of reprogramming. Understanding the mechanisms by which these barriers function provides insight into how chromatin marks help maintain cell identity.
Collapse
Affiliation(s)
| | | | | | - Tamer T Önder
- School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
9
|
Veraguas D, Aguilera C, Echeverry D, Saez-Ruiz D, Castro FO, Rodriguez-Alvarez L. Embryo aggregation allows the production of kodkod (Leopardus guigna) blastocysts after interspecific SCNT. Theriogenology 2020; 158:148-157. [PMID: 32961350 DOI: 10.1016/j.theriogenology.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/30/2020] [Accepted: 09/06/2020] [Indexed: 12/22/2022]
Abstract
The kodkod (Leopardus guigna) is a small felid endemic of Chile and is considered a vulnerable species. Domestic cat oocytes have been successfully used as recipient cytoplast to reprogram somatic cells from different felids by interspecific somatic cell nuclear transfer (iSCNT). The developmental competence of felid embryos generated by iSCNT can be improved by the aggregation method using a zona-free culture system. The objective of this research was to evaluate the developmental competence of kodkod embryos generated by iSCNT using domestic cat oocytes and the aggregation method. For this purpose, five experimental group were done: (1) cat embryos generated by IVF, (2) cat embryos generated by SCNT (Ca1x), (3) aggregated cat embryos generated by SCNT (Ca2x), (4) kodkod embryos generated by iSCNT (K1x) and (5) aggregated kodkod embryos generated by iSCNT (K2x). Cleavage, morulae and blastocyst rates were estimated. The blastocyst diameter was evaluated. The gene expression level of pluripotency (OCT4, SOX2 and NANOG) and differentiation markers (CDX2 and GATA6) was analyzed in blastocysts. Morulae rate was higher in the IVF group and when cloned embryos were cultured in aggregates (IVF: 68.2%, Ca2x: 58.0% and K2x: 62.4%) compared to individually cultured kodkod embryos (K1x: 37.0%) (P < 0.05). Embryo aggregation increased blastocysts formation in the Ca2x group (30.9%) to a similar rate compared to the IVF group (44.5%) (P > 0.05). No blastocysts were generated in the K1x group, whereas blastocysts formation was obtained in K2x group (5.9%). The diameter of blastocysts from the K2x group (172.8 μm) was significantly lower than blastocysts from the Ca2x group (P < 0.05). The relative expression of OCT4 was lower in blastocysts from Ca1x than in blastocysts from IVF (P < 0.05). Furthermore, CDX2 expression was lower in blastocysts from Ca2x than in blastocysts from Ca1x and IVF groups (P < 0.05). In kodkod embryos, only one blastocyst from the K2x group expressed OCT4. No expression of SOX2, NANOG, CDX2 and GATA6 was detected in kodkod blastocysts. In conclusion, after iSCNT, domestic cat oocytes support the development of kodkod embryos until the morula stage. The aggregation method increases the morulae rate of kodkod cloned embryos and allows blastocysts formation. However, kodkod blastocysts have a poor morphological quality and a lacking expression of pluripotency and differentiation markers, probably caused by an incomplete nuclear reprogramming.
Collapse
Affiliation(s)
- Daniel Veraguas
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Constanza Aguilera
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Diana Echeverry
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Darling Saez-Ruiz
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile
| | - Lleretny Rodriguez-Alvarez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile.
| |
Collapse
|
10
|
Xu W, Li H, Zhang M, Shi J, Wang Z. Locus-specific analysis of DNA methylation patterns in cloned and in vitro fertilized porcine embryos. J Reprod Dev 2020; 66:505-514. [PMID: 32908081 PMCID: PMC7768172 DOI: 10.1262/jrd.2019-076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine somatic cell nuclear transfer (SCNT) is currently inefficient, as 1–3.95% of reconstructed embryos survive to term; inadequate or erroneous epigenetic
reprogramming of the specialized donor somatic nucleus could be a primary reason. Therefore, a locus-specific analysis of DNA methylation dynamics in
embryogenesis and the DNA methylation status of gametes and donor cells used for SCNT were conducted in the following developmentally important gene loci:
POU5F1, NANOG, SOX2, H19, IGF2, IGF2R,
XIST; and the retrotransposon LINE-1. There were significant epigenetic differences between the gametes and the somatic
donor cells. Three gamete-specific differentially methylated regions (DMRs) in POU5F1, XIST, and LINE-1 were
identified. A delayed demethylation process at POU5F1 and LINE-1 loci occurred after three successive cleavages, compared to
the in vitro fertilized (IVF) embryos. Although cloned embryos could undergo de-methylation and re-methylation dynamics at the DMRs of
imprinted genes (H19,IGF2R, and XIST), the re-methylation process was compromised, unlike in fertilized
embryos. LINE-1 loci are widely dispersed across the whole genome, and LINE-1 DMR might be a potential porcine nuclear
reprogramming epi-marker. Data from observations in our present and previous studies, and two published articles were pooled to produce a schematic diagram of
locus-specific, DNA methylation dynamics of cloned and IVF embryos during porcine early embryogenesis. This also indicated aberrant DNA methylation
reprogramming events, including inadequate DNA demethylation and insufficient re-methylation in cloned embryos. Further research should focus on mechanisms
underlying demethylation during the early cleavage of embryos and de novo DNA methylation at the blastocyst stage.
Collapse
Affiliation(s)
- Weihua Xu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, P. R. China.,Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongyi Li
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, P. R. China
| | - Mao Zhang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, P. R. China
| | - Junsong Shi
- Guangdong Provincial Wen's Research Institute, Yunfu 527400, P. R. China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
11
|
Proietti S, Cucina A, Pensotti A, Fuso A, Marchese C, Nicolini A, Bizzarri M. Tumor reversion and embryo morphogenetic factors. Semin Cancer Biol 2020; 79:83-90. [DOI: 10.1016/j.semcancer.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/09/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
|
12
|
Li K, Ning T, Wang H, Jiang Y, Zhang J, Ge Z. Nanosecond pulsed electric fields enhance mesenchymal stem cells differentiation via DNMT1-regulated OCT4/NANOG gene expression. Stem Cell Res Ther 2020; 11:308. [PMID: 32698858 PMCID: PMC7374836 DOI: 10.1186/s13287-020-01821-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 02/28/2023] Open
Abstract
Background Multiple strategies have been proposed to promote the differentiation potential of mesenchymal stem cells (MSCs), which is the fundamental property in tissue formation and regeneration. However, these strategies are relatively inefficient that limit the application. In this study, we reported a novel and efficient strategy, nanosecond pulsed electric fields (nsPEFs) stimulation, which can enhance the trilineage differentiation potential of MSCs, and further explained the mechanism behind. Methods We used histological staining to screen out the nsPEFs parameters that promoted the trilineage differentiation potential of MSCs, and further proved the effect of nsPEFs by detecting the functional genes. In order to explore the corresponding mechanism, we examined the expression of pluripotency genes and the methylation status of their promoters. Finally, we targeted the DNA methyltransferase which was affected by nsPEFs. Results The trilineage differentiation of bone marrow-derived MSCs was significantly enhanced in vitro by simply pre-treating with 5 pulses of nsPEFs stimulation (energy levels as 10 ns, 20 kV/cm; 100 ns, 10 kV/cm), due to that the nsPEFs demethylated the promoters of stem cell pluripotency genes OCT4 and NANOG through instantaneous downregulation of DNA methylation transferase 1 (DNMT1), thereby increasing the expression of OCT4 and NANOG for up to 3 days, and created a treatment window period of stem cells. Conclusions In summary, nsPEFs can enhance MSCs differentiation via the epigenetic regulation and could be a safe and effective strategy for future stem cell application.
Collapse
Affiliation(s)
- Kejia Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Tong Ning
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Hao Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jue Zhang
- Institute of Biomechanics and Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zigang Ge
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Precision Nutrition and Childhood Obesity: A Scoping Review. Metabolites 2020; 10:metabo10060235. [PMID: 32521722 PMCID: PMC7345802 DOI: 10.3390/metabo10060235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
Environmental exposures such as nutrition during life stages with high developmental plasticity—in particular, the in utero period, infancy, childhood, and puberty—may have long-lasting influences on risk of chronic diseases, including obesity-related conditions that manifest as early as childhood. Yet, specific mechanisms underlying these relationships remain unclear. Here, we consider the study of ‘omics mechanisms, including nutrigenomics, epigenetics/epigenomics, and metabolomics, within a life course epidemiological framework to accomplish three objectives. First, we carried out a scoping review of population-based literature with a focus on studies that include ‘omics analyses during three sensitive periods during early life: in utero, infancy, and childhood. We elected to conduct a scoping review because the application of multi-‘omics and/or precision nutrition in childhood obesity prevention and treatment is relatively recent, and identifying knowledge gaps can expedite future research. Second, concomitant with the literature review, we discuss the relevance and plausibility of biological mechanisms that may underlie early origins of childhood obesity identified by studies to date. Finally, we identify current research limitations and future opportunities for application of multi-‘omics in precision nutrition/health practice.
Collapse
|
14
|
Liao C, Pang N, Liu Z, Lei L. Transient inhibition of rDNA transcription in donor cells improves ribosome biogenesis and preimplantation development of embryos derived from somatic cell nuclear transfer. FASEB J 2020; 34:8283-8295. [PMID: 32323360 DOI: 10.1096/fj.202000025rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/11/2022]
Abstract
Ribosomal DNA (rDNA) transcription is a limiting step in ribosome biogenesis, crucial for protein synthesis and cell growth-especially at the early stages of embryonic development-and is regulated in a mammalian target of rapamycin (mTOR)-dependent manner. Our previous report demonstrated that treatment with mTOR inhibitors during artificial embryonic activation improved the development of embryos derived from somatic cell nuclear transfer (SCNT). We hypothesize that inhibition of ribosome biogenesis in somatic cells facilitates reactivation of embryonic nucleolar establishment and ribosome biogenesis in SCNT embryos. Herein, we show that mTOR inhibitors suppressed ribosome biogenesis in somatic cells, and more importantly, improved development potential of SCNT embryos (blastocyst rate, 34% vs 24%). SCNT embryos derived from drug-treated somatic cells exhibited higher levels of 47S, 18S, and 5S rRNAs, upstream binding factor (UBF) mRNA, ribosomal protein S6; they also improved the rebuilding of the nucleolar ultrastructure. In addition, treatment of donor cells with the RNA polymerase I (Pol I) inhibitor cx5461 caused similar effects on SCNT embryos. These results indicated that transient inhibition of rDNA transcription in donor cells facilitated the establishment of functional nucleoli and improved preimplantation development of SCNT embryos.
Collapse
Affiliation(s)
- Chen Liao
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Nan Pang
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Zhaojun Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Buchwalter A, Kaneshiro JM, Hetzer MW. Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet 2019; 20:39-50. [PMID: 30356165 DOI: 10.1038/s41576-018-0063-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The genome is packaged and organized nonrandomly within the 3D space of the nucleus to promote efficient gene expression and to faithfully maintain silencing of heterochromatin. The genome is enclosed within the nucleus by the nuclear envelope membrane, which contains a set of proteins that actively participate in chromatin organization and gene regulation. Technological advances are providing views of genome organization at unprecedented resolution and are beginning to reveal the ways that cells co-opt the structures of the nuclear periphery for nuclear organization and gene regulation. These genome regulatory roles of proteins of the nuclear periphery have important influences on development, disease and ageing.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.,Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jeanae M Kaneshiro
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
16
|
Kang N, Choi SY, Kim BN, Yeo CD, Park CK, Kim YK, Kim TJ, Lee SB, Lee SH, Park JY, Park MS, Yim HW, Kim SJ. Hypoxia-induced cancer stemness acquisition is associated with CXCR4 activation by its aberrant promoter demethylation. BMC Cancer 2019; 19:148. [PMID: 30760238 PMCID: PMC6375212 DOI: 10.1186/s12885-019-5360-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 02/07/2019] [Indexed: 01/17/2023] Open
Abstract
Background A hypoxic microenvironment leads to an increase in the invasiveness and the metastatic potential of cancer cells within tumors via the epithelial-mesenchymal transition (EMT) and cancer stemness acquisition. However, hypoxia-induced changes in the expression and function of candidate stem cell markers and their possible molecular mechanism is still not understood. Methods Lung cell lines were analyzed in normoxic or hypoxic conditions. For screening among the stem cell markers, a transcriptome analysis using next-generation sequencing was performed. For validation, the EMT and stem cell characteristics were analyzed. To determine whether an epigenetic mechanism was involved, the cell lines were treated with a DNA methyltransferase inhibitor (AZA), and methylation-specific PCR and bisulfite sequencing were performed. Results Next-generation sequencing revealed that the CXCR4 expression was significantly higher after the hypoxic condition, which functionally resulted in the EMT and cancer stemness acquisition. The acquisition of the EMT and stemness properties was inhibited by treatment with CXCR4 siRNA. The CXCR4 was activated by either the hypoxic condition or treatment with AZA. The methylation-specific PCR and bisulfite sequencing displayed a decreased CXCR4 promoter methylation in the hypoxic condition. Conclusions These results suggest that hypoxia-induced acquisition of cancer stem cell characteristics was associated with CXCR4 activation by its aberrant promoter demethylation.
Collapse
Affiliation(s)
- Nahyeon Kang
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Su Yeon Choi
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Bit Na Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Young Kyoon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong-Beom Lee
- Department of Pathology, Institute of Hansen's Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sug Hyung Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mi Sun Park
- Department of Biostatistics, Clinical Research Coordinating Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon Woo Yim
- Department of Biostatistics, Clinical Research Coordinating Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
17
|
Matsuda T, Irie T, Katsurabayashi S, Hayashi Y, Nagai T, Hamazaki N, Adefuin AMD, Miura F, Ito T, Kimura H, Shirahige K, Takeda T, Iwasaki K, Imamura T, Nakashima K. Pioneer Factor NeuroD1 Rearranges Transcriptional and Epigenetic Profiles to Execute Microglia-Neuron Conversion. Neuron 2019; 101:472-485.e7. [PMID: 30638745 DOI: 10.1016/j.neuron.2018.12.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/23/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
Minimal sets of transcription factors can directly reprogram somatic cells into neurons. However, epigenetic remodeling during neuronal reprogramming has not been well reconciled with transcriptional regulation. Here we show that NeuroD1 achieves direct neuronal conversion from mouse microglia both in vitro and in vivo. Exogenous NeuroD1 initially occupies closed chromatin regions associated with bivalent trimethylation of histone H3 at lysine 4 (H3K4me3) and H3K27me3 marks in microglia to induce neuronal gene expression. These regions are resolved to a monovalent H3K4me3 mark at later stages of reprogramming to establish the neuronal identity. Furthermore, the transcriptional repressors Scrt1 and Meis2 are induced as NeuroD1 target genes, resulting in a decrease in the expression of microglial genes. In parallel, the microglial epigenetic signature in promoter and enhancer regions is erased. These findings reveal NeuroD1 pioneering activity accompanied by global epigenetic remodeling for two sequential events: onset of neuronal property acquisition and loss of the microglial identity during reprogramming.
Collapse
Affiliation(s)
- Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takashi Irie
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yoshinori Hayashi
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tatsuya Nagai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aliya Mari D Adefuin
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Tadayuki Takeda
- Genome Network Analysis Support Facility (GeNAS), RIKEN Center for Life Science Technologies, Kanagawa, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
18
|
Qiu X, Xiao X, Martin GB, Li N, Ling W, Wang M, Li Y. Strategies for improvement of cloning by somatic cell nuclear transfer. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is a powerful tool that is being applied in a variety of fields as diverse as the cloning and production of transgenic animals, rescue of endangered species and regenerative medicine. However, cloning efficiency is still very low and SCNT embryos generally show poor developmental competency and many abnormalities. The low efficiency is probably due to incomplete reprogramming of the donor nucleus and most of the developmental problems are thought to be caused by epigenetic defects. Applications of SCNT will, therefore, depend on improvements in the efficiency of production of healthy clones. This review has summarised the progress and strategies that have been used to make improvements in various animal species, especially over the period 2010–2017, including strategies based on histone modification, embryo aggregation and mitochondrial function. There has been considerable investiagation into the mechanisms that underpin each strategy, helping us better understand the nature of genomic reprogramming and nucleus–cytoplasm interactions.
Collapse
|
19
|
Torabifard H, Cisneros GA. Insight into wild-type and T1372E TET2-mediated 5hmC oxidation using ab initio QM/MM calculations. Chem Sci 2018; 9:8433-8445. [PMID: 30542593 PMCID: PMC6244454 DOI: 10.1039/c8sc02961j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Ten-eleven translocation 2 (TET2) is an Fe/α-ketoglutarate (α-KG) dependent enzyme that dealkylates 5-methylcytosine (5mC). The reaction mechanism involves a series of three sequential oxidations that convert 5mC to 5-hydroxy-methylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Our previous biochemical and computational studies uncovered an active site scaffold that is required for wild-type (WT) stepwise oxidation (Nat. Chem. Bio., 13, 181). We showed that the mutation of a single residue, T1372 to some amino acids, such as Glu, can impact the iterative oxidation steps and stop the oxidation of 5hmC to 5fC/caC. However, the source of the stalling at the first oxidation step by some mutant TET proteins still remains unclear. Here, we studied the catalytic mechanism of oxidation of 5hmC to 5fC by WT and T1372E TET2 using an ab initio quantum mechanical/molecular mechanical (QM/MM) approach. Our results suggest that the rate limiting step for WT TET2 involves a hydrogen atom abstraction from the hydroxyl group of 5hmC by the ferryl moiety in the WT. By contrast, our calculations for the T1372E mutant indicate that the rate limiting step for this variant corresponds to a second proton abstraction and the calculated barrier is almost twice as large as for WT TET2. Our results suggest that the large barrier for the 5hmC to 5fC oxidation in this mutant is due (at least in part) to the unfavorable orientation of the substrate in the active site. Combined electron localization function (ELF) and non-covalent interaction (NCI) analyses provide a qualitative description of the evolution of the electronic structure of the active site along the reaction path. Energy decomposition analysis (EDA) has been performed on the WT to investigate the impact of each MM residue on catalytic activity.
Collapse
Affiliation(s)
- Hedieh Torabifard
- Department of Chemistry , Wayne State University , Detroit , MI 48202 , USA
| | - G Andrés Cisneros
- Department of Chemistry , University of North Texas , Denton , TX 76203 , USA .
| |
Collapse
|
20
|
Abstract
Epigenetic mechanisms allow the establishment and maintenance of multiple cellular phenotypes from a single genomic code. At the initiation of development, the oocyte and spermatozoa provide their fully differentiated chromatin that soon after fertilization undergo extensive remodeling, resulting in a totipotent state that can then drive cellular differentiation towards all cell types. These remodeling involves different epigenetic modifications, including DNA methylation, post-translational modifications of histones, non-coding RNAs, and large-scale chromatin conformation changes. Moreover, epigenetic remodeling is responsible for reprogramming somatic cells to totipotency upon somatic cell nuclear transfer/cloning, which is often incomplete and inefficient. Given that environmental factors, such as assisted reproductive techniques (ARTs), can affect epigenetic remodeling, there is interest in understanding the mechanisms driving these changes. We describe and discuss our current understanding of mechanisms responsible for the epigenetic remodeling that ensues during preimplantation development of mammals, presenting findings from studies of mouse embryos and when available comparing them to what is known for human and cattle embryos.
Collapse
Affiliation(s)
- Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Rafael V Sampaio
- Department of Animal Science, University of California Davis, Davis, CA, United States.,Department of Animal Science, University of California Davis, Davis, CA, United States
| |
Collapse
|
21
|
Can Reprogramming of Overall Epigenetic Memory and Specific Parental Genomic Imprinting Memory within Donor Cell-Inherited Nuclear Genome be a Major Hindrance for the Somatic Cell Cloning of Mammals? – A Review. ANNALS OF ANIMAL SCIENCE 2018. [DOI: 10.2478/aoas-2018-0015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Successful cloning of animals by somatic cell nuclear transfer (SCNT) requires epigenetic transcriptional reprogramming of the differentiated state of the donor cell nucleus to a totipotent embryonic ground state. It means that the donor nuclei must cease its own program of gene expression and restore a particular program of the embryonic genome expression regulation that is necessary for normal development. Transcriptional activity of somatic cell-derived nuclear genome during embryo pre- and postimplantation development as well as foetogenesis is correlated with the frequencies for spatial remodeling of chromatin architecture and reprogramming of cellular epigenetic memory. This former and this latter process include such covalent modifications as demethylation/re-methylation of DNA cytosine residues and acetylation/deacetylation as well as demethylation/re-methylation of lysine residues of nucleosomal core-derived histones H3 and H4. The main cause of low SCNT efficiency in mammals turns out to be an incomplete reprogramming of transcriptional activity for donor cell-descended genes. It has been ascertained that somatic cell nuclei should undergo the wide DNA cytosine residue demethylation changes throughout the early development of cloned embryos to reset their own overall epigenetic and parental genomic imprinting memories that have been established by re-methylation of the nuclear donor cell-inherited genome during specific pathways of somatic and germ cell lineage differentiation. A more extensive understanding of the molecular mechanisms and recognition of determinants for epigenetic transcriptional reprogrammability of somatic cell nuclear genome will be helpful to solve the problems resulting from unsatisfactory SCNT effectiveness and open new possibilities for common application of this technology in transgenic research focused on human biomedicine.
Collapse
|
22
|
Zhou Y, Song N, Li X, Han Y, Ren Z, Xu JX, Han YC, Li F, Jia X. Changes in the methylation status of the Oct3/4, Nanog, and Sox2 promoters in stem cells during regeneration of rat tracheal epithelium after injury. Oncotarget 2018; 8:2984-2994. [PMID: 27935870 PMCID: PMC5356857 DOI: 10.18632/oncotarget.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022] Open
Abstract
We investigated the relationship between promoter methylation and tracheal stem cell activation. We developed a model of rat tracheal epithelium regeneration after 5-fluorouracil (5-FU)-induced injury. Using immunohistochemistry and Western blotting, the expression levels of the stem cell pluripotency regulator Oct3/4 and differentiation marker CK14 were measured after 5-FU treatment. The methylation status of the Oct3/4, Nanog, and Sox2 promoters was investigated using methylation-specific PCR. Additionally, the effects of 5-azacytidine (5-azaC), a demethylating agent, on Oct3/4, Nanog, and Sox2 mRNA and protein expression were evaluated. Finally, we measured the activity of the maintenance and de novo DNA methyltransferases DNMT1, DNMT3a, and DNMT3b. Our data indicate that Oct3/4, Sox2, and Nanog are transiently expressed in response to 5-FU-induced injury, and then they are gradually silenced as the cells differentiate. DNA methylation can result in silencing of gene expression, and it can determine whether tracheal stem cells are in an active or dormant state. Treatment with 5-FU reversed the methylation of the Oct3/4, Nanog, and Sox2 promoters, which corresponded to increases in Oct3/4, Nanog, and Sox2 mRNA and protein. Thus, both maintenance and de novo methyltransferases are involved in regulating tracheal stem cell dormancy and activation.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Emergency, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Nan Song
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Physiology, College of Life Science and Biopharmaceutics of Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Han
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Pathology, Shenyang Medical College, Shenyang, 110001, China
| | - Zihan Ren
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Jing-Xian Xu
- Department of Ophthalmology, The 4th Affiliated Hospital, Eye Institute, China Medical University, The Key Laboratory of Lens Research, Shenyang 110005, China
| | - Yu-Chen Han
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Fang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,IVF Michigan, Bloomfield Hills, MI, 48304, USA
| | - Xinshan Jia
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
23
|
Ying SY, Fang W, Lin SL. The miR-302-Mediated Induction of Pluripotent Stem Cells (iPSC): Multiple Synergistic Reprogramming Mechanisms. Methods Mol Biol 2018; 1733:283-304. [PMID: 29435941 DOI: 10.1007/978-1-4939-7601-0_23] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pluripotency represents a unique feature of embryonic stem cells (ESCs). To generate ESC-like-induced pluripotent stem cells (iPSCs) derived from somatic cells, the cell genome needs to be reset and reprogrammed to express the ESC-specific transcriptome. Numerous studies have shown that genomic DNA demethylation is required for epigenetic reprogramming of somatic cell nuclei to form iPSCs; yet, the mechanism remains largely unclear. In ESCs, the reprogramming process goes through two critical stages: germline and zygotic demethylation, both of which erase genomic DNA methylation sites and hence allow for different gene expression patterns to be reset into a pluripotent state. Recently, miR-302, an ESC-specific microRNA (miRNA), was found to play an essential role in four aspects of this reprogramming mechanism-(1) initiating global genomic DNA demethylation, (2) activating ESC-specific gene expression, (3) inhibiting developmental signaling, and (4) preventing stem cell tumorigenicity. In this review, we will summarize miR-302 functions in all four reprogramming aspects and further discuss how these findings may improve the efficiency and safety of the current iPSC technology.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - William Fang
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shi-Lung Lin
- Division of Regenerative Medicine, WJWU & LYNN (W&L) Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| |
Collapse
|
24
|
Huang X, Song L, Zhan Z, Gu H, Feng H, Li Y. Factors Affecting Mouse Somatic Cell Nuclear Reprogramming by Rabbit Ooplasms. Cell Reprogram 2017; 19:344-353. [PMID: 29135280 DOI: 10.1089/cell.2017.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful development of interspecies somatic cell nuclear transfer (iSCNT) embryos depends on compatibilities between ooplasmic and nuclear components. However, the mechanisms by which the compatibilities are regulated are still unknown. In this study, using mouse Oct4-green fluorescent protein (GFP) cells as donors and rabbit oocytes as recipients, we show that Oct4 and other pluripotency related genes were reactivated in some of mouse-rabbit iSCNT embryos, which could also activate Oct4 promoter-driven GFP reporter gene expression. Series nuclear transfer improved the efficiency of Oct4 reactivation. DNA demethylation of Oct4 promoter was detected in GFP positive iSCNT blastocysts, whereas GFP negative iSCNT embryos showed a low efficiency. Our results demonstrate that Oct4-GFP can well label the embryos with epigenetic remodeling and reactivation of pluripotent gene expression. Abundant rabbit mitochondria specific DNAs were identified in reconstructed mouse-rabbit embryos throughout preimplantation stages. Our data demonstrate that epigenetic remodeling and the complete mitochondrial match are not necessary for successful iSCNT embryo development before implantation.
Collapse
Affiliation(s)
- Xia Huang
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Lili Song
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Zhiyan Zhan
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Haihui Gu
- 2 Department of Transfusion Medicine, Shanghai Changhai Hospital , Shanghai, China
| | - Haizhong Feng
- 3 State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Yanxin Li
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
25
|
Rajabi H, Mohseni-Kouchesfehani H, Salehi M, Farifteh-Nobijari F, Eslami-Arshaghi T. The influence of semen quality on male pronucleus demethylation process during ICSI cycle. Syst Biol Reprod Med 2017; 63:341-349. [PMID: 28841339 DOI: 10.1080/19396368.2017.1368735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There is growing evidence that the spermatozoon's epigenetic structure is of the utmost importance in the health of the future embryo. Following fertilization, sperm chromatin undergoes epigenetic reprogramming including DNA demethylation and remethylation, which resets gene expression. In some infertile patients, it is inevitable that sperm cells that are not within the range of normal human sperm parameters will be used for intracytoplasmic sperm injection. Understanding the relationship between the human sperm parameters and male pronucleus DNA demethylation seems necessary. We hypothesized that demethylation of the male pronucleus might be altered in zygotes conceived from a spermatozoa obtained from a sample exhibiting an abnormal semen analysis profile. To test the hypothesis, sperm cells from normal and abnormal human semen samples were injected into mouse oocytes. A group of cultured zygotes was fixed before the onset of DNA demethylation and the other group was fixed after DNA demethylation. Both groups were then labeled with a 5 methylcytosine antibody and the level of pronuclei methylation was detected as a function of fluorescent intensity. The level of demethylation was then determined as the difference between 5 methylcytosine fluorescent intensity before and after DNA demethylation. A negative correlation (p<0.05) was observed between sperm motility, morphology, percentage of head defects, protamine deficiency, and DNA demethylation level. However, no correlation was found between the demethylation level and sperm count. In conclusion, these observations suggest that demethylation is altered in the male pronucleus when low quality sperm samples are used.
Collapse
Affiliation(s)
- Hoda Rajabi
- a Department of Animal Biology, Faculty of Biological Sciences , Kharazmi University , Tehran , Iran
| | | | - Mohammad Salehi
- b Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fattaneh Farifteh-Nobijari
- c Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | | |
Collapse
|
26
|
Yeo CD, Kang N, Choi SY, Kim BN, Park CK, Kim JW, Kim YK, Kim SJ. The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: a possible link to epigenetic regulation. Korean J Intern Med 2017; 32:589-599. [PMID: 28704917 PMCID: PMC5511947 DOI: 10.3904/kjim.2016.302] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/15/2017] [Indexed: 02/08/2023] Open
Abstract
A hypoxic microenvironment leads to cancer progression and increases the metastatic potential of cancer cells within tumors via epithelial-mesenchymal transition (EMT) and cancer stemness acquisition. The hypoxic response pathway can occur under oxygen tensions of < 40 mmHg through hypoxia-inducible factors (HIFs), which are considered key mediators in the adaptation to hypoxia. Previous studies have shown that cellular responses to hypoxia are required for EMT and cancer stemness maintenance through HIF-1α and HIF-2α. The principal transcription factors of EMT include Twist, Snail, Slug, Sip1 (Smad interacting protein 1), and ZEB1 (zinc finger E-box-binding homeobox 1). HIFs bind to hypoxia response elements within the promoter region of these genes and also target cancer stem cell-associated genes and mediate transcriptional responses to hypoxia during stem cell differentiation. Acquisition of stemness characteristics in epithelial cells can be induced by activation of the EMT process. The mechanism of these phenotypic changes includes epigenetic alterations, such as DNA methylation, histone modification, chromatin remodeling, and microRNAs. Increased expression of EMT and pluripotent genes also play a role through demethylation of their promoters. In this review, we summarize the role of hypoxia on the acquisition of EMT and cancer stemness and the possible association with epigenetic regulation, as well as their therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Seung Joon Kim
- Correspondence to Seung Joon Kim, M.D. Division of Pulmonology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6063 Fax: +82-2-599-3589 E-mail:
| |
Collapse
|
27
|
Suelves M, Carrió E, Núñez-Álvarez Y, Peinado MA. DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics 2016; 15:443-453. [PMID: 27416614 DOI: 10.1093/bfgp/elw017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts, revealing a more dynamic regulation than originally thought, as active DNA methylation and demethylation occur during cell fate commitment and terminal differentiation. Recent data provide insights into the contribution of different epigenetic factors, and DNA methylation in particular, to the establishment of cellular memory during embryonic development and the modulation of cell type-specific gene regulation programs to ensure proper differentiation. This review summarizes published data regarding DNA methylation changes along lineage specification and differentiation programs. We also discuss the current knowledge about DNA methylation alterations occurring in physiological and pathological conditions such as aging and cancer.
Collapse
|
28
|
Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016; 86:80-90. [PMID: 27160443 DOI: 10.1016/j.theriogenology.2016.04.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development.
Collapse
Affiliation(s)
- Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany.
| |
Collapse
|
29
|
Kim TW, Lee SJ, Oh BM, Lee H, Uhm TG, Min JK, Park YJ, Yoon SR, Kim BY, Kim JW, Choe YK, Lee HG. Epigenetic modification of TLR4 promotes activation of NF-κB by regulating methyl-CpG-binding domain protein 2 and Sp1 in gastric cancer. Oncotarget 2016; 7:4195-209. [PMID: 26675260 PMCID: PMC4826199 DOI: 10.18632/oncotarget.6549] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is important in promoting the immune response in various cancers. Recently, TLR4 is highly expressed in a stage-dependent manner in gastric cancer, but the regulatory mechanism of TLR4 expression has been not elucidated it. Here, we investigated the mechanism underlying regulation of TLR4 expression through promoter methylation and histone modification between transcriptional regulation and silencing of the TLR4 gene in gastric cancer cells. Chromatin immunoprecipitation was carried out to screen for factors related to TLR4 methylation such as MeCP2, HDAC1, and Sp1 on the TLR4 promoter. Moreover, DNA methyltransferase inhibitor 5-aza-deoxycytidine (5-aza-dC) induced demethylation of the TLR4 promoter and increased H3K4 trimethylation and Sp1 binding to reactivate silenced TLR4. In contrast, although the silence of TLR4 activated H3K9 trimethylation and MeCP2 complex, combined treatment with TLR4 agonist and 5-aza-dC upregulated H3K4 trimethylation and activated with transcription factors as Sp1 and NF-κB. This study demonstrates that recruitment of the MeCP2/HDAC1 repressor complex increases the low levels of TLR4 expression through epigenetic modification of DNA and histones on the TLR4 promoter, but Sp1 activates TLR4 high expression by hypomethylation and NF-κB signaling in gastric cancer cells.
Collapse
Affiliation(s)
- Tae Woo Kim
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Byung Moo Oh
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Heesoo Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Tae Gi Uhm
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeong-Ki Min
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Jun Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Bo-Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Jong Wan Kim
- Department of Laboratory Medicine, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Yong-Kyung Choe
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hee Gu Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
30
|
Mallol A, Piqué L, Santaló J, Ibáñez E. Morphokinetics of cloned mouse embryos treated with epigenetic drugs and blastocyst prediction. Reproduction 2015; 151:203-14. [PMID: 26621919 DOI: 10.1530/rep-15-0354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022]
Abstract
Time-lapse monitoring of somatic cell nuclear transfer (SCNT) embryos may help to predict developmental success and increase birth and embryonic stem cells (ESC) derivation rates. Here, the development of ICSI fertilized embryos and of SCNT embryos, non-treated or treated with either psammaplin A (PsA) or vitamin C (VitC), was monitored, and the ESC derivation rates from the resulting blastocysts were determined. Blastocyst rates were similar among PsA-treated and VitC-treated SCNT embryos and ICSI embryos, but lower for non-treated SCNT embryos. ESC derivation rates were higher in treated SCNT embryos than in non-treated or ICSI embryos. Time-lapse microscopy analysis showed that non-treated SCNT embryos had a delayed development from the second division until compaction, lower number of blastomeres at compaction and longer compaction and cavitation durations compared with ICSI ones. Treatment of SCNT embryos with PsA further increased this delay whereas treatment with VitC slightly reduced it, suggesting that both treatments act through different mechanisms, not necessarily related to their epigenetic effects. Despite these differences, the time of completion of the third division, alone or combined with the duration of compaction and/or the presence of fragmentation, had a strong predictive value for blastocyst formation in all groups. In contrast, we failed to predict ESC derivation success from embryo morphokinetics. Time-lapse technology allows the selection of SCNT embryos with higher developmental potential and could help to increase cloning outcomes. Nonetheless, further studies are needed to find reliable markers for full-term development and ESC derivation success.
Collapse
Affiliation(s)
- Anna Mallol
- Unitat de Biologia Cel.lularDepartament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Laia Piqué
- Unitat de Biologia Cel.lularDepartament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Josep Santaló
- Unitat de Biologia Cel.lularDepartament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Ibáñez
- Unitat de Biologia Cel.lularDepartament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
31
|
Tso D, McKinnon RD. Cell replacement therapy for central nervous system diseases. Neural Regen Res 2015; 10:1356-8. [PMID: 26604878 PMCID: PMC4625483 DOI: 10.4103/1673-5374.165209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
The brain and spinal cord can not replace neurons or supporting glia that are lost through traumatic injury or disease. In pre-clinical studies, however, neural stem and progenitor cell transplants can promote functional recovery. Thus the central nervous system is repair competent but lacks endogenous stem cell resources. To make transplants clinically feasible, this field needs a source of histocompatible, ethically acceptable and non-tumorgenic cells. One strategy to generate patient-specific replacement cells is to reprogram autologous cells such as fibroblasts into pluripotent stem cells which can then be differentiated into the required cell grafts. However, the utility of pluripotent cell derived grafts is limited since they can retain founder cells with intrinsic neoplastic potential. A recent extension of this technology directly reprograms fibroblasts into the final graftable cells without an induced pluripotent stem cell intermediate, avoiding the pluripotent caveat. For both types of reprogramming the conversion efficiency is very low resulting in the need to amplify the cells in culture which can lead to chromosomal instability and neoplasia. Thus to make reprogramming biology clinically feasible, we must improve the efficiency. The ultimate source of replacement cells may reside in directly reprogramming accessible cells within the brain.
Collapse
Affiliation(s)
- Danju Tso
- Department of Surgery (Neurosurgery), Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Randall D. McKinnon
- Department of Surgery (Neurosurgery), Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
32
|
A Cell Electrofusion Chip for Somatic Cells Reprogramming. PLoS One 2015; 10:e0131966. [PMID: 26177036 PMCID: PMC4503441 DOI: 10.1371/journal.pone.0131966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
Cell fusion is a potent approach to explore the mechanisms of somatic cells reprogramming. However, previous fusion methods, such as polyethylene glycol (PEG) mediated cell fusion, are often limited by poor fusion yields. In this study, we developed a simplified cell electrofusion chip, which was based on a micro-cavity/ discrete microelectrode structure to improve the fusion efficiency and to reduce multi-cell electrofusion. Using this chip, we could efficiently fuse NIH3T3 cells and mouse embryonic stem cells (mESCs) to induce somatic cells reprogramming. We also found that fused cells demethylated gradually and 5-hydroxymethylcytosine (5hmC) was involved in the demethylation during the reprogramming. Thus, the cell electrofusion chip would facilitate reprogramming mechanisms research by improving efficiency of cell fusion and reducing workloads.
Collapse
|
33
|
Li Z, Gu TP, Weber AR, Shen JZ, Li BZ, Xie ZG, Yin R, Guo F, Liu X, Tang F, Wang H, Schär P, Xu GL. Gadd45a promotes DNA demethylation through TDG. Nucleic Acids Res 2015; 43:3986-97. [PMID: 25845601 PMCID: PMC4417182 DOI: 10.1093/nar/gkv283] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022] Open
Abstract
Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) generated in Ten-eleven-translocation (Tet)—initiated oxidative demethylation. The connection of Gadd45a with oxidative demethylation is evidenced by the enhanced activation of a methylated reporter gene in HEK293T cells expressing Gadd45a in combination with catalytically active TDG and Tet. Gadd45a interacts with TDG physically and increases the removal of 5fC and 5caC from genomic and transfected plasmid DNA by TDG. Knockout of both Gadd45a and Gadd45b from mouse ES cells leads to hypermethylation of specific genomic loci most of which are also targets of TDG and show 5fC enrichment in TDG-deficient cells. These observations indicate that the demethylation effect of Gadd45a is mediated by TDG activity. This finding thus unites Gadd45a with the recently defined Tet-initiated demethylation pathway.
Collapse
Affiliation(s)
- Zheng Li
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Peng Gu
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Alain R Weber
- Department of Biomedicine, University of Basel, Basel 4048, Switzerland
| | - Jia-Zhen Shen
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin-Zhong Li
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Guo Xie
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruichuan Yin
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fan Guo
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaomeng Liu
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100871, China
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel 4048, Switzerland
| | - Guo-Liang Xu
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
34
|
Jurkowski TP, Ravichandran M, Stepper P. Synthetic epigenetics-towards intelligent control of epigenetic states and cell identity. Clin Epigenetics 2015; 7:18. [PMID: 25741388 PMCID: PMC4347971 DOI: 10.1186/s13148-015-0044-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/12/2015] [Indexed: 01/14/2023] Open
Abstract
Epigenetics is currently one of the hottest topics in basic and biomedical research. However, to date, most of the studies have been descriptive in nature, designed to investigate static distribution of various epigenetic modifications in cells. Even though tremendous amount of information has been collected, we are still far from the complete understanding of epigenetic processes, their dynamics or even their direct effects on local chromatin and we still do not comprehend whether these epigenetic states are the cause or the consequence of the transcriptional profile of the cell. In this review, we try to define the concept of synthetic epigenetics and outline the available genome targeting technologies, which are used for locus-specific editing of epigenetic signals. We report early success stories and the lessons we have learned from them, and provide a guide for their application. Finally, we discuss existing limitations of the available technologies and indicate possible areas for further development.
Collapse
Affiliation(s)
- Tomasz P Jurkowski
- Laboratory of Molecular Epigenetics, Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Mirunalini Ravichandran
- Laboratory of Molecular Epigenetics, Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Peter Stepper
- Laboratory of Molecular Epigenetics, Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
35
|
Mao J, Zhao MT, Whitworth KM, Spate LD, Walters EM, O'Gorman C, Lee K, Samuel MS, Murphy CN, Wells K, Rivera RM, Prather RS. Oxamflatin treatment enhances cloned porcine embryo development and nuclear reprogramming. Cell Reprogram 2014; 17:28-40. [PMID: 25548976 DOI: 10.1089/cell.2014.0075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Faulty epigenetic reprogramming of somatic nuclei is thought to be the main reason for low cloning efficiency by somatic cell nuclear transfer (SCNT). Histone deacetylase inhibitors (HDACi), such as Scriptaid, improve developmental competence of SCNT embryos in several species. Another HDACi, Oxamflatin, is about 100 times more potent than Scriptaid in the ability to inhibit nuclear-specific HDACs. The present study determined the effects of Oxamflatin treatment on embryo development, DNA methylation, and gene expression. Oxamflatin treatment enhanced blastocyst formation of SCNT embryos in vitro. Embryo transfer produced more pigs born and fewer mummies from the Oxamflatin-treated group compared to the Scriptaid-treated positive control. Oxamflatin also decreased DNA methylation of POU5F1 regulatory elements and centromeric repeat elements in day-7 blastocysts. When compared to in vitro-fertilized (IVF) embryos, the methylation status of POU5F1, NANOG, and centromeric repeat was similar in the cloned embryos, indicating these genes were successfully reprogrammed. However, compared to the lack of methylation of XIST in day-7 IVF embryos, a higher methylation level in day-7 cloned embryos was observed, implying that X chromosomes were activated in day-7 IVF blastocysts, but were not fully activated in cloned embryos, i.e., reprogramming of XIST was delayed. A time-course analysis of XIST DNA methylation on day-13, -15, -17, and -19 in vivo embryos revealed that XIST methylation initiated at about day 13 and was not completed by day 19. The methylation of the XIST gene in day-19 control cloned embryos was delayed again when compared to in vivo embryos. However, methylation of XIST in Oxamflatin-treated embryos was comparable with in vivo embryos, which further demonstrated that Oxamflatin could accelerate the delayed reprogramming of XIST gene and thus might improve cloning efficiency.
Collapse
Affiliation(s)
- Jiude Mao
- 1 National Swine Resource and Research Center, University of Missouri , Columbia, MO, 65211
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pluripotent state induction in mouse embryonic fibroblast using mRNAs of reprogramming factors. Int J Mol Sci 2014; 15:21840-64. [PMID: 25437916 PMCID: PMC4284681 DOI: 10.3390/ijms151221840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022] Open
Abstract
Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs) generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF) cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1) and Rex-1 (ZFP-42, zinc finger protein 42). Using embryonic stem cells (ESCs) conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs) using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF) cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.
Collapse
|
37
|
|
38
|
Shukla S, Meeran SM. Epigenetics of cancer stem cells: Pathways and therapeutics. Biochim Biophys Acta Gen Subj 2014; 1840:3494-3502. [PMID: 25240776 DOI: 10.1016/j.bbagen.2014.09.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epigenetic alterations including DNA methylation and histone modifications are the key factors in the differentiation of stem cells into different tissue subtypes. The generation of cancer stem cells (CSCs) in the process of carcinogenesis may also involve similar kind of epigenetic reprogramming where, in contrast, it leads to the loss of expression of genes specific to the differentiated state and regaining of stem cell-specific characteristics. The most important predicament with treatment of cancers includes the non-responsive quiescent CSC. SCOPE OF REVIEW The distinctive capabilities of the CSCs make cancer treatment even more difficult as this population of cells tends to remain quiescent for longer intervals and then gets reactivated leading to tumor relapse. Therefore, the current review is aimed to focus on recent advances in understanding the relation of epigenetic reprogramming to the generation, self-renewal and proliferation of CSCs. MAJOR CONCLUSION CSC-targeted therapeutic approaches would improve the chances of patient survival by reducing the frequency of tumor relapse. Differentiation therapy is an emerging therapeutic approach in which the CSCs are induced to differentiate from their quiescent state to a mature differentiated form, through activation of differentiation-related signalling pathways, miRNA-mediated alteration and epigenetic differentiation therapy. Thus, understanding the origin of CSC and their epigenetic regulation is crucial to develop treatment strategy against not only for the heterogeneous population of cancer cells but also to CSCs. GENERAL SIGNIFICANCE Characterizing the epigenetic marks of CSCs and the associated signalling cascades might help in developing therapeutic strategies against chemo-resistant cancers.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
39
|
Hou L, Ma F, Yang J, Riaz H, Wang Y, Wu W, Xia X, Ma Z, Zhou Y, Zhang L, Ying W, Xu D, Zuo B, Ren Z, Xiong Y. Effects of histone deacetylase inhibitor oxamflatin on in vitro porcine somatic cell nuclear transfer embryos. Cell Reprogram 2014; 16:253-65. [PMID: 24960409 PMCID: PMC4116115 DOI: 10.1089/cell.2013.0058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Low cloning efficiency is considered to be caused by the incomplete or aberrant epigenetic reprogramming of differentiated donor cells in somatic cell nuclear transfer (SCNT) embryos. Oxamflatin, a novel class of histone deacetylase inhibitor (HDACi), has been found to improve the in vitro and full-term developmental potential of SCNT embryos. In the present study, we studied the effects of oxamflatin treatment on in vitro porcine SCNT embryos. Our results indicated that the rate of in vitro blastocyst formation of SCNT embryos treated with 1 μM oxamflatin for 15 h postactivation was significantly higher than all other treatments. Treatment of oxamflatin decreased the relative histone deacetylase (HDAC) activity in cloned embryos and resulted in hyperacetylation levels of histone H3 at lysine 9 (AcH3K9) and histone H4 at lysine 5 (AcH4K5) at pronuclear, two-cell, and four-cell stages partly through downregulating HDAC1. The suppression of HDAC6 through oxamflatin increased the nonhistone acetylation level of α-tubulin during the mitotic cell cycle of early SCNT embryos. In addition, we demonstrated that oxamflatin downregulated DNA methyltransferase 1 (DNMT1) expression and global DNA methylation level (5-methylcytosine) in two-cell-stage porcine SCNT embryos. The pluripotency-related gene POU5F1 was found to be upregulated in the oxamflatin-treated group with a decreased DNA methylation tendency in its promoter regions. Treatment of oxamflatin did not change the locus-specific DNA methylation levels of Sus scrofa heterochromatic satellite DNA sequences at the blastocyst stage. Meanwhile, our findings suggest that treatment with HDACi may contribute to maintaining the stable status of cytoskeleton-associated elements, such as acetylated α-tubulin, which may be the crucial determinants of donor nuclear reprogramming in early SCNT embryos. In summary, oxamflatin treatment improves the developmental potential of porcine SCNT embryos in vitro.
Collapse
Affiliation(s)
- Liming Hou
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fanhua Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Hasan Riaz
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongliang Wang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoliang Xia
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Zhou
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Zhang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqin Ying
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dequan Xu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zuo
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanzhu Xiong
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
40
|
Rasmussen M, Zierath JR, Barrès R. Dynamic epigenetic responses to muscle contraction. Drug Discov Today 2014; 19:1010-4. [DOI: 10.1016/j.drudis.2014.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/05/2014] [Indexed: 12/22/2022]
|
41
|
Firas J, Liu X, Polo JM. Epigenetic memory in somatic cell nuclear transfer and induced pluripotency: Evidence and implications. Differentiation 2014; 88:29-32. [DOI: 10.1016/j.diff.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/18/2014] [Accepted: 09/06/2014] [Indexed: 12/31/2022]
|
42
|
Sangalli JR, Chiaratti MR, De Bem THC, de Araújo RR, Bressan FF, Sampaio RV, Perecin F, Smith LC, King WA, Meirelles FV. Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS One 2014; 9:e101022. [PMID: 24959750 PMCID: PMC4069182 DOI: 10.1371/journal.pone.0101022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/02/2014] [Indexed: 11/25/2022] Open
Abstract
Cloning of mammals by somatic cell nuclear transfer (SCNT) is still plagued by low efficiency. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this regard, most factors that promote chromatin decondensation, including histone deacetylase inhibitors (HDACis), have been found to increase nuclear reprogramming efficiency, making their use common to improve SCNT rates. Herein we used valproic acid (VPA) in SCNT to test whether the treatment of nuclear donor cells with this HDACi improves pre- and post-implantation development of cloned cattle. We found that the treatment of fibroblasts with VPA increased histone acetylation without affecting DNA methylation. Moreover, the treatment with VPA resulted in increased expression of IGF2R and PPARGC1A, but not of POU5F1. However, when treated cells were used as nuclear donors no difference of histone acetylation was found after oocyte reconstruction compared to the use of untreated cells. Moreover, shortly after artificial activation the histone acetylation levels were decreased in the embryos produced with VPA-treated cells. With respect to developmental rates, the use of treated cells as donors resulted in no difference during pre- and post-implantation development. In total, five clones developed to term; three produced with untreated cells and two with VPA-treated cells. Among the calves from treated group, one stillborn calf was delivered at day 270 of gestation whereas the other one was delivered at term but died shortly after birth. Among the calves from the control group, one died seven days after birth whereas the other two are still alive and healthy. Altogether, these results show that in spite of the alterations in fibroblasts resulting from the treatment with VPA, their use as donor cells in SCNT did not improve pre- and post-implantation development of cloned cattle.
Collapse
Affiliation(s)
- Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
- * E-mail:
| | - Marcos Roberto Chiaratti
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Tiago Henrique Camara De Bem
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Reno Roldi de Araújo
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Fabiana Fernandes Bressan
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Rafael Vilar Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Felipe Perecin
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Lawrence Charles Smith
- Centre de recherche em reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Québec, Canada
| | - Willian Allan King
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
43
|
Boreström C, Simonsson S, Enochson L, Bigdeli N, Brantsing C, Ellerström C, Hyllner J, Lindahl A. Footprint-free human induced pluripotent stem cells from articular cartilage with redifferentiation capacity: a first step toward a clinical-grade cell source. Stem Cells Transl Med 2014; 3:433-47. [PMID: 24604283 DOI: 10.5966/sctm.2013-0138] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine; however, clinical applications of iPSCs are restricted because of undesired genomic modifications associated with most reprogramming protocols. We show, for the first time, that chondrocytes from autologous chondrocyte implantation (ACI) donors can be efficiently reprogrammed into iPSCs using a nonintegrating method based on mRNA delivery, resulting in footprint-free iPSCs (no genome-sequence modifications), devoid of viral factors or remaining reprogramming molecules. The search for universal allogeneic cell sources for the ACI regenerative treatment has been difficult because making chondrocytes with high matrix-forming capacity from pluripotent human embryonic stem cells has proven challenging and human mesenchymal stem cells have a predisposition to form hypertrophic cartilage and bone. We show that chondrocyte-derived iPSCs can be redifferentiated in vitro into cartilage matrix-producing cells better than fibroblast-derived iPSCs and on par with the donor chondrocytes, suggesting the existence of a differentiation bias toward the somatic cell origin and making chondrocyte-derived iPSCs a promising candidate universal cell source for ACI. Whole-genome single nucleotide polymorphism array and karyotyping were used to verify the genomic integrity and stability of the established iPSC lines. Our results suggest that RNA-based technology eliminates the risk of genomic integrations or aberrations, an important step toward a clinical-grade cell source for regenerative medicine such as treatment of cartilage defects and osteoarthritis.
Collapse
Affiliation(s)
- Cecilia Boreström
- Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Cellectis Bioresearch, Gothenburg, Sweden; Division of Biotechnology/IFM, Linköping University, Linköping, Sweden; Cell Therapy Catapult Limited, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee WS, Kwon J, Yun DH, Lee YN, Woo EY, Park MJ, Lee JS, Han YH, Bae IH. Specificity protein 1 expression contributes to Bcl-w-induced aggressiveness in glioblastoma multiforme. Mol Cells 2014; 37:17-23. [PMID: 24552705 PMCID: PMC3907011 DOI: 10.14348/molcells.2014.2161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/11/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022] Open
Abstract
We already had reported that Bcl-w promotes invasion or migration in gastric cancer cells and glioblastoma multiforme (GBM) by activating matrix metalloproteinase-2 (MMP-2) via specificity protein 1 (Sp1) or β-cateinin, respectively. High expression of Bcl-w also has been reported in GBM which is the most common malignant brain tumor and exhibits aggressive and invasive behavior. These reports propose that Bcl-w-induced signaling is strongly associated with aggressive characteristic of GBM. We demonstrated that Sp1 protein or mRNA expression is induced by Bcl-w using Western blotting or RT-PCR, respectively, and markedly elevated in high-grade glioma specimens compared with low-grade glioma tissues using tissue array. However, relationship between Bcl-w-related signaling and aggressive characteristic of GBM is poorly characterized. This study suggested that Bcl-w-induced Sp1 activation promoted expression of glioma stem-like cell markers, such as Musashi, Nanog, Oct4 and sox-2, as well as neurosphere formation and invasiveness, using western blotting, neurosphere formation assay, or invasion assay, culminating in their aggressive behavior. Therefore, Bcl-w-induced Sp1 activation is proposed as a putative marker for aggressiveness of GBM.
Collapse
Affiliation(s)
- Woo Sang Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | | | - Dong Ho Yun
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Young Nam Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Eun Young Woo
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Myung-Jin Park
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Jae-Seon Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Young-Hoon Han
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - In Hwa Bae
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| |
Collapse
|
45
|
Analysis of DNA methylation reveals a partial reprogramming of the Müller glia genome during retina regeneration. Proc Natl Acad Sci U S A 2013; 110:19814-9. [PMID: 24248357 DOI: 10.1073/pnas.1312009110] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Upon retinal injury, zebrafish Müller glia (MG) transition from a quiescent supportive cell to a progenitor cell (MGPC). This event is accompanied by the induction of key transcription and pluripotency factors. Because somatic cell reprogramming during induced pluripotent stem cell generation is accompanied by changes in DNA methylation, especially in pluripotency factor gene promoters, we were interested in determining whether DNA methylation changes also underlie MG reprogramming following retinal injury. Consistent with this idea, we found that genes encoding components of the DNA methylation/demethylation machinery were induced in MGPCs and that manipulating MGPC DNA methylation with 5-aza-2'-deoxycytidine altered their properties. A comprehensive analysis of the DNA methylation landscape as MG reprogram to MGPCs revealed that demethylation predominates at early times, whereas levels of de novo methylation increase at later times. We found that these changes in DNA methylation were largely independent of Apobec2 protein expression. A correlation between promoter DNA demethylation and injury-dependent gene induction was noted. In contrast to induced pluripotent stem cell formation, we found that pluripotency factor gene promoters were already hypomethylated in quiescent MG and remained unchanged in MGPCs. Interestingly, these pluripotency factor promoters were also found to be hypomethylated in mouse MG. Our data identify a dynamic DNA methylation landscape as zebrafish MG transition to an MGPC and suggest that DNA methylation changes will complement other regulatory mechanisms to ensure gene expression programs controlling MG reprogramming are appropriately activated during retina regeneration.
Collapse
|
46
|
Habib O, Habib G, Do JT, Moon SH, Chung HM. Activation-induced deaminase-coupled DNA demethylation is not crucial for the generation of induced pluripotent stem cells. Stem Cells Dev 2013; 23:209-18. [PMID: 24083501 DOI: 10.1089/scd.2013.0337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation constitutes a major obstacle in the reprogramming of cells to pluripotency. Although little is known regarding the molecular mechanisms of DNA demethylation, activation-induced deaminase (AID), which is known to function in antibody diversification, has been implicated in DNA demethylation through a base excision repair (BER)-mediated pathway. Here we comprehensively examine the plausibility of coupled AID-BER demethylation in the generation of induced pluripotent stem cells (iPSCs) and show that AID is dispensable for reprogramming cells into iPSCs. Additionally, the overexpression of AID and other factors involved in AID-coupled DNA demethylation does not increase the efficiency of reprogramming. Moreover, BER is not likely to play a role in this process. Our results indicate that the reactivation of key genes governing the pluripotency circuitry occurs through a mechanism that is independent of deamination-coupled demethylation.
Collapse
Affiliation(s)
- Omer Habib
- 1 School of Medicine, Konkuk University , Seoul, South Korea
| | | | | | | | | |
Collapse
|
47
|
Stem cell reprogramming: generation of patient-specific stem cells by somatic cell nuclear reprogramming. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 5:e105-48. [PMID: 24125543 DOI: 10.1016/j.ddtec.2008.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Lagutina I, Fulka H, Lazzari G, Galli C. Interspecies somatic cell nuclear transfer: advancements and problems. Cell Reprogram 2013; 15:374-84. [PMID: 24033141 DOI: 10.1089/cell.2013.0036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Embryologists working with livestock species were the pioneers in the field of reprogramming by somatic cell nuclear transfer (SCNT). Without the "Dolly experiment," the field of cellular reprogramming would have been slow and induced plutipotent cells (iPSCs) would not have been conceived. The major drive of the work in mammalian cloning was the interest of the breeding industry to propagate superior genotypes. Soon it was realized that the properties of oocytes could be used also to clone endangered mammalian species or to reprogram the genomes of unrelated species through what is known as interspecies (i) SCNT, using easily available oocytes of livestock species. iSCNT for cloning animals works only for species that can interbreed, and experiments with taxonomically distant species have not been successful in obtaining live births or deriving embryonic stem cell (ESC) lines to be used for regenerative medicine. There are controversial reports in the literature, but in most cases these experiments have underlined some of the cellular and molecular mechanisms that are incomplete during cell nucleus reprogramming, including the failure to organize nucleoli, silence somatic cell genes, activate the embryonic genome, and resume mitochondrial replication and function, thus indicating nucleus-cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Irina Lagutina
- 1 Avantea, Laboratorio di Tecnologie della Riproduzione , Cremona, 26100, Italy
| | | | | | | |
Collapse
|
49
|
Chen Q, Qiu C, Huang Y, Jiang L, Huang Q, Guo L, Liu T. Human amniotic epithelial cell feeder layers maintain iPS cell pluripotency by inhibiting endogenous DNA methyltransferase 1. Exp Ther Med 2013; 6:1145-1154. [PMID: 24223636 PMCID: PMC3820821 DOI: 10.3892/etm.2013.1279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/22/2013] [Indexed: 12/16/2022] Open
Abstract
Maintaining induced pluripotent stem (iPS) cells in an undifferentiated, self-renewing state during long-term cultivation is, at present, a major challenge. We previously showed that human amniotic epithelial cells (HuAECs) were able to provide a good source of feeder cells for mouse and human embryonic or spermatogonial stem cells; however, the epigenetic mechanisms have not been elucidated. In the present study, mouse embryonic fibroblasts (MEFs) and HuAECs were compared as feeder layers for the long-term culture of human iPS cells. The HuAEC feeders allowed human iPS cells to maintain a high level of alkaline phosphatase (AP) activity and to express key stem cell markers during long-term subculture whereas the MEF feeders did not,. Moreover, the HuAEC feeders significantly affected the cell cycle regulation of the iPS cells, maintaining them in the resting stage and the early stage of DNA synthesis (G0/G1 stage). Furthermore, the CpG islands of the Nanog and Oct4 promoters were hypomethylated, while the Nanog- and Oct4-specific loci exhibited higher levels of histone H3 acetylation and lower levels of H3K27 trimethylation in iPS cells cultured on HuAECs compared with those cultured on MEFs. The DNA methyltransferase 1 (DNMT1) expression in iPS cells cultured on HuAECs was shown to be lower than in those cultured on MEFs. In addition, DNMT1-silenced human iPS cells were able to maintain pluripotency over long-term culture on MEFs. In combination, these results suggest that endogenous DNMT1 expression in human iPS cells may be regulated by HuAEC feeder cells and that Nanog and Oct4 are crucial components required for the maintenance of iPS cells in an undifferentiated, proliferative state, capable of self-renewal.
Collapse
Affiliation(s)
- Qing Chen
- Shanghai Pudong New Area Gongli Hospital, Shanghai 200135
| | | | | | | | | | | | | |
Collapse
|
50
|
Miyamoto K, Gurdon JB. Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cell Mol Life Sci 2013; 70:3289-302. [PMID: 23275942 PMCID: PMC3753470 DOI: 10.1007/s00018-012-1235-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022]
Abstract
Proper regulation of transcription is essential for cells to acquire and maintain cell identity. Transcriptional activation plays a central role in gene regulation and can be modulated by introducing transcriptional activators such as transcription factors. Activators act on their specific target genes to induce transcription. Reprogramming experiments have revealed that as cells become differentiated, some genes are highly silenced and even introduction of activators that target these silenced genes does not induce transcription. This can be explained by chromatin-based repression that restricts access of transcriptional activators to silenced genes. Transcriptional activation from these genes can be accomplished by opening chromatin, in addition to providing activators. Once a de novo transcription network is established, cells are differentiated or reprogrammed to a new cell type. Emerging evidence suggests that actin in the nucleus (nuclear actin) and nuclear actin-binding proteins are implicated in these transcriptional regulatory processes. This review summarizes roles of nuclear actin and actin-binding proteins in transcriptional regulation. We also discuss possible functions of nuclear actin during reprogramming in the context of transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Kei Miyamoto
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | | |
Collapse
|