1
|
Filippini F, Galli T. Unveiling defects of secretion mechanisms in Parkinson's disease. J Biol Chem 2024; 300:107603. [PMID: 39059489 PMCID: PMC11378209 DOI: 10.1016/j.jbc.2024.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction and loss of specific sets of neurons. While extensive research has focused on elucidating the genetic and epigenetic factors and molecular mechanisms underlying these disorders, emerging evidence highlights the critical role of secretion in the pathogenesis, possibly even onset, and progression of neurodegenerative diseases, suggesting the occurrence of non-cell-autonomous mechanisms. Secretion is a fundamental process that regulates intercellular communication, supports cellular homeostasis, and orchestrates various physiological functions in the body. Defective secretion can impair the release of neurotransmitters and other signaling molecules, disrupting synaptic transmission and compromising neuronal survival. It can also contribute to the accumulation, misfolding, and aggregation of disease-associated proteins, leading to neurotoxicity and neuronal dysfunction. In this review, we discuss the implications of defective secretion in the context of Parkinson's disease, emphasizing its role in protein aggregation, synaptic dysfunction, extracellular vesicle secretion, and neuroinflammation. We propose a multiple-hit model whereby protein accumulation and secretory defects must be combined for the onset and progression of the disease.
Collapse
Affiliation(s)
- Francesca Filippini
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Paris, France.
| |
Collapse
|
2
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
3
|
Wang N, Zhu B, Allnutt MA, Grijalva RM, Zhao H, Chandra SS. Decoding transcriptomic signatures of cysteine string protein alpha-mediated synapse maintenance. Proc Natl Acad Sci U S A 2024; 121:e2320064121. [PMID: 38833477 PMCID: PMC11181078 DOI: 10.1073/pnas.2320064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Synapse maintenance is essential for generating functional circuitry, and decrement in this process is a hallmark of neurodegenerative disease. Yet, little is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single-nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in the CSPα KO brain. Significantly, all neuronal classes in CSPα KO brains show strong signatures of repression in synaptic pathways, while up-regulating autophagy-related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. Glial responses varied by cell type, with microglia exhibiting activation. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, with the classical Neurexin1-Neuroligin 1 pair being the most prominent, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice to preserve synapse maintenance. Together, this study provides a rich dataset of transcriptional changes in the CSPα KO cortex and reveals insights into synapse maintenance and neurodegeneration.
Collapse
Affiliation(s)
- Na Wang
- Department of Neurology, Yale University, New Haven, CT06510
- Department of Neuroscience, Yale University, New Haven, CT06510
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT06510
- Department of Biostatistics, Yale School of Public Health, New Haven, CT06510
| | - Mary Alice Allnutt
- Department of Neurology, Yale University, New Haven, CT06510
- Department of Neuroscience, Yale University, New Haven, CT06510
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT06510
| | - Rosalie M. Grijalva
- Department of Neuroscience, Yale University, New Haven, CT06510
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT06510
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT06510
- Department of Biostatistics, Yale School of Public Health, New Haven, CT06510
| | - Sreeganga S. Chandra
- Department of Neurology, Yale University, New Haven, CT06510
- Department of Neuroscience, Yale University, New Haven, CT06510
| |
Collapse
|
4
|
Richard SA. Elucidating the pivotal molecular mechanisms, therapeutic and neuroprotective effects of lithium in traumatic brain injury. Brain Behav 2024; 14:e3595. [PMID: 38874089 PMCID: PMC11177180 DOI: 10.1002/brb3.3595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) refers to damage to brain tissue by mechanical or blunt force via trauma. TBI is often associated with impaired cognitive abilities, like difficulties in memory, learning, attention, and other higher brain functions, that typically remain for years after the injury. Lithium is an elementary light metal that is only utilized in salt form due to its high intrinsic reactivity. This current review discusses the molecular mechanisms and therapeutic and neuroprotective effects of lithium in TBI. METHOD The "Boolean logic" was used to search for articles on the subject matter in PubMed and PubMed Central, as well as Google Scholar. RESULTS Lithium's therapeutic action is extremely complex, involving multiple effects on gene secretion, neurotransmitter or receptor-mediated signaling, signal transduction processes, circadian modulation, as well as ion transport. Lithium is able to normalize multiple short- as well as long-term modifications in neuronal circuits that ultimately result in disparity in cortical excitation and inhibition activated by TBI. Also, lithium levels are more distinct in the hippocampus, thalamus, neo-cortex, olfactory bulb, amygdala as well as the gray matter of the cerebellum following treatment of TBI. CONCLUSION Lithium attenuates neuroinflammation and neuronal toxicity as well as protects the brain from edema, hippocampal neurodegeneration, loss of hemispheric tissues, and enhanced memory as well as spatial learning after TBI.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Medicine, Princefield University, Ho, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Szodorai E, Hevesi Z, Wagner L, Hökfelt TGM, Harkany T, Schnell R. A hydrophobic groove in secretagogin allows for alternate interactions with SNAP-25 and syntaxin-4 in endocrine tissues. Proc Natl Acad Sci U S A 2024; 121:e2309211121. [PMID: 38593081 PMCID: PMC11032447 DOI: 10.1073/pnas.2309211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
Vesicular release of neurotransmitters and hormones relies on the dynamic assembly of the exocytosis/trans-SNARE complex through sequential interactions of synaptobrevins, syntaxins, and SNAP-25. Despite SNARE-mediated release being fundamental for intercellular communication in all excitable tissues, the role of auxiliary proteins modulating the import of reserve vesicles to the active zone, and thus, scaling repetitive exocytosis remains less explored. Secretagogin is a Ca2+-sensor protein with SNAP-25 being its only known interacting partner. SNAP-25 anchors readily releasable vesicles within the active zone, thus being instrumental for 1st phase release. However, genetic deletion of secretagogin impedes 2nd phase release instead, calling for the existence of alternative protein-protein interactions. Here, we screened the secretagogin interactome in the brain and pancreas, and found syntaxin-4 grossly overrepresented. Ca2+-loaded secretagogin interacted with syntaxin-4 at nanomolar affinity and 1:1 stoichiometry. Crystal structures of the protein complexes revealed a hydrophobic groove in secretagogin for the binding of syntaxin-4. This groove was also used to bind SNAP-25. In mixtures of equimolar recombinant proteins, SNAP-25 was sequestered by secretagogin in competition with syntaxin-4. Kd differences suggested that secretagogin could shape unidirectional vesicle movement by sequential interactions, a hypothesis supported by in vitro biological data. This mechanism could facilitate the movement of transport vesicles toward release sites, particularly in the endocrine pancreas where secretagogin, SNAP-25, and syntaxin-4 coexist in both α- and β-cells. Thus, secretagogin could modulate the pace and fidelity of vesicular hormone release by differential protein interactions.
Collapse
Affiliation(s)
- Edit Szodorai
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Ludwig Wagner
- Department of Internal Medicine III, Medical University of Vienna, ViennaA-1090, Austria
| | - Tomas G. M. Hökfelt
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
| | - Tibor Harkany
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Robert Schnell
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
| |
Collapse
|
6
|
Barker E, Morgan A, Barclay JW. Tissue distribution of cysteine string protein/DNAJC5 in C. elegans analysed by CRISPR/Cas9-mediated tagging of endogenous DNJ-14. Cell Tissue Res 2024; 396:41-55. [PMID: 38403745 PMCID: PMC10997724 DOI: 10.1007/s00441-024-03875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 family of molecular chaperones. CSP is enriched in neurons, where it mainly localises to synaptic vesicles. Mutations in CSP-encoding genes in flies, worms, mice and humans result in neuronal dysfunction, neurodegeneration and reduced lifespan. Most attention has therefore focused on CSP's neuronal functions, although CSP is also expressed in non-neuronal cells. Here, we used genome editing to fluorescently tag the Caenorhabditis elegans CSP orthologue, dnj-14, to identify which tissues preferentially express CSP and hence may contribute to the observed mutant phenotypes. Replacement of dnj-14 with wrmScarlet caused a strong chemotaxis defect, as seen with other dnj-14 null mutants. In contrast, inserting the reporter in-frame to create a DNJ-14-wrmScarlet fusion protein had no effect on chemotaxis, indicating that C-terminal tagging does not impair DNJ-14 function. WrmScarlet fluorescence appeared most obvious in the intestine, head/pharynx, spermathecae and vulva/uterus in the reporter strains, suggesting that DNJ-14 is preferentially expressed in these tissues. Crossing the DNJ-14-wrmScarlet strain with GFP marker strains confirmed the intestinal and pharyngeal expression, but only a partial overlap with neuronal GFP was observed. DNJ-14-wrmScarlet fluorescence in the intestine was increased in response to starvation, which may be relevant to mammalian CSPα's role in microautophagy. DNJ-14's enrichment in worm reproductive tissues (spermathecae and vulva/uterus) parallels the testis-specific expression of CSPβ and CSPγ isoforms in mammals. Furthermore, CSPα messenger RNA is highly expressed in the human proximal digestive tract, suggesting that CSP may have a conserved, but overlooked, function within the gastrointestinal system.
Collapse
Affiliation(s)
- Eleanor Barker
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
- Current address: Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Alan Morgan
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| | - Jeff W Barclay
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| |
Collapse
|
7
|
Barker E, Milburn AE, Helassa N, Hammond DE, Sanchez-Soriano N, Morgan A, Barclay JW. Proximity labelling reveals effects of disease-causing mutation on the DNAJC5/cysteine string protein α interactome. Biochem J 2024; 481:BCJ20230319. [PMID: 38193346 PMCID: PMC10903463 DOI: 10.1042/bcj20230319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/10/2024]
Abstract
Cysteine string protein α (CSPα), also known as DNAJC5, is a member of the DnaJ/Hsp40 family of co-chaperones. The name derives from a cysteine-rich domain, palmitoylation of which enables localization to intracellular membranes, notably neuronal synaptic vesicles. Mutations in the DNAJC5 gene that encodes CSPα cause autosomal dominant, adult-onset neuronal ceroid lipofuscinosis (ANCL), a rare neurodegenerative disease. As null mutations in CSP-encoding genes in flies, worms and mice similarly result in neurodegeneration, CSP is evidently an evolutionarily conserved neuroprotective protein. However, the client proteins that CSP chaperones to prevent neurodegeneration remain unclear. Traditional methods for identifying protein-protein interactions such as yeast 2-hybrid and affinity purification approaches are poorly suited to CSP, due to its requirement for membrane anchoring and its tendency to aggregate after cell lysis. Therefore, we employed proximity labelling, which enables identification of interacting proteins in situ in living cells via biotinylation. Neuroendocrine PC12 cell lines stably expressing wild type or L115R ANCL mutant CSP constructs fused to miniTurbo were generated; then the biotinylated proteomes were analysed by liquid chromatographymass spectrometry (LCMS) and validated by western blotting. This confirmed several known CSP-interacting proteins, such as Hsc70 and SNAP-25, but also revealed novel binding proteins, including STXBP1/Munc18-1. Interestingly, some protein interactions (such as Hsc70) were unaffected by the L115R mutation, whereas others (including SNAP-25 and STXBP1/Munc18-1) were inhibited. These results define the CSP interactome in a neuronal model cell line and reveal interactions that are affected by ANCL mutation and hence may contribute to the neurodegeneration seen in patients.
Collapse
Affiliation(s)
- Eleanor Barker
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Amy E. Milburn
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Dean E. Hammond
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Natalia Sanchez-Soriano
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Alan Morgan
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Jeff W. Barclay
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| |
Collapse
|
8
|
Guo T, Xiong J, Feng H, Bu L, Xiao T, Zhou L, He J, Deng M, Liu Y, Zhang Z, Zhang Z. L116 Deletion in CSPα Promotes α-Synuclein Aggregation and Neurodegeneration. Mol Neurobiol 2024; 61:15-27. [PMID: 37566176 DOI: 10.1007/s12035-023-03552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Parkinsonism is a clinical syndrome that is caused by Parkinson's disease (PD) and other neurodegenerative diseases. Here, we report a patient who exhibited progressive parkinsonism, epilepsy, and cognitive impairment and was diagnosed with adult-onset neuronal ceroid lipofuscinoses (ANCLs). The patient carries a mutation (p.Leu116 del) in the DNAJC5 gene that encodes cysteine string protein (CSPα). Since the patient shows typical parkinsonism and loss of dopamine transporter in the striatum, we investigated the effect of wild-type and L116del mutant CSPα on the aggregation of α-synuclein (α-syn) and neurotoxicity in vitro. Overexpression of wild-type CSPα attenuated the phosphorylation, ubiquitination, and aggregation of α-syn induced by α-syn fibrils. Moreover, wild-type CSPα inhibits oxidative stress and cell apoptosis and rescues inefficient SNARE complex formation induced by α-syn fibrils in SH-SY5Y cells. However, these protective effects of CSPα were abolished by the L116del mutation. Collectively, these results indicate that L116 deletion in CSPα promotes α-syn pathology and neurotoxicity. Boosting CSPα may be therapeutically useful for treating synucleinopathies.
Collapse
Affiliation(s)
- Tao Guo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hongyan Feng
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lihong Bu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tingting Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lingyan Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Juanfeng He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Deng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Liu
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
9
|
Wang W, Gao W, Gong P, Song W, Bu X, Hou J, Zhang L, Zhao B. Neuronal-specific TNFAIP1 ablation attenuates postoperative cognitive dysfunction via targeting SNAP25 for K48-linked ubiquitination. Cell Commun Signal 2023; 21:356. [PMID: 38102610 PMCID: PMC10722859 DOI: 10.1186/s12964-023-01390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Synaptosomal-associated protein 25 (SNAP25) exerts protective effects against postoperative cognitive dysfunction (POCD) by promoting PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy and repressing caspase-3/gasdermin E (GSDME)-mediated pyroptosis. However, the regulatory mechanisms of SNAP25 protein remain unclear. METHODS We employed recombinant adeno-associated virus 9 (AAV9)-hSyn to knockdown tumor necrosis factor α-induced protein 1 (TNFAIP1) or SNAP25 and investigate the role of TNFAIP1 in POCD. Cognitive performance, hippocampal injury, mitophagy, and pyroptosis were assessed. Co-immunoprecipitation (co-IP) and ubiquitination assays were conducted to elucidate the mechanisms by which TNFAIP1 stabilizes SNAP25. RESULTS Our results demonstrated that the ubiquitin ligase TNFAIP1 was upregulated in the hippocampus of mice following isoflurane (Iso) anesthesia and laparotomy. The N-terminal region (residues 1-96) of TNFAIP1 formed a conjugate with SNAP25, leading to lysine (K) 48-linked polyubiquitination of SNAP25 at K69. Silencing TNFAIP1 enhanced SH-SY5Y cell viability and conferred antioxidant, pro-mitophagy, and anti-pyroptosis properties in response to Iso and lipopolysaccharide (LPS) challenges. Conversely, TNFAIP1 overexpression reduced HT22 cell viability, increased reactive oxygen species (ROS) accumulation, impaired PINK1/Parkin-dependent mitophagy, and induced caspase-3/GSDME-dependent pyroptosis by suppressing SNAP25 expression. Neuron-specific knockdown of TNFAIP1 ameliorated POCD, restored mitophagy, and reduced pyroptosis, which was reversed by SNAP25 depletion. CONCLUSIONS In summary, our findings demonstrated that inhibiting TNFAIP1-mediated degradation of SNAP25 might be a promising therapeutic approach for mitigating postoperative cognitive decline. Video Abstract.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ping Gong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Anesthesiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wenqin Song
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Xueshan Bu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China.
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
10
|
Wang N, Zhu B, Allnutt MA, Grijalva RM, Zhao H, Chandra SS. Decoding transcriptomic signatures of Cysteine String Protein alpha-mediated synapse maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560611. [PMID: 37873460 PMCID: PMC10592922 DOI: 10.1101/2023.10.02.560611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Synapse maintenance is essential for generating functional circuitry and decrement in this process is a hallmark of neurodegenerative disease. While we are beginning to understand the basis of synapse formation, much less is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in CSPα KO brain. Significantly all neurons in CSPα KO brains show strong signatures of repression in synaptic pathways, while upregulating autophagy related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, including the classical Neurexin1-Neuroligin 1 pair, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice in an attempt to achieve synapse maintenance. Together, this study reveals unique cellular and molecular transcriptional changes in CSPα KO cortex and provides new insights into synapse maintenance and neurodegeneration.
Collapse
Affiliation(s)
- Na Wang
- Departments of Neurology and Neuroscience, Yale University, New Haven, CT, USA
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Mary Alice Allnutt
- Departments of Neurology and Neuroscience, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | | | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | | |
Collapse
|
11
|
Yin X, Zhou H, Zhang M, Su J, Wang X, Li S, Yang Z, Kang Z, Zhou R. C 3N nanodots inhibits Aβ peptides aggregation pathogenic path in Alzheimer's disease. Nat Commun 2023; 14:5718. [PMID: 37714837 PMCID: PMC10504243 DOI: 10.1038/s41467-023-41489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Despite the accumulating evidence linking the development of Alzheimer's disease (AD) to the aggregation of Aβ peptides and the emergence of Aβ oligomers, the FDA has approved very few anti-aggregation-based therapies over the past several decades. Here, we report the discovery of an Aβ peptide aggregation inhibitor: an ultra-small nanodot called C3N. C3N nanodots alleviate aggregation-induced neuron cytotoxicity, rescue neuronal death, and prevent neurite damage in vitro. Importantly, they reduce the global cerebral Aβ peptides levels, particularly in fibrillar amyloid plaques, and restore synaptic loss in AD mice. Consequently, these C3N nanodots significantly ameliorate behavioral deficits of APP/PS1 double transgenic male AD mice. Moreover, analysis of critical tissues (e.g., heart, liver, spleen, lung, and kidney) display no obvious pathological damage, suggesting C3N nanodots are biologically safe. Finally, molecular dynamics simulations also reveal the inhibitory mechanisms of C3N nanodots in Aβ peptides aggregation and its potential application against AD.
Collapse
Grants
- the National Key Research and Development Program of China (2021YFA1201201 and 2021YFF1200404), the National MCF Energy R&D Program of China (2018YFE0306105), the National Key R&D Program of China (2020YFA0406104, 2020YFA0406101), the Innovative Research Group Project of the National Natural Science Foundation of China (51821002), the National Natural Science Foundation of China (U1967217, 22176137, 51725204, 21771132, 51972216, and 52041202), the National Independent Innovation Demonstration Zone Shanghai Zhangjiang Major Projects (ZJZX2020014), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJA150010), the Starry Night Science Fund at Shanghai Institute for Advanced Study of Zhejiang University (SN-ZJU-SIAS-003), and BirenTech Research (BR-ZJU-SIAS-001).
Collapse
Affiliation(s)
- Xiuhua Yin
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Hong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Mengling Zhang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Juan Su
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Xiao Wang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Sijie Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Zaixing Yang
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| | - Ruhong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China.
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
12
|
Barker E, Morgan A, Barclay JW. A Caenorhabditis elegans model of autosomal dominant adult-onset neuronal ceroid lipofuscinosis identifies ethosuximide as a potential therapeutic. Hum Mol Genet 2023; 32:1772-1785. [PMID: 36282524 PMCID: PMC10196665 DOI: 10.1093/hmg/ddac263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 09/22/2023] Open
Abstract
Autosomal dominant adult-onset neuronal ceroid lipofuscinosis (ANCL) is a rare neurodegenerative disorder characterized by progressive dementia and premature death. Four ANCL-causing mutations have been identified, all mapping to the DNAJC5 gene that encodes cysteine string protein α (CSPα). Here, using Caenorhabditis elegans, we describe an animal model of ANCL in which disease-causing mutations are introduced into their endogenous chromosomal locus, thereby mirroring the human genetic disorder. This was achieved through CRISPR/Cas9-mediated gene editing of dnj-14, the C. elegans ortholog of DNAJC5. The resultant homozygous ANCL mutant worms exhibited reduced lifespans and severely impaired chemotaxis, similar to isogenic dnj-14 null mutants. Importantly, these phenotypes were also seen in balanced heterozygotes carrying one wild-type and one ANCL mutant dnj-14 allele, mimicking the heterozygosity of ANCL patients. We observed a more severe chemotaxis phenotype in heterozygous ANCL mutant worms compared with haploinsufficient worms lacking one copy of CSP, consistent with a dominant-negative mechanism of action. Additionally, we provide evidence of CSP haploinsufficiency in longevity, as heterozygous null mutants exhibited significantly shorter lifespan than wild-type controls. The chemotaxis phenotype of dnj-14 null mutants was fully rescued by transgenic human CSPα, confirming the translational relevance of the worm model. Finally, a focused compound screen revealed that the anti-epileptic drug ethosuximide could restore chemotaxis in dnj-14 ANCL mutants to wild-type levels. This suggests that ethosuximide may have therapeutic potential for ANCL and demonstrates the utility of this C. elegans model for future larger-scale drug screening.
Collapse
Affiliation(s)
- Eleanor Barker
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| | - Alan Morgan
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| | - Jeff W Barclay
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| |
Collapse
|
13
|
Kim JK, Jha NN, Awano T, Caine C, Gollapalli K, Welby E, Kim SS, Fuentes-Moliz A, Wang X, Feng Z, Sera F, Takeda T, Homma S, Ko CP, Tabares L, Ebert AD, Rich MM, Monani UR. A spinal muscular atrophy modifier implicates the SMN protein in SNARE complex assembly at neuromuscular synapses. Neuron 2023; 111:1423-1439.e4. [PMID: 36863345 PMCID: PMC10164130 DOI: 10.1016/j.neuron.2023.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 03/04/2023]
Abstract
Reduced survival motor neuron (SMN) protein triggers the motor neuron disease, spinal muscular atrophy (SMA). Restoring SMN prevents disease, but it is not known how neuromuscular function is preserved. We used model mice to map and identify an Hspa8G470R synaptic chaperone variant, which suppressed SMA. Expression of the variant in the severely affected mutant mice increased lifespan >10-fold, improved motor performance, and mitigated neuromuscular pathology. Mechanistically, Hspa8G470R altered SMN2 splicing and simultaneously stimulated formation of a tripartite chaperone complex, critical for synaptic homeostasis, by augmenting its interaction with other complex members. Concomitantly, synaptic vesicular SNARE complex formation, which relies on chaperone activity for sustained neuromuscular synaptic transmission, was found perturbed in SMA mice and patient-derived motor neurons and was restored in modified mutants. Identification of the Hspa8G470R SMA modifier implicates SMN in SNARE complex assembly and casts new light on how deficiency of the ubiquitous protein causes motor neuron disease.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Narendra N Jha
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Tomoyuki Awano
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Charlotte Caine
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Kishore Gollapalli
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Emily Welby
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Seung-Soo Kim
- Department of Obstetrics and Gynecology, New York, NY, USA
| | - Andrea Fuentes-Moliz
- Department of Medical Physiology and Biophysics, University of Seville School of Medicine, 41009, Seville, Spain
| | - Xueyong Wang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Zhihua Feng
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Fusako Sera
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Taishi Takeda
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Shunichi Homma
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chien-Ping Ko
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, University of Seville School of Medicine, 41009, Seville, Spain
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Umrao R Monani
- Department of Neurology, New York, NY, USA; Department of Pathology & Cell Biology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA; Colleen Giblin Research Laboratory, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Kang N, Han X, Li Z, Liu T, Mi X, Li Y, Guo X, Han D, Yang N. Rapamycin Affects the Hippocampal SNARE Complex to Alleviate Cognitive Dysfunction Induced by Surgery in Aged Rats. Brain Sci 2023; 13:598. [PMID: 37190563 PMCID: PMC10136734 DOI: 10.3390/brainsci13040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Delayed neurocognitive recovery (dNCR) is a common complication that occurs post-surgery, especially in elderly individuals. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex plays an essential role in various membrane fusion events, such as synaptic vesicle exocytosis and autophagosome-lysosome fusion. Although SNARE complex dysfunction has been observed in several neurodegenerative disorders, the causal link between SNARE-mediated membrane fusion and dNCR remains unclear. We previously demonstrated that surgical stimuli caused cognitive impairment in aged rats by inducing α-synuclein accumulation, inhibiting autophagy, and disrupting neurotransmitter release in hippocampal synaptosomes. Here, we evaluated the effects of propofol anesthesia plus surgery on learning and memory and investigated levels of SNARE proteins and chaperones in hippocampal synaptosomes. Aged rats that received propofol anesthesia and surgery exhibited learning and memory impairments in a Morris water maze test and decreased levels of synaptosome-associated protein 25, synaptobrevin/vesicle-associated membrane protein 2, and syntaxin 1. Levels of SNARE chaperones, including mammalian uncoordinated-18, complexins 1 and 2, cysteine string protein-α, and N-ethylmaleimide-sensitive factor, were all significantly decreased following anesthesia with surgical stress. However, the synaptic vesicle marker synaptophysin was unaffected. The autophagy-enhancer rapamycin attenuated structural and functional disturbances of the SNARE complex and ameliorated disrupted neurotransmitter release. Our results indicate that perturbations of SNARE proteins in hippocampal synaptosomes may underlie the occurrence of dNCR. Moreover, the protective effect of rapamycin may partially occur through recovery of SNARE structural and functional abnormalities. Our findings provide insight into the molecular mechanisms underlying dNCR.
Collapse
Affiliation(s)
- Ning Kang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoguang Han
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing 100035, China
- Beijing Key Laboratory of Robotic Orthopaedics, Beijing 100035, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
15
|
Uzay B, Houcek A, Ma ZZ, Konradi C, Monteggia LM, Kavalali ET. Neurotransmitter release progressively desynchronizes in induced human neurons during synapse maturation and aging. Cell Rep 2023; 42:112042. [PMID: 36701235 PMCID: PMC10366341 DOI: 10.1016/j.celrep.2023.112042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Rapid release of neurotransmitters in synchrony with action potentials is considered a key hardwired property of synapses. Here, in glutamatergic synapses formed between induced human neurons, we show that action potential-dependent neurotransmitter release becomes progressively desynchronized as synapses mature and age. In this solely excitatory network, the emergence of NMDAR-mediated transmission elicits endoplasmic reticulum (ER) stress leading to downregulation of key presynaptic molecules, synaptotagmin-1 and cysteine string protein α, that synchronize neurotransmitter release. The emergence of asynchronous release with neuronal maturity and subsequent aging is maintained by the high-affinity Ca2+ sensor synaptotagmin-7 and suppressed by the introduction of GABAergic transmission into the network, inhibition of NMDARs, and ER stress. These results suggest that long-term disruption of excitation-inhibition balance affects the synchrony of excitatory neurotransmission in human synapses.
Collapse
Affiliation(s)
- Burak Uzay
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Aiden Houcek
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Z Zack Ma
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Christine Konradi
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Lisa M Monteggia
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Ege T Kavalali
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA.
| |
Collapse
|
16
|
Flores-Montero K, Berberián MV, Mayorga LS, Tomes CN, Ruete MC. The molecular chaperone cysteine string protein is required for monomeric SNARE proteins to assemble in trans-complexes during human sperm acrosomal exocytosis†. Biol Reprod 2023; 108:229-240. [PMID: 36308432 DOI: 10.1093/biolre/ioac196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Membrane fusion in sperm cells is crucial for acrosomal exocytosis and must be preserved to ensure fertilizing capacity. Evolutionarily conserved protein machinery regulates acrosomal exocytosis. Molecular chaperones play a vital role in spermatogenesis and post-testicular maturation. Cysteine string protein (CSP) is a member of the Hsp40 co-chaperones, and the participation of molecular chaperones in acrosomal exocytosis is poorly understood. In particular, the role of CSP in acrosomal exocytosis has not been reported so far. Using western blot and indirect immunofluorescence, we show that CSP is present in human sperm, is palmitoylated, and predominantly bound to membranes. Moreover, using functional assays and transmission electron microscopy, we report that blocking the function of CSP avoided the assembly of trans-complexes and inhibited exocytosis. In summary, here, we describe the presence of CSP in human sperm and show that this protein has an essential role in membrane fusion during acrosomal exocytosis mediating the trans-SNARE complex assembly between the outer acrosomal and plasma membranes. In general, understanding CSP's role is critical in identifying new biomarkers and generating new rational-based approaches to treat male infertility.
Collapse
Affiliation(s)
- Karina Flores-Montero
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Victoria Berberián
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Ciencias Básicas - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Luis Segundo Mayorga
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Nora Tomes
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Celeste Ruete
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
17
|
The Role of α-Synuclein in SNARE-mediated Synaptic Vesicle Fusion. J Mol Biol 2023; 435:167775. [PMID: 35931109 DOI: 10.1016/j.jmb.2022.167775] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
Neuronal communication depends on exquisitely regulated membrane fusion between synaptic vesicles and presynaptic neurons, which results in neurotransmitter release in precisely timed patterns. Presynaptic dysfunctions are known to occur prior to the onset of neurodegenerative diseases, including Parkinson's disease. Synaptic accumulation of α-synuclein (α-Syn) oligomers has been implicated in the pathway leading to such outcomes. α-Syn oligomers exert aberrant effects on presynaptic fusion machinery through their interactions with synaptic vesicles and proteins. Here, we summarize in vitro bulk and single-vesicle assays for investigating the functions of α-Syn monomers and oligomers in synaptic vesicle fusion and then discuss the current understanding of the roles of α-Syn monomers and oligomers in synaptic vesicle fusion. Finally, we suggest a new therapeutic avenue specifically targeting the mechanisms of α-Syn oligomer toxicity rather than the oligomer itself.
Collapse
|
18
|
Gao V, Briano JA, Komer LE, Burré J. Functional and Pathological Effects of α-Synuclein on Synaptic SNARE Complexes. J Mol Biol 2023; 435:167714. [PMID: 35787839 PMCID: PMC10472340 DOI: 10.1016/j.jmb.2022.167714] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
α-Synuclein is an abundant protein at the neuronal synapse that has been implicated in Parkinson's disease for over 25 years and characterizes the hallmark pathology of a group of neurodegenerative diseases now known as the synucleinopathies. Physiologically, α-synuclein exists in an equilibrium between a synaptic vesicle membrane-bound α-helical multimer and a cytosolic largely unstructured monomer. Through its membrane-bound state, α-synuclein functions in neurotransmitter release by modulating several steps in the synaptic vesicle cycle, including synaptic vesicle clustering and docking, SNARE complex assembly, and homeostasis of synaptic vesicle pools. These functions have been ascribed to α-synuclein's interactions with the synaptic vesicle SNARE protein VAMP2/synaptobrevin-2, the synaptic vesicle-attached synapsins, and the synaptic vesicle membrane itself. How α-synuclein affects these processes, and whether disease is due to loss-of-function or gain-of-toxic-function of α-synuclein remains unclear. In this review, we provide an in-depth summary of the existing literature, discuss possible reasons for the discrepancies in the field, and propose a working model that reconciles the findings in the literature.
Collapse
Affiliation(s)
- Virginia Gao
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Department of Neurology, New York Presbyterian/Weill Cornell Medicine, New York, NY, USA.
| | - Juan A Briano
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lauren E Komer
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA. https://www.twitter.com/lauren_komer
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Lee J, Xu Y, Saidi L, Xu M, Zinsmaier K, Ye Y. Abnormal triaging of misfolded proteins by adult neuronal ceroid lipofuscinosis-associated DNAJC5/CSPα mutants causes lipofuscin accumulation. Autophagy 2023; 19:204-223. [PMID: 35506243 PMCID: PMC9809949 DOI: 10.1080/15548627.2022.2065618] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Mutations in DNAJC5/CSPα are associated with adult neuronal ceroid lipofuscinosis (ANCL), a dominant-inherited neurodegenerative disease featuring lysosome-derived autofluorescent storage materials (AFSMs) termed lipofuscin. Functionally, DNAJC5 has been implicated in chaperoning synaptic proteins and in misfolding-associated protein secretion (MAPS), but how DNAJC5 dysfunction causes lipofuscinosis and neurodegeneration is unclear. Here we report two functionally distinct but coupled chaperoning activities of DNAJC5, which jointly regulate lysosomal homeostasis: While endolysosome-associated DNAJC5 promotes ESCRT-dependent microautophagy, a fraction of perinuclear and non-lysosomal DNAJC5 mediates MAPS. Functional proteomics identifies a previously unknown DNAJC5 interactor SLC3A2/CD98hc that is essential for the perinuclear DNAJC5 localization and MAPS but dispensable for microautophagy. Importantly, uncoupling these two processes, as seen in cells lacking SLC3A2 or expressing ANCL-associated DNAJC5 mutants, generates DNAJC5-containing AFSMs resembling NCL patient-derived lipofuscin and induces neurodegeneration in a Drosophila ANCL model. These findings suggest that MAPS safeguards microautophagy to avoid DNAJC5-associated lipofuscinosis and neurodegeneration.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; AFSM: autofluorescent storage materials; ANCL: adult neuronal ceroid lipofuscinosis; Baf. A1: bafilomycin A1; CLN: ceroid lipofuscinosis neuronal; CLU: clusterin; CS: cysteine string domain of DNAJC5/CSPα; CUPS: compartment for unconventional protein secretion; DN: dominant negative; DNAJC5/CSPα: DnaJ heat shock protein family (Hsp40) member C5; eMI: endosomal microautophagy; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; INCL: infant neuronal ceroid lipofuscinosis; JNCL: juvenile neuronal ceroid lipofuscinosis; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAPTM4B: lysosomal protein transmembrane 4 beta; LN: linker domain of DNAJC5/CSPα; MAPS: misfolding-associated protein secretion; mCh/Ch: mCherry; mCi/Ci: mCitrine; MTOR: mechanistic target of rapamycin kinase; NCL: neuronal ceroid lipofuscinosis; PPT1: palmitoyl-protein thioesterase 1; PQC: protein quality control; SBP: streptavidin binding protein; SGT: small glutamine-rich tetratricopeptide repeat; shRNA: short hairpin RNA; SLC3A2/CD98hc: solute carrier family 3 member 2; SNCA/α-synuclein: synuclein alpha; TMED10: transmembrane p24 trafficking protein 10; UV: ultraviolet; VPS4: vacuolar protein sorting 4 homolog; WT: wild type.
Collapse
Affiliation(s)
- Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Layla Saidi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Konrad Zinsmaier
- Departments of Neuroscience and Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Huang L, Zhang Z. CSPα in neurodegenerative diseases. Front Aging Neurosci 2022; 14:1043384. [DOI: 10.3389/fnagi.2022.1043384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Adult-onset neuronal ceroid lipofuscinosis (ANCL) is a rare neurodegenerative disease characterized by epilepsy, cognitive degeneration, and motor disorders caused by mutations in the DNAJC5 gene. In addition to being associated with ANCL disease, the cysteine string proteins α (CSPα) encoded by the DNAJC5 gene have been implicated in several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. However, the pathogenic mechanism responsible for these neurodegenerative diseases has not yet been elucidated. Therefore, this study examines the functional properties of the CSPα protein and the related mechanisms of neurodegenerative diseases.
Collapse
|
21
|
Rupawala H, Shah K, Davies C, Rose J, Colom-Cadena M, Peng X, Granat L, Aljuhani M, Mizuno K, Troakes C, Perez-Nievas BG, Morgan A, So PW, Hortobagyi T, Spires-Jones TL, Noble W, Giese KP. Cysteine string protein alpha accumulates with early pre-synaptic dysfunction in Alzheimer’s disease. Brain Commun 2022; 4:fcac192. [PMID: 35928052 PMCID: PMC9345313 DOI: 10.1093/braincomms/fcac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
In Alzheimer’s disease, synapse loss causes memory and cognitive impairment. However, the mechanisms underlying synaptic degeneration in Alzheimer’s disease are not well understood. In the hippocampus, alterations in the level of cysteine string protein alpha, a molecular co-chaperone at the pre-synaptic terminal, occur prior to reductions in synaptophysin, suggesting that it is a very sensitive marker of synapse degeneration in Alzheimer’s. Here, we identify putative extracellular accumulations of cysteine string alpha protein, which are proximal to beta-amyloid deposits in post-mortem human Alzheimer’s brain and in the brain of a transgenic mouse model of Alzheimer’s disease. Cysteine string protein alpha, at least some of which is phosphorylated at serine 10, accumulates near the core of beta-amyloid deposits and does not co-localize with hyperphosphorylated tau, dystrophic neurites or glial cells. Using super-resolution microscopy and array tomography, cysteine string protein alpha was found to accumulate to a greater extent than other pre-synaptic proteins and at a comparatively great distance from the plaque core. This indicates that cysteine string protein alpha is most sensitive to being released from pre-synapses at low concentrations of beta-amyloid oligomers. Cysteine string protein alpha accumulations were also evident in other neurodegenerative diseases, including some fronto-temporal lobar dementias and Lewy body diseases, but only in the presence of amyloid plaques. Our findings are consistent with suggestions that pre-synapses are affected early in Alzheimer’s disease, and they demonstrate that cysteine string protein alpha is a more sensitive marker for early pre-synaptic dysfunction than traditional synaptic markers. We suggest that cysteine string protein alpha should be used as a pathological marker for early synaptic disruption caused by beta-amyloid.
Collapse
Affiliation(s)
- Huzefa Rupawala
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Keshvi Shah
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Caitlin Davies
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Jamie Rose
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Marti Colom-Cadena
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Xianhui Peng
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Lucy Granat
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Manal Aljuhani
- Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Keiko Mizuno
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Beatriz Gomez Perez-Nievas
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool , Liverpool L69 3BX , UK
| | - Po-Wah So
- Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Tibor Hortobagyi
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
- Department of Neurology, ELKH-DE Cerebrovascular and Neurodegenerative Research Group, University of Debrecen , 4032 Debrecen , Hungary
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Karl Peter Giese
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| |
Collapse
|
22
|
Rechtzigel MJ, Meyerink BL, Leppert H, Johnson TB, Cain JT, Ferrandino G, May DG, Roux KJ, Brudvig JJ, Weimer JM. Transmembrane Batten Disease Proteins Interact With a Shared Network of Vesicle Sorting Proteins, Impacting Their Synaptic Enrichment. Front Neurosci 2022; 16:834780. [PMID: 35692423 PMCID: PMC9174988 DOI: 10.3389/fnins.2022.834780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Batten disease is unique among lysosomal storage disorders for the early and profound manifestation in the central nervous system, but little is known regarding potential neuron-specific roles for the disease-associated proteins. We demonstrate substantial overlap in the protein interactomes of three transmembrane Batten proteins (CLN3, CLN6, and CLN8), and that their absence leads to synaptic depletion of key partners (i.e., SNAREs and tethers) and altered synaptic SNARE complexing in vivo, demonstrating a novel shared etiology.
Collapse
Affiliation(s)
| | - Brandon L. Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
- Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, Vermillion, SD, United States
| | - Hannah Leppert
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Jacob T. Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Gavin Ferrandino
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Danielle G. May
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Kyle J. Roux
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Vermillion, SD, United States
| | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Vermillion, SD, United States
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
23
|
Phosphorylation of cysteine string protein-α up-regulates the frequency of cholinergic waves via starburst amacrine cells. Vis Neurosci 2022; 39:E003. [PMID: 35543445 PMCID: PMC9107963 DOI: 10.1017/s0952523822000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During the first postnatal week in rodents, cholinergic retinal waves initiate in starburst amacrine cells (SACs), propagating to retinal ganglion cells (RGCs) and visual centers, essential for visual circuit refinement. By modulating exocytosis in SACs, dynamic changes in the protein kinase A (PKA) activity can regulate the spatiotemporal patterns of cholinergic waves. Previously, cysteine string protein-α (CSPα) is found to interact with the core exocytotic machinery by PKA-mediated phosphorylation at serine 10 (S10). However, whether PKA-mediated CSPα phosphorylation may regulate cholinergic waves via SACs remains unknown. Here, we examined how CSPα phosphorylation in SACs regulates cholinergic waves. First, we identified that CSPα1 is the major isoform in developing rat SACs and the inner plexiform layer during the first postnatal week. Using SAC-specific expression, we found that the CSPα1-PKA-phosphodeficient mutant (CSP-S10A) decreased wave frequency, but did not alter the wave spatial correlation compared to control, wild-type CSPα1 (CSP-WT), or two PKA-phosphomimetic mutants (CSP-S10D and CSP-S10E). These suggest that CSPα-S10 phosphodeficiency in SACs dampens the frequency of cholinergic waves. Moreover, the level of phospho-PKA substrates was significantly reduced in SACs overexpressing CSP-S10A compared to control or CSP-WT, suggesting that the dampened wave frequency is correlated with the decreased PKA activity. Further, compared to control or CSP-WT, CSP-S10A in SACs reduced the periodicity of wave-associated postsynaptic currents (PSCs) in neighboring RGCs, suggesting that these RGCs received the weakened synaptic inputs from SACs overexpressing CSP-S10A. Finally, CSP-S10A in SACs decreased the PSC amplitude and the slope to peak PSC compared to control or CSP-WT, suggesting that CSPα-S10 phosphodeficiency may dampen the speed of the SAC-RGC transmission. Thus, via PKA-mediated phosphorylation, CSPα in SACs may facilitate the SAC-RGC transmission, contributing to the robust frequency of cholinergic waves.
Collapse
|
24
|
Lee J, Xu Y, Ye Y. Safeguarding Lysosomal Homeostasis by DNAJC5/CSPα-Mediated Unconventional Protein Secretion and Endosomal Microautophagy. Front Cell Dev Biol 2022; 10:906453. [PMID: 35620055 PMCID: PMC9127312 DOI: 10.3389/fcell.2022.906453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a collection of genetically inherited neurological disorders characterized by vision loss, seizure, brain death, and premature lethality. At the cellular level, a key pathologic hallmark of NCL is the build-up of autofluorescent storage materials (AFSM) in lysosomes of both neurons and non-neuronal cells. Molecular dissection of the genetic lesions underlying NCLs has shed significant insights into how disruption of lysosomal homeostasis may lead to lipofuscin accumulation and NCLs. Intriguingly, recent studies on DNAJC5/CSPα, a membrane associated HSC70 co-chaperone, have unexpectedly linked lipofuscin accumulation to two intimately coupled protein quality control processes at endolysosomes. This review discusses how deregulation of unconventional protein secretion and endosomal microautophagy (eMI) contributes to lipofuscin accumulation and neurodegeneration.
Collapse
Affiliation(s)
| | | | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Carnazza KE, Komer LE, Xie YX, Pineda A, Briano JA, Gao V, Na Y, Ramlall T, Buchman VL, Eliezer D, Sharma M, Burré J. Synaptic vesicle binding of α-synuclein is modulated by β- and γ-synucleins. Cell Rep 2022; 39:110675. [PMID: 35417693 PMCID: PMC9116446 DOI: 10.1016/j.celrep.2022.110675] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/23/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
α-synuclein, β-synuclein, and γ-synuclein are abundantly expressed proteins in the vertebrate nervous system. α-synuclein functions in neurotransmitter release by binding to and clustering synaptic vesicles and chaperoning SNARE-complex assembly. Pathologically, aggregates originating from soluble pools of α-synuclein are deposited into Lewy bodies in Parkinson's disease and related synucleinopathies. The functions of β-synuclein and γ-synuclein in presynaptic terminals remain poorly studied. Using in vitro liposome binding studies, circular dichroism spectroscopy, immunoprecipitation, and fluorescence resonance energy transfer (FRET) experiments on isolated synaptic vesicles in combination with subcellular fractionation of brains from synuclein mouse models, we show that β-synuclein and γ-synuclein have a reduced affinity toward synaptic vesicles compared with α-synuclein, and that heteromerization of β-synuclein or γ-synuclein with α-synuclein results in reduced synaptic vesicle binding of α-synuclein in a concentration-dependent manner. Our data suggest that β-synuclein and γ-synuclein are modulators of synaptic vesicle binding of α-synuclein and thereby reduce α-synuclein's physiological activity at the neuronal synapse.
Collapse
Affiliation(s)
- Kathryn E Carnazza
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lauren E Komer
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ying Xue Xie
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - André Pineda
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Juan Antonio Briano
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Virginia Gao
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yoonmi Na
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Trudy Ramlall
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Cardiff CF103AX, UK; Belgorod State National Research University, 85 Pobedy Street, Belgorod, Belgorod 308015, Russian Federation
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Burré
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
26
|
Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042378. [PMID: 35216492 PMCID: PMC8878351 DOI: 10.3390/ijms23042378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
Collapse
|
27
|
Fronczak KM, Li Y, Henchir J, Dixon CE, Carlson SW. Reductions in Synaptic Vesicle Glycoprotein 2 Isoforms in the Cortex and Hippocampus in a Rat Model of Traumatic Brain Injury. Mol Neurobiol 2021; 58:6006-6019. [PMID: 34435329 PMCID: PMC8602666 DOI: 10.1007/s12035-021-02534-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) can produce lasting cognitive, emotional, and somatic difficulties that can impact quality of life for patients living with an injury. Impaired hippocampal function and synaptic alterations have been implicated in contributing to cognitive difficulties in experimental TBI models. In the synapse, neuronal communication is facilitated by the regulated release of neurotransmitters from docking presynaptic vesicles. The synaptic vesicle glycoprotein 2 (SV2) isoforms SV2A and SV2B play central roles in the maintenance of the readily releasable pool of vesicles and the coupling of calcium to the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex responsible for vesicle docking. Recently, we reported the findings of TBI-induced reductions in presynaptic vesicle density and SNARE complex formation; however, the effect of TBI on SV2 is unknown. To investigate this, rats were subjected to controlled cortical impact (CCI) or sham control surgery. Abundance of SV2A and SV2B were assessed at 1, 3, 7, and 14 days post-injury by immunoblot. SV2A and SV2B were reduced in the cortex at several time points and in the hippocampus at every time point assessed. Immunohistochemical staining and quantitative intensity measurements completed at 14 days post-injury revealed reduced SV2A immunoreactivity in all hippocampal subregions and reduced SV2B immunoreactivity in the molecular layer after CCI. Reductions in SV2A abundance and immunoreactivity occurred concomitantly with motor dysfunction and spatial learning and memory impairments in the 2 weeks post-injury. These findings provide novel evidence for the effect of TBI on SV2 with implications for impaired neurotransmission neurobehavioral dysfunction after TBI.
Collapse
Affiliation(s)
- Katherine M Fronczak
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Youming Li
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Jeremy Henchir
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - C Edward Dixon
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Shaun W Carlson
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
28
|
Sarchione A, Marchand A, Taymans JM, Chartier-Harlin MC. Alpha-Synuclein and Lipids: The Elephant in the Room? Cells 2021; 10:2452. [PMID: 34572099 PMCID: PMC8467310 DOI: 10.3390/cells10092452] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
Since the initial identification of alpha-synuclein (α-syn) at the synapse, numerous studies demonstrated that α-syn is a key player in the etiology of Parkinson's disease (PD) and other synucleinopathies. Recent advances underline interactions between α-syn and lipids that also participate in α-syn misfolding and aggregation. In addition, increasing evidence demonstrates that α-syn plays a major role in different steps of synaptic exocytosis. Thus, we reviewed literature showing (1) the interplay among α-syn, lipids, and lipid membranes; (2) advances of α-syn synaptic functions in exocytosis. These data underscore a fundamental role of α-syn/lipid interplay that also contributes to synaptic defects in PD. The importance of lipids in PD is further highlighted by data showing the impact of α-syn on lipid metabolism, modulation of α-syn levels by lipids, as well as the identification of genetic determinants involved in lipid homeostasis associated with α-syn pathologies. While questions still remain, these recent developments open the way to new therapeutic strategies for PD and related disorders including some based on modulating synaptic functions.
Collapse
Affiliation(s)
| | | | | | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172—LilNCog—Lille Neuroscience and Cognition, F-59000 Lille, France; (A.S.); (A.M.); (J.-M.T.)
| |
Collapse
|
29
|
Wang P, Ye Y. Astrocytes in Neurodegenerative Diseases: A Perspective from Tauopathy and α-Synucleinopathy. Life (Basel) 2021; 11:life11090938. [PMID: 34575087 PMCID: PMC8471224 DOI: 10.3390/life11090938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are aging-associated chronic pathological conditions affecting primarily neurons in humans. Inclusion bodies containing misfolded proteins have emerged as a common pathologic feature for these diseases. In many cases, misfolded proteins produced by a neuron can be transmitted to another neuron or a non-neuronal cell, leading to the propagation of disease-associated pathology. While undergoing intercellular transmission, misfolded proteins released from donor cells can often change the physiological state of recipient cells. Accumulating evidence suggests that astrocytes are highly sensitive to neuron-originated proteotoxic insults, which convert them into an active inflammatory state. Conversely, activated astrocytes can release a plethora of factors to impact neuronal functions. This review summarizes our current understanding of the complex molecular interplays between astrocyte and neuron, emphasizing on Tau and α-synuclein (α-syn), the disease-driving proteins for Alzheimer's and Parkinson's diseases, respectively.
Collapse
Affiliation(s)
| | - Yihong Ye
- Correspondence: ; Tel.: +1-301-594-0845; Fax: +1-301-496-0201
| |
Collapse
|
30
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
31
|
Bridi JC, Bereczki E, Smith SK, Poças GM, Kottler B, Domingos PM, Elliott CJ, Aarsland D, Hirth F. Presynaptic accumulation of α-synuclein causes synaptopathy and progressive neurodegeneration in Drosophila. Brain Commun 2021; 3:fcab049. [PMID: 33997781 PMCID: PMC8111063 DOI: 10.1093/braincomms/fcab049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Alpha-synuclein (α-syn) mislocalization and accumulation in intracellular inclusions is the major pathological hallmark of degenerative synucleinopathies, including Parkinson's disease, Parkinson's disease with dementia and dementia with Lewy bodies. Typical symptoms are behavioural abnormalities including motor deficits that mark disease progression, while non-motor symptoms and synaptic deficits are already apparent during the early stages of disease. Synucleinopathies have therefore been considered synaptopathies that exhibit synaptic dysfunction prior to neurodegeneration. However, the mechanisms and events underlying synaptopathy are largely unknown. Here we investigated the cascade of pathological events underlying α-syn accumulation and toxicity in a Drosophila model of synucleinopathy by employing a combination of histological, biochemical, behavioural and electrophysiological assays. Our findings demonstrate that targeted expression of human α-syn leads to its accumulation in presynaptic terminals that caused downregulation of synaptic proteins, cysteine string protein, synapsin, and syntaxin 1A, and a reduction in the number of Bruchpilot puncta, the core component of the presynaptic active zone essential for its structural integrity and function. These α-syn-mediated presynaptic alterations resulted in impaired neuronal function, which triggered behavioural deficits in ageing Drosophila that occurred prior to progressive degeneration of dopaminergic neurons. Comparable alterations in presynaptic active zone protein were found in patient brain samples of dementia with Lewy bodies. Together, these findings demonstrate that presynaptic accumulation of α-syn impairs the active zone and neuronal function, which together cause synaptopathy that results in behavioural deficits and the progressive loss of dopaminergic neurons. This sequence of events resembles the cytological and behavioural phenotypes that characterise the onset and progression of synucleinopathies, suggesting that α-syn-mediated synaptopathy is an initiating cause of age-related neurodegeneration.
Collapse
Affiliation(s)
- Jessika C Bridi
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm 171 77, Sweden
| | - Saffron K Smith
- Department of Biology and York Biomedical Research Institute, University of York, York YO1 5DD, UK
| | - Gonçalo M Poças
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Lisbon 2780-157, Portugal
- School of Biological Sciences, Monash University, Melbourne, VIC 34QP+JV, Australia
| | - Benjamin Kottler
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Lisbon 2780-157, Portugal
| | - Christopher J Elliott
- Department of Biology and York Biomedical Research Institute, University of York, York YO1 5DD, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger 4068, Norway
| | - Frank Hirth
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| |
Collapse
|
32
|
The vesicle cluster as a major organizer of synaptic composition in the short-term and long-term. Curr Opin Cell Biol 2021; 71:63-68. [PMID: 33706235 DOI: 10.1016/j.ceb.2021.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 01/29/2023]
Abstract
For decades, the synaptic vesicle cluster has been thought of as a storage space for synaptic vesicles, whose obvious function is to provide vesicles for the depolarization-induced release of neurotransmitters; however, reports over the last few years indicate that the synaptic vesicle cluster probably plays a much broader and more fundamental role in synaptic biology. Various experiments suggest that the cluster is able to regulate protein distribution and mobility in the synapse; moreover, it probably regulates cytoskeleton architecture, mediates the selective removal of synaptic components from the bouton, and controls the responses of the presynapse to plasticity. Here we discuss these features of the vesicle cluster and conclude that it serves as a key organizer of synaptic composition and dynamics.
Collapse
|
33
|
Rebiai R, Givogri MI, Gowrishankar S, Cologna SM, Alford ST, Bongarzone ER. Synaptic Function and Dysfunction in Lysosomal Storage Diseases. Front Cell Neurosci 2021; 15:619777. [PMID: 33746713 PMCID: PMC7978225 DOI: 10.3389/fncel.2021.619777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) with neurological involvement are inherited genetic diseases of the metabolism characterized by lysosomal dysfunction and the accumulation of undegraded substrates altering glial and neuronal function. Often, patients with neurological manifestations present with damage to the gray and white matter and irreversible neuronal decline. The use of animal models of LSDs has greatly facilitated studying and identifying potential mechanisms of neuronal dysfunction, including alterations in availability and function of synaptic proteins, modifications of membrane structure, deficits in docking, exocytosis, recycling of synaptic vesicles, and inflammation-mediated remodeling of synapses. Although some extrapolations from findings in adult-onset conditions such as Alzheimer's disease or Parkinson's disease have been reported, the pathogenetic mechanisms underpinning cognitive deficits in LSDs are still largely unclear. Without being fully inclusive, the goal of this mini-review is to present a discussion on possible mechanisms leading to synaptic dysfunction in LSDs.
Collapse
Affiliation(s)
- Rima Rebiai
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Maria I. Givogri
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Stephania M. Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois at Chicago, Chicago, IL, United States
| | - Simon T. Alford
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
34
|
Chen F, Chen H, Chen Y, Wei W, Sun Y, Zhang L, Cui L, Wang Y. Dysfunction of the SNARE complex in neurological and psychiatric disorders. Pharmacol Res 2021; 165:105469. [PMID: 33524541 DOI: 10.1016/j.phrs.2021.105469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
The communication between neurons constitutes the basis of all neural activities, and synaptic vesicle exocytosis is the fundamental biological event that mediates most communication between neurons in the central nervous system. The SNARE complex is the core component of the protein machinery that facilitates the fusion of synaptic vesicles with presynaptic terminals and thereby the release of neurotransmitters. In synapses, each release event is dependent on the assembly of the SNARE complex. In recent years, basic research on the SNARE complex has provided a clearer understanding of the mechanism underlying the formation of the SNARE complex and its role in vesicle formation. Emerging evidence indicates that abnormal expression or dysfunction of the SNARE complex in synapse physiology might contribute to abnormal neurotransmission and ultimately to synaptic dysfunction. Clinical research using postmortem tissues suggests that SNARE complex dysfunction is correlated with various neurological diseases, and some basic research has also confirmed the important role of the SNARE complex in the pathology of these diseases. Genetic and pharmacogenetic studies suggest that the SNARE complex and individual proteins might represent important molecular targets in neurological disease. In this review, we summarize the recent progress toward understanding the SNARE complex in regulating membrane fusion events and provide an update of the recent discoveries from clinical and basic research on the SNARE complex in neurodegenerative, neuropsychiatric, and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Lu Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiao tong University, Xi'an, China.
| |
Collapse
|
35
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
36
|
Merezhko M, Uronen RL, Huttunen HJ. The Cell Biology of Tau Secretion. Front Mol Neurosci 2020; 13:569818. [PMID: 33071756 PMCID: PMC7539664 DOI: 10.3389/fnmol.2020.569818] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
The progressive accumulation and spread of misfolded tau protein in the nervous system is the hallmark of tauopathies, progressive neurodegenerative diseases with only symptomatic treatments available. A growing body of evidence suggests that spreading of tau pathology can occur via cell-to-cell transfer involving secretion and internalization of pathological forms of tau protein followed by templated misfolding of normal tau in recipient cells. Several studies have addressed the cell biological mechanisms of tau secretion. It now appears that instead of a single mechanism, cells can secrete tau via three coexisting pathways: (1) translocation through the plasma membrane; (2) membranous organelles-based secretion; and (3) ectosomal shedding. The relative importance of these pathways in the secretion of normal and pathological tau is still elusive, though. Moreover, glial cells contribute to tau propagation, and the involvement of different cell types, as well as different secretion pathways, complicates the understanding of prion-like propagation of tauopathy. One of the important regulators of tau secretion in neuronal activity, but its mechanistic connection to tau secretion remains unclear and may involve all three secretion pathways of tau. This review article summarizes recent advancements in the field of tau secretion with an emphasis on cell biological aspects of the secretion process and discusses the role of neuronal activity and glial cells in the spread of pathological forms of tau.
Collapse
Affiliation(s)
- Maria Merezhko
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Henri J Huttunen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Butz ES, Chandrachud U, Mole SE, Cotman SL. Moving towards a new era of genomics in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165571. [DOI: 10.1016/j.bbadis.2019.165571] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
|
38
|
Naseri N, Sharma M, Velinov M. Autosomal dominant neuronal ceroid lipofuscinosis: Clinical features and molecular basis. Clin Genet 2020; 99:111-118. [PMID: 32783189 DOI: 10.1111/cge.13829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/26/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are at least 13 distinct progressive neurodegenerative disorders unified by the accumulation of lysosomal auto-fluorescent material called lipofuscin. The only form that occurs via autosomal-dominant inheritance exhibits adult onset and is sometimes referred to as Parry type NCL. The manifestations may include behavioral symptoms followed by seizures, ataxia, dementia, and early death. Mutations in the gene DNAJC5 that codes for the presynaptic co-chaperone cysteine string protein-α (CSPα) were recently reported in sporadic adult-onset cases and in families with dominant inheritance. The mutant CSPα protein may lead to disease progression by both loss and gain of function mechanisms. Iron chelation therapy may be considered as a possible pharmaceutical intervention based on our recent mechanism-based proposal of CSPα oligomerization via ectopic Fe-S cluster-binding, summarized in this review.
Collapse
Affiliation(s)
- Nima Naseri
- Appel Institute for Alzheimer's Disease Research, and Brain & Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Manu Sharma
- Appel Institute for Alzheimer's Disease Research, and Brain & Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Milen Velinov
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
39
|
Abstract
Parkinson's disease (PD) is a leading cause of neurodegeneration that is defined by the selective loss of dopaminergic neurons and the accumulation of protein aggregates called Lewy bodies (LBs). The unequivocal identification of Mendelian inherited mutations in 13 genes in PD has provided transforming insights into the pathogenesis of this disease. The mechanistic analysis of several PD genes, including α-synuclein (α-syn), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), and Parkin, has revealed central roles for protein aggregation, mitochondrial damage, and defects in endolysosomal trafficking in PD neurodegeneration. In this review, we outline recent advances in our understanding of these gene pathways with a focus on the emergent role of Rab (Ras analog in brain) GTPases and vesicular trafficking as a common mechanism that underpins how mutations in PD genes lead to neuronal loss. These advances have led to previously distinct genes such as vacuolar protein-sorting-associated protein 35 (VPS35) and LRRK2 being implicated in a common signaling pathway. A greater understanding of these common nodes of vesicular trafficking will be crucial for linking other PD genes and improving patient stratification in clinical trials underway against α-syn and LRRK2 targets.
Collapse
Affiliation(s)
- Pawan Kishor Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
40
|
Hoerder-Suabedissen A, Korrell KV, Hayashi S, Jeans A, Ramirez DMO, Grant E, Christian HC, Kavalali ET, Wilson MC, Molnár Z. Cell-Specific Loss of SNAP25 from Cortical Projection Neurons Allows Normal Development but Causes Subsequent Neurodegeneration. Cereb Cortex 2020; 29:2148-2159. [PMID: 29850799 DOI: 10.1093/cercor/bhy127] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 11/13/2022] Open
Abstract
Synaptosomal associated protein 25 kDa (SNAP25) is an essential component of the SNARE complex regulating synaptic vesicle fusion. SNAP25 deficiency has been implicated in a variety of cognitive disorders. We ablated SNAP25 from selected neuronal populations by generating a transgenic mouse (B6-Snap25tm3mcw (Snap25-flox)) with LoxP sites flanking exon5a/5b. In the presence of Cre-recombinase, Snap25-flox is recombined to a truncated transcript. Evoked synaptic vesicle release is severely reduced in Snap25 conditional knockout (cKO) neurons as shown by live cell imaging of synaptic vesicle fusion and whole cell patch clamp recordings in cultured hippocampal neurons. We studied Snap25 cKO in subsets of cortical projection neurons in vivo (L5-Rbp4-Cre; L6-Ntsr1-Cre; L6b-Drd1a-Cre). cKO neurons develop normal axonal projections, but axons are not maintained appropriately, showing signs of swelling, fragmentation and eventually complete absence. Onset and progression of degeneration are dependent on the neuron type, with L5 cells showing the earliest and most severe axonal loss. Ultrastructural examination revealed that cKO neurites contain autophagosome/lysosome-like structures. Markers of inflammation such as Iba1 and lipofuscin are increased only in adult cKO cortex. Snap25 cKO can provide a model to study genetic interactions with environmental influences in several disorders.
Collapse
Affiliation(s)
- Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Kim V Korrell
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Shuichi Hayashi
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | | | - Denise M O Ramirez
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, USA
| | - Eleanor Grant
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, USA.,Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, USA
| | - Michael C Wilson
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
41
|
Gundersen CB. Cysteine string proteins. Prog Neurobiol 2020; 188:101758. [DOI: 10.1016/j.pneurobio.2020.101758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
|
42
|
Structural and mechanistic insights into secretagogin-mediated exocytosis. Proc Natl Acad Sci U S A 2020; 117:6559-6570. [PMID: 32156735 DOI: 10.1073/pnas.1919698117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Secretagogin (SCGN) is a hexa-EF-hand protein that is highly expressed in the pancreas, brain, and gastrointestinal tract. SCGN is known to modulate regulated exocytosis in multiple cell lines and tissues; however, its exact functions and underlying mechanisms remain unclear. Here, we report that SCGN interacts with the plasma membrane SNARE SNAP-25, but not the assembled SNARE complex, in a Ca2+-dependent manner. The crystal structure of SCGN in complex with a SNAP-25 fragment reveals that SNAP-25 adopts a helical structure and binds to EF-hands 5 and 6 of SCGN. SCGN strongly inhibits SNARE-mediated vesicle fusion in vitro by binding to SNAP-25. SCGN promotes the plasma membrane localization of SNAP-25, but not Syntaxin-1a, in SCGN-expressing cells. Finally, SCGN controls neuronal growth and brain development in zebrafish, likely via interacting with SNAP-25 or its close homolog, SNAP-23. Our results thus provide insights into the regulation of SNAREs and suggest that aberrant synapse functions underlie multiple neurological disorders caused by SCGN deficiency.
Collapse
|
43
|
Neuropathophysiology of Lysosomal Storage Diseases: Synaptic Dysfunction as a Starting Point for Disease Progression. J Clin Med 2020; 9:jcm9030616. [PMID: 32106459 PMCID: PMC7141115 DOI: 10.3390/jcm9030616] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
About two thirds of the patients affected with lysosomal storage diseases (LSD) experience neurological manifestations, such as developmental delay, seizures, or psychiatric problems. In order to develop efficient therapies, it is crucial to understand the neuropathophysiology underlying these symptoms. How exactly lysosomal storage affects biogenesis and function of neurons is still under investigation however recent research highlights a substantial role played by synaptic defects, such as alterations in synaptic spines, synaptic proteins, postsynaptic densities, and synaptic vesicles that might lead to functional impairments in synaptic transmission and neurodegeneration, finally culminating in massive neuronal death and manifestation of cognitive symptoms. Unveiling how the synaptic components are affected in neurological LSD will thus enable a better understanding of the complexity of disease progression as well as identify crucial targets of therapeutic relevance and optimal time windows for targeted intervention.
Collapse
|
44
|
Sanderson JB, De S, Jiang H, Rovere M, Jin M, Zaccagnini L, Hays Watson A, De Boni L, Lagomarsino VN, Young-Pearse TL, Liu X, Pochapsky TC, Hyman BT, Dickson DW, Klenerman D, Selkoe DJ, Bartels T. Analysis of α-synuclein species enriched from cerebral cortex of humans with sporadic dementia with Lewy bodies. Brain Commun 2020; 2:fcaa010. [PMID: 32280944 PMCID: PMC7130446 DOI: 10.1093/braincomms/fcaa010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/23/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Since researchers identified α-synuclein as the principal component of Lewy bodies and Lewy neurites, studies have suggested that it plays a causative role in the pathogenesis of dementia with Lewy bodies and other ‘synucleinopathies’. While α-synuclein dyshomeostasis likely contributes to the neurodegeneration associated with the synucleinopathies, few direct biochemical analyses of α-synuclein from diseased human brain tissue currently exist. In this study, we analysed sequential protein extracts from a substantial number of patients with neuropathological diagnoses of dementia with Lewy bodies and corresponding controls, detecting a shift of cytosolic and membrane-bound physiological α-synuclein to highly aggregated forms. We then fractionated aqueous extracts (cytosol) from cerebral cortex using non-denaturing methods to search for soluble, disease-associated high molecular weight species potentially associated with toxicity. We applied these fractions and corresponding insoluble fractions containing Lewy-type aggregates to several reporter assays to determine their bioactivity and cytotoxicity. Ultimately, high molecular weight cytosolic fractions enhances phospholipid membrane permeability, while insoluble, Lewy-associated fractions induced morphological changes in the neurites of human stem cell-derived neurons. While the concentrations of soluble, high molecular weight α-synuclein were only slightly elevated in brains of dementia with Lewy bodies patients compared to healthy, age-matched controls, these observations suggest that a small subset of soluble α-synuclein aggregates in the brain may drive early pathogenic effects, while Lewy body-associated α-synuclein can drive neurotoxicity.
Collapse
Affiliation(s)
- John B Sanderson
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suman De
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.,UK Dementia Research Institute, Department of Chemistry, University of Cambridge, Cambridge CB2 0AH, UK
| | - Haiyang Jiang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matteo Rovere
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ming Jin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ludovica Zaccagnini
- UK Dementia Research Institute, Department of Neurology, University College London, London WC1E 6BT, UK
| | - Aurelia Hays Watson
- UK Dementia Research Institute, Department of Neurology, University College London, London WC1E 6BT, UK
| | - Laura De Boni
- UK Dementia Research Institute, Department of Neurology, University College London, London WC1E 6BT, UK
| | - Valentina N Lagomarsino
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xinyue Liu
- Department of Chemistry, Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02453, USA
| | - Thomas C Pochapsky
- Department of Chemistry, Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02453, USA
| | - Bradley T Hyman
- Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Massachusetts Institute for Neurodegenerative Disease, Boston, MA 02129, USA
| | - Dennis W Dickson
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.,UK Dementia Research Institute, Department of Chemistry, University of Cambridge, Cambridge CB2 0AH, UK
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tim Bartels
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,UK Dementia Research Institute, Department of Neurology, University College London, London WC1E 6BT, UK
| |
Collapse
|
45
|
Naseri NN, Ergel B, Kharel P, Na Y, Huang Q, Huang R, Dolzhanskaya N, Burré J, Velinov MT, Sharma M. Aggregation of mutant cysteine string protein-α via Fe-S cluster binding is mitigated by iron chelators. Nat Struct Mol Biol 2020; 27:192-201. [PMID: 32042150 PMCID: PMC7021000 DOI: 10.1038/s41594-020-0375-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/08/2020] [Indexed: 01/27/2023]
Abstract
Point mutations in cysteine string protein-α (CSPα) cause dominantly inherited adult-onset neuronal ceroid lipofuscinosis (ANCL), a rapidly progressing and lethal neurodegenerative disease with no treatment. ANCL mutations are proposed to trigger CSPα aggregation/oligomerization, but the mechanism of oligomer formation remains unclear. Here we use purified proteins, mouse primary neurons and patient-derived induced neurons to show that the normally palmitoylated cysteine string region of CSPα loses palmitoylation in ANCL mutants. This allows oligomerization of mutant CSPα via ectopic binding of iron-sulfur (Fe-S) clusters. The resulting oligomerization of mutant CSPα causes its mislocalization and consequent loss of its synaptic SNARE-chaperoning function. We then find that pharmacological iron chelation mitigates the oligomerization of mutant CSPα, accompanied by partial rescue of the downstream SNARE defects and the pathological hallmark of lipofuscin accumulation. Thus, the iron chelators deferiprone (L1) and deferoxamine (Dfx), which are already used to treat iron overload in humans, offer a new approach for treating ANCL.
Collapse
Affiliation(s)
- Nima N Naseri
- Appel Institute for Alzheimer's Disease Research, and Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Burçe Ergel
- Appel Institute for Alzheimer's Disease Research, and Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Parinati Kharel
- Appel Institute for Alzheimer's Disease Research, and Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yoonmi Na
- Appel Institute for Alzheimer's Disease Research, and Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY, USA
| | - Rong Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY, USA
| | - Natalia Dolzhanskaya
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research, and Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Milen T Velinov
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Manu Sharma
- Appel Institute for Alzheimer's Disease Research, and Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
46
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
47
|
Mulcahy B, Ibbett P, Holden-Dye L, O'Connor V. The Caenorhabditis elegans cysteine-string protein homologue DNJ-14 is dispensable for neuromuscular junction maintenance across ageing. ACTA ACUST UNITED AC 2019; 222:jeb.205450. [PMID: 31624097 DOI: 10.1242/jeb.205450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/09/2019] [Indexed: 01/16/2023]
Abstract
Maintenance of synaptic function across ageing is vital in sustaining cognitive function. Synaptic dysfunction is a key part of the pathophysiology of a number of neurodegenerative diseases. The synaptic co-chaperone, cysteine-string protein (CSP), is important for synaptic maintenance and function in Drosophila, mice and humans, and disruption of CSP results in synaptic degeneration. We sought to characterise synaptic ageing in Caenorhabditis elegans upon genetic disruption of CSP. To do this, we focused on the worms' neuromuscular junctions, which are the best characterised synapse. CSP mutant worms did not display reduced lifespan or any neuromuscular-dependent behavioural deficits across ageing. Pharmacological interrogation of the neuromuscular synapse of CSP mutant animals showed no sign of synaptic dysfunction even at advanced age. Lastly, patch clamp analysis of neuromuscular transmission across ageing in wild-type and CSP mutant animals revealed no obvious CSP-dependent deficits. Electrophysiological spontaneous postsynaptic current analysis reinforced pharmacological observations that the C. elegans neuromuscular synapse increases in strength during early ageing and remains relatively intact in old, immotile worms. Taken together, this study shows that surprisingly, despite disruption of CSP in other animals having severe synaptic phenotypes, CSP does not seem to be important for maintenance of the neuromuscular junction across ageing in C. elegans.
Collapse
Affiliation(s)
- Ben Mulcahy
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Paul Ibbett
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Lindy Holden-Dye
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Vincent O'Connor
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
48
|
Kumar A, Narayanan V, Sekhar A. Characterizing Post-Translational Modifications and Their Effects on Protein Conformation Using NMR Spectroscopy. Biochemistry 2019; 59:57-73. [PMID: 31682116 DOI: 10.1021/acs.biochem.9b00827] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diversity of the cellular proteome substantially exceeds the number of genes coded by the DNA of an organism because one or more residues in a majority of eukaryotic proteins are post-translationally modified (PTM) by the covalent conjugation of specific chemical groups. We now know that PTMs alter protein conformation and function in ways that are not entirely understood at the molecular level. NMR spectroscopy has been particularly successful as an analytical tool in elucidating the themes underlying the structural role of PTMs. In this Perspective, we focus on the NMR-based characterization of three abundant PTMs: phosphorylation, acetylation, and glycosylation. We detail NMR methods that have found success in detecting these modifications at a site-specific level. We also highlight NMR studies that have mapped the conformational changes ensuing from these PTMs as well as evaluated their relation to function. The NMR toolbox is expanding rapidly with experiments available to probe not only the average structure of biomolecules but also how this structure changes with time on time scales ranging from picoseconds to seconds. The atomic resolution insights into the biomolecular structure, dynamics, and mechanism accessible from NMR spectroscopy ensure that NMR will continue to be at the forefront of research in the structural biology of PTMs.
Collapse
Affiliation(s)
- Ajith Kumar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| | - Vaishali Narayanan
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| | - Ashok Sekhar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| |
Collapse
|
49
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
50
|
Imler E, Pyon JS, Kindelay S, Torvund M, Zhang YQ, Chandra SS, Zinsmaier KE. A Drosophila model of neuronal ceroid lipofuscinosis CLN4 reveals a hypermorphic gain of function mechanism. eLife 2019; 8:e46607. [PMID: 31663851 PMCID: PMC6897512 DOI: 10.7554/elife.46607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
The autosomal dominant neuronal ceroid lipofuscinoses (NCL) CLN4 is caused by mutations in the synaptic vesicle (SV) protein CSPα. We developed animal models of CLN4 by expressing CLN4 mutant human CSPα (hCSPα) in Drosophila neurons. Similar to patients, CLN4 mutations induced excessive oligomerization of hCSPα and premature lethality in a dose-dependent manner. Instead of being localized to SVs, most CLN4 mutant hCSPα accumulated abnormally, and co-localized with ubiquitinated proteins and the prelysosomal markers HRS and LAMP1. Ultrastructural examination revealed frequent abnormal membrane structures in axons and neuronal somata. The lethality, oligomerization and prelysosomal accumulation induced by CLN4 mutations was attenuated by reducing endogenous wild type (WT) dCSP levels and enhanced by increasing WT levels. Furthermore, reducing the gene dosage of Hsc70 also attenuated CLN4 phenotypes. Taken together, we suggest that CLN4 alleles resemble dominant hypermorphic gain of function mutations that drive excessive oligomerization and impair membrane trafficking.
Collapse
Affiliation(s)
- Elliot Imler
- Graduate Interdisciplinary Program in NeuroscienceUniversity of ArizonaTucsonUnited States
- Department of NeuroscienceUniversity of ArizonaTucsonUnited States
| | - Jin Sang Pyon
- Department of NeuroscienceUniversity of ArizonaTucsonUnited States
- Undergraduate Program in Neuroscience and Cognitive Science, Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonUnited States
| | - Selina Kindelay
- Department of NeuroscienceUniversity of ArizonaTucsonUnited States
- Undergraduate Program in Neuroscience and Cognitive Science, Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonUnited States
| | - Meaghan Torvund
- Graduate Interdisciplinary Program in NeuroscienceUniversity of ArizonaTucsonUnited States
- Department of NeuroscienceUniversity of ArizonaTucsonUnited States
| | - Yong-quan Zhang
- Department of NeuroscienceYale UniversityNew HavenUnited States
- Department of NeurologyYale UniversityNew HavenUnited States
| | - Sreeganga S Chandra
- Department of NeuroscienceYale UniversityNew HavenUnited States
- Department of NeurologyYale UniversityNew HavenUnited States
| | - Konrad E Zinsmaier
- Department of NeuroscienceUniversity of ArizonaTucsonUnited States
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonUnited States
| |
Collapse
|