1
|
Irie T, Matsuda T. In vivo direct neuronal conversion as a therapeutic strategy for ischemic stroke. Neural Regen Res 2025; 20:2309-2310. [PMID: 39359083 DOI: 10.4103/nrr.nrr-d-24-00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/26/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Takashi Irie
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (Irie T, Matsuda T)
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (Irie T)
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (Irie T, Matsuda T)
| |
Collapse
|
2
|
He Q, Wang Z, Wang Y, Zhu M, Liang Z, Zhang K, Xu Y, Chen G. Characteristic changes in astrocyte properties during astrocyte-to-neuron conversion induced by NeuroD1/Ascl1/Dlx2. Neural Regen Res 2025; 20:1801-1815. [PMID: 39104117 PMCID: PMC11688565 DOI: 10.4103/nrr.nrr-d-23-01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00030/figure1/v/2024-08-05T133530Z/r/image-tiff Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders. However, a few recent studies have claimed that neural transcription factors cannot convert astrocytes into neurons, attributing the converted neurons to pre-existing neurons mis-expressing transgenes. In this study, we overexpressed three distinct neural transcription factors--NeuroD1, Ascl1, and Dlx2--in reactive astrocytes in mouse cortices subjected to stab injury, resulting in a series of significant changes in astrocyte properties. Initially, the three neural transcription factors were exclusively expressed in the nuclei of astrocytes. Over time, however, these astrocytes gradually adopted neuronal morphology, and the neural transcription factors was gradually observed in the nuclei of neuron-like cells instead of astrocytes. Furthermore, we noted that transcription factor-infected astrocytes showed a progressive decrease in the expression of astrocytic markers AQP4 (astrocyte endfeet signal), CX43 (gap junction signal), and S100β. Importantly, none of these changes could be attributed to transgene leakage into pre-existing neurons. Therefore, our findings suggest that neural transcription factors such as NeuroD1, Ascl1, and Dlx2 can effectively convert reactive astrocytes into neurons in the adult mammalian brain.
Collapse
Affiliation(s)
- Qing He
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Zhen Wang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Yuchen Wang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Mengjie Zhu
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Zhile Liang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Kanghong Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Yuge Xu
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Gong Chen
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Nakatsukasa Y, Yamada Y, Yamada Y. Research of in vivo reprogramming toward clinical applications in regenerative medicine: A concise review. Regen Ther 2025; 28:12-19. [PMID: 39678397 PMCID: PMC11638634 DOI: 10.1016/j.reth.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/17/2024] Open
Abstract
The successful generation of induced pluripotent stem cells (iPSCs) has significantly impacted many scientific fields. In the field of regenerative medicine, iPSC-derived somatic cells are expected to recover impaired organ functions through cell transplantation therapy. Subsequent studies using genetically engineered mouse models showed that somatic cells are also reprogrammable in vivo. Notably, cyclic expression of reprogramming factors, so-called partial reprogramming in vivo ameliorates cellular and physiological hallmarks of aging without inducing teratoma formation or premature death of animals. Subsequent studies provided evidence supporting the beneficial effects of partial reprogramming in various organs. Although in vivo reprogramming appears to be a promising strategy for tissue regeneration and rejuvenation, there remain unsolved issues that hinder its clinical application, including concerns regarding its safety, controllability, and unexpected detrimental effects. Here, we review the pathway that research of in vivo reprogramming has followed and discuss the future perspective as we look toward its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yoshihiko Nakatsukasa
- Department of Molecular Pathology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Yamada
- Department of Molecular Pathology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Yamada
- Department of Molecular Pathology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Ruggiero M, Cianciulli A, Calvello R, Lofrumento DD, Saponaro C, Filannino FM, Porro C, Panaro MA. Lactoferrin Attenuates Pro-Inflammatory Response and Promotes the Conversion into Neuronal Lineages in the Astrocytes. Int J Mol Sci 2025; 26:405. [PMID: 39796258 PMCID: PMC11720426 DOI: 10.3390/ijms26010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits. To date, many anti-inflammatory agents have been shown to reduce neuroinflammation; however, their potential to restore neuronal loss was poorly investigated. This study investigates the anti-inflammatory effects of lactoferrin on DI-TNC1 astrocyte cell line and its ability to induce astrocyte reprogramming in a context of sustained inflammation. For this purpose, astrocytes were pre-treated with lactoferrin (4 μg/mL) for 24 h, then with lipopolysaccharide (LPS) (400 ng/mL), and examined 2, 9 and 16 days from treatment. The results demonstrate that lactoferrin attenuates astrocyte reactivity by reducing Toll-like receptor 4 (TLR4), Glial fibrillary acidic protein (GFAP) and IL-6 expression, as well as by upregulating Interleukin-10 (IL-10) cytokine and NRF2 expression. Moreover, lactoferrin promotes the reprogramming of reactive astrocytes into proliferative neuroblasts by inducing the overexpression of the Sex determining region Y/SRY-box 2 (SOX2) reprogramming transcription factor. Overall, this study highlights the potential effects of lactoferrin to attenuate neuroinflammation and improve neurogenesis, suggesting a future strategy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, 73100 Lecce, Italy;
| | - Concetta Saponaro
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy;
| | - Francesca Martina Filannino
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (F.M.F.); (C.P.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (F.M.F.); (C.P.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| |
Collapse
|
5
|
Pardillo-Díaz R, Pérez-García P, Ortego-Domínguez M, Gómez-Oliva R, Martínez-Gómez N, Domínguez-García S, García-Cózar F, Muñoz-Miranda JP, Hernández-Galán R, Carrascal L, Castro C, Nunez-Abades P. The subventricular zone neurogenic niche provides adult born functional neurons to repair cortical brain injuries in response to diterpenoid therapy. Stem Cell Res Ther 2025; 16:1. [PMID: 39757190 DOI: 10.1186/s13287-024-04105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
INTRODUCTION Neural stem cells from the subventricular zone (SVZ) neurogenic niche provide neurons that integrate in the olfactory bulb circuitry. However, in response to cortical injuries, the neurogenic activity of the SVZ is significantly altered, leading to increased number of neuroblasts with a modified migration pattern that leads cells towards the site of injury. Despite the increased neurogenesis and migration, many newly generated neurons fail to survive or functionally integrate into the cortical circuitry. Providing the injured area with the adequate signaling molecules may improve both migration and functional integration of newly generated neurons. METHODS In here, we have studied the effect of a diterpene with the capacity to induce neuregulin release at promoting neurogenesis in a murine model of cortical brain injury. Using green fluorescent protein expressing vectors we have labeled SVZ cells and have studied the migration of newly generated neuroblasts toward the injury in response the treatment. In addition, using electrophysiological recordings we have studied the differentiation of these neuroblasts into mature neurons and their functional integration into the cortical circuitry. We have studied their electrical properties, their morphology and cortical location. RESULTS We have found that EOF2 treatment of adult mice with mechanical cortical injuries facilitates the delivery of neuroblasts into these injuries. The newly generated neurons develop features of fully functional neurons. Our results show that the newly generated neurons receive electrical inputs, fire action potentials, and undergo complete differentiation into neurons recapitulating the stages that distinguish ontogenic differentiation. These neurons develop features representative of neurons belonging the cortical layer in which they are situated. We have also studied that EOF2 facilitates neuregulin release in SVZ cells, a signaling factor that promotes neuronal differentiation. Neuregulin is expressed in microglial cells that reach the injury in response to the damage and its release is increased by EOF2 treatment. CONCLUSION Promoting neuregulin release via diterpene treatment facilitates migration of SVZ-derived neuroblasts to cortical injuries stimulating their differentiation into mature functional neurons, which receive electrical inputs and develop features of cortical neurons. These findings highlight the role of diterpenoids as a potential therapy to repair cortical brain injuries.
Collapse
Affiliation(s)
- Ricardo Pardillo-Díaz
- Department of Physiology, University of Seville, Seville, Spain
- Division of Physiology, University of Cadiz, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
| | - Patricia Pérez-García
- Department of Physiology, University of Seville, Seville, Spain
- Division of Physiology, University of Cadiz, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
| | - María Ortego-Domínguez
- Department of Physiology, University of Seville, Seville, Spain
- Division of Physiology, University of Cadiz, Cadiz, Spain
- Department of Pharmacology, University of Michigan, Ann Arbor, USA
| | - Ricardo Gómez-Oliva
- Division of Physiology, University of Cadiz, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
| | | | - Samuel Domínguez-García
- Division of Physiology, University of Cadiz, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Francisco García-Cózar
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Division of Immunology, University of Cadiz, Cadiz, Spain
| | - Juan Pedro Muñoz-Miranda
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Division of Immunology, University of Cadiz, Cadiz, Spain
| | - Rosario Hernández-Galán
- Department of Organic Chemistry, University of Cadiz, Cadiz, Spain
- Biomolecules Institute (INBIO), Puerto Real, Cadiz, Spain
| | - Livia Carrascal
- Department of Physiology, University of Seville, Seville, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
| | - Carmen Castro
- Division of Physiology, University of Cadiz, Cadiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain.
| | - Pedro Nunez-Abades
- Department of Physiology, University of Seville, Seville, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain.
| |
Collapse
|
6
|
Yuan Y, Liu H, Dai Z, He C, Qin S, Su Z. From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. Neurosci Bull 2025; 41:131-154. [PMID: 39080102 DOI: 10.1007/s12264-024-01258-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 01/19/2025] Open
Abstract
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Collapse
Affiliation(s)
- Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Böck D, Wilhelm M, Mumenthaler J, Carpanese DF, Kulcsár PI, d'Aquin S, Cremonesi A, Rassi A, Häberle J, Patriarchi T, Schwank G. Base editing of Ptbp1 in neurons alleviates symptoms in a mouse model of Parkinson's disease. eLife 2024; 13:RP97180. [PMID: 39714464 DOI: 10.7554/elife.97180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Parkinson's disease (PD) is a multifactorial disease caused by irreversible progressive loss of dopaminergic neurons (DANs). Recent studies have reported the successful conversion of astrocytes into DANs by repressing polypyrimidine tract binding protein 1 (PTBP1), which led to the rescue of motor symptoms in a chemically-induced mouse model of PD. However, follow-up studies have questioned the validity of this astrocyte-to-DAN conversion model. Here, we devised an adenine base editing strategy to downregulate PTBP1 in astrocytes and neurons in a chemically-induced PD mouse model. While PTBP1 downregulation in astrocytes had no effect, PTBP1 downregulation in neurons of the striatum resulted in the expression of the DAN marker tyrosine hydroxylase (TH) in non-dividing neurons, which was associated with an increase in striatal dopamine concentrations and a rescue of forelimb akinesia and spontaneous rotations. Phenotypic analysis using multiplexed iterative immunofluorescence imaging further revealed that most of these TH-positive cells co-expressed the dopaminergic marker DAT and the pan-neuronal marker NEUN, with the majority of these triple-positive cells being classified as mature GABAergic neurons. Additional research is needed to fully elucidate the molecular mechanisms underlying the expression of the observed markers and understand how the formation of these cells contributes to the rescue of spontaneous motor behaviors. Nevertheless, our findings support a model where downregulation of neuronal, but not astrocytic, PTBP1 can mitigate symptoms in PD mice.
Collapse
Affiliation(s)
- Desiree Böck
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jonas Mumenthaler
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Peter I Kulcsár
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Simon d'Aquin
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anahita Rassi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Yang J. Partial Cell Fate Transitions to Promote Cardiac Regeneration. Cells 2024; 13:2002. [PMID: 39682750 DOI: 10.3390/cells13232002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Heart disease, including myocardial infarction (MI), remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective regenerative therapies. Direct reprogramming of cardiomyocyte-like cells from resident fibroblasts offers a promising avenue for myocardial regeneration, but its efficiency and consistency in generating functional cardiomyocytes remain limited. Alternatively, reprogramming induced cardiac progenitor cells (iCPCs) could generate essential cardiac lineages, but existing methods often involve complex procedures. These limitations underscore the need for advanced mechanistic insights and refined reprogramming strategies to improve reparative outcomes in the heart. Partial cellular fate transitions, while still a relatively less well-defined area and primarily explored in longevity and neurobiology, hold remarkable promise for cardiac repair. It enables the reprogramming or rejuvenation of resident cardiac cells into a stem or progenitor-like state with enhanced cardiogenic potential, generating the reparative lineages necessary for comprehensive myocardial recovery while reducing safety risks. As an emerging strategy, partial cellular fate transitions play a pivotal role in reversing myocardial infarction damage and offer substantial potential for therapeutic innovation. This review will summarize current advances in these areas, including recent findings involving two transcription factors that critically regulate stemness and cardiogenesis. It will also explore considerations for further refining these approaches to enhance their therapeutic potential and safety.
Collapse
Affiliation(s)
- Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
9
|
Huang Y, Chen Z, Chen J, Liu J, Qiu C, Liu Q, Zhang L, Zhu GJ, Ma X, Sun S, Shi YS, Wan G. Direct reprogramming of fibroblasts into spiral ganglion neurons by defined transcription factors. Cell Prolif 2024:e13775. [PMID: 39551613 DOI: 10.1111/cpr.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Degeneration of the cochlear spiral ganglion neurons (SGNs) is one of the major causes of sensorineural hearing loss and significantly impacts the outcomes of cochlear implantation. Functional regeneration of SGNs holds great promise for treating sensorineural hearing loss. In this study, we systematically screened 33 transcriptional regulators implicated in neuronal and SGN fate. Using gene expression array and principal component analyses, we identified a sequential combination of Ascl1, Pou4f1 and Myt1l (APM) in promoting functional reprogramming of SGNs. The neurons induced by APM expressed mature neuronal and SGN lineage-specific markers, displayed mature SGN-like electrophysiological characteristics and exhibited single-cell transcriptomes resembling the endogenous SGNs. Thus, transcription factors APM may serve as novel candidates for direct reprogramming of SGNs and hearing recovery due to SGN damages.
Collapse
Affiliation(s)
- Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
| | - Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
- Department of Neurology, The Affiliated Drum Tower Hospital of Medical School and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Jingyue Liu
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
| | - Guang-Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Shuohao Sun
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yun Stone Shi
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, China
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| |
Collapse
|
10
|
Dong W, Liu S, Li S, Wang Z. Cell reprogramming therapy for Parkinson's disease. Neural Regen Res 2024; 19:2444-2455. [PMID: 38526281 PMCID: PMC11090434 DOI: 10.4103/1673-5374.390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 10/08/2023] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson's disease. The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson's disease, which could substantially alleviate the symptoms of Parkinson's disease in clinical practice. However, ethical issues and tumor formation were limitations of its clinical application. Induced pluripotent stem cells can be acquired without sacrificing human embryos, which eliminates the huge ethical barriers of human stem cell therapy. Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons, without the need for intermediate proliferation states, thus avoiding issues of immune rejection and tumor formation. Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson's disease. However, there are also ethical concerns and the risk of tumor formation that need to be addressed. This review highlights the current application status of cell reprogramming in the treatment of Parkinson's disease, focusing on the use of induced pluripotent stem cells in cell replacement therapy, including preclinical animal models and progress in clinical research. The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson's disease, as well as the controversy surrounding in vivo reprogramming. These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
11
|
Marichal N, Péron S, Beltrán Arranz A, Galante C, Franco Scarante F, Wiffen R, Schuurmans C, Karow M, Gascón S, Berninger B. Reprogramming astroglia into neurons with hallmarks of fast-spiking parvalbumin-positive interneurons by phospho-site-deficient Ascl1. SCIENCE ADVANCES 2024; 10:eadl5935. [PMID: 39454007 PMCID: PMC11506222 DOI: 10.1126/sciadv.adl5935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 09/19/2024] [Indexed: 10/27/2024]
Abstract
Cellular reprogramming of mammalian glia to an induced neuronal fate holds the potential for restoring diseased brain circuits. While the proneural factor achaete-scute complex-like 1 (Ascl1) is widely used for neuronal reprogramming, in the early postnatal mouse cortex, Ascl1 fails to induce the glia-to-neuron conversion, instead promoting the proliferation of oligodendrocyte progenitor cells (OPC). Since Ascl1 activity is posttranslationally regulated, here, we investigated the consequences of mutating six serine phospho-acceptor sites to alanine (Ascl1SA6) on lineage reprogramming in vivo. Ascl1SA6 exhibited increased neurogenic activity in the glia of the early postnatal mouse cortex, an effect enhanced by coexpression of B cell lymphoma 2 (Bcl2). Genetic fate-mapping revealed that most induced neurons originated from astrocytes, while only a few derived from OPCs. Many Ascl1SA6/Bcl2-induced neurons expressed parvalbumin and were capable of high-frequency action potential firing. Our study demonstrates the authentic conversion of astroglia into neurons featuring subclass hallmarks of cortical interneurons, advancing our scope of engineering neuronal fates in the brain.
Collapse
Affiliation(s)
- Nicolás Marichal
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Sophie Péron
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Ana Beltrán Arranz
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Chiara Galante
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Franciele Franco Scarante
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rebecca Wiffen
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sergio Gascón
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute – CSIC, Madrid, Spain
| | - Benedikt Berninger
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- The Francis Crick Institute, London, UK
- Focus Program Translational Neuroscience, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
12
|
Liu MH, Xu YG, Bai XN, Lin JH, Xiang ZQ, Wang T, Xu L, Chen G. Efficient Dlx2-mediated astrocyte-to-neuron conversion and inhibition of neuroinflammation by NeuroD1. Dev Neurobiol 2024; 84:274-290. [PMID: 39034481 DOI: 10.1002/dneu.22951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
In vivo astrocyte-to-neuron (AtN) conversion induced by overexpression of neural transcriptional factors has great potential for neural regeneration and repair. Here, we demonstrate that a single neural transcriptional factor, Dlx2, converts mouse striatal astrocytes into neurons in a dose-dependent manner. Lineage-tracing studies in Aldh1l1-CreERT2 mice confirm that Dlx2 can convert striatal astrocytes into DARPP32+ and Ctip2+ medium spiny neurons (MSNs). Time-course studies reveal a gradual conversion from astrocytes to neurons in 1 month, with a distinct intermediate state in between astrocytes and neurons. Interestingly, when Dlx2-infected astrocytes start to lose astrocytic markers, the other local astrocytes proliferate to maintain astrocytic levels in the converted areas. Unexpectedly, although Dlx2 efficiently reprograms astrocytes into neurons in the gray matter striatum, it also induces partial reprogramming of astrocytes in the white matter corpus callosum. Such partial reprogramming of white matter astrocytes is associated with neuroinflammation, which can be suppressed by the addition of NeuroD1. Our results highlight the importance of investigating AtN conversion in both the gray matter and white matter to thoroughly evaluate therapeutic potentials. This study also unveils the critical role of anti-inflammation by NeuroD1 during AtN conversion.
Collapse
Affiliation(s)
- Min-Hui Liu
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- VIB Center for Brain and Disease, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Yu-Ge Xu
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Xiao-Ni Bai
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Jian-Hua Lin
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Zong-Qin Xiang
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Tao Wang
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Liang Xu
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Gong Chen
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Serrano C, Cananzi S, Shen T, Wang LL, Zhang CL. Simple and highly specific targeting of resident microglia with adeno-associated virus. iScience 2024; 27:110706. [PMID: 39297168 PMCID: PMC11407971 DOI: 10.1016/j.isci.2024.110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024] Open
Abstract
Microglia, as the immune cells of the central nervous system (CNS), play dynamic roles in both healthy and diseased conditions. The ability to genetically target microglia using viruses is crucial for understanding their functions and advancing microglia-based treatments. We here show that resident microglia can be simply and specifically targeted using adeno-associated virus (AAV) vectors containing a 466-bp DNA fragment from the human IBA1 (hIBA1) promoter. This targeting approach is applicable to both resting and reactive microglia. When combining the short hIBA1 promoter with the target sequence of miR124, up to 98% of transduced cells are identified as microglia. Such a simple and highly specific microglia-targeting strategy may be further optimized for research and therapeutics.
Collapse
Affiliation(s)
- Carolina Serrano
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Cananzi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tianjin Shen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Le N, Awad S, Palazzo I, Hoang T, Blackshaw S. Viral-mediated Oct4 overexpression and inhibition of Notch signaling synergistically induce neurogenic competence in mammalian Müller glia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613666. [PMID: 39345433 PMCID: PMC11429848 DOI: 10.1101/2024.09.18.613666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Retinal Müller glia in cold-blooded vertebrates can reprogram into neurogenic progenitors to replace neurons lost to injury, but mammals lack this ability. While recent studies have shown that transgenic overexpression of neurogenic bHLH factors and glial-specific disruption of NFI family transcription factors and Notch signaling induce neurogenic competence in mammalian Müller glia, induction of neurogenesis in wildtype glia has thus far proven elusive. Here we report that viral-mediated overexpression of the pluripotency factor Oct4 ( Pou5f1 ) induces transdifferentiation of wildtype mouse Müller glia into bipolar neurons and stimulates this process synergistically in parallel with Notch loss of function. Single cell multiomic analysis shows that Oct4 overexpression leads to widespread changes in gene expression and chromatin accessibility, inducing activity of both the neurogenic transcription factor Rfx4 and the Yamanaka factors Sox2 and Klf4. This study demonstrates that viral-mediated overexpression of Oct4 induces neurogenic competence in wildtype retinal Müller glia, identifying mechanisms that could be used in cell-based therapies for treating retinal dystrophies.
Collapse
|
15
|
Fukui Y, Morihara R, Hu X, Nakano Y, Yunoki T, Takemoto M, Abe K, Yamashita T. Suppression of PTBP1 in hippocampal astrocytes promotes neurogenesis and ameliorates recognition memory in mice with cerebral ischemia. Sci Rep 2024; 14:20521. [PMID: 39227632 PMCID: PMC11372044 DOI: 10.1038/s41598-024-71212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
The therapeutic potential of suppressing polypyrimidine tract-binding protein 1 (Ptbp1) messenger RNA by viral transduction in a post-stroke dementia mouse model has not yet been examined. In this study, 3 days after cerebral ischemia, we injected a viral vector cocktail containing adeno-associated virus (AAV)-pGFAP-mCherry and AAV-pGFAP-CasRx (control vector) or a cocktail of AAV-pGFAP-mCherry and AAV-pGFAP-CasRx-SgRNA-(Ptbp1) (1:5, 1.0 × 1011 viral genomes) into post-stroke mice via the tail vein. We observed new mCherry/NeuN double-positive neuron-like cells in the hippocampus 56 days after cerebral ischemia. A portion of mCherry/GFAP double-positive astrocyte-like glia could have been converted into new mCherry/NeuN double-positive neuron-like cells with morphological changes. The new neuronal cells integrated into the dentate gyrus and recognition memory was significantly ameliorated. These results demonstrated that the in vivo conversion of hippocampal astrocyte-like glia into functional new neurons by the suppression of Ptbp1 might be a therapeutic strategy for post-stroke dementia.
Collapse
Affiliation(s)
- Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Taijun Yunoki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan.
| |
Collapse
|
16
|
Xiang Z, He S, Chen R, Liu S, Liu M, Xu L, Zheng J, Jiang Z, Ma L, Sun Y, Qin Y, Chen Y, Li W, Wang X, Chen G, Lei W. Two-photon live imaging of direct glia-to-neuron conversion in the mouse cortex. Neural Regen Res 2024; 19:1781-1788. [PMID: 38103245 PMCID: PMC10960291 DOI: 10.4103/1673-5374.386401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 09/26/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00032/figure1/v/2023-12-16T180322Z/r/image-tiff Over the past decade, a growing number of studies have reported transcription factor-based in situ reprogramming that can directly convert endogenous glial cells into functional neurons as an alternative approach for neuroregeneration in the adult mammalian central nervous system. However, many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry. In addition, concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tracing mice. In this study, we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ectopic expression of the neural transcription factor NeuroD1 in both proliferating reactive astrocytes and lineage-traced astrocytes in the mouse cortex. Time-lapse imaging over several weeks revealed the step-by-step transition from a typical astrocyte with numerous short, tapered branches to a typical neuron with a few long neurites and dynamic growth cones that actively explored the local environment. In addition, these lineage-converting cells were able to migrate radially or tangentially to relocate to suitable positions. Furthermore, two-photon Ca2+ imaging and patch-clamp recordings confirmed that the newly generated neurons exhibited synchronous calcium signals, repetitive action potentials, and spontaneous synaptic responses, suggesting that they had made functional synaptic connections within local neural circuits. In conclusion, we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuroregeneration and neural circuit reconstruction.
Collapse
Affiliation(s)
- Zongqin Xiang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Laboratory for Neuroimmunology in Health and Diseases, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Shu He
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Rongjie Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Shanggong Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Minhui Liu
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Flemish Region, Belgium
| | - Liang Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Jiajun Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Zhouquan Jiang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Long Ma
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Ying Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Yongpeng Qin
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Yi Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Wen Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Wenliang Lei
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Mseis-Jackson N, Sharma M, Li H. Controlling the Expression Level of the Neuronal Reprogramming Factors for a Successful Reprogramming Outcome. Cells 2024; 13:1223. [PMID: 39056804 PMCID: PMC11274869 DOI: 10.3390/cells13141223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neuronal reprogramming is a promising approach for making major advancement in regenerative medicine. Distinct from the approach of induced pluripotent stem cells, neuronal reprogramming converts non-neuronal cells to neurons without going through a primitive stem cell stage. In vivo neuronal reprogramming brings this approach to a higher level by changing the cell fate of glial cells to neurons in neural tissue through overexpressing reprogramming factors. Despite the ongoing debate over the validation and interpretation of newly generated neurons, in vivo neuronal reprogramming is still a feasible approach and has the potential to become clinical treatment with further optimization and refinement. Here, we discuss the major neuronal reprogramming factors (mostly pro-neurogenic transcription factors during development), especially the significance of their expression levels during neurogenesis and the reprogramming process focusing on NeuroD1. In the developing central nervous system, these pro-neurogenic transcription factors usually elicit distinct spatiotemporal expression patterns that are critical to their function in generating mature neurons. We argue that these dynamic expression patterns may be similarly needed in the process of reprogramming adult cells into neurons and further into mature neurons with subtype identities. We also summarize the existing approaches and propose new ones that control gene expression levels for a successful reprogramming outcome.
Collapse
Affiliation(s)
- Natalie Mseis-Jackson
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Mehek Sharma
- Department of Biological Sciences, College of Science & Mathematics, Augusta University, Augusta, GA 30912, USA;
| | - Hedong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
18
|
Le N, Vu TD, Palazzo I, Pulya R, Kim Y, Blackshaw S, Hoang T. Robust reprogramming of glia into neurons by inhibition of Notch signaling and nuclear factor I (NFI) factors in adult mammalian retina. SCIENCE ADVANCES 2024; 10:eadn2091. [PMID: 38996013 PMCID: PMC11244444 DOI: 10.1126/sciadv.adn2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Generation of neurons through direct reprogramming has emerged as a promising therapeutic approach for treating neurodegenerative diseases. In this study, we present an efficient method for reprogramming retinal glial cells into neurons. By suppressing Notch signaling by disrupting either Rbpj or Notch1/2, we induced mature Müller glial cells to reprogram into bipolar- and amacrine-like neurons. We demonstrate that Rbpj directly activates both Notch effector genes and genes specific to mature Müller glia while indirectly repressing expression of neurogenic basic helix-loop-helix (bHLH) factors. Combined loss of function of Rbpj and Nfia/b/x resulted in conversion of nearly all Müller glia to neurons. Last, inducing Müller glial proliferation by overexpression of dominant-active Yap promotes neurogenesis in both Rbpj- and Nfia/b/x/Rbpj-deficient Müller glia. These findings demonstrate that Notch signaling and NFI factors act in parallel to inhibit neurogenic competence in mammalian Müller glia and help clarify potential strategies for regenerative therapies aimed at treating retinal dystrophies.
Collapse
Affiliation(s)
- Nguyet Le
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Trieu-Duc Vu
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, MI 48105
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| | - Isabella Palazzo
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ritvik Pulya
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yehna Kim
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh Hoang
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, MI 48105
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| |
Collapse
|
19
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Liang S, Zhou J, Yu X, Lu S, Liu R. Neuronal conversion from glia to replenish the lost neurons. Neural Regen Res 2024; 19:1446-1453. [PMID: 38051886 PMCID: PMC10883502 DOI: 10.4103/1673-5374.386400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/16/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Neuronal injury, aging, and cerebrovascular and neurodegenerative diseases such as cerebral infarction, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis, and Huntington's disease are characterized by significant neuronal loss. Unfortunately, the neurons of most mammals including humans do not possess the ability to self-regenerate. Replenishment of lost neurons becomes an appealing therapeutic strategy to reverse the disease phenotype. Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain, but it carries the risk of causing gene mutation, tumorigenesis, severe inflammation, and obstructive hydrocephalus induced by brain edema. Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss, which may overcome the above-mentioned disadvantages of neural stem cell therapy. Thus far, many strategies to transform astrocytes, fibroblasts, microglia, Müller glia, NG2 cells, and other glial cells to mature and functional neurons, or for the conversion between neuronal subtypes have been developed through the regulation of transcription factors, polypyrimidine tract binding protein 1 (PTBP1), and small chemical molecules or are based on a combination of several factors and the location in the central nervous system. However, some recent papers did not obtain expected results, and discrepancies exist. Therefore, in this review, we discuss the history of neuronal transdifferentiation, summarize the strategies for neuronal replenishment and conversion from glia, especially astrocytes, and point out that biosafety, new strategies, and the accurate origin of the truly converted neurons in vivo should be focused upon in future studies. It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transcription factors or down-regulation of PTBP1 or drug interference therapies.
Collapse
Affiliation(s)
- Shiyu Liang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhou
- Department of Geriatric Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Yu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shuai Lu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ruitian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Wei J, Wang M, Li S, Han R, Xu W, Zhao A, Yu Q, Li H, Li M, Chi G. Reprogramming of astrocytes and glioma cells into neurons for central nervous system repair and glioblastoma therapy. Biomed Pharmacother 2024; 176:116806. [PMID: 38796971 DOI: 10.1016/j.biopha.2024.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Central nervous system (CNS) damage is usually irreversible owing to the limited regenerative capability of neurons. Following CNS injury, astrocytes are reactively activated and are the key cells involved in post-injury repair mechanisms. Consequently, research on the reprogramming of reactive astrocytes into neurons could provide new directions for the restoration of neural function after CNS injury and in the promotion of recovery in various neurodegenerative diseases. This review aims to provide an overview of the means through which reactive astrocytes around lesions can be reprogrammed into neurons, to elucidate the intrinsic connection between the two cell types from a neurogenesis perspective, and to summarize what is known about the neurotranscription factors, small-molecule compounds and MicroRNA that play major roles in astrocyte reprogramming. As the malignant proliferation of astrocytes promotes the development of glioblastoma multiforme (GBM), this review also examines the research advances on and the theoretical basis for the reprogramming of GBM cells into neurons and discusses the advantages of such approaches over traditional treatment modalities. This comprehensive review provides new insights into the field of GBM therapy and theoretical insights into the mechanisms of neurological recovery following neurological injury and in GBM treatment.
Collapse
Affiliation(s)
- Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Shilin Li
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, 1xinmin Avenue, Changchun, Jilin Province 130021, China.
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
22
|
Tan Z, Qin S, Liu H, Huang X, Pu Y, He C, Yuan Y, Su Z. Small molecules reprogram reactive astrocytes into neuronal cells in the injured adult spinal cord. J Adv Res 2024; 59:111-127. [PMID: 37380102 PMCID: PMC11081968 DOI: 10.1016/j.jare.2023.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023] Open
Abstract
INTRODUCTION Ectopic expression of transcription factor-mediated in vivo neuronal reprogramming provides promising strategy to compensate for neuronal loss, while its further clinical application may be hindered by delivery and safety concerns. As a novel and attractive alternative, small molecules may offer a non-viral and non-integrative chemical approach for reprogramming cell fates. Recent definitive evidences have shown that small molecules can convert non-neuronal cells into neurons in vitro. However, whether small molecules alone can induce neuronal reprogramming in vivo remains largely unknown. OBJECTIVES To identify chemical compounds that can induce in vivo neuronal reprogramming in the adult spinal cord. METHODS Immunocytochemistry, immunohistochemistry, qRT-PCR and fate-mapping are performed to analyze the role of small molecules in reprogramming astrocytes into neuronal cells in vitro and in vivo. RESULTS By screening, we identify a chemical cocktail with only two chemical compounds that can directly and rapidly reprogram cultured astrocytes into neuronal cells. Importantly, this chemical cocktail can also successfully trigger neuronal reprogramming in the injured adult spinal cord without introducing exogenous genetic factors. These chemically induced cells showed typical neuronal morphologies and neuron-specific marker expression and could become mature and survive for more than 12 months. Lineage tracing indicated that the chemical compound-converted neuronal cells mainly originated from post-injury spinal reactive astrocytes. CONCLUSION Our proof-of-principle study demonstrates that in vivo glia-to-neuron conversion can be manipulated in a chemical compound-based manner. Albeit our current chemical cocktail has a lowreprogramming efficiency, it will bring in vivo cell fate reprogramming closer to clinical application in brain and spinal cord repair. Future studies should focus on further refining our chemical cocktail and reprogramming approach to boost the reprogramming efficiency.
Collapse
Affiliation(s)
- Zijian Tan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Xiao Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
23
|
Ozkan A, Padmanabhan HK, Shipman SL, Azim E, Kumar P, Sadegh C, Basak AN, Macklis JD. Directed differentiation of functional corticospinal-like neurons from endogenous SOX6+/NG2+ cortical progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590488. [PMID: 38712174 PMCID: PMC11071355 DOI: 10.1101/2024.04.21.590488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Corticospinal neurons (CSN) centrally degenerate in amyotrophic lateral sclerosis (ALS), along with spinal motor neurons, and loss of voluntary motor function in spinal cord injury (SCI) results from damage to CSN axons. For functional regeneration of specifically affected neuronal circuitry in vivo , or for optimally informative disease modeling and/or therapeutic screening in vitro , it is important to reproduce the type or subtype of neurons involved. No such appropriate in vitro models exist with which to investigate CSN selective vulnerability and degeneration in ALS, or to investigate routes to regeneration of CSN circuitry for ALS or SCI, critically limiting the relevance of much research. Here, we identify that the HMG-domain transcription factor Sox6 is expressed by a subset of NG2+ endogenous cortical progenitors in postnatal and adult cortex, and that Sox6 suppresses a latent neurogenic program by repressing inappropriate proneural Neurog2 expression by progenitors. We FACS-purify these genetically accessible progenitors from postnatal mouse cortex and establish a pure culture system to investigate their potential for directed differentiation into CSN. We then employ a multi-component construct with complementary and differentiation-sharpening transcriptional controls (activating Neurog2, Fezf2 , while antagonizing Olig2 with VP16:Olig2 ). We generate corticospinal-like neurons from SOX6+/NG2+ cortical progenitors, and find that these neurons differentiate with remarkable fidelity compared with corticospinal neurons in vivo . They possess appropriate morphological, molecular, transcriptomic, and electrophysiological characteristics, without characteristics of the alternate intracortical or other neuronal subtypes. We identify that these critical specifics of differentiation are not reproduced by commonly employed Neurog2 -driven differentiation. Neurons induced by Neurog2 instead exhibit aberrant multi-axon morphology and express molecular hallmarks of alternate cortical projection subtypes, often in mixed form. Together, this developmentally-based directed differentiation from genetically accessible cortical progenitors sets a precedent and foundation for in vitro mechanistic and therapeutic disease modeling, and toward regenerative neuronal repopulation and circuit repair.
Collapse
|
24
|
Umeyama T, Matsuda T, Nakashima K. Lineage Reprogramming: Genetic, Chemical, and Physical Cues for Cell Fate Conversion with a Focus on Neuronal Direct Reprogramming and Pluripotency Reprogramming. Cells 2024; 13:707. [PMID: 38667322 PMCID: PMC11049106 DOI: 10.3390/cells13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, and cell biology to control transcriptional networks, signaling cascades, and epigenetic modifications during reprogramming. Here, we summarize recent advances in cellular reprogramming and discuss future directions.
Collapse
Affiliation(s)
- Taichi Umeyama
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
25
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
26
|
Cho HE, Lee S, Seo JH, Kang SW, Choi WA, Cho SR. In Vivo Reprogramming Using Yamanaka Factors in the CNS: A Scoping Review. Cells 2024; 13:343. [PMID: 38391956 PMCID: PMC10886652 DOI: 10.3390/cells13040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Central nervous system diseases, particularly neurodegenerative disorders, pose significant challenges in medicine. These conditions, characterized by progressive neuronal loss, have remained largely incurable, exacting a heavy toll on individuals and society. In recent years, in vivo reprogramming using Yamanaka factors has emerged as a promising approach for central nervous system regeneration. This technique involves introducing transcription factors, such as Oct4, Sox2, Klf4, and c-Myc, into adult cells to induce their conversion into neurons. This review summarizes the current state of in vivo reprogramming research in the central nervous system, focusing on the use of Yamanaka factors. In vivo reprogramming using Yamanaka factors has shown promising results in several animal models of central nervous system diseases. Studies have demonstrated that this approach can promote the generation of new neurons, improve functional outcomes, and reduce scar formation. However, there are still several challenges that need to be addressed before this approach can be translated into clinical practice. These challenges include optimizing the efficiency of reprogramming, understanding the cell of origin for each transcription factor, and developing methods for reprogramming in non-subventricular zone areas. Further research is needed to overcome the remaining challenges, but this approach has the potential to revolutionize the way we treat central nervous system disorders.
Collapse
Affiliation(s)
- Han Eol Cho
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - Siwoo Lee
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jung Hwa Seo
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seong-Woong Kang
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - Won Ah Choi
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - Sung-Rae Cho
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
27
|
Sichani AS, Khoddam S, Shakeri S, Tavakkoli Z, Jafroodi AR, Dabbaghipour R, Sisakht M, Fallahi J. Partial Reprogramming as a Method for Regenerating Neural Tissues in Aged Organisms. Cell Reprogram 2024; 26:10-23. [PMID: 38381402 DOI: 10.1089/cell.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Aging causes numerous age-related diseases, leading the human species to death. Nevertheless, rejuvenating strategies based on cell epigenetic modifications are a possible approach to counteract disease progression while getting old. Cell reprogramming of adult somatic cells toward pluripotency ought to be a promising tool for age-related diseases. However, researchers do not have control over this process as cells lose their fate, and cause potential cancerous cells or unexpected cell phenotypes. Direct and partial reprogramming were introduced in recent years with distinctive applications. Although direct reprogramming makes cells lose their identity, it has various applications in regeneration medicine. Temporary and regulated in vivo overexpression of Yamanaka factors has been shown in several experimental contexts to be achievable and is used to rejuvenate mice models. This regeneration can be accomplished by altering the epigenetic adult cell signature to the signature of a younger cell. The greatest advantage of partial reprogramming is that this method does not allow cells to lose their identity when they are resetting their epigenetic clock. It is a regimen of short-term Oct3/4, Sox2, Klf4, and c-Myc expression in vivo that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. We know that many neurological age-related diseases, such as Alzheimer's disease, stroke, dementia, and Parkinson's disease, are the main cause of death in the last decades of life. Therefore, scientists have a special tendency regarding neuroregeneration methods to increase human life expectancy.
Collapse
Affiliation(s)
- Ali Saber Sichani
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Somayeh Khoddam
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Shakeri
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Tavakkoli
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arad Ranji Jafroodi
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Huang L, Lai X, Liang X, Chen J, Yang Y, Xu W, Qin Q, Qin R, Huang X, Xie M, Chen L. A promise for neuronal repair: reprogramming astrocytes into neurons in vivo. Biosci Rep 2024; 44:BSR20231717. [PMID: 38175538 PMCID: PMC10830445 DOI: 10.1042/bsr20231717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
Massive loss of neurons following brain injury or disease is the primary cause of central nervous system dysfunction. Recently, much research has been conducted on how to compensate for neuronal loss in damaged parts of the nervous system and thus restore functional connectivity among neurons. Direct somatic cell differentiation into neurons using pro-neural transcription factors, small molecules, or microRNAs, individually or in association, is the most promising form of neural cell replacement therapy available. This method provides a potential remedy for cell loss in a variety of neurodegenerative illnesses, and the development of reprogramming technology has made this method feasible. This article provides a comprehensive review of reprogramming, including the selection and methods of reprogramming starting cell populations as well as the signaling methods involved in this process. Additionally, we thoroughly examine how reprogramming astrocytes into neurons can be applied to treat stroke and other neurodegenerative diseases. Finally, we discuss the challenges of neuronal reprogramming and offer insights about the field.
Collapse
Affiliation(s)
- Lijuan Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xinyu Lai
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jiafeng Chen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rongxing Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
29
|
Hong W, Gong P, Pan X, Ren Z, Liu Y, Qi G, Li JL, Sun W, Ge WP, Zhang CL, Duan S, Qin S. Temporal-spatial Generation of Astrocytes in the Developing Diencephalon. Neurosci Bull 2024; 40:1-16. [PMID: 37843774 PMCID: PMC10774245 DOI: 10.1007/s12264-023-01131-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/24/2023] [Indexed: 10/17/2023] Open
Abstract
Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.
Collapse
Affiliation(s)
- Wentong Hong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinjie Pan
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhonggan Ren
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun-Liszt Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing, 102206, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9148, USA
| | - Shumin Duan
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Riley VA, Shankar V, Holmberg JC, Sokolov AM, Neckles VN, Williams K, Lyman R, Mackay TF, Feliciano DM. Tsc2 coordinates neuroprogenitor differentiation. iScience 2023; 26:108442. [PMID: 38107199 PMCID: PMC10724693 DOI: 10.1016/j.isci.2023.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem cells (NSCs) of the ventricular-subventricular zone (V-SVZ) generate numerous cell types. The uncoupling of mRNA transcript availability and translation occurs during the progression from stem to differentiated states. The mTORC1 kinase pathway acutely controls proteins that regulate mRNA translation. Inhibiting mTORC1 during differentiation is hypothesized to be critical for brain development since somatic mutations of mTORC1 regulators perturb brain architecture. Inactivating mutations of TSC1 or TSC2 genes cause tuberous sclerosis complex (TSC). TSC patients have growths near the striatum and ventricles. Here, it is demonstrated that V-SVZ NSC Tsc2 inactivation causes striatal hamartomas. Tsc2 removal altered translation factors, translatomes, and translational efficiency. Single nuclei RNA sequencing following in vivo loss of Tsc2 revealed changes in NSC activation states. The inability to decouple mRNA transcript availability and translation delayed differentiation leading to the retention of immature phenotypes in hamartomas. Taken together, Tsc2 is required for translational repression and differentiation.
Collapse
Affiliation(s)
- Victoria A. Riley
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Vijay Shankar
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | | | - Aidan M. Sokolov
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | - Kaitlyn Williams
- Clemson University Genomics and Bioinformatics Facility (CUGBF), Clemson University, Clemson, SC, USA
| | - Rachel Lyman
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Trudy F.C. Mackay
- Department of Biochemistry and Genetics, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - David M. Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| |
Collapse
|
31
|
Serrano C, Cananzi S, Shen T, Wang LL, Zhang CL. Simple and Highly Specific Targeting of Resident Microglia with Adeno-Associated Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571321. [PMID: 38168285 PMCID: PMC10760038 DOI: 10.1101/2023.12.12.571321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Microglia, as the immune cells of the central nervous system (CNS), play dynamic roles in both health and diseased conditions. The ability to genetically target microglia using viruses is crucial for understanding their functions and advancing microglia-based treatments. We here show that resident microglia can be simply and specifically targeted using adeno-associated virus (AAV) vectors containing a 466-bp DNA fragment from the human IBA1 (hIBA1) promoter. This targeting approach is applicable to both resting and reactive microglia. When combining the short hIBA1 promoter with the target sequence of miR124, up to 95% of transduced cells are identified as microglia. Such a simple and highly specific microglia-targeting strategy may be further optimized for research and therapeutics.
Collapse
Affiliation(s)
- Carolina Serrano
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Cananzi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tianjin Shen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
32
|
Guo X, Jiang P, Pan M, Ding Y, Lin Y, Jiang T, Li R, Wang W, Dai Y, Wang S, Cao Y, Lin H, Yang M, Liu W, Tao J. Overexpression of miR-124 in astrocyte improves neurological deficits in rat with ischemic stroke via DLL4 modulation. Exp Neurol 2023; 370:114571. [PMID: 37848121 DOI: 10.1016/j.expneurol.2023.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Astrocytes have been demonstrated to undergo conversion into functional neurons, presenting a promising approach for stroke treatment. However, the development of small molecules capable of effectively inducing this cellular reprogramming remains a critical challenge. METHODS Initially, we introduced a glial cell marker gene, GFaABC1D, as the promoter within an adeno-associated virus vector overexpressing miR-124 into the motor cortex of an ischemia-reperfusion model in rats. Additionally, we administered NeuroD1 as a positive control. Lentiviral vectors overexpressing miR-124 were constructed and transfected into primary rat astrocytes. We assessed the cellular distribution of GFAP, DCX, and NeuN on days 7, 14, and 28, respectively. RESULTS In rats with ischemic stroke, miR-124-transduced glial cells exhibited positive staining for the immature neuron marker doublecortin (DCX) and the mature neuron marker NeuN after 4 weeks. In contrast, NeuroD1-overexpressing model rats only expressed NeuN, and the positive percentage was higher in co-transfection with miR-124 and NeuroD1. Overexpression of miR-124 effectively ameliorated neurological deficits and motor functional impairment in the model rats. In primary rat astrocytes transduced with miR-124, DCX was not observed after 7 days of transfection, but it appeared at 14 days, with the percentage further increasing to 44.6% at 28 days. Simultaneously, 15.1% of miR-124-transduced cells exhibited NeuN positivity, which was not detected at 7 and 14 days. In vitro, double fluorescence assays revealed that miR-124 targeted Dll4, and in vivo experiments confirmed that miR-124 inhibited the expression of Notch1 and DLL4. CONCLUSIONS The overexpression of miR-124 in astrocytes demonstrates significant potential for improving neurological deficits following ischemic stroke by inhibiting DLL4 expression, and it may facilitate astrocyte-to-neuronal transformation.
Collapse
Affiliation(s)
- Xiaoqin Guo
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Pingli Jiang
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Meihua Pan
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yanyi Ding
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yanting Lin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Tao Jiang
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| | - Rui Li
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| | - Wenju Wang
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| | - Yaling Dai
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| | - Sinuo Wang
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yajun Cao
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huawei Lin
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Minguang Yang
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Jing Tao
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
33
|
Li X, Fan R, Xiang J, Yuan Y, Mao X, Zhou N. P-hydroxy benzaldehyde facilitates reprogramming of reactive astrocytes into neurons via endogenous transcriptional regulation. Int J Neurosci 2023; 133:1096-1108. [PMID: 35321633 DOI: 10.1080/00207454.2022.2049775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cerebral ischemia leads to linguistic and motor dysfunction, as the death of neurons in ischemic core is permanent and non-renewable. An innovative avenue is to induce and/or facilitate reprogramming of adjacent astrocytes into neurons to replace the lost neurons and re-establish brain homeostasis. PURPOSE This study aimed to investigate whether the p-hydroxy benzaldehyde (p-HBA), a phenolic compound isolated from Gastrodia elata Blume, could facilitate the reprogramming of oxygen-glucose deprivation/reperfusion (OGD/R)-damaged astrocytes into neurons. STUDY DESIGN/METHODS The primary parenchymal astrocytes of rat were exposure to OGD and reperfusion with define culture medium. Cells were then incubated with different concentration of p-HBA (1, 10, 100, 400 μM) and collected at desired time point for reprogramming process analysis. RESULTS OGD/R could elicit endogenous neurogenic program in primary parenchymal astrocytes of rat under define culture condition, and these so-called reactive astrocytes could be reprogrammed into neurons. However, the neonatal neurons produced by this endogenous procedure could not develop into mature neurons, and the conversion rate was only 1.9%. Treatment of these reactive astrocytes with p-HBA could successfully promote the conversion rate to 6.1%, and the neonatal neurons could develop into mature neurons within 14 days. Further analysis showed that p-HBA down-regulated the Notch signal component genes Dll1, Hes1 and SOX2, while the transcription factor NeuroD1 was up-regulated. CONCLUSION The results of this study demonstrated that p-HBA facilitated the astrocyte-to-neuron conversion. This chemical reprogramming was mediated by inhibition of Notch1 signaling pathway and transcriptional activation of NeuroD1.
Collapse
Affiliation(s)
- Xin Li
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| | - Ruoxi Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| | - Jianming Xiang
- Department of Neurosurgery, Medical School, University of Michigan, MI, USA
| | - Yajin Yuan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| | - Xiaojian Mao
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| | - Ningna Zhou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| |
Collapse
|
34
|
Le N, Vu TD, Palazzo I, Pulya R, Kim Y, Blackshaw S, Hoang T. Robust reprogramming of glia into neurons by inhibition of Notch signaling and NFI factors in adult mammalian retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.560483. [PMID: 37961663 PMCID: PMC10634926 DOI: 10.1101/2023.10.29.560483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Generation of neurons through direct reprogramming has emerged as a promising therapeutic approach for neurodegenerative diseases. Despite successful applications in vitro , in vivo implementation has been hampered by low efficiency. In this study, we present a highly efficient strategy for reprogramming retinal glial cells into neurons by simultaneously inhibiting key negative regulators. By suppressing Notch signaling through the removal of its central mediator Rbpj, we induced mature Müller glial cells to reprogram into bipolar and amacrine neurons in uninjured adult mouse retinas, and observed that this effect was further enhanced by retinal injury. We found that specific loss of function of Notch1 and Notch2 receptors in Müller glia mimicked the effect of Rbpj deletion on Müller glia-derived neurogenesis. Integrated analysis of multiome (scRNA- and scATAC-seq) and CUT&Tag data revealed that Rbpj directly activates Notch effector genes and genes specific to mature Müller glia while also indirectly represses the expression of neurogenic bHLH factors. Furthermore, we found that combined loss of function of Rbpj and Nfia/b/x resulted in a robust conversion of nearly all Müller glia to neurons. Finally, we demonstrated that inducing Müller glial proliferation by AAV (adeno-associated virus)-mediated overexpression of dominant- active Yap supports efficient levels of Müller glia-derived neurogenesis in both Rbpj - and Nfia/b/x/Rbpj - deficient Müller glia. These findings demonstrate that, much like in zebrafish, Notch signaling actively represses neurogenic competence in mammalian Müller glia, and suggest that inhibition of Notch signaling and Nfia/b/x in combination with overexpression of activated Yap could serve as an effective component of regenerative therapies for degenerative retinal diseases.
Collapse
|
35
|
Lale Ataei M, Karimipour M, Shahabi P, Soltani-Zangbar H, Pashaiasl M. Human Mesenchymal Stem Cell Transplantation Improved Functional Outcomes Following Spinal Cord Injury Concomitantly with Neuroblast Regeneration. Adv Pharm Bull 2023; 13:806-816. [PMID: 38022812 PMCID: PMC10676545 DOI: 10.34172/apb.2023.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 12/01/2023] Open
Abstract
Purpose Spinal cord injury (SCI) is damage to the spinal cord that resulted in irreversible neuronal loss, glial scar formation and axonal injury. Herein, we used the human amniotic fluid mesenchymal stem cells (hAF-MSCs) and their conditioned medium (CM), to investigate their ability in neuroblast and astrocyte production as well as functional recovery following SCI. Methods Fifty-four adult rats were randomly divided into nine groups (n=6), included: Control, SCI, (SCI + DMEM), (SCI + CM), (SCI + MSCs), (SCI + Astrocyte), (SCI + Astrocyte + DMEM), (SCI + Astrocyte + CM) and (SCI + Astrocyte + MSCs). Following laminectomy and SCI induction, DMEM, CM, MSCs, and astrocytes were injected. Western blot was performed to explore the levels of the Sox2 protein in the MSCs-CM. The immunofluorescence staining against doublecortin (DCX) and glial fibrillary acidic protein (GFAP) was done. Finally, Basso-Beattie-Brenham (BBB) locomotor test was conducted to assess the neurological outcomes. Results Our results showed that the MSCs increased the number of endogenous DCX-positive cells and decreased the number of GFAP-positive cells by mediating juxtacrine and paracrine mechanisms (P<0.001). Transplanted human astrocytes were converted to neuroblasts rather than astrocytes under influence of MSCs and CM in the SCI. Moreover, functional recovery indexes were promoted in those groups that received MSCs and CM. Conclusion Taken together, our data indicate the MSCs via juxtacrine and paracrine pathways could direct the spinal cord endogenous neural stem cells (NSCs) to the neuroblasts lineage which indicates the capability of the MSCs in the increasing of the number of DCX-positive cells and astrocytes decline.
Collapse
Affiliation(s)
- Maryam Lale Ataei
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani-Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Pashaiasl
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Irie T, Matsuda T, Hayashi Y, Matsuda-Ito K, Kamiya A, Masuda T, Prinz M, Isobe N, Kira JI, Nakashima K. Direct neuronal conversion of microglia/macrophages reinstates neurological function after stroke. Proc Natl Acad Sci U S A 2023; 120:e2307972120. [PMID: 37812721 PMCID: PMC10589698 DOI: 10.1073/pnas.2307972120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023] Open
Abstract
Although generating new neurons in the ischemic injured brain would be an ideal approach to replenish the lost neurons for repairing the damage, the adult mammalian brain retains only limited neurogenic capability. Here, we show that direct conversion of microglia/macrophages into neurons in the brain has great potential as a therapeutic strategy for ischemic brain injury. After transient middle cerebral artery occlusion in adult mice, microglia/macrophages converge at the lesion core of the striatum, where neuronal loss is prominent. Targeted expression of a neurogenic transcription factor, NeuroD1, in microglia/macrophages in the injured striatum enables their conversion into induced neuronal cells that functionally integrate into the existing neuronal circuits. Furthermore, NeuroD1-mediated induced neuronal cell generation significantly improves neurological function in the mouse stroke model, and ablation of these cells abolishes the gained functional recovery. Our findings thus demonstrate that neuronal conversion contributes directly to functional recovery after stroke.
Collapse
Affiliation(s)
- Takashi Irie
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 101-8310Tokyo, Japan
| | - Kanae Matsuda-Ito
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 259-1193Isehara, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 108-8639Tokyo, Japan
| | - Takahiro Masuda
- Division of Molecular Neuroinflammation, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 812-8582Fukuoka, Japan
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, D-79106Freiburg, Germany
- Signalling Research Centres Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79106Freiburg, Germany
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, 831-8501Okawa, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, 810-0022Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| |
Collapse
|
37
|
Tai W, Zhang CL. In vivo cell fate reprogramming for spinal cord repair. Curr Opin Genet Dev 2023; 82:102090. [PMID: 37506560 PMCID: PMC11025462 DOI: 10.1016/j.gde.2023.102090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Spinal cord injury (SCI) can lead to the loss of motor, sensory, or autonomic function due to neuronal death. Unfortunately, the adult mammalian spinal cord has limited intrinsic regenerative capacity, making it difficult to rebuild the neural circuits necessary for functional recovery. However, recent evidence suggests that in vivo fate reprogramming of resident cells that are normally non-neurogenic can generate new neurons. This process also improves the pathological microenvironment, and the new neurons can integrate into the local neural network, resulting in better functional outcomes in SCI animal models. In this concise review, we focus on recent advances while also discussing the challenges, pitfalls, and opportunities in the field of in vivo cell fate reprogramming for spinal cord repair.
Collapse
Affiliation(s)
- Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
38
|
Capuz A, Osien S, Cardon T, Karnoub MA, Aboulouard S, Raffo-Romero A, Duhamel M, Cizkova D, Trerotola M, Devos D, Kobeissy F, Vanden Abeele F, Bonnefond A, Fournier I, Rodet F, Salzet M. Heimdall, an alternative protein issued from a ncRNA related to kappa light chain variable region of immunoglobulins from astrocytes: a new player in neural proteome. Cell Death Dis 2023; 14:526. [PMID: 37587118 PMCID: PMC10432539 DOI: 10.1038/s41419-023-06037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The dogma "One gene, one protein" is clearly obsolete since cells use alternative splicing and generate multiple transcripts which are translated into protein isoforms, but also use alternative translation initiation sites (TISs) and termination sites on a given transcript. Alternative open reading frames for individual transcripts give proteins originate from the 5'- and 3'-UTR mRNA regions, frameshifts of mRNA ORFs or from non-coding RNAs. Longtime considered as non-coding, recent in-silico translation prediction methods enriched the protein databases allowing the identification of new target structures that have not been identified previously. To gain insight into the role of these newly identified alternative proteins in the regulation of cellular functions, it is crucial to assess their dynamic modulation within a framework of altered physiological modifications such as experimental spinal cord injury (SCI). Here, we carried out a longitudinal proteomic study on rat SCI from 12 h to 10 days. Based on the alternative protein predictions, it was possible to identify a plethora of newly predicted protein hits. Among these proteins, some presented a special interest due to high homology with variable chain regions of immunoglobulins. We focus our interest on the one related to Kappa variable light chains which is similarly highly produced by B cells in the Bence jones disease, but here expressed in astrocytes. This protein, name Heimdall is an Intrinsically disordered protein which is secreted under inflammatory conditions. Immunoprecipitation experiments showed that the Heimdall interactome contained proteins related to astrocyte fate keepers such as "NOTCH1, EPHA3, IPO13" as well as membrane receptor protein including "CHRNA9; TGFBR, EPHB6, and TRAM". However, when Heimdall protein was neutralized utilizing a specific antibody or its gene knocked out by CRISPR-Cas9, sprouting elongations were observed in the corresponding astrocytes. Interestingly, depolarization assays and intracellular calcium measurements in Heimdall KO, established a depolarization effect on astrocyte membranes KO cells were more likely that the one found in neuroprogenitors. Proteomic analyses performed under injury conditions or under lipopolysaccharides (LPS) stimulation, revealed the expression of neuronal factors, stem cell proteins, proliferation, and neurogenesis of astrocyte convertor factors such as EPHA4, NOTCH2, SLIT3, SEMA3F, suggesting a role of Heimdall could regulate astrocytic fate. Taken together, Heimdall could be a novel member of the gatekeeping astrocyte-to-neuroprogenitor conversion factors.
Collapse
Affiliation(s)
- Alice Capuz
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Sylvain Osien
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Tristan Cardon
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Mélodie Anne Karnoub
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Soulaimane Aboulouard
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Antonella Raffo-Romero
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Marie Duhamel
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Dasa Cizkova
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University 'G. d'Annunzio', Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio', Chieti, Italy
| | - David Devos
- Université de Lille, INSERM, U1172, CHU-Lille, Lille Neuroscience Cognition Research Centre, 1 place de Verdun, 59000, Lille, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fabien Vanden Abeele
- Université de Lille, INSERM U1003, Laboratory of Cell Physiology, 59650, Villeneuve d'Ascq, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, 59000, Lille, France
| | - Isabelle Fournier
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- Institut Universitaire de France, 75005, Paris, France
| | - Franck Rodet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France.
| | - Michel Salzet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France.
- Institut Universitaire de France, 75005, Paris, France.
| |
Collapse
|
39
|
Xiao X, Liao Z, Zou J. Genetic and epigenetic regulators of retinal Müller glial cell reprogramming. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:126-133. [PMID: 37846362 PMCID: PMC10577857 DOI: 10.1016/j.aopr.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 10/18/2023]
Abstract
Background Retinal diseases characterized with irreversible loss of retinal nerve cells, such as optic atrophy and retinal degeneration, are the main causes of blindness. Current treatments for these diseases are very limited. An emerging treatment strategy is to induce the reprogramming of Müller glial cells to generate new retinal nerve cells, which could potentially restore vision. Main text Müller glial cells are the predominant glial cells in retinae and play multiple roles to maintain retinal homeostasis. In lower vertebrates, such as in zebrafish, Müller glial cells can undergo cell reprogramming to regenerate new retinal neurons in response to various damage factors, while in mammals, this ability is limited. Interestingly, with proper treatments, Müller glial cells can display the potential for regeneration of retinal neurons in mammalian retinae. Recent studies have revealed that dozens of genetic and epigenetic regulators play a vital role in inducing the reprogramming of Müller glial cells in vivo. This review summarizes these critical regulators for Müller glial cell reprogramming and highlights their differences between zebrafish and mammals. Conclusions A number of factors have been identified as the important regulators in Müller glial cell reprogramming. The early response of Müller glial cells upon acute retinal injury, such as the regulation in the exit from quiescent state, the initiation of reactive gliosis, and the re-entry of cell cycle of Müller glial cells, displays significant difference between mouse and zebrafish, which may be mediated by the diverse regulation of Notch and TGFβ (transforming growth factor-β) isoforms and different chromatin accessibility.
Collapse
Affiliation(s)
- Xueqi Xiao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jian Zou
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Ohta S, Yamada Y. Exploring the potential of in vivo reprogramming for studying embryonic development, tissue regeneration, and organismal aging. Curr Opin Genet Dev 2023; 81:102067. [PMID: 37356342 DOI: 10.1016/j.gde.2023.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/29/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023]
Abstract
Forced expression of a specific set of transcription factors can reprogram terminally differentiated cells and convert them into induced pluripotent stem cells that correspond to cells in the inner cell mass of the developing embryo. It is now recognized that the scope of the reprogramming factors extends far beyond the stem cell biology. Studies using mouse models demonstrated that the induction of the reprogramming factors promotes cellular reprogramming in vivo. Closer inspection of these mice has revealed that expression of the reprogramming factors results in unique consequences that are not seen when cells are reprogrammed ex vivo, and can provide insights into development, tissue regeneration, cancer, and aging.
Collapse
Affiliation(s)
- Sho Ohta
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Yasuhiro Yamada
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
41
|
Wang LL, Zhang CL. Therapeutic Potential of PTBP1 Inhibition, If Any, Is Not Attributed to Glia-to-Neuron Conversion. Annu Rev Neurosci 2023; 46:1-15. [PMID: 36750409 PMCID: PMC10404630 DOI: 10.1146/annurev-neuro-092822-083410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A holy grail of regenerative medicine is to replenish the cells that are lost due to disease. The adult mammalian central nervous system (CNS) has, however, largely lost such a regenerative ability. An emerging strategy for the generation of new neurons is through glia-to-neuron (GtN) conversion in vivo, mainly accomplished by the regulation of fate-determining factors. When inhibited, PTBP1, a factor involved in RNA biology, was reported to induce rapid and efficient GtN conversion in multiple regions of the adult CNS. Remarkably, PTBP1 inhibition was also claimed to greatly improve behaviors of mice with neurological diseases or aging. These phenomenal claims, if confirmed, would constitute a significant advancement in regenerative medicine. Unfortunately, neither GtN conversion nor therapeutic potential via PTBP1 inhibition was validated by the results of multiple subsequent replication studies with stringent methods. Here we review these controversial studies and conclude with recommendations for examining GtN conversion in vivo and future investigations of PTBP1.
Collapse
Affiliation(s)
- Lei-Lei Wang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Chun-Li Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
42
|
Fu XD, Mobley WC. Therapeutic Potential of PTB Inhibition Through Converting Glial Cells to Neurons in the Brain. Annu Rev Neurosci 2023; 46:145-165. [PMID: 37428606 DOI: 10.1146/annurev-neuro-083022-113120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Cell replacement therapy represents a promising approach for treating neurodegenerative diseases. Contrary to the common addition strategy to generate new neurons from glia by overexpressing a lineage-specific transcription factor(s), a recent study introduced a subtraction strategy by depleting a single RNA-binding protein, Ptbp1, to convert astroglia to neurons not only in vitro but also in the brain. Given its simplicity, multiple groups have attempted to validate and extend this attractive approach but have met with difficulty in lineage tracing newly induced neurons from mature astrocytes, raising the possibility of neuronal leakage as an alternative explanation for apparent astrocyte-to-neuron conversion. This review focuses on the debate over this critical issue. Importantly, multiple lines of evidence suggest that Ptbp1 depletion can convert a selective subpopulation of glial cells into neurons and, via this and other mechanisms, reverse deficits in a Parkinson's disease model, emphasizing the importance of future efforts in exploring this therapeutic strategy.
Collapse
Affiliation(s)
- Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China;
| | - William C Mobley
- Department of Neuroscience, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
43
|
Wang Y, Xia Y, Kou L, Yin S, Chi X, Li J, Sun Y, Wu J, Zhou Q, Zou W, Jin Z, Huang J, Xiong N, Wang T. Astrocyte-to-neuron reprogramming and crosstalk in the treatment of Parkinson's disease. Neurobiol Dis 2023:106224. [PMID: 37433411 DOI: 10.1016/j.nbd.2023.106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023] Open
Abstract
Parkinson's disease (PD) is currently the fastest growing disabling neurological disorder worldwide, with motor and non-motor symptoms being its main clinical manifestations. The primary pathological features include a reduction in the number of dopaminergic neurons in the substantia nigra and decrease in dopamine levels in the nigrostriatal pathway. Existing treatments only alleviate clinical symptoms and do not stop disease progression; slowing down the loss of dopaminergic neurons and stimulating their regeneration are emerging therapies. Preclinical studies have demonstrated that transplantation of dopamine cells generated from human embryonic or induced pluripotent stem cells can restore the loss of dopamine. However, the application of cell transplantation is limited owing to ethical controversies and the restricted source of cells. Until recently, the reprogramming of astrocytes to replenish lost dopaminergic neurons has provided a promising alternative therapy for PD. In addition, repair of mitochondrial perturbations, clearance of damaged mitochondria in astrocytes, and control of astrocyte inflammation may be extensively neuroprotective and beneficial against chronic neuroinflammation in PD. Therefore, this review primarily focuses on the progress and remaining issues in astrocyte reprogramming using transcription factors (TFs) and miRNAs, as well as exploring possible new targets for treating PD by repairing astrocytic mitochondria and reducing astrocytic inflammation.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
44
|
Yang JL, Fan H, Fu FF, Guo BL, Huang Y, Sun L, Wang WT, Xing JL, Hu XT, Ding YQ, Zhang K, Hu YZ, Wang YZ. Transient neurogenesis in ischemic cortex from Sox2 + astrocytes. Neural Regen Res 2023; 18:1521-1526. [PMID: 36571357 PMCID: PMC10075105 DOI: 10.4103/1673-5374.357910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The adult cortex has long been regarded as non-neurogenic. Whether injury can induce neurogenesis in the adult cortex is still controversial. Here, we report that focal ischemia stimulates a transient wave of local neurogenesis. Using 5'-bromo-2'-deoxyuridine labeling, we demonstrated a rapid generation of doublecortin-positive neuroblasts that died quickly in mouse cerebral cortex following ischemia. Nestin-CreER-based cell ablation and fate mapping showed a small contribution of neuroblasts by subventricular zone neural stem cells. Using a mini-photothrombotic ischemia mouse model and retrovirus expressing green fluorescent protein labeling, we observed maturation of locally generated new neurons. Furthermore, fate tracing analyses using PDGFRα-, GFAP-, and Sox2-CreER mice showed a transient wave of neuroblast generation in mild ischemic cortex and identified that Sox2-positive astrocytes were the major neurogenic cells in adult cortex. In addition, a similar upregulation of Sox2 and appearance of neuroblasts were observed in the focal ischemic cortex of Macaca mulatta. Our findings demonstrated a transient neurogenic response of Sox2-positive astrocytes in ischemic cortex, which suggests the possibility of inducing neuronal regeneration by amplifying this intrinsic response in the future.
Collapse
Affiliation(s)
- Jia-Lei Yang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province; China National Clinical Research Center for Neurological Diseases, Department of Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Hong Fan
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University; Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Fan-Fan Fu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Bao-Lin Guo
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ying Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Li Sun
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wen-Ting Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jun-Ling Xing
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Kun Zhang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ying-Zhou Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Ya-Zhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
45
|
Liu G, Li Y, Li M, Li S, He Q, Liu S, Su Q, Chen X, Xu M, Zhang ZN, Shao Z, Li W. Charting a high-resolution roadmap for regeneration of pancreatic β cells by in vivo transdifferentiation from adult acinar cells. SCIENCE ADVANCES 2023; 9:eadg2183. [PMID: 37224239 DOI: 10.1126/sciadv.adg2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Adult mammals have limited capacity to regenerate functional cells. Promisingly, in vivo transdifferentiation heralds the possibility of regeneration by lineage reprogramming from other fully differentiated cells. However, the process of regeneration by in vivo transdifferentiation in mammals is poorly understood. Using pancreatic β cell regeneration as a paradigm, we performed a single-cell transcriptomic study of in vivo transdifferentiation from adult mouse acinar cells to induced β cells. Using unsupervised clustering analysis and lineage trajectory construction, we uncovered that the cell fate remodeling trajectory was linear at the initial stage and the reprogrammed cells either evolved to induced β cells or toward a "dead-end" state after day 4.Moreover, functional analyses identified both p53 and Dnmt3a that acted as reprogramming barriers during the process of in vivo transdifferentiation. Collectively, we decipher a high-resolution roadmap of regeneration by in vivo transdifferentiation and provide a detailed molecular blueprint to facilitate mammalian regeneration.
Collapse
Affiliation(s)
- Gang Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Yana Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mushan Li
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sheng Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Qing He
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Shuxin Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Qiang Su
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Xiangyi Chen
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Minglu Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
- Reg-Verse Therapeutics (Shanghai) Co. Ltd., Shanghai 200120, China
| |
Collapse
|
46
|
Wan Y, Ding Y. Strategies and mechanisms of neuronal reprogramming. Brain Res Bull 2023; 199:110661. [PMID: 37149266 DOI: 10.1016/j.brainresbull.2023.110661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Traumatic injury and neurodegenerative diseases of the central nervous system (CNS) are difficult to treat due to the poorly regenerative nature of neurons. Engrafting neural stem cells into the CNS is a classic approach for neuroregeneration. Despite great advances, stem cell therapy still faces the challenges of overcoming immunorejection and achieving functional integration. Neuronal reprogramming, a recent innovation, converts endogenous non-neuronal cells (e.g., glial cells) into mature neurons in the adult mammalian CNS. In this review, we summarize the progress of neuronal reprogramming research, mainly focusing on strategies and mechanisms of reprogramming. Furthermore, we highlight the advantages of neuronal reprogramming and outline related challenges. Although the significant development has been made in this field, several findings are controversial. Even so, neuronal reprogramming, especially in vivo reprogramming, is expected to become an effective treatment for CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Yue Wan
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Ding
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
47
|
Talifu Z, Liu JY, Pan YZ, Ke H, Zhang CJ, Xu X, Gao F, Yu Y, Du LJ, Li JJ. In vivo astrocyte-to-neuron reprogramming for central nervous system regeneration: a narrative review. Neural Regen Res 2023; 18:750-755. [PMID: 36204831 PMCID: PMC9700087 DOI: 10.4103/1673-5374.353482] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The inability of damaged neurons to regenerate within the mature central nervous system (CNS) is a significant neuroscientific challenge. Astrocytes are an essential component of the CNS and participate in many physiological processes including blood-brain barrier formation, axon growth regulation, neuronal support, and higher cognitive functions such as memory. Recent reprogramming studies have confirmed that astrocytes in the mature CNS can be transformed into functional neurons. Building on in vitro work, many studies have demonstrated that astrocytes can be transformed into neurons in different disease models to replace damaged or lost cells. However, many findings in this field are controversial, as the source of new neurons has been questioned. This review summarizes progress in reprogramming astrocytes into neurons in vivo in animal models of spinal cord injury, brain injury, Huntington's disease, Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Jia-Yi Liu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
48
|
Xie Y, Zhou J, Wang LL, Zhang CL, Chen B. New AAV tools fail to detect Neurod1-mediated neuronal conversion of Müller glia and astrocytes in vivo. EBioMedicine 2023; 90:104531. [PMID: 36947961 PMCID: PMC10033723 DOI: 10.1016/j.ebiom.2023.104531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Reprogramming resident glial cells to convert them into neurons in vivo represents a potential therapeutic strategy that could replenish lost neurons, repair damaged neural circuits, and restore function. AAV (adeno-associated virus)-based expression systems are powerful tools for in vivo gene delivery in glia-to-neuron reprogramming, however, recent studies show that AAV-based gene delivery of Neurod1 into the mouse brain can cause severe leaky expression into endogenous neurons leading to misinterpretation of glia-to-neuron conversion. METHODS AAV-based delivery systems were modified for improved in vivo delivery of Neurod1, Math5, Ascl1, and Neurog2 in the adult mouse retina and brain. To examine whether bona fide glia-to-neuron conversion occurs, stringent fate mapping experiments were performed to trace the lineage of glial cells. FINDINGS The neuronal leakage is prevalent after AAV-GFAP-mediated delivery of Neurod1, Math5, Ascl1, and Neurog2. The transgene-dependent leakage cannot be corrected after lowering the AAV doses, using alterative AAV serotypes or injection routes. Importantly, we report the development of two new AAV-based tools that can significantly reduce neuronal leakage. Using the new AAV-based tools, we provide evidence that Neurod1 gene transfer fails to convert lineage traced glial cells into neurons. INTERPRETATION Stringent fate mapping techniques independently of an AAV-based expression system are the golden standard for tracing the fate of glia cells during neuronal reprogramming. The newly developed AAV-based systems are invaluable tools for glia-to-neuron reprogramming in vivo. FUNDING The work in Chen lab was supported by National Institutes of Health (NIH) grants R01 EY024986 and R01 EY028921, an unrestricted challenge grant from Research to Prevent Blindness, the New York Eye and Ear Infirmary Foundation, and The Harold W. McGraw, Jr. Family Foundation for Vision Research. The work in Zhang lab was supported by NIH (R01 NS127375 and R01 NS117065) and The Decherd Foundation.
Collapse
Affiliation(s)
- Ye Xie
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lei-Lei Wang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
49
|
Xu J, Fang S, Deng S, Li H, Lin X, Huang Y, Chung S, Shu Y, Shao Z. Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes. Nat Biomed Eng 2023; 7:253-269. [PMID: 36424465 DOI: 10.1038/s41551-022-00963-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2022] [Indexed: 11/26/2022]
Abstract
Organoids with region-specific architecture could facilitate the repair of injuries of the central nervous system. Here we show that human astrocytes can be directly reprogrammed into early neuroectodermal cells via the overexpression of OCT4, the suppression of p53 and the provision of the small molecules CHIR99021, SB431542, RepSox and Y27632. We also report that the activation of signalling mediated by fibroblast growth factor, sonic hedgehog and bone morphogenetic protein 4 in the reprogrammed cells induces them to form spinal-cord organoids with functional neurons specific to the dorsal and ventral domains. In mice with complete spinal-cord injury, organoids transplanted into the lesion differentiated into spinal-cord neurons, which migrated and formed synapses with host neurons. The direct reprogramming of human astrocytes into neurons may pave the way for in vivo neural organogenesis from endogenous astrocytes for the repair of injuries to the central nervous system.
Collapse
Affiliation(s)
- Jinhong Xu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
- Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shi Fang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
- Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Suixin Deng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Huijuan Li
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Xiaoning Lin
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
| | - Yongheng Huang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
- Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Yousheng Shu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Zhicheng Shao
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China.
- Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
50
|
Dennison R, Usuga E, Chen H, Paul JZ, Arbelaez CA, Teng YD. Direct Cell Reprogramming and Phenotypic Conversion: An Analysis of Experimental Attempts to Transform Astrocytes into Neurons in Adult Animals. Cells 2023; 12:618. [PMID: 36831283 PMCID: PMC9954435 DOI: 10.3390/cells12040618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Central nervous system (CNS) repair after injury or disease remains an unresolved problem in neurobiology research and an unmet medical need. Directly reprogramming or converting astrocytes to neurons (AtN) in adult animals has been investigated as a potential strategy to facilitate brain and spinal cord recovery and advance fundamental biology. Conceptually, AtN strategies rely on forced expression or repression of lineage-specific transcription factors to make endogenous astrocytes become "induced neurons" (iNs), presumably without re-entering any pluripotent or multipotent states. The AtN-derived cells have been reported to manifest certain neuronal functions in vivo. However, this approach has raised many new questions and alternative explanations regarding the biological features of the end products (e.g., iNs versus neuron-like cells, neural functional changes, etc.), developmental biology underpinnings, and neurobiological essentials. For this paper per se, we proposed to draw an unconventional distinction between direct cell conversion and direct cell reprogramming, relative to somatic nuclear transfer, based on the experimental methods utilized to initiate the transformation process, aiming to promote a more in-depth mechanistic exploration. Moreover, we have summarized the current tactics employed for AtN induction, comparisons between the bench endeavors concerning outcome tangibility, and discussion of the issues of published AtN protocols. Lastly, the urgency to clearly define/devise the theoretical frameworks, cell biological bases, and bench specifics to experimentally validate primary data of AtN studies was highlighted.
Collapse
Affiliation(s)
- Rachel Dennison
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Esteban Usuga
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Harriet Chen
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Jacob Z. Paul
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Yang D. Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
- Neurotrauma Recovery Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|