1
|
Zhao X, Sun Y, Zou J, Wu Y, Huang M, Kong H, Liu G, Gerhardt H, Gu W, Zhang Y, Shang M, Wang X. Protein kinase A regulates ferroptosis by controlling GPX4 m 6A modification through phosphorylation of ALKBH5. Cell Death Differ 2025:10.1038/s41418-025-01453-3. [PMID: 39901038 DOI: 10.1038/s41418-025-01453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
GPX4-dependent ferroptosis has emerged as a therapeutic strategy for cancer treatment. Here, we demonstrated that protein kinase A (PKA) participates in the regulation of ferroptosis by controlling the m6A modification of GPX4 in an ALKBH5-dependent manner. Notably, we identified ALKBH5, an m6A demethylase, as a novel target of PKA, which drives phosphorylation-dependent degradation of ALKBH5 protein. Moreover, the deletion of ALKBH5 represses ferroptotic cell death by maintaining GPX4 m6A modification and stability. Thus, by regulating ALKBH5-dependent GPX4 stability, PKA acts as a key regulator of ferroptosis. Our study unveils the involvement of PKA in m6A modification, which could control GPX4-dependent ferroptosis and tumor progression.
Collapse
Affiliation(s)
- Xiaocheng Zhao
- Clinical Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Yanxi Sun
- Clinical Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Laboratory of Cell Fate and Metabolic Regulation, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Juan Zou
- Clinical Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Laboratory of Cell Fate and Metabolic Regulation, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yanxia Wu
- Laboratory of Cell Fate and Metabolic Regulation, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Minyi Huang
- Clinical Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Laboratory of Cell Fate and Metabolic Regulation, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Huimin Kong
- Clinical Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Guangda Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium. Center for Human Genetics, School of Medicine, University of Leuven, Leuven, Belgium
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Yunjiao Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Min Shang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Xingwu Wang
- Laboratory of Cell Fate and Metabolic Regulation, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
2
|
Trinh VQH, Ankenbauer KE, Torbit SM, Liu J, Batardiere M, Kumar B, Maurer HC, Revetta F, Chen Z, Kruse A, Judd A, Copeland C, Wong J, Ben-Levy O, Jarvis B, Brown M, Brown JW, Das K, Makino Y, Spraggins JM, Lau K, Azadi P, Maitra A, Tan MCB, DelGiorno KE. Mutant GNAS drives a pyloric metaplasia with tumor suppressive glycans in intraductal papillary mucinous neoplasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.25.581948. [PMID: 38464029 PMCID: PMC10925208 DOI: 10.1101/2024.02.25.581948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
BACKGROUND & AIMS Intraductal Papillary Mucinous Neoplasms (IPMNs) are cystic lesions and bona fide precursors for pancreatic ductal adenocarcinoma (PDAC). Recent studies have shown that pancreatic precancer is characterized by a transcriptomic program similar to gastric metaplasia. The aims of this study were to assay IPMN for pyloric markers, to identify molecular drivers, and to determine a functional role for this program in the pancreas. METHODS Pyloric marker expression was evaluated by RNA-seq and multiplex immunostaining in patient samples. Cell lines and organoids expressing KrasG12D +/- GNASR201C underwent RNA sequencing. A PyScenic-based regulon analysis was performed to identify molecular drivers, and candidates were evaluated by RNA-seq, immunostaining, and small interfering RNA knockdown. Glycosylation profiling was performed to identify GNASR201C-driven changes. Glycan abundance was evaluated in patient samples. RESULTS Pyloric markers were identified in human IPMN. GNASR201C drove expression of this program as well as an indolent phenotype characterized by distinct glycosyltransferase changes. Glycan profiling identified an increase in LacdiNAcs and loss of pro-tumorigenic Lewis antigens. Knockdown of transcription factors Spdef or Creb3l1 or chitinase treatment reduced LacdiNAc deposition and reversed the indolent phenotype. LacdiNAc and 3-sulfoLeA/C abundance discriminated low from high grade patient IPMN. CONCLUSION GNASR201C drives an indolent phenotype in IPMN by amplifying a differentiated, pyloric phenotype through SPDEF/CREB3L1 which is characterized by distinct glycans. Acting as a glycan rheostat, mutant GNAS elevates LacdiNAcs at the expense of pro-tumorigenic acidic Lewis epitopes, inhibiting cancer cell invasion and disease progression. LacdiNAc and 3-Sulfo-LeA/C are mutually exclusive and may serve as markers of disease progression.
Collapse
|
3
|
Pankratova MD, Riabinin AA, Butova EA, Selivanovskiy AV, Morgun EI, Ulianov SV, Vorotelyak EA, Kalabusheva EP. YAP/TAZ Signalling Controls Epidermal Keratinocyte Fate. Int J Mol Sci 2024; 25:12903. [PMID: 39684613 DOI: 10.3390/ijms252312903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The paralogues Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) control cell proliferation and cell fate determination from embryogenesis to ageing. In the skin epidermis, these proteins are involved in both homeostatic cell renewal and injury-induced regeneration and also drive carcinogenesis and other pathologies. YAP and TAZ are usually considered downstream of the Hippo pathway. However, they are the central integrating link for the signalling microenvironment since they are involved in the interplay with signalling cascades induced by growth factors, cytokines, and physical parameters of the extracellular matrix. In this review, we summarise the evidence on how YAP and TAZ are activated in epidermal keratinocytes; how YAP/TAZ-mediated signalling cooperates with other signalling molecules at the plasma membrane, cytoplasmic, and nuclear levels; and how YAP/TAZ ultimately controls transcription programmes, defining epidermal cell fate.
Collapse
Affiliation(s)
- Maria D Pankratova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrei A Riabinin
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta A Butova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arseniy V Selivanovskiy
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena I Morgun
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P Kalabusheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
4
|
Rosenthal KJ, Gordan JD, Scott JD. Protein kinase A and local signaling in cancer. Biochem J 2024; 481:1659-1677. [PMID: 39540434 DOI: 10.1042/bcj20230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Protein kinase A (PKA) is a basophilic kinase implicated in the modulation of many cell-signaling and physiological processes. PKA also contributes to cancer-relevant events such as growth factor action, cell cycle control, cell migration and tumor metabolism. Germline and somatic mutations in PKA, gene amplifications, and chromosome rearrangements that encode kinase fusions, are linked to a growing number of malignant neoplasms. Mislocalization of PKA by exclusion from A-Kinase Anchoring Protein (AKAP) signaling islands further underlies cancer progression. This article highlights the influence of AKAP signaling and local kinase action in selected hallmarks of cancer. We also feature the utility of kinase inhibitor drugs as frontline and future anti-cancer therapies.
Collapse
Affiliation(s)
- Kacey J Rosenthal
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| | - John D Gordan
- Department of Medicine (Hematology/Oncology), Quantitative Biosciences Institute, UCSF Helen Diller Family Cancer Center, 1700 4th St., San Francisco, CA 94143, U.S.A
| | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| |
Collapse
|
5
|
Cheung ST, Do Y, Kim E, Rella A, Goyarts E, Pernodet N, Wong YH. G Protein-Coupled Receptors in Skin Aging. J Invest Dermatol 2024:S0022-202X(24)01919-5. [PMID: 39186022 DOI: 10.1016/j.jid.2024.06.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Skin aging is a complex biological process affected by a plethora of intrinsic and extrinsic factors that alter cutaneous functions through the modulations of signaling pathways and responses. Expressed in various cell types and skin tissue layers, G protein-coupled receptors (GPCRs) play a vital role in regulating skin aging. We have cataloged 156 GPCRs expressed in the skin and reviewed their roles in skin aging, such as pigmentation, loss of elasticity, wrinkles, rough texture, and aging-associated skin disorders. By exploring the GPCRs found in the skin, it may be possible to develop new treatment regimens for aging-associated skin conditions using GPCR ligands.
Collapse
Affiliation(s)
- Suet Ting Cheung
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Eunah Kim
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, New York, New York, USA; Estée Lauder Research Laboratories, Melville, New York, USA
| | - Yung Hou Wong
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China; Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
6
|
Hardy JC, Pool EH, Bruystens JGH, Zhou X, Li Q, Zhou DR, Palay M, Tan G, Chen L, Choi JLC, Lee HN, Strack S, Wang D, Taylor SS, Mehta S, Zhang J. Molecular determinants and signaling effects of PKA RIα phase separation. Mol Cell 2024; 84:1570-1584.e7. [PMID: 38537638 PMCID: PMC11031308 DOI: 10.1016/j.molcel.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/07/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures proper cellular function. Liquid-liquid phase separation (LLPS) of the ubiquitous PKA regulatory subunit RIα promotes cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces, combined with the cAMP-induced unleashing of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence, drive RIα condensate formation in the cytosol of mammalian cells, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in forming a non-canonical R:C complex, which recruits active PKA-C to RIα condensates to maintain low basal PKA activity in the cytosol. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.
Collapse
Affiliation(s)
- Julia C Hardy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily H Pool
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica G H Bruystens
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qingrong Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daojia R Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Max Palay
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerald Tan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lisa Chen
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jaclyn L C Choi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ha Neul Lee
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Dong Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Hardy JC, Pool EH, Bruystens JGH, Zhou X, Li Q, Zhou DR, Palay M, Tan G, Chen L, Choi JLC, Lee HN, Strack S, Wang D, Taylor SS, Mehta S, Zhang J. Molecular Determinants and Signaling Effects of PKA RIα Phase Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570836. [PMID: 38168176 PMCID: PMC10760030 DOI: 10.1101/2023.12.10.570836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures the specific execution of various cellular functions. Liquid-liquid phase separation (LLPS) of the ubiquitously expressed PKA regulatory subunit RIα was recently identified as a major driver of cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces combined with the cAMP-induced release of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence are required to drive RIα condensate formation in cytosol, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in the formation of a non-canonical R:C complex, which serves to maintain low basal PKA activity in the cytosol by enabling the recruitment of active PKA-C to RIα condensates. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.
Collapse
|
9
|
Arang N, Lubrano S, Ceribelli M, Rigiracciolo DC, Saddawi-Konefka R, Faraji F, Ramirez SI, Kim D, Tosto FA, Stevenson E, Zhou Y, Wang Z, Bogomolovas J, Molinolo AA, Swaney DL, Krogan NJ, Yang J, Coma S, Pachter JA, Aplin AE, Alessi DR, Thomas CJ, Gutkind JS. High-throughput chemogenetic drug screening reveals PKC-RhoA/PKN as a targetable signaling vulnerability in GNAQ-driven uveal melanoma. Cell Rep Med 2023; 4:101244. [PMID: 37858338 PMCID: PMC10694608 DOI: 10.1016/j.xcrm.2023.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Uveal melanoma (UM) is the most prevalent cancer of the eye in adults, driven by activating mutation of GNAQ/GNA11; however, there are limited therapies against UM and metastatic UM (mUM). Here, we perform a high-throughput chemogenetic drug screen in GNAQ-mutant UM contrasted with BRAF-mutant cutaneous melanoma, defining the druggable landscape of these distinct melanoma subtypes. Across all compounds, darovasertib demonstrates the highest preferential activity against UM. Our investigation reveals that darovasertib potently inhibits PKC as well as PKN/PRK, an AGC kinase family that is part of the "dark kinome." We find that downstream of the Gαq-RhoA signaling axis, PKN converges with ROCK to control FAK, a mediator of non-canonical Gαq-driven signaling. Strikingly, darovasertib synergizes with FAK inhibitors to halt UM growth and promote cytotoxic cell death in vitro and in preclinical metastatic mouse models, thus exposing a signaling vulnerability that can be exploited as a multimodal precision therapy against mUM.
Collapse
Affiliation(s)
- Nadia Arang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Simone Lubrano
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | | | | | - Farhoud Faraji
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sydney I Ramirez
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Daehwan Kim
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Frances A Tosto
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zhiyong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Julius Bogomolovas
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Alfredo A Molinolo
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jing Yang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dario R Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
11
|
Duan W, Guo S, Huang HP, Tian Y, Li Z, Bi Y, Yi L, Cao M, Guo M, Li Y, Liu Y, Li C. High expression of NF-κB inducing kinase in the bulge region of hair follicle induces tumor. Immunobiology 2023; 228:152705. [PMID: 37459681 DOI: 10.1016/j.imbio.2023.152705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 08/29/2023]
Abstract
The bulge region, a reservoir of multipotent stem cells, is possibly responsible for tumorigenesis. NF-κB-inducing kinase (NIK) is a kinase involved in the activation of the noncanonical NF-κB pathway and exhibits positive staining in tumor cells. However, whether high expression of NIK can result in tumorigenesis has not been reported in published papers. By establishing Nik-coe (Nik-stopF/F crossed with Chat-cre) and Nik-soe (Nik-stopF/F crossed with Sox9-cre) mice, we found that overexpression of Nik in the bulge region of hair follicles induced hair follicle loss and tumorigenesis. Furthermore, RNA sequencing, proteomic and phosphopeptide analyses revealed that multiple cancer pathways are involved in tumor formation. Taken together, these findings indicate that constitutive activation of Nik in the bulge region induces tumorigenesis.
Collapse
Affiliation(s)
- Weisong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Shengmin Guo
- Hebei Senlang Biotechnology Co., Ltd., No. 136 Yellow River Avenue, Shijiazhuang High-Tech Development Zone, Hebei 050000, People's Republic of China
| | - Huai-Peng Huang
- Shijiazhuang Pingan Hospital, Shijiazhuang, Hebei 050021, People's Republic of China
| | - Yunyun Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Zhongyao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yue Bi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Le Yi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Mengjie Cao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Moran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yakun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Chunyan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
12
|
Takahashi K, Takeda Y, Ono Y, Isomoto H, Mizukami Y. Current status of molecular diagnostic approaches using liquid biopsy. J Gastroenterol 2023; 58:834-847. [PMID: 37470859 PMCID: PMC10423147 DOI: 10.1007/s00535-023-02024-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers, and developing an efficient and reliable approach for its early-stage diagnosis is urgently needed. Precancerous lesions of PDAC, such as pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMN), arise through multiple steps of driver gene alterations in KRAS, TP53, CDKN2A, SMAD4, or GNAS. Hallmark mutations play a role in tumor initiation and progression, and their detection in bodily fluids is crucial for diagnosis. Recently, liquid biopsy has gained attention as an approach to complement pathological diagnosis, and in addition to mutation signatures in cell-free DNA, cell-free RNA, and extracellular vesicles have been investigated as potential diagnostic and prognostic markers. Integrating such molecular information to revise the diagnostic criteria for pancreatic cancer can enable a better understanding of the pathogenesis underlying inter-patient heterogeneity, such as sensitivity to chemotherapy and disease outcomes. This review discusses the current diagnostic approaches and clinical applications of genetic analysis in pancreatic cancer and diagnostic attempts by liquid biopsy and molecular analyses using pancreatic juice, duodenal fluid, and blood samples. Emerging knowledge in the rapidly advancing liquid biopsy field is promising for molecular profiling and diagnosing pancreatic diseases with significant diversity.
Collapse
Affiliation(s)
- Kenji Takahashi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Yohei Takeda
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yusuke Ono
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yusuke Mizukami
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
13
|
Sans M, Chen Y, Thege FI, Dou R, Min J, Yip-Schneider M, Zhang J, Wu R, Irajizad E, Makino Y, Rajapakshe KI, Hurd MW, León-Letelier RA, Vykoukal J, Dennison JB, Do KA, Wolff RA, Guerrero PA, Kim MP, Schmidt CM, Maitra A, Hanash S, Fahrmann JF. Integrated spatial transcriptomics and lipidomics of precursor lesions of pancreatic cancer identifies enrichment of long chain sulfatide biosynthesis as an early metabolic alteration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553002. [PMID: 37645752 PMCID: PMC10462088 DOI: 10.1101/2023.08.14.553002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background The development of diverse spatial profiling technologies has provided an unprecedented insight into molecular mechanisms driving cancer pathogenesis. Here, we conducted the first integrated cross-species assessment of spatial transcriptomics and spatial metabolomics alterations associated with progression of intraductal papillary mucinous neoplasms (IPMN), bona fide cystic precursors of pancreatic ductal adenocarcinoma (PDAC). Methods Matrix Assisted Laster Desorption/Ionization (MALDI) mass spectrometry (MS)-based spatial imaging and Visium spatial transcriptomics (ST) (10X Genomics) was performed on human resected IPMN tissues (N= 23) as well as pancreata from a mutant Kras;Gnas mouse model of IPMN. Findings were further compared with lipidomic analyses of cystic fluid from 89 patients with histologically confirmed IPMNs, as well as single-cell and bulk transcriptomic data of PDAC and normal tissues. Results MALDI-MS analyses of IPMN tissues revealed long-chain hydroxylated sulfatides, particularly the C24:0(OH) and C24:1(OH) species, to be selectively enriched in the IPMN and PDAC neoplastic epithelium. Integrated ST analyses confirmed that the cognate transcripts engaged in sulfatide biosynthesis, including UGT8, Gal3St1 , and FA2H , were co-localized with areas of sulfatide enrichment. Lipidomic analyses of cystic fluid identified several sulfatide species, including the C24:0(OH) and C24:1(OH) species, to be significantly elevated in patients with IPMN/PDAC compared to those with low-grade IPMN. Targeting of sulfatide metabolism via the selective galactosylceramide synthase inhibitor, UGT8-IN-1, resulted in ceramide-induced lethal mitophagy and subsequent cancer cell death in vitro , and attenuated tumor growth of mutant Kras;Gnas allografts. Transcript levels of UGT8 and FA2H were also selectively enriched in PDAC transcriptomic datasets compared to non-cancerous areas, and elevated tumoral UGT8 was prognostic for poor overall survival. Conclusion Enhanced sulfatide metabolism is an early metabolic alteration in cystic pre-cancerous lesions of the pancreas that persists through invasive neoplasia. Targeting sulfatide biosynthesis might represent an actionable vulnerability for cancer interception.
Collapse
|
14
|
Wu VH, Yung BS, Faraji F, Saddawi-Konefka R, Wang Z, Wenzel AT, Song MJ, Pagadala MS, Clubb LM, Chiou J, Sinha S, Matic M, Raimondi F, Hoang TS, Berdeaux R, Vignali DAA, Iglesias-Bartolome R, Carter H, Ruppin E, Mesirov JP, Gutkind JS. The GPCR-Gα s-PKA signaling axis promotes T cell dysfunction and cancer immunotherapy failure. Nat Immunol 2023; 24:1318-1330. [PMID: 37308665 PMCID: PMC10735169 DOI: 10.1038/s41590-023-01529-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/06/2023] [Indexed: 06/14/2023]
Abstract
Immune checkpoint blockade (ICB) targeting PD-1 and CTLA-4 has revolutionized cancer treatment. However, many cancers do not respond to ICB, prompting the search for additional strategies to achieve durable responses. G-protein-coupled receptors (GPCRs) are the most intensively studied drug targets but are underexplored in immuno-oncology. Here, we cross-integrated large singe-cell RNA-sequencing datasets from CD8+ T cells covering 19 distinct cancer types and identified an enrichment of Gαs-coupled GPCRs on exhausted CD8+ T cells. These include EP2, EP4, A2AR, β1AR and β2AR, all of which promote T cell dysfunction. We also developed transgenic mice expressing a chemogenetic CD8-restricted Gαs-DREADD to activate CD8-restricted Gαs signaling and show that a Gαs-PKA signaling axis promotes CD8+ T cell dysfunction and immunotherapy failure. These data indicate that Gαs-GPCRs are druggable immune checkpoints that might be targeted to enhance the response to ICB immunotherapies.
Collapse
Affiliation(s)
- Victoria H Wu
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Septerna, Inc., South San Francisco, CA, USA
| | - Bryan S Yung
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA, USA
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Robert Saddawi-Konefka
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA, USA
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhiyong Wang
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Alexander T Wenzel
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Miranda J Song
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Meghana S Pagadala
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lauren M Clubb
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Chiou
- Biomedical Sciences Graduate Studies Program, University of California, San Diego, La Jolla, CA, USA
- Internal Medicine Research Unit, Pfizer Worldwide Research, Cambridge, MA, USA
| | - Sanju Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marin Matic
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | | | - Thomas S Hoang
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health Houston and CellChorus INC, Houston, TX, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Hannah Carter
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jill P Mesirov
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Jeong MH, Urquhart G, Lewis C, Chi Z, Jewell JL. Inhibition of phosphodiesterase 4D suppresses mTORC1 signaling and pancreatic cancer growth. JCI Insight 2023; 8:e158098. [PMID: 37427586 PMCID: PMC10371348 DOI: 10.1172/jci.insight.158098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) senses multiple upstream stimuli to orchestrate anabolic and catabolic events that regulate cell growth and metabolism. Hyperactivation of mTORC1 signaling is observed in multiple human diseases; thus, pathways that suppress mTORC1 signaling may help to identify new therapeutic targets. Here, we report that phosphodiesterase 4D (PDE4D) promotes pancreatic cancer tumor growth by increasing mTORC1 signaling. GPCRs paired to Gαs proteins activate adenylyl cyclase, which in turn elevates levels of 3',5'-cyclic adenosine monophosphate (cAMP), whereas PDEs catalyze the hydrolysis of cAMP to 5'-AMP. PDE4D forms a complex with mTORC1 and is required for mTORC1 lysosomal localization and activation. Inhibition of PDE4D and the elevation of cAMP levels block mTORC1 signaling via Raptor phosphorylation. Moreover, pancreatic cancer exhibits an upregulation of PDE4D expression, and high PDE4D levels predict the poor overall survival of patients with pancreatic cancer. Importantly, FDA-approved PDE4 inhibitors repress pancreatic cancer cell tumor growth in vivo by suppressing mTORC1 signaling. Our results identify PDE4D as an important activator of mTORC1 and suggest that targeting PDE4 with FDA-approved inhibitors may be beneficial for the treatment of human diseases with hyperactivated mTORC1 signaling.
Collapse
Affiliation(s)
- Mi-Hyeon Jeong
- Department of Molecular Biology
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine, and
| | - Greg Urquhart
- Department of Molecular Biology
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine, and
| | | | - Zhikai Chi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jenna L. Jewell
- Department of Molecular Biology
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine, and
| |
Collapse
|
16
|
You J, Reilly MD, Eljalby M, Bareja R, Yusupova M, Vyas NS, Bang J, Ding W, Desman G, Miller LS, Elemento O, Granstein RD, Zippin JH. Soluble adenylyl cyclase contributes to imiquimod-mediated inflammation and is a potential therapeutic target in psoriasis. Exp Dermatol 2023; 32:1051-1062. [PMID: 37039485 PMCID: PMC10523866 DOI: 10.1111/exd.14811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023]
Abstract
Cyclic AMP (cAMP) has a key role in psoriasis pathogenesis, as indicated by the therapeutic efficacy of phosphodiesterase inhibitors that prevent the degradation of cAMP. However, whether soluble adenylate cyclase (sAC) (encoded by the ADCY10 gene), which is an important source for cAMP, is involved in Th17 cell-mediated inflammation or could be an alternative therapeutic target in psoriasis is unknown. We have utilized the imiquimod model of murine psoriasiform dermatitis to address this question. Adcy10-/- mice had reduced erythema, scaling and swelling in the skin and reduced CD4+ IL17+ cell numbers in the draining lymph nodes, compared with wild-type mice after induction of psoriasiform dermatitis with imiquimod. Keratinocyte-specific knock out of Adcy10 had no effect on imiquimod-induced ear swelling suggesting keratinocyte sAC has no role in imiquimod-induced inflammation. During Th17 polarization in vitro, naive T cells from Adcy10-/- mice exhibited reduced IL17 secretion and IL-17+ T-cell proliferation suggesting that differentiation into Th17 cells is suppressed without sAC activity. Interestingly, loss of sAC did not impact the expression of Th17 lineage-defining transcription factors (such as Rorc and cMaf) but rather was required for CREB-dependent gene expression, which is known to support Th17 cell gene expression. Finally, topical application of small molecule sAC inhibitors (sACi) reduced imiquimod-induced psoriasiform dermatitis and Il17 gene expression in the skin. Collectively, these findings demonstrate that sAC is important for psoriasiform dermatitis in mouse skin. sACi may provide an alternative class of topical therapeutics for Th17-mediated skin diseases.
Collapse
Affiliation(s)
- Jaewon You
- Department of Dermatology, Weill Cornell Medicine, NY NY
| | | | | | - Rohan Bareja
- Englander Institute of Precision Medicine, Weill Cornell Medicine, NY NY
| | | | - Nikki S. Vyas
- Departments of Pathology and Dermatology, Icahn School of Medicine at Mount Sinai, NY NY
| | - Jakyung Bang
- Department of Dermatology, Weill Cornell Medicine, NY NY
| | - Wanhong Ding
- Department of Dermatology, Weill Cornell Medicine, NY NY
| | - Garrett Desman
- Departments of Pathology and Dermatology, Icahn School of Medicine at Mount Sinai, NY NY
- ProHEALTH Care Associates, OptumCare, New Hyde Park, NY
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD
- Immunology, Janssen Research and Development, Spring House, PA
| | - Olivier Elemento
- Englander Institute of Precision Medicine, Weill Cornell Medicine, NY NY
| | | | - Jonathan H. Zippin
- Department of Dermatology, Weill Cornell Medicine, NY NY
- Englander Institute of Precision Medicine, Weill Cornell Medicine, NY NY
- Department of Pharmacology, Weill Cornell Medicine, NY NY
| |
Collapse
|
17
|
Guan T, Guo B, Zhang W, Qi M, Luo X, Li Z, Zhang Y, Bao T, Xu M, Liu M, Liu Y. The activation of gastric inhibitory peptide/gastric inhibitory peptide receptor axis via sonic hedgehog signaling promotes the bridging of gapped nerves in sciatic nerve injury. J Neurochem 2023; 165:842-859. [PMID: 36971732 DOI: 10.1111/jnc.15816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Schwann cells play an essential role in peripheral nerve regeneration by generating a favorable microenvironment. Gastric inhibitory peptide/gastric inhibitory peptide receptor (GIP/GIPR) axis deficiency leads to failure of sciatic nerve repair. However, the underlying mechanism remains elusive. In this study, we surprisingly found that GIP treatment significantly enhances the migration of Schwann cells and the formation of Schwann cell cords during recovery from sciatic nerve injury in rats. We further revealed that GIP and GIPR levels in Schwann cells were low under normal conditions, and significantly increased after injury demonstrated by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Wound healing and Transwell assays showed that GIP stimulation and GIPR silencing could affect Schwann cell migration. In vitro and in vivo mechanistic studies based on interference experiment revealed that GIP/GIPR might promote mechanistic target of rapamycin complex 2 (mTORC2) activity, thus facilitating cell migration; Rap1 activation might be involved in this process. Finally, we retrieved the stimulatory factors responsible for GIPR induction after injury. The results indicate that sonic hedgehog (SHH) is a potential candidate whose expression increased upon injury. Luciferase and chromatin immunoprecipitation (ChIP) assays showed that Gli3, the target transcription factor of the SHH pathway, dramatically augmented GIPR expression. Additionally, in vivo inhibition of SHH could effectively reduce GIPR expression after sciatic nerve injury. Collectively, our study reveals the importance of GIP/GIPR signaling in Schwann cell migration, providing a therapeutic avenue toward peripheral nerve injury.
Collapse
Affiliation(s)
- Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
- Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Xiaoqian Luo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Zhen Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Tiancheng Bao
- Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| |
Collapse
|
18
|
Taylor SS, Herberg FW, Veglia G, Wu J. Edmond Fischer's kinase legacy: History of the protein kinase inhibitor and protein kinase A. IUBMB Life 2023; 75:311-323. [PMID: 36855225 PMCID: PMC10050139 DOI: 10.1002/iub.2714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
Although Fischer's extraordinary career came to focus mostly on the protein phosphatases, after his co-discovery of Phosphorylase Kinase with Ed Krebs he was clearly intrigued not only by cAMP-dependent protein kinase (PKA), but also by the heat-stable, high-affinity protein kinase inhibitor (PKI). PKI is an intrinsically disordered protein that contains at its N-terminus a pseudo-substrate motif that binds synergistically and with high-affinity to the PKA catalytic (C) subunit. The sequencing and characterization of this inhibitor peptide (IP20) were validated by the structure of the PKA C-subunit solved first as a binary complex with IP20 and then as a ternary complex with ATP and two magnesium ions. A second motif, nuclear export signal (NES), was later discovered in PKI. Both motifs correspond to amphipathic helices that convey high-affinity binding. The dynamic features of full-length PKI, recently captured by NMR, confirmed that the IP20 motif becomes dynamically and sequentially ordered only in the presence of the C-subunit. The type I PKA regulatory (R) subunits also contain a pseudo-substrate ATPMg2-dependent high-affinity inhibitor sequence. PKI and PKA, especially the Cβ subunit, are highly expressed in the brain, and PKI expression is also cell cycle-dependent. In addition, PKI is now linked to several cancers. The full biological importance of PKI and PKA signaling in the brain, and their importance in cancer thus remains to be elucidated.
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Pharmacology, University of California, San Diego, California, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jian Wu
- Department of Pharmacology, University of California, San Diego, California, USA
| |
Collapse
|
19
|
Zhou Y, Jia K, Wang S, Li Z, Li Y, Lu S, Yang Y, Zhang L, Wang M, Dong Y, Zhang L, Zhang W, Li N, Yu Y, Cao X, Hou J. Malignant progression of liver cancer progenitors requires lysine acetyltransferase 7-acetylated and cytoplasm-translocated G protein GαS. Hepatology 2023; 77:1106-1121. [PMID: 35344606 PMCID: PMC10026959 DOI: 10.1002/hep.32487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Hepatocarcinogenesis goes through HCC progenitor cells (HcPCs) to fully established HCC, and the mechanisms driving the development of HcPCs are still largely unknown. APPROACH AND RESULTS Proteomic analysis in nonaggregated hepatocytes and aggregates containing HcPCs from a diethylnitrosamine-induced HCC mouse model was screened using a quantitative mass spectrometry-based approach to elucidate the dysregulated proteins in HcPCs. The heterotrimeric G stimulating protein α subunit (GαS) protein level was significantly increased in liver cancer progenitor HcPCs, which promotes their response to oncogenic and proinflammatory cytokine IL-6 and drives premalignant HcPCs to fully established HCC. Mechanistically, GαS was located at the membrane inside of hepatocytes and acetylated at K28 by acetyltransferase lysine acetyltransferase 7 (KAT7) under IL-6 in HcPCs, causing the acyl protein thioesterase 1-mediated depalmitoylation of GαS and its cytoplasmic translocation, which were determined by GαS K28A mimicking deacetylation or K28Q mimicking acetylation mutant mice and hepatic Kat7 knockout mouse. Then, cytoplasmic acetylated GαS associated with signal transducer and activator of transcription 3 (STAT3) to impede its interaction with suppressor of cytokine signaling 3, thus promoting in a feedforward manner STAT3 phosphorylation and the response to IL-6 in HcPCs. Clinically, GαS, especially K28-acetylated GαS, was determined to be increased in human hepatic premalignant dysplastic nodules and positively correlated with the enhanced STAT3 phosphorylation, which were in accordance with the data obtained in mouse models. CONCLUSIONS Malignant progression of HcPCs requires increased K28-acetylated and cytoplasm-translocated GαS, causing enhanced response to IL-6 and driving premalignant HcPCs to fully established HCC, which provides mechanistic insight and a potential target for preventing hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ye Zhou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Kaiwei Jia
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Suyuan Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Zhenyang Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yunhui Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Shan Lu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yingyun Yang
- Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyuan Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Mu Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yue Dong
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Luxin Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Wannian Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Nan Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
- Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Hou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| |
Collapse
|
20
|
Jia X, He L, Yang Z. Recent advances in the role of Yes-associated protein in dermatosis. Skin Res Technol 2023; 29:e13285. [PMID: 36973973 PMCID: PMC10155855 DOI: 10.1111/srt.13285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 03/04/2023]
Abstract
BACKGROUND Dermatosis is a general term for diseases of the skin and skin appendages including scleroderma, psoriasis, bullous disease, atopic dermatitis, basal cell carcinoma, squamous cell carcinoma, and melanoma. These diseases affect millions of individuals globally and are a serious public health concern. However, the pathogenesis of skin diseases is not fully understood, and treatments are not optimal. Yes-associated protein (YAP) is a transcriptional coactivator that plays a role in the regulation of gene transcription and signal transduction. AIMS To study the role of Yes-associated protein in skin diseases. MATERIALS AND METHODS The present review summarizes recent advances in our understanding of the role of YAP in skin diseases, current treatments that target YAP, and potential avenues for novel therapies. RESULTS Abnormal YAP expression has been implicated in occurrence and development of dermatosis. YAP regulates the cell homeostasis, proliferation, differentiation, apoptosis, angiopoiesis, and epithelial-to-mesenchymal transition, among other processes. As well as, it serves as a potential target in many biological processes for treating dermatosis. CONCLUSIONS The effects of YAP on the skin are complex and require multidimensional investigational approaches. YAP functions as an oncoprotein that can promote the occurrence and development of cancer, but there is currently limited information on the therapeutic potential of YAP inhibition for cancer treatment. Additional studies are also needed to clarify the role of YAP in the development and maturation of dermal fibroblasts; skin barrier function, homeostasis, aging, and melanin production; and dermatosis.
Collapse
Affiliation(s)
- Xiaorong Jia
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Li He
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Zhi Yang
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
21
|
Ruiz-Saenz A, Atreya CE, Wang C, Pan B, Dreyer CA, Brunen D, Prahallad A, Muñoz DP, Ramms DJ, Burghi V, Spassov DS, Fewings E, Hwang YC, Cowdrey C, Moelders C, Schwarzer C, Wolf DM, Hann B, VandenBerg SR, Shokat K, Moasser MM, Bernards R, Gutkind JS, van 't Veer LJ, Coppé JP. A reversible SRC-relayed COX2 inflammatory program drives resistance to BRAF and EGFR inhibition in BRAF V600E colorectal tumors. NATURE CANCER 2023; 4:240-256. [PMID: 36759733 PMCID: PMC9970872 DOI: 10.1038/s43018-022-00508-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/21/2022] [Indexed: 02/11/2023]
Abstract
BRAFV600E mutation confers a poor prognosis in metastatic colorectal cancer (CRC) despite combinatorial targeted therapies based on the latest understanding of signaling circuitry. To identify parallel resistance mechanisms induced by BRAF-MEK-EGFR co-targeting, we used a high-throughput kinase activity mapping platform. Here we show that SRC kinases are systematically activated in BRAFV600E CRC following targeted inhibition of BRAF ± EGFR and that coordinated targeting of SRC with BRAF ± EGFR increases treatment efficacy in vitro and in vivo. SRC drives resistance to BRAF ± EGFR targeted therapy independently of ERK signaling by inducing transcriptional reprogramming through β-catenin (CTNNB1). The EGFR-independent compensatory activation of SRC kinases is mediated by an autocrine prostaglandin E2 loop that can be blocked with cyclooxygenase-2 (COX2) inhibitors. Co-targeting of COX2 with BRAF + EGFR promotes durable suppression of tumor growth in patient-derived tumor xenograft models. COX2 inhibition represents a drug-repurposing strategy to overcome therapeutic resistance in BRAFV600E CRC.
Collapse
Affiliation(s)
- Ana Ruiz-Saenz
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Departments of Cell Biology & Medical Oncology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chloe E Atreya
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Changjun Wang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Pan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Courtney A Dreyer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Diede Brunen
- Division of Molecular Carcinogenesis and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anirudh Prahallad
- Division of Molecular Carcinogenesis and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Denise P Muñoz
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dana J Ramms
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Valeria Burghi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Danislav S Spassov
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Eleanor Fewings
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Institute for Computational Biomedicine, Heidelberg, Germany
| | - Yeonjoo C Hwang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Cynthia Cowdrey
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Christina Moelders
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Cecilia Schwarzer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Denise M Wolf
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Scott R VandenBerg
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kevan Shokat
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mark M Moasser
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - René Bernards
- Division of Molecular Carcinogenesis and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J Silvio Gutkind
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Laura J van 't Veer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jean-Philippe Coppé
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Chan GKL, Maisel S, Hwang YC, Pascual BC, Wolber RRB, Vu P, Patra KC, Bouhaddou M, Kenerson HL, Lim HC, Long D, Yeung RS, Sethupathy P, Swaney DL, Krogan NJ, Turnham RE, Riehle KJ, Scott JD, Bardeesy N, Gordan JD. Oncogenic PKA signaling increases c-MYC protein expression through multiple targetable mechanisms. eLife 2023; 12:e69521. [PMID: 36692000 PMCID: PMC9925115 DOI: 10.7554/elife.69521] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
Genetic alterations that activate protein kinase A (PKA) are found in many tumor types. Yet, their downstream oncogenic signaling mechanisms are poorly understood. We used global phosphoproteomics and kinase activity profiling to map conserved signaling outputs driven by a range of genetic changes that activate PKA in human cancer. Two signaling networks were identified downstream of PKA: RAS/MAPK components and an Aurora Kinase A (AURKA)/glycogen synthase kinase (GSK3) sub-network with activity toward MYC oncoproteins. Findings were validated in two PKA-dependent cancer models: a novel, patient-derived fibrolamellar carcinoma (FLC) line that expresses a DNAJ-PKAc fusion and a PKA-addicted melanoma model with a mutant type I PKA regulatory subunit. We identify PKA signals that can influence both de novo translation and stability of the proto-oncogene c-MYC. However, the primary mechanism of PKA effects on MYC in our cell models was translation and could be blocked with the eIF4A inhibitor zotatifin. This compound dramatically reduced c-MYC expression and inhibited FLC cell line growth in vitro. Thus, targeting PKA effects on translation is a potential treatment strategy for FLC and other PKA-driven cancers.
Collapse
Affiliation(s)
- Gary KL Chan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Samantha Maisel
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Yeonjoo C Hwang
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Bryan C Pascual
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Rebecca RB Wolber
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Phuong Vu
- Department of Medicine, Harvard Medical SchoolBostonUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - Krushna C Patra
- Department of Medicine, Harvard Medical SchoolBostonUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - Mehdi Bouhaddou
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- J. David Gladstone InstituteSan FranciscoUnited States
| | - Heidi L Kenerson
- Department of Surgery and Northwest Liver Research Program, University of WashingtonSeattleUnited States
| | - Huat C Lim
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Donald Long
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityNew YorkUnited States
| | - Raymond S Yeung
- Department of Surgery and Northwest Liver Research Program, University of WashingtonSeattleUnited States
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityNew YorkUnited States
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- J. David Gladstone InstituteSan FranciscoUnited States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Rigney E Turnham
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Kimberly J Riehle
- Department of Surgery and Northwest Liver Research Program, University of WashingtonSeattleUnited States
| | - John D Scott
- Department of Pharmacology, University of Washington Medical CenterSeattleUnited States
| | - Nabeel Bardeesy
- Department of Medicine, Harvard Medical SchoolBostonUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - John D Gordan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
23
|
Chemokine/GPCR Signaling-Mediated EMT in Cancer Metastasis. JOURNAL OF ONCOLOGY 2022; 2022:2208176. [PMID: 36268282 PMCID: PMC9578795 DOI: 10.1155/2022/2208176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Metastasis, the chief cause of cancer-related deaths, is associated with epithelial-mesenchymal transition (EMT). In the tumor microenvironment, EMT can be triggered by chemokine/G-protein-coupled receptor (GPCR) signaling, which is closely associated with tumor progression. However, the functional links between chemokine/GPCR signaling-mediated EMT and metastasis remain unclear. Herein, we summarized the mechanisms of chemokine/GPCR signaling-mediated EMT with an insight into facilitating metastasis and clarified the role of chemokine in the local invasion, intravasation, circulation, extravasation, and colonization, respectively. Moreover, several potential pathways that might contribute to EMT based on the latest studies on GPCR signaling were proposed, including signaling mediated by G protein, β-arrestin, intracellular, dimerization activation, and transactivation. However, there is still limited evidence to support the EMT programme functional contribution to metastasis, which keeps a key question still open whether we should target EMT programme of cancer cells. Answers to that question might help develop an anticancer strategy or guide new directions for anticancer metastasis therapy.
Collapse
|
24
|
Sharp AK, Newman D, Libonate G, Borns-Stern M, Bevan DR, Brown AM, Anandakrishnan R. Biophysical insights into OR2T7: Investigation of a potential prognostic marker for glioblastoma. Biophys J 2022; 121:3706-3718. [PMID: 35538663 PMCID: PMC9617130 DOI: 10.1016/j.bpj.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and prevalent form of brain cancer, with an expected survival of 12-15 months following diagnosis. GBM affects the glial cells of the central nervous system, which impairs regular brain function including memory, hearing, and vision. GBM has virtually no long-term survival even with treatment, requiring novel strategies to understand disease progression. Here, we identified a somatic mutation in OR2T7, a G-protein-coupled receptor (GPCR), that correlates with reduced progression-free survival for glioblastoma (log rank p-value = 0.05), suggesting a possible role in tumor progression. The mutation, D125V, occurred in 10% of 396 glioblastoma samples in The Cancer Genome Atlas, but not in any of the 2504 DNA sequences in the 1000 Genomes Project, suggesting that the mutation may have a deleterious functional effect. In addition, transcriptome analysis showed that the p38α mitogen-activated protein kinase (MAPK), c-Fos, c-Jun, and JunB proto-oncogenes, and putative tumor suppressors RhoB and caspase-14 were underexpressed in glioblastoma samples with the D125V mutation (false discovery rate < 0.05). Molecular modeling and molecular dynamics simulations have provided preliminary structural insight and indicate a dynamic helical movement network that is influenced by the membrane-embedded, cytofacial-facing residue 125, demonstrating a possible obstruction of G-protein binding on the cytofacial exposed region. We show that the mutation impacts the "open" GPCR conformation, potentially affecting Gα-subunit binding and associated downstream activity. Overall, our findings suggest that the Val125 mutation in OR2T7 could affect glioblastoma progression by downregulating GPCR-p38 MAPK tumor-suppression pathways and impacting the biophysical characteristics of the structure that facilitates Gα-subunit binding. This study provides the theoretical basis for further experimental investigation required to confirm that the D125V mutation in OR2T7 is not a passenger mutation. With validation, the aforementioned mutation could represent an important prognostic marker and a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Amanda K Sharp
- Interdisciplinary Program of Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia
| | - David Newman
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia
| | - Gianna Libonate
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia
| | - Mary Borns-Stern
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia
| | - David R Bevan
- Interdisciplinary Program of Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Anne M Brown
- Interdisciplinary Program of Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Research and Informatics, University Libraries, Virginia Tech, Blacksburg, Virginia.
| | - Ramu Anandakrishnan
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia; Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia; Gibbs Cancer Center and Research Institute, Spartanburg, South Carolina.
| |
Collapse
|
25
|
Howard A, Bojko J, Flynn B, Bowen S, Jungwirth U, Walko G. Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers. Exp Dermatol 2022; 31:1477-1499. [PMID: 35913427 PMCID: PMC9804452 DOI: 10.1111/exd.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Skin cancers are by far the most frequently diagnosed human cancers. The closely related transcriptional co-regulator proteins YAP and TAZ (WWTR1) have emerged as important drivers of tumour initiation, progression and metastasis in melanoma and non-melanoma skin cancers. YAP/TAZ serve as an essential signalling hub by integrating signals from multiple upstream pathways. In this review, we summarize the roles of YAP/TAZ in skin physiology and tumorigenesis and discuss recent efforts of therapeutic interventions that target YAP/TAZ in in both preclinical and clinical settings, as well as their prospects for use as skin cancer treatments.
Collapse
Affiliation(s)
| | - Jodie Bojko
- Department of Life SciencesUniversity of BathBathUK
| | | | - Sophie Bowen
- Department of Life SciencesUniversity of BathBathUK
| | - Ute Jungwirth
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| | - Gernot Walko
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| |
Collapse
|
26
|
Ando T, Okamoto K, Shintani T, Yanamoto S, Miyauchi M, Gutkind JS, Kajiya M. Integrating Genetic Alterations and the Hippo Pathway in Head and Neck Squamous Cell Carcinoma for Future Precision Medicine. J Pers Med 2022; 12:jpm12101544. [PMID: 36294681 PMCID: PMC9604790 DOI: 10.3390/jpm12101544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic alterations and dysregulation of signaling pathways are indispensable for the initiation and progression of cancer. Understanding the genetic, molecular, and signaling diversities in cancer patients has driven a dynamic change in cancer therapy. Patients can select a suitable molecularly targeted therapy or immune checkpoint inhibitor based on the driver gene alterations determined by sequencing of cancer tissue. This “precision medicine” approach requires detailed elucidation of the mechanisms connecting genetic alterations of driver genes and aberrant downstream signaling pathways. The regulatory mechanisms of the Hippo pathway and Yes-associated protein/transcriptional co-activator with PDZ binding motif (YAP/TAZ) that have central roles in cancer cell proliferation are not fully understood, reflecting their recent discovery. Nevertheless, emerging evidence has shown that various genetic alterations dysregulate the Hippo pathway and hyperactivate YAP/TAZ in cancers, including head and neck squamous cell carcinoma (HNSCC). Here, we summarize the latest evidence linking genetic alterations and the Hippo pathway in HNSCC, with the aim of contributing to the continued development of precision medicine.
Collapse
Affiliation(s)
- Toshinori Ando
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Correspondence: ; Tel.: +81-82-257-5727
| | - Kento Okamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - J. Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Mikihito Kajiya
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
27
|
O-GlcNAcylation: An Emerging Protein Modification Regulating the Hippo Pathway. Cancers (Basel) 2022; 14:cancers14123013. [PMID: 35740678 PMCID: PMC9221189 DOI: 10.3390/cancers14123013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The contact point between the Hippo pathway, which serves as a central hub for various external environments, and O-GlcNAcylation, which is a non-canonical glycosylation process acting as a dynamic regulator in various signal transduction pathways, has recently been identified. This review aims to summarize the function of O-GlcNAcylation as an intrinsic and extrinsic regulator of the Hippo pathway. Abstract The balance between cellular proliferation and apoptosis and the regulation of cell differentiation must be established to maintain tissue homeostasis. These cellular responses involve the kinase cascade-mediated Hippo pathway as a crucial regulator. Hence, Hippo pathway dysregulation is implicated in diverse diseases, including cancer. O-GlcNAcylation is a non-canonical glycosylation that affects multiple signaling pathways through its interplay with phosphorylation in the nucleus and cytoplasm. An abnormal increase in the O-GlcNAcylation levels in various cancer cells is a potent factor in Hippo pathway dysregulation. Intriguingly, Hippo pathway dysregulation also disrupts O-GlcNAc homeostasis, leading to a persistent elevation of O-GlcNAcylation levels, which is potentially pathogenic in several diseases. Therefore, O-GlcNAcylation is gaining attention as a protein modification that regulates the Hippo pathway. This review presents a framework on how O-GlcNAcylation regulates the Hippo pathway and forms a self-perpetuating cycle with it. The pathological significance of this self-perpetuating cycle and clinical strategies for targeting O-GlcNAcylation that causes Hippo pathway dysregulation are also discussed.
Collapse
|
28
|
Faraji F, Ramirez SI, Anguiano Quiroz PY, Mendez-Molina AN, Gutkind JS. Genomic Hippo Pathway Alterations and Persistent YAP/TAZ Activation: New Hallmarks in Head and Neck Cancer. Cells 2022; 11:1370. [PMID: 35456049 PMCID: PMC9028246 DOI: 10.3390/cells11081370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a highly prevalent and deadly malignancy worldwide. The prognosis for locoregionally advanced HNSCC has not appreciably improved over the past 30 years despite advances in surgical, radiation, and targeted therapies and less than 20% of HNSCC patients respond to recently approved immune checkpoint inhibitors. The Hippo signaling pathway, originally discovered as a mechanism regulating tissue growth and organ size, transduces intracellular and extracellular signals to regulate the transcriptional co-activators YAP and TAZ. Alterations in the Hippo pathway resulting in persistent YAP and TAZ activation have emerged as major oncogenic drivers. Our analysis of the human HNSCC oncogenome revealed multiple genomic alterations impairing Hippo signaling and activating YAP and TAZ, which in turn contribute to HNSCC development. This includes mutations and deletions of the FAT1 gene (29%) and amplification of the WWTR1 (encoding TAZ, 14%) and YAP1 genes (8%), together representing one of the most genetically altered signaling mechanisms in this malignancy. Here, we discuss key elements of the mammalian Hippo pathway, detail mechanisms by which perturbations in Hippo signaling promote HNSCC initiation and progression and outline emerging strategies to target Hippo signaling vulnerabilities as part of novel multimodal precision therapies for HNSCC.
Collapse
Affiliation(s)
- Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sydney I. Ramirez
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Disease and Global Public Health, Department of Internal Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | | | | | - J. Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
29
|
Stucky A, Gao L, Li SC, Tu L, Luo J, Huang X, Chen X, Li X, Park TH, Cai J, Kabeer MH, Plant AS, Sun L, Zhang X, Zhong JF. Molecular Characterization of Differentiated-Resistance MSC Subclones by Single-Cell Transcriptomes. Front Cell Dev Biol 2022; 10:699144. [PMID: 35356283 PMCID: PMC8959432 DOI: 10.3389/fcell.2022.699144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background: The mechanism of tumorigenicity potentially evolved in mesenchymal stem cells (MSCs) remains elusive, resulting in inconsistent clinical application efficacy. We hypothesized that subclones in MSCs contribute to their tumorgenicity, and we approached MSC-subclones at the single-cell level. Methods: MSCs were cultured in an osteogenic differentiation medium and harvested on days 12, 19, and 25 for cell differentiation analysis using Alizarin Red and followed with the single-cell transcriptome. Results: Single-cell RNA-seq analysis reveals a discrete cluster of MSCs during osteogenesis, including differentiation-resistant MSCs (DR-MSCs), differentiated osteoblasts (DO), and precursor osteoblasts (PO). The DR-MSCs population resembled cancer initiation cells and were subjected to further analysis of the yes associated protein 1 (YAP1) network. Verteporfin was also used for YAP1 inhibition in cancer cell lines to confirm the role of YAP1 in MSC--involved tumorigenicity. Clinical data from various cancer types were analyzed to reveal relationships among YAP1, OCT4, and CDH6 in MSC--involved tumorigenicity. The expression of cadherin 6 (CDH6), octamer-binding transcription factor 4 (OCT4), and YAP1 expression was significantly upregulated in DR-MSCs compared to PO and DO. YAP1 inhibition by Verteporfin accelerated the differentiation of MSCs and suppressed the expression of YAP1, CDH6, and OCT4. A survey of 56 clinical cohorts revealed a high degree of co-expression among CDH6, YAP1, and OCT4 in various solid tumors. YAP1 inhibition also down-regulated HeLa cell viability and gradually inhibited YAP1 nuclear localization while reducing the transcription of CDH6 and OCT4. Conclusions: We used single-cell sequencing to analyze undifferentiated MSCs and to discover a carcinogenic pathway in single-cell MSCs of differentiated resistance subclones.
Collapse
Affiliation(s)
- Andres Stucky
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, United States
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shengwen Calvin Li
- Neuro-oncology and Stem Cell Research Laboratory, CHOC Children’s Research Institute, Center for Neuroscience Research, Children’s Hospital of Orange County (CHOC), Orange, CA, United States
- Department of Neurology, Irvine School of Medicine, University of California, Irvine, CA, United States
- *Correspondence: Shengwen Calvin Li, ; Lan Sun, ; Xi Zhang,
| | - Lingli Tu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, United States
- Department of Oncology, Bishan, The People’s Hospital of Bishan District, Bishan, Chongqing, China
| | - Jun Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Huang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuelian Chen
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, United States
| | - Xiaoqing Li
- Department of Oncology, Bishan, The People’s Hospital of Bishan District, Bishan, Chongqing, China
| | - Tiffany H. Park
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jin Cai
- Department of Oral and Maxillofacial Surgery, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Mustafa H. Kabeer
- Pediatric Surgery, CHOC Children’s Hospital, Department of Surgery, Irvine School of Medicine, University of California, Irvine, CA, United States
| | - Ashley S. Plant
- Division of Pediatric Oncology, Children’s Hospital of Orange County, Orange, CA, United States
| | - Lan Sun
- Department of Oncology, Bishan, The People’s Hospital of Bishan District, Bishan, Chongqing, China
- *Correspondence: Shengwen Calvin Li, ; Lan Sun, ; Xi Zhang,
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Shengwen Calvin Li, ; Lan Sun, ; Xi Zhang,
| | - Jiang F. Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, United States
| |
Collapse
|
30
|
Liu Z, Yin Y, Wang Z, Xie L, Deng P, Wang D, Ji N, Zhao H, Han X, Chen Q, Chung CH, Bai D, Zhao X. RANKL inhibition halts lesion progression and promotes bone remineralization in mice with fibrous dysplasia. Bone 2022; 156:116301. [PMID: 34952228 DOI: 10.1016/j.bone.2021.116301] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/07/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023]
Abstract
Fibrous dysplasia (FD) is a rare bone disease caused by GNAS mutation in skeletal stem cells, typically originating from and worsening in childhood. Till now, no cure for FD exists despite the well-recognized etiology. Studies have demonstrated that osteoclastogenesis hyperactivity is caused by elevated RANKL expression, making RANKL inhibition a potential therapy. Although a human monoclonal anti-RANKL antibody, denosumab, has been used in FD patients, the effects and mechanisms of RANKL inhibition for FD treatment require assessment. Denosumab is expensive and can only be injected. Therefore, formulating an oral-administered, cost-effective medicine is encouraged. In the current study, we evaluated the effects of a small-molecule RANKL inhibitor, AS2676293, on a transgenic FD mouse model. AS2676293 effectively suppressed osteoclastogenesis and halted FD progression. The pre-existing bone defects were primarily replaced by newly formed mineralized bone after two weeks of AS2676293 administration. The potent RANKL inhibitory effect and easier route of delivery make AS2676293 a promising target therapy of FD. Results from our study suggested that RANKL inhibition is effective in halting FD progression and promoting bone remineralization, which could benefit the patients with early onset of FD.
Collapse
Affiliation(s)
- Zhongyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Deng
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Donghui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chun-Hsi Chung
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xuefeng Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
31
|
Kawabata H, Ono Y, Tamamura N, Oyama K, Ueda J, Sato H, Takahashi K, Taniue K, Okada T, Fujibayashi S, Hayashi A, Goto T, Enomoto K, Konishi H, Fujiya M, Miyakawa K, Tanino M, Nishikawa Y, Koga D, Watanabe T, Maeda C, Karasaki H, Liss AS, Mizukami Y, Okumura T. Mutant GNAS limits tumor aggressiveness in established pancreatic cancer via antagonizing the KRAS-pathway. J Gastroenterol 2022; 57:208-220. [PMID: 35018527 DOI: 10.1007/s00535-021-01846-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Mutations in GNAS drive pancreatic tumorigenesis and frequently occur in intraductal papillary mucinous neoplasm (IPMN); however, their value as a therapeutic target is yet to be determined. This study aimed at evaluating the involvement of mutant GNAS in tumor aggressiveness in established pancreatic cancer. METHODS CRISPR/Cas9-mediated GNAS R201H silencing was performed using human primary IPMN-associated pancreatic cancer cells. The role of oncogenic GNAS in tumor maintenance was evaluated by conducting cell culture and xenograft experiments, and western blotting and transcriptome analyses were performed to uncover GNAS-driven signatures. RESULTS Xenografts of GNAS wild-type cells were characterized by a higher Ki-67 labeling index relative to GNAS-mutant cells. Phenotypic alterations in the GNAS wild-type tumors resulted in a significant reduction in mucin production accompanied by solid with massive stromal components. Transcriptional profiling suggested an apparent conflict of mutant GNAS with KRAS signaling. A significantly higher Notch intercellular domain (NICD) was observed in the nuclear fraction of GNAS wild-type cells. Meanwhile, inhibition of protein kinase A (PKA) induced NICD in GNAS-mutant IPMN cells, suggesting that NOTCH signaling is negatively regulated by the GNAS-PKA pathway. GNAS wild-type cells were characterized by a significant invasive property relative to GNAS-mutant cells, which was mediated through the NOTCH regulatory pathway. CONCLUSIONS Oncogenic GNAS induces mucin production, not only via MUC2 but also via MUC5AC/B, which may enlarge cystic lesions in the pancreas. The mutation may also limit tumor aggressiveness by attenuating NOTCH signaling; therefore, such tumor-suppressing effects must be considered when therapeutically inhibiting the GNAS pathway.
Collapse
Affiliation(s)
- Hidemasa Kawabata
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yusuke Ono
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Nobue Tamamura
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kyohei Oyama
- Department of Cardiovascular Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Jun Ueda
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroki Sato
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kenji Takahashi
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kenzui Taniue
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Tetsuhiro Okada
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Syugo Fujibayashi
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Akihiro Hayashi
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Takuma Goto
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Katsuro Enomoto
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroaki Konishi
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Mikihiro Fujiya
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Keita Miyakawa
- Department of Surgical Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Mishie Tanino
- Department of Surgical Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Chiho Maeda
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Hidenori Karasaki
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Andrew S Liss
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Yusuke Mizukami
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan.
| | - Toshikatsu Okumura
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
32
|
Hopkins C, de Castro LF, Corsi A, Boyce A, Collins MT, Riminucci M, Heegaard AM. Fibrous dysplasia animal models: A systematic review. Bone 2022; 155:116270. [PMID: 34875396 DOI: 10.1016/j.bone.2021.116270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Fibrous dysplasia (FD) is a rare genetic bone disorder resulting in an overproduction of cAMP leading to a structurally unsound tissue, caused by a genetic mutation in the guanine nucleotide-binding protein gene (GNAS). In order to better understand this disease, several animal models have been developed with different strategies and features. OBJECTIVE Conduct a systematic review to analyze and compare animal models with the causative mutation and features of FD. METHODS A PRISMA search was conducted in Scopus, PubMed, and Web of Science. Studies reporting an in vivo model of FD that expressed the causative mutation were included for analysis. Models without the causative mutation, but developed an FD phenotype and models of FD cell implantation were included for subanalysis. RESULTS Seven unique models were identified. The models were assessed and compared for their face validity, construct validity, mosaicism, and induction methods. This was based on the features of clinical FD that were reported within the categories of: macroscopic features, imaging, histology and histomorphometry, histochemical and cellular markers, and blood/urine markers. LIMITATIONS None of the models reported all features of FD and some features were only reported in one model. This made comparing models a challenge, but indicates areas where further research is necessary. CONCLUSION The benefits and disadvantages of every model were assessed from a practical and scientific standpoint. While all published reports lacked complete data, the models have nonetheless informed our understanding of FD and provided meaningful information to guide researchers in bench and clinical research.
Collapse
Affiliation(s)
- Chelsea Hopkins
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Luis Fernandez de Castro
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alison Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
McMullan P, Germain-Lee EL. Aberrant Bone Regulation in Albright Hereditary Osteodystrophy dueto Gnas Inactivation: Mechanisms and Translational Implications. Curr Osteoporos Rep 2022; 20:78-89. [PMID: 35226254 DOI: 10.1007/s11914-022-00719-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW This review highlights the impact of Gnas inactivation on both bone remodeling and the development of heterotopic subcutaneous ossifications in Albright hereditary osteodystrophy (AHO). Here we discuss recent advancements in understanding the pathophysiologic mechanisms of the aberrant bone development in AHO as well as potential translational implications. RECENT FINDINGS Gnas inactivation can regulate the differentiation and function of not only osteoblasts but also osteoclasts and osteocytes. Investigations utilizing a mouse model of AHO generated by targeted disruption of Gnas have revealed that bone formation and resorption are differentially affected based upon the parental origin of the Gnas mutation. Data suggest that Gnas inactivation leads to heterotopic bone formation within subcutaneous tissue by changing the connective tissue microenvironment, thereby promoting osteogenic differentiation of tissue-resident mesenchymal progenitors. Observed variations in bone formation and resorption based upon the parental origin of the Gnas mutation warrant future investigations and may have implications in the management and treatment of AHO and related conditions. Additionally, studies of heterotopic bone formation due to Gnas inactivation have identified an essential role of sonic hedgehog signaling, which could have therapeutic implications not only for AHO and related conditions but also for heterotopic bone formation in a wide variety of settings in which aberrant bone formation is a cause of significant morbidity.
Collapse
Affiliation(s)
- Patrick McMullan
- Department of Pediatrics, Division of Pediatric Endocrinology & Diabetes, University of Connecticut School of Medicine, 505 Farmington Ave, 2nd floor, Farmington, CT, 06032, USA
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Emily L Germain-Lee
- Department of Pediatrics, Division of Pediatric Endocrinology & Diabetes, University of Connecticut School of Medicine, 505 Farmington Ave, 2nd floor, Farmington, CT, 06032, USA.
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT, USA.
- Albright Center, Connecticut Children's, Farmington, CT, USA.
| |
Collapse
|
34
|
Miranda M, Avila I, Esparza J, Shwartz Y, Hsu YC, Berdeaux R, Lowry WE. Defining a Role for G-Protein Coupled Receptor/cAMP/CRE-Binding Protein Signaling in Hair Follicle Stem Cell Activation. J Invest Dermatol 2022; 142:53-64.e3. [PMID: 34280464 PMCID: PMC8989631 DOI: 10.1016/j.jid.2021.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Manipulation of adrenergic signaling has been shown experimentally and clinically to affect hair follicle growth. In this study, we provide direct evidence that canonical cAMP/CRE-binding protein signaling through adrenergic receptors can regulate hair follicle stem cell (HFSC) activation and hair cycle. We found that CRE-binding protein activation is regulated through the hair cycle and coincides with HFSC activation. Both isoproterenol and procaterol, agonists of adrenergic receptors, show the capacity to activate the hair cycle in mice. Furthermore, deletion of ADRB2 receptor, which is thought to mediate sympathetic nervous system regulation of HFSCs, was sufficient to block HFSC activation. Downstream, stimulation of adenylyl cyclase with forskolin or inhibition of phosphodiesterase to increase cAMP accumulation or direct application of cAMP was each sufficient to promote HFSC activation and accelerate initiation of hair cycle. Genetic induction of a Designer Receptors Exclusively Activated by Designer Drug allele showed that G-protein coupled receptor/GαS stimulation, specifically in HFSCs, promoted the activation of the hair cycle. Finally, we provide evidence that G-protein coupled receptor/CRE-binding protein signaling can potentially act on HFSCs by promoting glycolytic metabolism, which was previously shown to stimulate HFSC activation. Together, these data provide mechanistic insights into the role of sympathetic innervation on HFSC function.
Collapse
Affiliation(s)
- M Miranda
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095
| | - I Avila
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095
| | - J Esparza
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095
| | - Y Shwartz
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138
| | - YC Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138
| | - R Berdeaux
- Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston
| | - WE Lowry
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, Division of Dermatology, DGSOM, UCLA, Los Angeles, CA 90095, Broad Center for Regenerative Medicine, UCLA, Los Angeles, CA 90095, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095
| |
Collapse
|
35
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
36
|
Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. G αs-Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G αs-PKA Signaling. Pharmacol Rev 2021; 73:155-197. [PMID: 34663687 PMCID: PMC11060502 DOI: 10.1124/pharmrev.120.000269] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many of the fundamental concepts of signal transduction and kinase activity are attributed to the discovery and crystallization of cAMP-dependent protein kinase, or protein kinase A. PKA is one of the best-studied kinases in human biology, with emphasis in biochemistry and biophysics, all the way to metabolism, hormone action, and gene expression regulation. It is surprising, however, that our understanding of PKA's role in disease is largely underappreciated. Although genetic mutations in the PKA holoenzyme are known to cause diseases such as Carney complex, Cushing syndrome, and acrodysostosis, the story largely stops there. With the recent explosion of genomic medicine, we can finally appreciate the broader role of the Gαs-PKA pathway in disease, with contributions from aberrant functioning G proteins and G protein-coupled receptors, as well as multiple alterations in other pathway components and negative regulators. Together, these represent a broad family of diseases we term the Gαs-PKA pathway signalopathies. The Gαs-PKA pathway signalopathies encompass diseases caused by germline, postzygotic, and somatic mutations in the Gαs-PKA pathway, with largely endocrine and neoplastic phenotypes. Here, we present a signaling-centric review of Gαs-PKA-driven pathophysiology and integrate computational and structural analysis to identify mutational themes commonly exploited by the Gαs-PKA pathway signalopathies. Major mutational themes include hotspot activating mutations in Gαs, encoded by GNAS, and mutations that destabilize the PKA holoenzyme. With this review, we hope to incite further study and ultimately the development of new therapeutic strategies in the treatment of a wide range of human diseases. SIGNIFICANCE STATEMENT: Little recognition is given to the causative role of Gαs-PKA pathway dysregulation in disease, with effects ranging from infectious disease, endocrine syndromes, and many cancers, yet these disparate diseases can all be understood by common genetic themes and biochemical signaling connections. By highlighting these common pathogenic mechanisms and bridging multiple disciplines, important progress can be made toward therapeutic advances in treating Gαs-PKA pathway-driven disease.
Collapse
Affiliation(s)
- Dana J Ramms
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Francesco Raimondi
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Nadia Arang
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Friedrich W Herberg
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Susan S Taylor
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - J Silvio Gutkind
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| |
Collapse
|
37
|
Lei J, Guo S, Li K, Tian J, Zong B, Ai T, Peng Y, Zhang Y, Liu S. Lysophosphatidic acid receptor 6 regulated by miR-27a-3p attenuates tumor proliferation in breast cancer. Clin Transl Oncol 2021; 24:503-516. [PMID: 34510318 PMCID: PMC8885522 DOI: 10.1007/s12094-021-02704-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
Purpose Lysophosphatidic acid (LPA) is a bioactive molecule which participates in many physical and pathological processes. Although LPA receptor 6 (LPAR6), the last identified LPA receptor, has been reported to have diverse effects in multiple cancers, including breast cancer, its effects and functioning mechanisms are not fully known. Methods Multiple public databases were used to investigate the mRNA expression of LPAR6, its prognostic value, and potential mechanisms in breast cancer. Western blotting was performed to validate the differential expression of LPAR6 in breast cancer tissues and their adjacent tissues. Furthermore, in vitro experiments were used to explore the effects of LPAR6 on breast cancer. Additionally, TargetScan and miRWalk were used to identify potential upstream regulating miRNAs and validated the relationship between miR-27a-3p and LPAR6 via real-time polymerase chain reaction and an in vitro rescue assay. Results LPAR6 was significantly downregulated in breast cancer at transcriptional and translational levels. Decreased LPAR6 expression in breast cancer is significantly correlated with poor overall survival, disease-free survival, and distal metastasis-free survival, particularly for hormone receptor-positive patients, regardless of lymph node metastatic status. In vitro gain and loss-of-function assays indicated that LPAR6 attenuated breast cancer cell proliferation. The analyses of TCGA and METABRIC datasets revealed that LPAR6 may regulate the cell cycle signal pathway. Furthermore, the expression of LPAR6 could be positively regulated by miR-27a-3p. The knockdown of miR-27a-3p increased cell proliferation, and ectopic expression of LPAR6 could partly rescue this phenotype. Conclusion LPAR6 acts as a tumor suppressor in breast cancer and is positively regulated by miR-27a-3p. Supplementary Information The online version contains supplementary material available at 10.1007/s12094-021-02704-8.
Collapse
Affiliation(s)
- J Lei
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - S Guo
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - K Li
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - J Tian
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - B Zong
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - T Ai
- Department of Cardiology, Chongqing Kanghua Zhonglian Cardiovascular Hospital, Jiangbei District, No. 168 Haier Rd, Chongqing, 400016, China
| | - Y Peng
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Y Zhang
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - S Liu
- Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
38
|
Hu XM, Li ZX, Zhang DY, Yang YC, Fu SA, Zhang ZQ, Yang RH, Xiong K. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther 2021; 12:453. [PMID: 34380571 PMCID: PMC8359037 DOI: 10.1186/s13287-021-02527-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are among the most widely available resources and most frequently approved model systems used for studying adult stem cells. HFSCs are particularly useful because of their self-renewal and differentiation properties. Additionally, the cyclic growth of hair follicles is driven by HFSCs. There are high expectations for the use of HFSCs as favourable systems for studying the molecular mechanisms that contribute to HFSC identification and can be applied to hair loss therapy, such as the activation or regeneration of hair follicles, and to the generation of hair using a tissue-engineering strategy. A variety of molecules are involved in the networks that critically regulate the fate of HFSCs, such as factors in hair follicle growth and development (in the Wnt pathway, Sonic hedgehog pathway, Notch pathway, and BMP pathway), and that suppress apoptotic cues (the apoptosis pathway). Here, we review the life cycle, biomarkers and functions of HFSCs, concluding with a summary of the signalling pathways involved in HFSC fate for promoting better understanding of the pathophysiological changes in the HFSC niche. Importantly, we highlight the potential mechanisms underlying the therapeutic targets involved in pathways associated with the treatment of hair loss and other disorders of skin and hair, including alopecia, skin cancer, skin inflammation, and skin wound healing.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Shen-Ao Fu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Zai-Qiu Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, #81, Lingnan North Road, Foshan, 528000, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China.
| |
Collapse
|
39
|
Yuan Y, Salinas Parra N, Chen Q, Iglesias-Bartolome R. Oncogenic Hedgehog-smoothened signaling depends on YAP1-TAZ/TEAD transcription to restrain differentiation in basal cell carcinoma. J Invest Dermatol 2021; 142:65-76.e7. [PMID: 34293352 DOI: 10.1016/j.jid.2021.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 10/20/2022]
Abstract
Disruption of the transcriptional activity of the Hippo pathway members YAP1 and TAZ has become a major target for cancer treatment. However, detailed analysis of the effectivity and networks affected by YAP1/TAZ transcriptional targeting are limited. Here, we utilize TEADi, an inhibitor of the binding of YAP1 and TAZ with their main transcriptional target TEAD in a mouse model of basal cell carcinoma (BCC) to unveil the consequences of YAP1/TAZ transcriptional inhibition in cancer cells. Both TEADi and YAP1/TAZ knockdown lead to reduced proliferation and increased differentiation of mouse BCC driven by oncogenic Hedgehog-Smoothened (SmoM2) activity. While TEAD transcriptional networks were essential to inactivate differentiation in BCC, this inactivation was found to be indirect and potentially mediated through the repression of KLF4 by SNAI2. By comparing the transcriptional effects of TEADi with those caused by YAP1/TAZ depletion, we determined YAP1/TAZ TEAD-independent effects in cancer cells that impact STAT3 and NF-κB. Our results reveal the gene networks affected by targeting YAP1/TAZ-TEAD in BCC tumors and expose potential pitfalls for targeting TEAD transcription in cancer.
Collapse
Affiliation(s)
- Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Natalia Salinas Parra
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qianming Chen
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Zindel D, Mensat P, Vol C, Homayed Z, Charrier-Savournin F, Trinquet E, Banères JL, Pin JP, Pannequin J, Roux T, Dupuis E, Prézeau L. G protein-coupled receptors can control the Hippo/YAP pathway through Gq signaling. FASEB J 2021; 35:e21668. [PMID: 34114695 DOI: 10.1096/fj.202002159r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 11/11/2022]
Abstract
The Hippo pathway is an evolutionarily conserved kinase cascade involved in the control of tissue homeostasis, cellular differentiation, proliferation, and organ size, and is regulated by cell-cell contact, apical cell polarity, and mechanical signals. Miss-regulation of this pathway can lead to cancer. The Hippo pathway acts through the inhibition of the transcriptional coactivators YAP and TAZ through phosphorylation. Among the various signaling mechanisms controlling the hippo pathway, activation of G12/13 by G protein-coupled receptors (GPCR) recently emerged. Here we show that a GPCR, the ghrelin receptor, that activates several types of G proteins, including G12/13, Gi/o, and Gq, can activate YAP through Gq/11 exclusively, independently of G12/13. We revealed that a strong basal YAP activation results from the high constitutive activity of this receptor, which can be further increased upon agonist activation. Thus, acting on ghrelin receptor allowed to modulate up-and-down YAP activity, as activating the receptor increased YAP activity and blocking constitutive activity reduced YAP activity. Our results demonstrate that GPCRs can be used as molecular switches to finely up- or down-regulate YAP activity through a pure Gq pathway.
Collapse
Affiliation(s)
- Diana Zindel
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Claire Vol
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Zeinab Homayed
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron, Univ. Montpellier, CNRS, Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Pannequin
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Laurent Prézeau
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
41
|
Cong Q, Liu Y, Zhou T, Zhou Y, Xu R, Cheng C, Chung HS, Yan M, Zhou H, Liao Z, Gao B, Bocobo GA, Covington TA, Song HJ, Su P, Yu PB, Yang Y. A self-amplifying loop of YAP and SHH drives formation and expansion of heterotopic ossification. Sci Transl Med 2021; 13:13/599/eabb2233. [PMID: 34162750 PMCID: PMC8638088 DOI: 10.1126/scitranslmed.abb2233] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/03/2020] [Accepted: 05/30/2021] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) occurs as a common complication after injury or in genetic disorders. The mechanisms underlying HO remain incompletely understood, and there are no approved prophylactic or secondary treatments available. Here, we identify a self-amplifying, self-propagating loop of Yes-associated protein (YAP)-Sonic hedgehog (SHH) as a core molecular mechanism underlying diverse forms of HO. In mouse models of progressive osseous heteroplasia (POH), a disease caused by null mutations in GNAS, we found that Gnas-/- mesenchymal cells secreted SHH, which induced osteoblast differentiation of the surrounding wild-type cells. We further showed that loss of Gnas led to activation of YAP transcription activity, which directly drove Shh expression. Secreted SHH further induced YAP activation, Shh expression, and osteoblast differentiation in surrounding wild-type cells. This self-propagating positive feedback loop was both necessary and sufficient for HO expansion and could act independently of Gnas in fibrodysplasia ossificans progressiva (FOP), another genetic HO, and nonhereditary HO mouse models. Genetic or pharmacological inhibition of YAP or SHH abolished HO in POH and FOP and acquired HO mouse models without affecting normal bone homeostasis, providing a previously unrecognized therapeutic rationale to prevent, reduce, and shrink HO.
Collapse
Affiliation(s)
- Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Taifeng Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Yaxing Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Ruoshi Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Caiqi Cheng
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Hye Soo Chung
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Meijun Yan
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Hang Zhou
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Zhiheng Liao
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Gao
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Geoffrey A Bocobo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Taylor A Covington
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Hyeon Ju Song
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Peiqiang Su
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
42
|
Arang N, Gutkind JS. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett 2021; 594:4201-4232. [PMID: 33270228 DOI: 10.1002/1873-3468.14017] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play central roles in a diverse array of cellular processes. As such, dysregulation of GPCRs and their coupled heterotrimeric G proteins can dramatically alter the signalling landscape and functional state of a cell. Consistent with their fundamental physiological functions, GPCRs and their effector heterotrimeric G proteins are implicated in some of the most prevalent human diseases, including a complex disease such as cancer that causes significant morbidity and mortality worldwide. GPCR/G protein-mediated signalling impacts oncogenesis at multiple levels by regulating tumour angiogenesis, immune evasion, metastasis, and drug resistance. Here, we summarize the growing body of research on GPCRs and their effector heterotrimeric G proteins as drivers of cancer initiation and progression, and as emerging antitumoural therapeutic targets.
Collapse
Affiliation(s)
- Nadia Arang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Saad F, Hipfner DR. Extensive crosstalk of G protein-coupled receptors with the Hedgehog signalling pathway. Development 2021; 148:dev189258. [PMID: 33653875 PMCID: PMC10656458 DOI: 10.1242/dev.189258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/19/2021] [Indexed: 12/23/2022]
Abstract
Hedgehog (Hh) ligands orchestrate tissue patterning and growth by acting as morphogens, dictating different cellular responses depending on ligand concentration. Cellular sensitivity to Hh ligands is influenced by heterotrimeric G protein activity, which controls production of the second messenger 3',5'-cyclic adenosine monophosphate (cAMP). cAMP in turn activates Protein kinase A (PKA), which functions as an inhibitor and (uniquely in Drosophila) as an activator of Hh signalling. A few mammalian Gαi- and Gαs-coupled G protein-coupled receptors (GPCRs) have been shown to influence Sonic hedgehog (Shh) responses in this way. To determine whether this is a more-general phenomenon, we carried out an RNAi screen targeting GPCRs in Drosophila. RNAi-mediated depletion of more than 40% of GPCRs tested either decreased or increased Hh responsiveness in the developing Drosophila wing, closely matching the effects of Gαs and Gαi depletion, respectively. Genetic analysis indicated that the orphan GPCR Mthl5 lowers cAMP levels to attenuate Hh responsiveness. Our results identify Mthl5 as a new Hh signalling pathway modulator in Drosophila and suggest that many GPCRs may crosstalk with the Hh pathway in mammals.
Collapse
Affiliation(s)
- Farah Saad
- Institut de recherches cliniques de Montréal, 110 Pine Avenue West, Montreal H2W 1R7, QC, Canada
- Department of Biology, McGill University, Montreal H3A 1B1, QC, Canada
| | - David R. Hipfner
- Institut de recherches cliniques de Montréal, 110 Pine Avenue West, Montreal H2W 1R7, QC, Canada
- Department of Biology, McGill University, Montreal H3A 1B1, QC, Canada
- Département de médecine, Université de Montréal, Montreal H3C 3J7, QC, Canada
| |
Collapse
|
44
|
Mechanochemical control of epidermal stem cell divisions by B-plexins. Nat Commun 2021; 12:1308. [PMID: 33637728 PMCID: PMC7910479 DOI: 10.1038/s41467-021-21513-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
The precise spatiotemporal control of cell proliferation is key to the morphogenesis of epithelial tissues. Epithelial cell divisions lead to tissue crowding and local changes in force distribution, which in turn suppress the rate of cell divisions. However, the molecular mechanisms underlying this mechanical feedback are largely unclear. Here, we identify a critical requirement of B-plexin transmembrane receptors in the response to crowding-induced mechanical forces during embryonic skin development. Epidermal stem cells lacking B-plexins fail to sense mechanical compression, resulting in disinhibition of the transcriptional coactivator YAP, hyperproliferation, and tissue overgrowth. Mechanistically, we show that B-plexins mediate mechanoresponses to crowding through stabilization of adhesive cell junctions and lowering of cortical stiffness. Finally, we provide evidence that the B-plexin-dependent mechanochemical feedback is also pathophysiologically relevant to limit tumor growth in basal cell carcinoma, the most common type of skin cancer. Our data define a central role of B-plexins in mechanosensation to couple cell density and cell division in development and disease.
Collapse
|
45
|
Brewer N, Fong JT, Zhang D, Ramaswamy G, Shore EM. Gnas Inactivation Alters Subcutaneous Tissues in Progression to Heterotopic Ossification. Front Genet 2021; 12:633206. [PMID: 33574833 PMCID: PMC7870717 DOI: 10.3389/fgene.2021.633206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Heterotopic ossification (HO), the formation of bone outside of the skeleton, occurs in response to severe trauma and in rare genetic diseases such as progressive osseous heteroplasia (POH). In POH, which is caused by inactivation of GNAS, a gene that encodes the alpha stimulatory subunit of G proteins (Gsα), HO typically initiates within subcutaneous soft tissues before progressing to deeper connective tissues. To mimic POH, we used conditional Gnas-null mice which form HO in subcutaneous tissues upon Gnas inactivation. In response to Gnas inactivation, we determined that prior to detection of heterotopic bone, dermal adipose tissue changed dramatically, with progressively decreased adipose tissue volume and increased density of extracellular matrix over time. Upon depletion of the adipose tissue, heterotopic bone progressively formed in those locations. To investigate the potential relevance of the tissue microenvironment for HO formation, we implanted Gnas-null or control mesenchymal progenitor cells into Gnas-null or control host subcutaneous tissues. We found that mutant cells in a Gnas-null tissue environment induced a robust HO response while little/no HO was detected in control hosts. Additionally, a Gnas-null tissue environment appeared to support the recruitment of control cells to heterotopic bone, although control cell implants were associated with less HO formation compared to mutant cells. Our data support that Gnas inactivation alters the tissue microenvironment to influence mutant and wild-type progenitor cells to contribute to HO formation.
Collapse
Affiliation(s)
- Niambi Brewer
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John T Fong
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Deyu Zhang
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Girish Ramaswamy
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
46
|
Ibar C, Irvine KD. Integration of Hippo-YAP Signaling with Metabolism. Dev Cell 2021; 54:256-267. [PMID: 32693058 DOI: 10.1016/j.devcel.2020.06.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-Yes-associated protein (YAP) signaling network plays a central role as an integrator of signals that control cellular proliferation and differentiation. The past several years have provided an increasing appreciation and understanding of the diverse mechanisms through which metabolites and metabolic signals influence Hippo-YAP signaling, and how Hippo-YAP signaling, in turn, controls genes that direct cellular and organismal metabolism. These connections enable Hippo-YAP signaling to coordinate organ growth and homeostasis with nutrition and metabolism. In this review, we discuss the current understanding of some of the many interconnections between Hippo-YAP signaling and metabolism and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
47
|
Szulzewsky F, Holland EC, Vasioukhin V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev Biol 2021; 475:205-221. [PMID: 33428889 DOI: 10.1016/j.ydbio.2020.12.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
YAP1 is a transcriptional co-activator whose activity is controlled by the Hippo signaling pathway. In addition to important functions in normal tissue homeostasis and regeneration, YAP1 has also prominent functions in cancer initiation, aggressiveness, metastasis, and therapy resistance. In this review we are discussing the molecular functions of YAP1 and its roles in cancer, with a focus on the different mechanisms of de-regulation of YAP1 activity in human cancers, including inactivation of upstream Hippo pathway tumor suppressors, regulation by intersecting pathways, miRNAs, and viral oncogenes. We are also discussing new findings on the function and biology of the recently identified family of YAP1 gene fusions, that constitute a new type of activating mutation of YAP1 and that are the likely oncogenic drivers in several subtypes of human cancers. Lastly, we also discuss different strategies of therapeutic inhibition of YAP1 functions.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA; Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Valeri Vasioukhin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| |
Collapse
|
48
|
Ognjenovic NB, Bagheri M, Mohamed GA, Xu K, Chen Y, Mohamed Saleem MA, Brown MS, Nagaraj SH, Muller KE, Gerber SA, Christensen BC, Pattabiraman DR. Limiting Self-Renewal of the Basal Compartment by PKA Activation Induces Differentiation and Alters the Evolution of Mammary Tumors. Dev Cell 2020; 55:544-557.e6. [PMID: 33120014 DOI: 10.1016/j.devcel.2020.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 08/10/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023]
Abstract
Differentiation therapy utilizes our understanding of the hierarchy of cellular systems to pharmacologically induce a shift toward terminal commitment. While this approach has been a paradigm in treating certain hematological malignancies, efforts to translate this success to solid tumors have met with limited success. Mammary-specific activation of PKA in mouse models leads to aberrant differentiation and diminished self-renewing potential of the basal compartment, which harbors mammary repopulating cells. PKA activation results in tumors that are more benign, exhibiting reduced metastatic propensity, loss of tumor-initiating potential, and increased sensitivity to chemotherapy. Analysis of tumor histopathology revealed features of overt differentiation with papillary characteristics. Longitudinal single-cell profiling at the hyperplasia and tumor stages uncovered an altered path of tumor evolution whereby PKA curtails the emergence of aggressive subpopulations. Acting through the repression of SOX4, PKA activation promotes tumor differentiation and represents a possible adjuvant to chemotherapy for certain breast cancers.
Collapse
Affiliation(s)
- Nevena B Ognjenovic
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Meisam Bagheri
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Gadisti Aisha Mohamed
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Ke Xu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Youdinghuan Chen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | - Meredith S Brown
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Shivashankar H Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kristen E Muller
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA; Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Scott A Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Brock C Christensen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Diwakar R Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| |
Collapse
|
49
|
Hoy JJ, Parra NS, Park J, Kuhn S, Iglesias-Bartolome R. Protein kinase A inhibitor proteins (PKIs) divert GPCR-Gαs-cAMP signaling toward EPAC and ERK activation and are involved in tumor growth. FASEB J 2020; 34:13900-13917. [PMID: 32830375 PMCID: PMC7722164 DOI: 10.1096/fj.202001515r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 01/12/2023]
Abstract
The PKA-inhibitor (PKI) family members PKIα, PKIβ, and PKIγ bind with high affinity to PKA and block its kinase activity, modulating the extent, and duration of PKA-mediated signaling events. While PKA is a well-known regulator of physiological and oncogenic events, the role of PKI proteins in these pathways has remained elusive. Here, by measuring activation of the MAPK pathway downstream of GPCR-Gαs-cAMP signaling, we show that the expression levels of PKI proteins can alter the balance of activation of two major cAMP targets: PKA and EPAC. Our results indicate that PKA maintains repressive control over MAPK signaling as well as a negative feedback on cAMP concentration. Overexpression of PKI and its subsequent repression of PKA dysregulates these signaling pathways, resulting in increased intracellular cAMP, and enhanced activation of EPAC and MAPK. We also find that amplifications of PKIA are common in prostate cancer and are associated with reduced progression free survival. Depletion of PKIA in prostate cancer cells leads to reduced migration, increased sensitivity to anoikis and reduced tumor growth. By altering PKA activity PKI can act as a molecular switch, driving GPCR-Gαs-cAMP signaling toward activation of EPAC-RAP1 and MAPK, ultimately modulating tumor growth.
Collapse
Affiliation(s)
- James J. Hoy
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Natalia Salinas Parra
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeannie Park
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Skyler Kuhn
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
50
|
Pedro MP, Lund K, Iglesias-Bartolome R. The landscape of GPCR signaling in the regulation of epidermal stem cell fate and skin homeostasis. Stem Cells 2020; 38:1520-1531. [PMID: 32896043 DOI: 10.1002/stem.3273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Continuous integration of signals from the micro and macro-environment is necessary for somatic stem cells to adapt to changing conditions, maintain tissue homeostasis and activate repair mechanisms. G-protein coupled receptors (GPCRs) facilitate this integration by binding to numerous hormones, metabolites and inflammatory mediators, influencing a diverse network of pathways that regulate stem cell fate. This adaptive mechanism is particularly relevant for tissues that are exposed to environmental assault, like skin. The skin is maintained by a set of basal keratinocyte stem and progenitor cells located in the hair follicle and interfollicular epidermis, and several GPCRs and their signaling partners serve as makers and regulators of epidermal stem cell activity. GPCRs utilize heterotrimeric G protein dependent and independent pathways to translate extracellular signals into intracellular molecular cascades that dictate the activation of keratinocyte proliferative and differentiation networks, including Hedgehog GLI, Hippo YAP1 and WNT/β-catenin, ultimately regulating stem cell identity. Dysregulation of GPCR signaling underlines numerous skin inflammatory diseases and cancer, with smoothened-driven basal cell carcinoma being a main example of a GPCR associated cancer. In this review, we discuss the impact of GPCRs and their signaling partners in skin keratinocyte biology, particularly in the regulation of the epidermal stem cell compartment.
Collapse
Affiliation(s)
- M Pilar Pedro
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Lund
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|