1
|
Wang J, An Z, Wu Z, Zhou W, Sun P, Wu P, Dang S, Xue R, Bai X, Du Y, Chen R, Wang W, Huang P, Lam SM, Ai Y, Liu S, Shui G, Zhang Z, Liu Z, Huang J, Fang X, He K. Spatial organization of PI3K-PI(3,4,5)P 3-AKT signaling by focal adhesions. Mol Cell 2024:S1097-2765(24)00833-5. [PMID: 39488211 DOI: 10.1016/j.molcel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
The class I phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is a key regulator of cell survival, growth, and proliferation and is among the most frequently mutated pathways in cancer. However, where and how PI3K-AKT signaling is spatially activated and organized in mammalian cells remains poorly understood. Here, we identify focal adhesions (FAs) as subcellular signaling hubs organizing the activation of PI3K-PI(3,4,5)P3-AKT signaling in human cancer cells containing p110α mutations under basal conditions. We find that class IA PI3Ks are preferentially recruited to FAs for activation, resulting in localized production of PI(3,4,5)P3 around FAs. As the effector protein of PI(3,4,5)P3, AKT1 molecules are dynamically recruited around FAs for activation. The spatial recruitment/activation of the PI3K-PI(3,4,5)P3-AKT cascade is regulated by activated FA kinase (FAK). Furthermore, combined inhibition of p110α and FAK results in a more potent inhibitory effect on cancer cells. Thus, our results unveil a growth-factor independent, compartmentalized organization mechanism for PI3K-PI(3,4,5)P3-AKT signaling.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyang An
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pengyu Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Piyu Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Xue
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xue Bai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongmei Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Pei Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China
| | - Youwei Ai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Chen T, Fernández-Espartero CH, Illand A, Tsai CT, Yang Y, Klapholz B, Jouchet P, Fabre M, Rossier O, Cui B, Lévêque-Fort S, Brown NH, Giannone G. Actin-driven nanotopography promotes stable integrin adhesion formation in developing tissue. Nat Commun 2024; 15:8691. [PMID: 39375335 PMCID: PMC11458790 DOI: 10.1038/s41467-024-52899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Morphogenesis requires building stable macromolecular structures from highly dynamic proteins. Muscles are anchored by long-lasting integrin adhesions to resist contractile force. However, the mechanisms governing integrin diffusion, immobilization, and activation within developing tissues remain elusive. Here, we show that actin polymerization-driven membrane protrusions form nanotopographies that enable strong adhesion at Drosophila muscle attachment sites (MASs). Super-resolution microscopy reveals that integrins assemble adhesive belts around Arp2/3-dependent actin protrusions, forming invadosome-like structures with membrane nanotopographies. Single protein tracking shows that, during MAS development, integrins become immobile and confined within diffusion traps formed by the membrane nanotopographies. Actin filaments also display restricted motion and confinement, indicating strong mechanical connection with integrins. Using isolated muscle cells, we show that substrate nanotopography, rather than rigidity, drives adhesion maturation by regulating actin protrusion, integrin diffusion and immobilization. These results thus demonstrate that actin-polymerization-driven membrane protrusions are essential for the formation of strong integrin adhesions sites in the developing embryo, and highlight the important contribution of geometry to morphogenesis.
Collapse
Affiliation(s)
- Tianchi Chen
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France.
| | - Cecilia H Fernández-Espartero
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Sevilla, Spain
| | - Abigail Illand
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Ching-Ting Tsai
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Yang Yang
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Benjamin Klapholz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pierre Jouchet
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Mélanie Fabre
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Olivier Rossier
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Bianxiao Cui
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Sandrine Lévêque-Fort
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France.
| |
Collapse
|
3
|
Morandell J, Monziani A, Lazioli M, Donzel D, Döring J, Oss Pegorar C, D'Anzi A, Pellegrini M, Mattiello A, Bortolotti D, Bergonzoni G, Tripathi T, Mattis VB, Kovalenko M, Rosati J, Dieterich C, Dassi E, Wheeler VC, Ellederová Z, Wilusz JE, Viero G, Biagioli M. CircHTT(2,3,4,5,6) - co-evolving with the HTT CAG-repeat tract - modulates Huntington's disease phenotypes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102234. [PMID: 38974999 PMCID: PMC11225910 DOI: 10.1016/j.omtn.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Circular RNA (circRNA) molecules have critical functions during brain development and in brain-related disorders. Here, we identified and validated a circRNA, circHTT(2,3,4,5,6), stemming from the Huntington's disease (HD) gene locus that is most abundant in the central nervous system (CNS). We uncovered its evolutionary conservation in diverse mammalian species, and a correlation between circHTT(2,3,4,5,6) levels and the length of the CAG-repeat tract in exon-1 of HTT in human and mouse HD model systems. The mouse orthologue, circHtt(2,3,4,5,6), is expressed during embryogenesis, increases during nervous system development, and is aberrantly upregulated in the presence of the expanded CAG tract. While an IRES-like motif was predicted in circH TT (2,3,4,5,6), the circRNA does not appear to be translated in adult mouse brain tissue. Nonetheless, a modest, but consistent fraction of circHtt(2,3,4,5,6) associates with the 40S ribosomal subunit, suggesting a possible role in the regulation of protein translation. Finally, circHtt(2,3,4,5,6) overexpression experiments in HD-relevant STHdh striatal cells revealed its ability to modulate CAG expansion-driven cellular defects in cell-to-substrate adhesion, thus uncovering an unconventional modifier of HD pathology.
Collapse
Affiliation(s)
- Jasmin Morandell
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Alan Monziani
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Martina Lazioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Deborah Donzel
- Institute of Biophysics Unit at Trento, National Research Council - CNR, 38123 Trento, Italy
| | - Jessica Döring
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Claudio Oss Pegorar
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Angela D'Anzi
- Cellular Reprogramming Unit Fondazione IRCCS, Casa Sollievo Della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Miguel Pellegrini
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Andrea Mattiello
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Dalia Bortolotti
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Takshashila Tripathi
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Virginia B Mattis
- Board of Governor's Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marina Kovalenko
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jessica Rosati
- Cellular Reprogramming Unit Fondazione IRCCS, Casa Sollievo Della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zdenka Ellederová
- Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriella Viero
- Institute of Biophysics Unit at Trento, National Research Council - CNR, 38123 Trento, Italy
| | - Marta Biagioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| |
Collapse
|
4
|
Gao Y, Deng Y, Geng W, Xiao S, Wang T, Xu X, Adeli M, Cheng L, Qiu L, Cheng C. Infectious and Inflammatory Microenvironment Self-Adaptive Artificial Peroxisomes with Synergetic Co-Ru Pair Centers for Programmed Diabetic Ulcer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408787. [PMID: 39096078 DOI: 10.1002/adma.202408787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Complex microenvironments with bacterial infection, persistent inflammation, and impaired angiogenesis are the major challenges in chronic refractory diabetic ulcers. To address this challenge, a comprehensive strategy with highly effective and integrated antimicrobial, anti-inflammatory, and accelerated angiogenesis will offer a new pathway to the rapid healing of infected diabetic ulcers. Here, inspired by the tunable reactive oxygen species (ROS) regulation properties of natural peroxisomes, this work reports the design of infectious and inflammatory microenvironments self-adaptive artificial peroxisomes with synergetic Co-Ru pair centers (APCR) for programmed diabetic ulcer therapy. Benefiting from the synergistic Co and Ru atoms, the APCR can simultaneously achieve ROS production and metabolic inhibition for bacterial sterilization in the infectious microenvironment. After disinfection, the APCR can also eliminate ROS to alleviate oxidative stress in the inflammatory microenvironment and promote wound regeneration. The data demonstrate that the APCR combines highly effective antibacterial, anti-inflammatory, and provascular regeneration capabilities, making it an efficient and safe nanomedicine for treating infectious and inflammatory diabetic foot ulcers via a programmed microenvironment self-adaptive treatment pathway. This work expects that synthesizing artificial peroxisomes with microenvironments self-adaptive and bifunctional enzyme-like ROS regulation properties will provide a promising path to construct ROS catalytic materials for treating complex diabetic ulcers, trauma, or other infection-caused diseases.
Collapse
Affiliation(s)
- Yang Gao
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Deng
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sutong Xiao
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaohui Xu
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mohsen Adeli
- Department of Organic Chemistry, Lorestan University, Khorramabad, 6815144316, Iran
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Liang Cheng
- Department of Materials Science and Engineering, The Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Li Qiu
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Shoyer TC, Collins KL, Ham TR, Blanchard AT, Malavade JN, Johns BA, West JL, Hoffman BD. Detection of fluorescent protein mechanical switching in cellulo. CELL REPORTS METHODS 2024; 4:100815. [PMID: 38986612 PMCID: PMC11294842 DOI: 10.1016/j.crmeth.2024.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, determining the mechanisms by which forces affect protein function inside cells remains challenging. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated whether force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo within a synthetic actin crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cell force generation, external stiffness, and force-sensitive bond dynamics of the biosensor. This work describes a framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells.
Collapse
Affiliation(s)
- T Curtis Shoyer
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Kasie L Collins
- Department of Chemistry, Duke University, Durham NC 27708, USA
| | - Trevor R Ham
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Aaron T Blanchard
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Juilee N Malavade
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Benjamin A Johns
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA.
| |
Collapse
|
6
|
Matsuura T, Komatsu K, Cheng J, Park G, Ogawa T. Beyond microroughness: novel approaches to navigate osteoblast activity on implant surfaces. Int J Implant Dent 2024; 10:35. [PMID: 38967690 PMCID: PMC11226592 DOI: 10.1186/s40729-024-00554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.
Collapse
Affiliation(s)
- Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Gunwoo Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA.
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA.
| |
Collapse
|
7
|
Morales-Camilo N, Liu J, Ramírez MJ, Canales-Salgado P, Alegría JJ, Liu X, Ong HT, Barrera NP, Fierro A, Toyama Y, Goult BT, Wang Y, Meng Y, Nishimura R, Fong-Ngern K, Low CSL, Kanchanawong P, Yan J, Ravasio A, Bertocchi C. Alternative molecular mechanisms for force transmission at adherens junctions via β-catenin-vinculin interaction. Nat Commun 2024; 15:5608. [PMID: 38969637 PMCID: PMC11226457 DOI: 10.1038/s41467-024-49850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
Force transmission through adherens junctions (AJs) is crucial for multicellular organization, wound healing and tissue regeneration. Recent studies shed light on the molecular mechanisms of mechanotransduction at the AJs. However, the canonical model fails to explain force transmission when essential proteins of the mechanotransduction module are mutated or missing. Here, we demonstrate that, in absence of α-catenin, β-catenin can directly and functionally interact with vinculin in its open conformation, bearing physiological forces. Furthermore, we found that β-catenin can prevent vinculin autoinhibition in the presence of α-catenin by occupying vinculin´s head-tail interaction site, thus preserving force transmission capability. Taken together, our findings suggest a multi-step force transmission process at AJs, where α-catenin and β-catenin can alternatively and cooperatively interact with vinculin. This can explain the graded responses needed to maintain tissue mechanical homeostasis and, importantly, unveils a force-bearing mechanism involving β-catenin and extended vinculin that can potentially explain the underlying process enabling collective invasion of metastatic cells lacking α-catenin.
Collapse
Affiliation(s)
- Nicole Morales-Camilo
- Laboratory for Molecular Mechanics of Cell Adhesion, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Jingzhun Liu
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
| | - Manuel J Ramírez
- Laboratory for Molecular Mechanics of Cell Adhesion, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricio Canales-Salgado
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan José Alegría
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile
| | - Xuyao Liu
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Nelson P Barrera
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica Fierro
- Department of Organic Chemistry, School of Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yusuke Toyama
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NJ, UK
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Yilin Wang
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Yue Meng
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Ryosuke Nishimura
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Kedsarin Fong-Ngern
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Christine Siok Lan Low
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117543, Singapore, Singapore
| | - Jie Yan
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile.
- Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| |
Collapse
|
8
|
Kosovari M, Buffeteau T, Thomas L, Guay Bégin AA, Vellutini L, McGettrick JD, Laroche G, Durrieu MC. Silanization Strategies for Tailoring Peptide Functionalization on Silicon Surfaces: Implications for Enhancing Stem Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29770-29782. [PMID: 38832565 DOI: 10.1021/acsami.4c03727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biomaterial surface engineering and the integration of cell-adhesive ligands are crucial in biological research and biotechnological applications. The interplay between cells and their microenvironment, influenced by chemical and physical cues, impacts cellular behavior. Surface modification of biomaterials profoundly affects cellular responses, especially at the cell-surface interface. This work focuses on enhancing cellular activities through material manipulation, emphasizing silanization for further functionalization with bioactive molecules such as RGD peptides to improve cell adhesion. The grafting of three distinct silanes onto silicon wafers using both spin coating and immersion methods was investigated. This study sheds light on the effects of different alkyl chain lengths and protecting groups on cellular behavior, providing valuable insights into optimizing silane-based self-assembled monolayers (SAMs) before peptide or protein grafting for the first time. Specifically, it challenges the common use of APTES molecules in this context. These findings advance our understanding of surface modification strategies, paving the way for tailoring biomaterial surfaces to modulate the cellular behavior for diverse biotechnological applications.
Collapse
Affiliation(s)
- Melissa Kosovari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac F-33600, France
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1 V 0A6, Canada
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Thierry Buffeteau
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - Laurent Thomas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - Andrée-Anne Guay Bégin
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1 V 0A6, Canada
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Luc Vellutini
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - James D McGettrick
- College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, U.K
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1 V 0A6, Canada
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | | |
Collapse
|
9
|
Ferrai C, Schulte C. Mechanotransduction in stem cells. Eur J Cell Biol 2024; 103:151417. [PMID: 38729084 DOI: 10.1016/j.ejcb.2024.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Institute of Pathology, University Medical Centre Göttingen, Germany.
| | - Carsten Schulte
- Department of Biomedical and Clinical Sciences and Department of Physics "Aldo Pontremoli", University of Milan, Italy.
| |
Collapse
|
10
|
Chen T, Giannone G. Single molecule imaging unveils cellular architecture, dynamics and mechanobiology. Curr Opin Cell Biol 2024; 88:102369. [PMID: 38759257 DOI: 10.1016/j.ceb.2024.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/19/2024]
Abstract
The biomechanical regulation of the cytoskeleton and cell adhesions underlies various essential cellular functions. Studying them requires visualizing their nanostructure and molecular dynamics with evermore precise spatio-temporal resolution. In this review we will focus on the recent advances in single molecule fluorescence imaging techniques and discuss how they improve our understanding of mechanically sensitive cellular structures such as adhesions and the cytoskeleton. We will also discuss future directions for research, emphasizing on the 3D nature of cellular structures and tissues, their mechanical regulation at the molecule level, as well as how super-resolution microscopy will enhance our knowledge on protein structure and conformational changes in the cellular context.
Collapse
Affiliation(s)
- Tianchi Chen
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, 33000 Bordeaux, France
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
11
|
Nelson T, Vargas-Hernández S, Freire M, Cheng S, Gustavsson AK. Multimodal illumination platform for 3D single-molecule super-resolution imaging throughout mammalian cells. BIOMEDICAL OPTICS EXPRESS 2024; 15:3050-3063. [PMID: 38855669 PMCID: PMC11161355 DOI: 10.1364/boe.521362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 06/11/2024]
Abstract
Single-molecule super-resolution imaging is instrumental in investigating cellular architecture and organization at the nanoscale. Achieving precise 3D nanometric localization when imaging structures throughout mammalian cells, which can be multiple microns thick, requires careful selection of the illumination scheme in order to optimize the fluorescence signal to background ratio (SBR). Thus, an optical platform that combines different wide-field illumination schemes for target-specific SBR optimization would facilitate more precise 3D nanoscale studies of a wide range of cellular structures. Here, we demonstrate a versatile multimodal illumination platform that integrates the sectioning and background reduction capabilities of light sheet illumination with homogeneous, flat-field epi- and TIRF illumination. Using primarily commercially available parts, we combine the fast and convenient switching between illumination modalities with point spread function engineering to enable 3D single-molecule super-resolution imaging throughout mammalian cells. For targets directly at the coverslip, the homogenous intensity profile and excellent sectioning of our flat-field TIRF illumination scheme improves single-molecule data quality by providing low fluorescence background and uniform fluorophore blinking kinetics, fluorescence signal, and localization precision across the entire field of view. The increased contrast achieved with LS illumination, when compared with epi-illumination, makes this illumination modality an excellent alternative when imaging targets that extend throughout the cell. We validate our microscopy platform for improved 3D super-resolution imaging by two-color imaging of paxillin - a protein located in the focal adhesion complex - and actin in human osteosarcoma cells.
Collapse
Affiliation(s)
- Tyler Nelson
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Sofía Vargas-Hernández
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Institute of Biosciences & Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Margareth Freire
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Siyang Cheng
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
- Institute of Biosciences & Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Biosciences, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Center for Nanoscale Imaging Sciences, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
12
|
Fois M, Zengin A, Song K, Giselbrecht S, Habibović P, Truckenmüller RK, van Rijt S, Tahmasebi Birgani ZN. Nanofunctionalized Microparticles for Glucose Delivery in Three-Dimensional Cell Assemblies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17347-17360. [PMID: 38561903 PMCID: PMC11009907 DOI: 10.1021/acsami.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Three-dimensional (3D) cell assemblies, such as multicellular spheroids, can be powerful biological tools to closely mimic the complexity of cell-cell and cell-matrix interactions in a native-like microenvironment. However, potential applications of large spheroids are limited by the insufficient diffusion of oxygen and nutrients through the spheroids and, thus, result in the formation of a necrotic core. To overcome this drawback, we present a new strategy based on nanoparticle-coated microparticles. In this study, microparticles function as synthetic centers to regulate the diffusion of small molecules, such as oxygen and nutrients, within human mesenchymal stem cell (hMSC) spheroids. The nanoparticle coating on the microparticle surface acts as a nutrient reservoir to release glucose locally within the spheroids. We first coated the surface of the poly(lactic-co-glycolic acid) (PLGA) microparticles with mesoporous silica nanoparticles (MSNs) based on electrostatic interactions and then formed cell-nanofunctionalized microparticle spheroids. Next, we investigated the stability of the MSN coating on the microparticles' surface during 14 days of incubation in cell culture medium at 37 °C. Then, we evaluated the influence of MSN-coated PLGA microparticles on spheroid aggregation and cell viability. Our results showed the formation of homogeneous spheroids with good cell viability. As a proof of concept, fluorescently labeled glucose (2-NBD glucose) was loaded into the MSNs at different concentrations, and the release behavior was monitored. For cell culture studies, glucose was loaded into the MSNs coated onto the PLGA microparticles to sustain local nutrient release within the hMSC spheroids. In vitro results demonstrated that the local delivery of glucose from MSNs enhanced the cell viability in spheroids during a short-term hypoxic culture. Taken together, the newly developed nanofunctionalized microparticle-based delivery system may offer a versatile platform for local delivery of small molecules within 3D cellular assemblies and, thus, improve cell viability in spheroids.
Collapse
Affiliation(s)
| | | | - Ke Song
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Pamela Habibović
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | |
Collapse
|
13
|
Casarella S, Ferla F, Di Francesco D, Canciani E, Rizzi M, Boccafoschi F. Focal Adhesion's Role in Cardiomyocytes Function: From Cardiomyogenesis to Mechanotransduction. Cells 2024; 13:664. [PMID: 38667279 PMCID: PMC11049660 DOI: 10.3390/cells13080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in cellular adhesion, growth, differentiation, gene expression, migration, communication, force transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase (FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through integrins, modulating signaling pathways like PI3K/AKT and Wnt/β-catenin. Moreover, FAK/Src complex activation mediates cardiac hypertrophic growth and survival signaling in response to mechanical loads. This review provides an overview of the molecular and mechanical mechanisms underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated mechanotransduction in guiding cardiac muscle responses to mechanical stimuli.
Collapse
Affiliation(s)
- Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Federica Ferla
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Elena Canciani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| |
Collapse
|
14
|
Stock C. pH-regulated single cell migration. Pflugers Arch 2024; 476:639-658. [PMID: 38214759 PMCID: PMC11006768 DOI: 10.1007/s00424-024-02907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Over the last two decades, extra- and intracellular pH have emerged as fundamental regulators of cell motility. Fundamental physiological and pathological processes relying on appropriate cell migration, such as embryonic development, wound healing, and a proper immune defense on the one hand, and autoimmune diseases, metastatic cancer, and the progression of certain parasitic diseases on the other, depend on surrounding pH. In addition, migrating single cells create their own localized pH nanodomains at their surface and in the cytosol. By this means, the migrating cells locally modulate their adhesion to, and the re-arrangement and digestion of, the extracellular matrix. At the same time, the cytosolic nanodomains tune cytoskeletal dynamics along the direction of movement resulting in concerted lamellipodia protrusion and rear end retraction. Extracellular pH gradients as found in wounds, inflamed tissues, or the periphery of tumors stimulate directed cell migration, and long-term exposure to acidic conditions can engender a more migratory and invasive phenotype persisting for hours up to several generations of cells after they have left the acidic milieu. In the present review, the different variants of pH-dependent single cell migration are described. The underlying pH-dependent molecular mechanisms such as conformational changes of adhesion molecules, matrix protease activity, actin (de-)polymerization, and signaling events are explained, and molecular pH sensors stimulated by H+ signaling are presented.
Collapse
Affiliation(s)
- Christian Stock
- Department of Gastroenterology, Hepatology, Infectiology & Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
15
|
Saito K, Yokawa S, Kurihara H, Yaoita E, Mizuta S, Tada K, Oda M, Hatakeyama H, Ohta Y. FilGAP controls cell-extracellular matrix adhesion and process formation of kidney podocytes. FASEB J 2024; 38:e23504. [PMID: 38421271 DOI: 10.1096/fj.202301691rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
The function of kidney podocytes is closely associated with actin cytoskeleton regulated by Rho small GTPases. Loss of actin-driven cell adhesions and processes is connected to podocyte dysfunction, proteinuria, and kidney diseases. FilGAP, a GTPase-activating protein for Rho small GTPase Rac1, is abundantly expressed in kidney podocytes, and its gene is linked to diseases in a family with focal segmental glomerulosclerosis. In this study, we have studied the role of FilGAP in podocytes in vitro. Depletion of FilGAP in cultured podocytes induced loss of actin stress fibers and increased Rac1 activity. Conversely, forced expression of FilGAP increased stress fiber formation whereas Rac1 activation significantly reduced its formation. FilGAP localizes at the focal adhesion (FA), an integrin-based protein complex closely associated with stress fibers, that mediates cell-extracellular matrix (ECM) adhesion, and FilGAP depletion decreased FA formation and impaired attachment to the ECM. Moreover, in unique podocyte cell cultures capable of inducing the formation of highly organized processes including major processes and foot process-like projections, FilGAP depletion or Rac1 activation decreased the formation of these processes. The reduction of FAs and process formations in FilGAP-depleted podocyte cells was rescued by inhibition of Rac1 or P21-activated kinase 1 (PAK1), a downstream effector of Rac1, and PAK1 activation inhibited their formations. Thus, FilGAP contributes to both cell-ECM adhesion and process formation of podocytes by suppressing Rac1/PAK1 signaling.
Collapse
Affiliation(s)
- Koji Saito
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Seiji Yokawa
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hidetake Kurihara
- Department of Physical Therapy, Faculty of Health Sciences, Aino University, Osaka, Ibaraki, Japan
| | - Eishin Yaoita
- Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Sari Mizuta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kanae Tada
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Moemi Oda
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hiroyasu Hatakeyama
- Department of Physiology, School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
16
|
Nelson T, Vargas-Hernández S, freire M, Cheng S, Gustavsson AK. Multimodal illumination platform for 3D single-molecule super-resolution imaging throughout mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579549. [PMID: 38405960 PMCID: PMC10888752 DOI: 10.1101/2024.02.08.579549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Single-molecule super-resolution imaging is instrumental for investigating cellular architecture and organization at the nanoscale. Achieving precise 3D nanometric localization when imaging structures throughout mammalian cells, which can be multiple microns thick, requires careful selection of the illumination scheme in order to optimize the fluorescence signal to background ratio (SBR). Thus, an optical platform that combines different wide-field illumination schemes for target-specific SBR optimization would facilitate more precise, 3D nanoscale studies of a wide range of cellular structures. Here we demonstrate a versatile multimodal illumination platform that integrates the sectioning and background reduction capabilities of light sheet illumination with homogeneous, flat-field epi-and TIRF illumination. Using primarily commercially available parts, we combine the fast and convenient switching between illumination modalities with point spread function engineering to enable 3D single-molecule super-resolution imaging throughout mammalian cells. For targets directly at the coverslip, the homogenous intensity profile and excellent sectioning of our flat-field TIRF illumination scheme improves single-molecule data quality by providing low fluorescence background and uniform fluorophore blinking kinetics, fluorescence signal, and localization precision across the entire field of view. The increased contrast achieved with LS illumination, when compared with epi-illumination, makes this illumination modality an excellent alternative when imaging targets that extend throughout the cell. We validate our microscopy platform for improved 3D super-resolution imaging by two-color imaging of paxillin - a protein located in the focal adhesion complex - and actin in human osteosarcoma cells.
Collapse
Affiliation(s)
- Tyler Nelson
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Sofía Vargas-Hernández
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Institute of Biosciences & Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Margareth freire
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Siyang Cheng
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
- Institute of Biosciences & Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Biosciences, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Center for Nanoscale Imaging Sciences, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
17
|
Shoyer TC, Collins KL, Ham TR, Blanchard AT, Malavade JN, West JL, Hoffman BD. Detection of Fluorescent Protein Mechanical Switching in Cellulo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575065. [PMID: 38260589 PMCID: PMC10802509 DOI: 10.1101/2024.01.10.575065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, the mechanisms by which forces affect protein function inside cells remain unclear. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated if force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo in a synthetic actin-crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cellular force generation as well as force-sensitive bond dynamics of the biosensor. Together, this work describes a new framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells. MOTIVATION The ability of cells to sense mechanical forces is critical in developmental, physiological, and pathological processes. Cells sense mechanical cues via force-induced alterations in protein structure and function, but elucidation of the molecular mechanisms is hindered by the lack of approaches to directly probe the effect of forces on protein structure and function inside cells. Motivated by in vitro observations of reversible fluorescent protein mechanical switching, we developed an approach for detecting fluorescent protein mechanical switching in cellulo . This enables the visualization of force-sensitive protein function inside living cells.
Collapse
|
18
|
Shoyer TC, Gates EM, Cabe JI, Urs AN, Conway DE, Hoffman BD. Coupling during collective cell migration is controlled by a vinculin mechanochemical switch. Proc Natl Acad Sci U S A 2023; 120:e2316456120. [PMID: 38055737 PMCID: PMC10722971 DOI: 10.1073/pnas.2316456120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023] Open
Abstract
The ability of cells to move in a mechanically coupled, coordinated manner, referred to as collective cell migration, is central to many developmental, physiological, and pathophysiological processes. Limited understanding of how mechanical forces and biochemical regulation interact to affect coupling has been a major obstacle to unravelling the underlying mechanisms. Focusing on the linker protein vinculin, we use a suite of Förster resonance energy transfer-based biosensors to probe its mechanical functions and biochemical regulation, revealing a switch that toggles vinculin between loadable and unloadable states. Perturbation of the switch causes covarying changes in cell speed and coordination, suggesting alteration of the friction within the system. Molecular scale modelling reveals that increasing levels of loadable vinculin increases friction, due to engagement of self-stabilizing catch bonds. Together, this work reveals a regulatory switch for controlling cell coupling and describes a paradigm for relating biochemical regulation, altered mechanical properties, and changes in cell behaviors.
Collapse
Affiliation(s)
- T. Curtis Shoyer
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Evan M. Gates
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Jolene I. Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA23284
| | - Aarti N. Urs
- Department of Cell Biology, Duke University, Durham, NC27710
| | - Daniel E. Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH43210
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Cell Biology, Duke University, Durham, NC27710
| |
Collapse
|
19
|
Rahikainen R, Vester SK, Turkki P, Janosko CP, Deiters A, Hytönen VP, Howarth M. Visible Light-Induced Specific Protein Reaction Delineates Early Stages of Cell Adhesion. J Am Chem Soc 2023; 145:24459-24465. [PMID: 38104267 PMCID: PMC10655181 DOI: 10.1021/jacs.3c07827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023]
Abstract
Light is well-established for control of bond breakage but not for control of specific bond formation in complex environments. We previously engineered the diffusion-limited reactivity of the SpyTag003 peptide with its protein partner SpyCatcher003 through spontaneous isopeptide bond formation. This system enables precise and irreversible assembly of biological building blocks with applications from biomaterials to vaccines. Here we establish a system for the rapid control of this amide bond formation with visible light. We have generated a caged SpyCatcher003, which allows light triggering of covalent bond formation to SpyTag003 in mammalian cells. Photocaging is achieved through site-specific incorporation of an unnatural coumarin-lysine at the reactive site of SpyCatcher003. We showed a uniform specific reaction in cell lysate upon light activation. We then used the spatiotemporal precision of a 405 nm confocal laser for uncaging in seconds, probing the earliest events in mechanotransduction by talin, the key force sensor between the cytoskeleton and the extracellular matrix. Reconstituting talin induced rapid biphasic extension of lamellipodia, revealing the kinetics of talin-regulated cell spreading and polarization. Thereafter we determined the hierarchy of the recruitment of key components for cell adhesion. Precise control over site-specific protein reaction with visible light creates diverse opportunities for cell biology and nanoassembly.
Collapse
Affiliation(s)
- Rolle Rahikainen
- Faculty
of Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Fimlab
Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Susan K. Vester
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Paula Turkki
- Faculty
of Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Fimlab
Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Chasity P. Janosko
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Vesa P. Hytönen
- Faculty
of Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Fimlab
Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Mark Howarth
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| |
Collapse
|
20
|
Han X, Li W, He X, Lu X, Zhang Y, Li Y, Bi G, Ma X, Huang X, Bai R, Zhang H. Blockade of TGF-β signalling alleviates human adipose stem cell senescence induced by native ECM in obesity visceral white adipose tissue. Stem Cell Res Ther 2023; 14:291. [PMID: 37807066 PMCID: PMC10561428 DOI: 10.1186/s13287-023-03525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Abdominal obesity is appreciated as a major player in insulin resistance and metabolically dysfunctional adipose tissue. Inappropriate extracellular matrix (ECM) remodelling and functional alterations in human adipose stromal/stem cells (hASCs) have been linked with visceral white adipose tissue (vWAT) dysfunction in obesity. Understanding the interactions between hASCs and the native ECM environment in obese vWAT is required for the development of future therapeutic approaches for obesity-associated metabolic complications. METHODS The phenotypes and transcriptome properties of hASCs from the vWAT of obese patients and lean donors were assessed. The hASC-derived matrix from vWAT of obese or lean patients was generated in vitro using a decellularized method. The topography and the major components of the hASC-derived matrix were determined. The effects of the obese hASC-derived matrix on cell senescence and mitochondrial function were further determined. RESULTS We showed that hASCs derived from the vWAT of obese patients exhibited senescence and were accompanied by the increased production of ECM. The matrix secreted by obese hASCs formed a fibrillar suprastructure with an abundance of fibronectin, type I collagen, and transforming growth factor beta 1 (TGF-β1), which resembles the native matrix microenvironment of hASCs in vWAT derived from obese patients. Furthermore, the obese hASC-derived matrix promoted lean hASC ageing and induced mitochondrial dysfunction compared to the lean hASC-derived matrix. Blockade of TGF-β1 signalling using an anti-TGF-β1 neutralizing antibody alleviated the lean hASC senescence and mitochondrial dysfunction induced by the obese hASC-derived matrix. CONCLUSIONS Native ECM in obesity vWAT initiates hASC senescence through TGF-β1-mediated mitochondrial dysfunction. These data provide a key mechanism for understanding the importance of cell-ECM interactions in hASCs senescence in obesity.
Collapse
Affiliation(s)
- Xueya Han
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Weihong Li
- Experimental Center for Basic Medical Teaching, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xu He
- Experimental Center for Basic Medical Teaching, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xin Lu
- Experimental Center for Basic Medical Teaching, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Yu Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Yaqiong Li
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Guoyun Bi
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xuqing Ma
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xiaowu Huang
- Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Rixing Bai
- Department of General Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Haiyan Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
21
|
Grudtsyna V, Packirisamy S, Bidone TC, Swaminathan V. Extracellular matrix sensing via modulation of orientational order of integrins and F-actin in focal adhesions. Life Sci Alliance 2023; 6:e202301898. [PMID: 37463754 PMCID: PMC10355215 DOI: 10.26508/lsa.202301898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Specificity of cellular responses to distinct cues from the ECM requires precise and sensitive decoding of physical information. However, how known mechanisms of mechanosensing like force-dependent catch bonds and conformational changes in FA proteins can confer that this sensitivity is not known. Using polarization microscopy and computational modeling, we identify dynamic changes in an orientational order of FA proteins as a molecular organizational mechanism that can fine-tune cell sensitivity to the ECM. We find that αV integrins and F-actin show precise changes in the orientational order in an ECM-mediated integrin activation-dependent manner. These changes are sensitive to ECM density and are regulated independent of myosin-II activity though contractility can enhance this sensitivity. A molecular-clutch model demonstrates that the orientational order of integrin-ECM binding coupled to directional catch bonds can capture cellular responses to changes in ECM density. This mechanism also captures decoupling of ECM density sensing from stiffness sensing thus elucidating specificity. Taken together, our results suggest relative geometric organization of FA molecules as an important molecular architectural feature and regulator of mechanotransduction.
Collapse
Affiliation(s)
- Valeriia Grudtsyna
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Swathi Packirisamy
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tamara C Bidone
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, USA
| | - Vinay Swaminathan
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Tachibana H, Minoura K, Omachi T, Nagao K, Ichikawa T, Kimura Y, Kono N, Shimanaka Y, Arai H, Ueda K, Kioka N. The plasma membrane of focal adhesions has a high content of cholesterol and phosphatidylcholine with saturated acyl chains. J Cell Sci 2023; 136:jcs260763. [PMID: 37470177 DOI: 10.1242/jcs.260763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Cellular functions, such as differentiation and migration, are regulated by the extracellular microenvironment, including the extracellular matrix (ECM). Cells adhere to ECM through focal adhesions (FAs) and sense the surrounding microenvironments. Although FA proteins have been actively investigated, little is known about the lipids in the plasma membrane at FAs. In this study, we examine the lipid composition at FAs with imaging and biochemical approaches. Using the cholesterol-specific probe D4 with total internal reflection fluorescence microscopy and super-resolution microscopy, we show an enrichment of cholesterol at FAs simultaneously with FA assembly. Furthermore, we establish a method to isolate the lipid from FA-rich fractions, and biochemical quantification of the lipids reveals that there is a higher content of cholesterol and phosphatidylcholine with saturated fatty acid chains in the lipids of the FA-rich fraction than in either the plasma membrane fraction or the whole-cell membrane. These results demonstrate that plasma membrane at FAs has a locally distinct lipid composition compared to the bulk plasma membrane.
Collapse
Affiliation(s)
- Hiroshi Tachibana
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kodai Minoura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomohiro Omachi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kohjiro Nagao
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Takafumi Ichikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuta Shimanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
23
|
Grandy C, Port F, Radzinski M, Singh K, Erz D, Pfeil J, Reichmann D, Gottschalk KE. Remodeling of the focal adhesion complex by hydrogen-peroxide-induced senescence. Sci Rep 2023; 13:9735. [PMID: 37322076 PMCID: PMC10272183 DOI: 10.1038/s41598-023-36347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Cellular senescence is a phenotype characterized by cessation of cell division, which can be caused by exhaustive replication or environmental stress. It is involved in age-related pathophysiological conditions and affects both the cellular cytoskeleton and the prime cellular mechanosensors, focal adhesion complexes. While the size of focal adhesions increases during senescence, it is unknown if and how this is accompanied by a remodeling of the internal focal adhesion structure. Our study uses metal-induced energy transfer to study the axial dimension of focal adhesion proteins from oxidative-stress-induced senescent cells with nanometer precision, and compares these to unstressed cells. We influenced cytoskeletal tension and the functioning of mechanosensitive ion channels using drugs and studied the combined effect of senescence and drug intervention on the focal adhesion structure. We found that H2O2-induced restructuring of the focal adhesion complex indicates a loss of tension and altered talin complexation. Mass spectroscopy-based proteomics confirmed the differential regulation of several cytoskeletal proteins induced by H2O2 treatment.
Collapse
Affiliation(s)
- Carolin Grandy
- Institute of Experimental Physics, Ulm University, 89081, Ulm, Baden-Württemberg, Germany
| | - Fabian Port
- Institute of Experimental Physics, Ulm University, 89081, Ulm, Baden-Württemberg, Germany
| | - Meytal Radzinski
- Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, 9190401, Jerusalem, Israel
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, 89081, Ulm,, Baden-Württemberg, Germany
| | - Dorothee Erz
- Institute of Experimental Physics, Ulm University, 89081, Ulm, Baden-Württemberg, Germany
| | - Jonas Pfeil
- Institute of Experimental Physics, Ulm University, 89081, Ulm, Baden-Württemberg, Germany
| | - Dana Reichmann
- Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, 9190401, Jerusalem, Israel
| | | |
Collapse
|
24
|
Safarians G, Sohrabi A, Solomon I, Xiao W, Bastola S, Rajput BW, Epperson M, Rosenzweig I, Tamura K, Singer B, Huang J, Harrison MJ, Sanazzaro T, Condro MC, Kornblum HI, Seidlits SK. Glioblastoma Spheroid Invasion through Soft, Brain-Like Matrices Depends on Hyaluronic Acid-CD44 Interactions. Adv Healthc Mater 2023; 12:e2203143. [PMID: 36694362 PMCID: PMC10238626 DOI: 10.1002/adhm.202203143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 01/26/2023]
Abstract
Increased secretion of hyaluronic acid (HA), a glycosaminoglycan abundant in the brain extracellular matrix (ECM), correlates with worse clinical outcomes for glioblastoma (GBM) patients. GBM cells aggressively invade the brain parenchyma while encountering spatiotemporal changes in their local ECM, including HA concentration. To investigate how varying HA concentrations affect GBM invasion, patient-derived GBM cells are cultured within a soft, 3D matrix in which HA concentration is precisely varied and cell migration observed. Data demonstrate that HA concentration can determine the invasive activity of patient-derived GBM cells in a biphasic and highly sensitive manner, where the absolute concentration of HA at which cell migration peaked is specific to each patient-derived line. Furthermore, evidence that this response relies on phosphorylated ezrin, which interacts with the intracellular domain of HA-engaged CD44 to effectively link the actin cytoskeleton to the local ECM is provided. Overall, this study highlights CD44-HA binding as a major mediator of GBM cell migration that acts independently of integrins and focal adhesion complexes and suggests that targeting HA-CD44-ezrin interactions represents a promising therapeutic strategy to prevent tumor cell invasion in the brain.
Collapse
Affiliation(s)
- Gevick Safarians
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Alireza Sohrabi
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Biomedical EngineeringThe University of Texas at AustinAustinTX78712USA
| | - Itay Solomon
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Weikun Xiao
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Soniya Bastola
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCA90024USA
| | - Bushra W. Rajput
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Mary Epperson
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Isabella Rosenzweig
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Kelly Tamura
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Breahna Singer
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Joyce Huang
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Mollie J. Harrison
- Department of Biomedical EngineeringThe University of Texas at AustinAustinTX78712USA
| | - Talia Sanazzaro
- Department of Biomedical EngineeringThe University of Texas at AustinAustinTX78712USA
| | - Michael C. Condro
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCA90024USA
| | - Harley I. Kornblum
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCA90024USA
| | - Stephanie K. Seidlits
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Biomedical EngineeringThe University of Texas at AustinAustinTX78712USA
| |
Collapse
|
25
|
Splitt RL, DeMali KA. Metabolic reprogramming in response to cell mechanics. Biol Cell 2023; 115:e202200108. [PMID: 36807920 PMCID: PMC10192020 DOI: 10.1111/boc.202200108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/20/2023]
Abstract
Much attention has been dedicated to understanding how cells sense and respond to mechanical forces. The types of forces cells experience as well as the repertoire of cell surface receptors that sense these forces have been identified. Key mechanisms for transmitting that force to the cell interior have also emerged. Yet, how cells process mechanical information and integrate it with other cellular events remains largely unexplored. Here we review the mechanisms underlying mechanotransduction at cell-cell and cell-matrix adhesions, and we summarize the current understanding of how cells integrate information from the distinct adhesion complexes with cell metabolism.
Collapse
Affiliation(s)
- Rebecca L. Splitt
- Department of Biochemistry and Molecular Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242
| | - Kris A. DeMali
- Department of Biochemistry and Molecular Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
26
|
Modvig S, Jeyakumar J, Marquart HV, Christensen C. Integrins and the Metastasis-like Dissemination of Acute Lymphoblastic Leukemia to the Central Nervous System. Cancers (Basel) 2023; 15:cancers15092504. [PMID: 37173970 PMCID: PMC10177281 DOI: 10.3390/cancers15092504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) disseminates with high prevalence to the central nervous system (CNS) in a process resembling aspects of the CNS surveillance of normal immune cells as well as aspects of brain metastasis from solid cancers. Importantly, inside the CNS, the ALL blasts are typically confined within the cerebrospinal fluid (CSF)-filled cavities of the subarachnoid space, which they use as a sanctuary protected from both chemotherapy and immune cells. At present, high cumulative doses of intrathecal chemotherapy are administered to patients, but this is associated with neurotoxicity and CNS relapse still occurs. Thus, it is imperative to identify markers and novel therapy targets specific to CNS ALL. Integrins represent a family of adhesion molecules involved in cell-cell and cell-matrix interactions, implicated in the adhesion and migration of metastatic cancer cells, normal immune cells, and leukemic blasts. The ability of integrins to also facilitate cell-adhesion mediated drug resistance, combined with recent discoveries of integrin-dependent routes of leukemic cells into the CNS, have sparked a renewed interest in integrins as markers and therapeutic targets in CNS leukemia. Here, we review the roles of integrins in CNS surveillance by normal lymphocytes, dissemination to the CNS by ALL cells, and brain metastasis from solid cancers. Furthermore, we discuss whether ALL dissemination to the CNS abides by known hallmarks of metastasis, and the potential roles of integrins in this context.
Collapse
Affiliation(s)
- Signe Modvig
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jenani Jeyakumar
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Claus Christensen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
27
|
Hohmann T, Hohmann U, Dehghani F. MACC1-induced migration in tumors: Current state and perspective. Front Oncol 2023; 13:1165676. [PMID: 37051546 PMCID: PMC10084939 DOI: 10.3389/fonc.2023.1165676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Malignant tumors are still a global, heavy health burden. Many tumor types cannot be treated curatively, underlining the need for new treatment targets. In recent years, metastasis associated in colon cancer 1 (MACC1) was identified as a promising biomarker and drug target, as it is promoting tumor migration, initiation, proliferation, and others in a multitude of solid cancers. Here, we will summarize the current knowledge about MACC1-induced tumor cell migration with a special focus on the cytoskeletal and adhesive systems. In addition, a brief overview of several in vitro models used for the analysis of cell migration is given. In this context, we will point to issues with the currently most prevalent models used to study MACC1-dependent migration. Lastly, open questions about MACC1-dependent effects on tumor cell migration will be addressed.
Collapse
|
28
|
Tao A, LaCroix AS, Shoyer TC, Venkatraman V, Xu KL, Feiger B, Hoffman BD. Identifying constitutive and context-specific molecular-tension-sensitive protein recruitment within focal adhesions. Dev Cell 2023; 58:522-534.e7. [PMID: 36924770 PMCID: PMC10080727 DOI: 10.1016/j.devcel.2023.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/28/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Abstract
Mechanosensitive processes often rely on adhesion structures to strengthen, or mature, in response to applied loads. However, a limited understanding of how the molecular tensions that are experienced by a particular protein affect the recruitment of other proteins represents a major obstacle in the way of deciphering molecular mechanisms that underlie mechanosensitive processes. Here, we describe an imaging-based technique, termed fluorescence-tension co-localization (FTC), for studying molecular-tension-sensitive protein recruitment inside cells. Guided by discrete time Markov chain simulations of protein recruitment, we integrate immunofluorescence labeling, molecular tension sensors, and machine learning to determine the sensitivity, specificity, and context dependence of molecular-tension-sensitive protein recruitment. The application of FTC to the mechanical linker protein vinculin in mouse embryonic fibroblasts reveals constitutive and context-specific molecular-tension-sensitive protein recruitment that varies with adhesion maturation. FTC overcomes limitations associated with the alteration of numerous proteins during the manipulation of cell contractility, providing molecularly specific insights into tension-sensitive protein recruitment.
Collapse
Affiliation(s)
- Arnold Tao
- Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | - Karen L Xu
- Biomedical Engineering, Duke University, Durham, NC, USA
| | - Bradley Feiger
- Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brenton D Hoffman
- Biomedical Engineering, Duke University, Durham, NC, USA; Cell Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
29
|
Nunes Vicente F, Chen T, Rossier O, Giannone G. Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends Cell Biol 2023; 33:204-220. [PMID: 36055943 DOI: 10.1016/j.tcb.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Detection and conversion of mechanical forces into biochemical signals is known as mechanotransduction. From cells to tissues, mechanotransduction regulates migration, proliferation, and differentiation in processes such as immune responses, development, and cancer progression. Mechanosensitive structures such as integrin adhesions, the actin cortex, ion channels, caveolae, and the nucleus sense and transmit forces. In vitro approaches showed that mechanosensing is based on force-dependent protein deformations and reorganizations. However, the mechanisms in cells remained unclear since cell imaging techniques lacked molecular resolution. Thanks to recent developments in super-resolution microscopy (SRM) and molecular force sensors, it is possible to obtain molecular insight of mechanosensing in live cells. We discuss how understanding of molecular mechanotransduction was revolutionized by these innovative approaches, focusing on integrin adhesions, actin structures, and the plasma membrane.
Collapse
Affiliation(s)
- Filipe Nunes Vicente
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Tianchi Chen
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
30
|
Xue Q, Varady SR, Waddell TQA, Roman MR, Carrington J, Roh-Johnson M. Lack of Paxillin phosphorylation promotes single-cell migration in vivo. J Cell Biol 2023; 222:213850. [PMID: 36723624 PMCID: PMC9929932 DOI: 10.1083/jcb.202206078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023] Open
Abstract
Focal adhesions are structures that physically link the cell to the extracellular matrix for cell migration. Although cell culture studies have provided a wealth of information regarding focal adhesion biology, it is critical to understand how focal adhesions are dynamically regulated in their native environment. We developed a zebrafish system to visualize focal adhesion structures during single-cell migration in vivo. We find that a key site of phosphoregulation (Y118) on Paxillin exhibits reduced phosphorylation in migrating cells in vivo compared to in vitro. Furthermore, expression of a non-phosphorylatable version of Y118-Paxillin increases focal adhesion disassembly and promotes cell migration in vivo, despite inhibiting cell migration in vitro. Using a mouse model, we further find that the upstream kinase, focal adhesion kinase, is downregulated in cells in vivo, and cells expressing non-phosphorylatable Y118-Paxillin exhibit increased activation of the CRKII-DOCK180/RacGEF pathway. Our findings provide significant new insight into the intrinsic regulation of focal adhesions in cells migrating in their native environment.
Collapse
Affiliation(s)
- Qian Xue
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sophia R.S. Varady
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | | | - Mackenzie R. Roman
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - James Carrington
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA,School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Minna Roh-Johnson
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
31
|
Grandy C, Port F, Pfeil J, Oliva MAG, Vassalli M, Gottschalk KE. Cell shape and tension alter focal adhesion structure. BIOMATERIALS ADVANCES 2023; 145:213277. [PMID: 36621197 DOI: 10.1016/j.bioadv.2022.213277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Cells are not only anchored to the extracellular matrix via the focal adhesion complex, the focal adhesion complex also serves as a sensor for force transduction. How tension influences the structure of focal adhesions is not well understood. Here, we analyse the effect of tension on the location of key focal adhesion proteins, namely vinculin, paxillin and actin. We use micropatterning on gold surfaces to manipulate the cell shape, to create focal adhesions at specific cell areas, and to perform metal-induced energy transfer (MIET) measurements on the patterned cells. MIET resolves the different protein locations with respect to the gold surface with nanometer accuracy. Further, we use drugs influencing the cellular motor protein myosin or mechanosensitive ion channels to get deeper insight into focal adhesions at different tension states. We show here that in particular actin is affected by the rationally tuned force balance. Blocking mechanosensitive ion channels has a particularly high influence on the actin and focal adhesion architecture, resulting in larger focal adhesions with elevated paxillin and vinculin and strongly lowered actin stress fibres. Our results can be explained by a balance of adhesion tension with cellular tension together with ion channel-controlled focal adhesion homeostasis, where high cellular tension leads to an elevation of vinculin and actin, while high adhesion tension lowers these proteins.
Collapse
Affiliation(s)
- Carolin Grandy
- University Ulm, Institute of Experimental Physics, Ulm, Baden-Württemberg, 89081, Germany
| | - Fabian Port
- University Ulm, Institute of Experimental Physics, Ulm, Baden-Württemberg, 89081, Germany
| | - Jonas Pfeil
- University Ulm, Institute of Experimental Physics, Ulm, Baden-Württemberg, 89081, Germany
| | | | - Massimo Vassalli
- University of Glasgow, James Watt School of Engineering, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
32
|
Mavrakis M, Juanes MA. The compass to follow: Focal adhesion turnover. Curr Opin Cell Biol 2023; 80:102152. [PMID: 36796142 DOI: 10.1016/j.ceb.2023.102152] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
How cells move is a fundamental biological question. The directionality of adherent migrating cells depends on the assembly and disassembly (turnover) of focal adhesions (FAs). FAs are micron-sized actin-based structures that link cells to the extracellular matrix. Traditionally, microtubules have been considered key to triggering FA turnover. Through the years, advancements in biochemistry, biophysics, and bioimaging tools have been invaluable for many research groups to unravel a variety of mechanisms and molecular players that contribute to FA turnover, beyond microtubules. Here, we discuss recent discoveries of key molecular players that affect the dynamics and organization of the actin cytoskeleton to enable timely FA turnover and consequently proper directed cell migration.
Collapse
Affiliation(s)
- Manos Mavrakis
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - M Angeles Juanes
- School of Health and Life Science, Teesside University, Middlesbrough, TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain.
| |
Collapse
|
33
|
Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. Nat Rev Mol Cell Biol 2023; 24:142-161. [PMID: 36168065 PMCID: PMC9892292 DOI: 10.1038/s41580-022-00531-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
The ability of animal cells to sense, adhere to and remodel their local extracellular matrix (ECM) is central to control of cell shape, mechanical responsiveness, motility and signalling, and hence to development, tissue formation, wound healing and the immune response. Cell-ECM interactions occur at various specialized, multi-protein adhesion complexes that serve to physically link the ECM to the cytoskeleton and the intracellular signalling apparatus. This occurs predominantly via clustered transmembrane receptors of the integrin family. Here we review how the interplay of mechanical forces, biochemical signalling and molecular self-organization determines the composition, organization, mechanosensitivity and dynamics of these adhesions. Progress in the identification of core multi-protein modules within the adhesions and characterization of rearrangements of their components in response to force, together with advanced imaging approaches, has improved understanding of adhesion maturation and turnover and the relationships between adhesion structures and functions. Perturbations of adhesion contribute to a broad range of diseases and to age-related dysfunction, thus an improved understanding of their molecular nature may facilitate therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
34
|
Shoyer TC, Gates EM, Cabe JI, Conway DE, Hoffman BD. Coupling During Collective Cell Migration is Controlled by a Vinculin Mechanochemical Switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523997. [PMID: 36711698 PMCID: PMC9882183 DOI: 10.1101/2023.01.13.523997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Collective cell migration (CCM) plays important roles in development, physiological, and pathological processes. A key feature of CCM is the dynamic mechanical coupling between cells, which enables both long-range coordination and local rearrangements. This coupling requires the ability of cell adhesions to adapt to forces. Recent efforts have identified key proteins and implicated cellular-scale mechanical properties, but how key proteins give rise to these larger-scale mechanical processes is unclear. Using force-sensitive biosensors, cell migration assays, and molecular clutch models, we sought a molecular understanding of adhesion strengthening that could bridge this gap. We found that the mechanical linker protein vinculin bears substantial loads at AJs, FAs, and in the cytoplasm during epithelial sheet migration, and we identified a switch-like residue on vinculin that regulates its conformation and loading at the AJs during CCM. In vinculin KO-rescue, this switch jointly controlled the speed and coupling length-scale of CCM, which suggested changes in adhesion-based friction. To test this, we developed molecularly detailed friction clutch models of the FA and AJ. They show that open, loaded vinculin increases friction in adhesive structures, with larger affects observed in AJs. Thus, this work elucidates how load-bearing linker proteins can be regulated to alter mechanical properties of cells and enable rapid tuning of mechanical coupling in CCM.
Collapse
|
35
|
Chirasani VR, Khan MAI, Malavade JN, Dokholyan NV, Hoffman BD, Campbell SL. Elucidation of the Molecular Basis and Cellular Functions of Vinculin-Actin Directional Catch Bonding. RESEARCH SQUARE 2023:rs.3.rs-2334490. [PMID: 36711743 PMCID: PMC9882595 DOI: 10.21203/rs.3.rs-2334490/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The ability of cells and tissues to differentially resist or adapt to mechanical forces applied in distinct directions is mediated by the ability of load-bearing proteins to preferentially maintain physical linkages in certain directions. However, the molecular basis and biological consequences of directional force-sensitive binding are unclear. Vinculin (Vcn) is a load-bearing linker protein that exhibits directional catch bonding due to interactions between the Vcn tail domain (Vt) and filamentous (F)-actin. We developed a computational approach to predict Vcn residues involved in directional catch bonding and produced a set of associated Vcn variants with unaltered Vt structure, actin binding, or phospholipid interactions. Incorporation of these variants into Vcn biosensors did not perturb Vcn conformation, but reduced Vcn loading consistent with loss of directional catch bonding. Expression of Vcn variants perturbed the coalignment of FAs and F-actin and directed cell migration, establishing key cellular functions for Vcn directional catch bonding.
Collapse
Affiliation(s)
- Venkat R. Chirasani
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mohammad Ashhar I. Khan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Nikolay V. Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Department of Chemistry, Penn State College of Medicine, Hershey, PA, USA
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Sharon L. Campbell
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
36
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
37
|
Zhang M, Zhang S, Shi J, Hu Y, Wu S, Zan Z, Zhao P, Gao C, Du Y, Wang Y, Lin F, Fu X, Li D, Qin P, Fan Z. Cell mechanical responses to subcellular perturbations generated by ultrasound and targeted microbubbles. Acta Biomater 2023; 155:471-481. [PMID: 36400351 DOI: 10.1016/j.actbio.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
The inherently dynamic and anisotropic microenvironment of cells imposes not only global and slow physical stimulations on cells but also acute and local perturbations. However, cell mechanical responses to transient subcellular physical signals remain unclear. In this study, acoustically activated targeted microbubbles were used to exert mechanical perturbations to single cells. The cellular contractile force was sensed by elastic micropillar arrays, while the pillar deformations were imaged using brightfield high-speed video microscopy at a frame rate of 1k frames per second for the first 10s and then confocal fluorescence microscopy. Cell mechanical responses are accompanied by cell membrane integrity changes. Both processes are determined by the perturbation strength generated by microbubble volumetric oscillations. The instantaneous cellular traction force relaxation exhibits two distinct patterns, correlated with two cell fates (survival or permanent damage). The mathematical modeling unveils that force-induced actomyosin disassembly leads to gradual traction force relaxation in the first few seconds. The perturbation may also influence the far end subcellular regions from the microbubbles and may propagate into connected cells with attenuations and delays. This study carefully characterizes the cell mechanical responses to local perturbations induced by ultrasound and microbubbles, advancing our understanding of the fundamentals of cell mechano-sensing, -responsiveness, and -transduction. STATEMENT OF SIGNIFICANCE: Subcellular physical perturbations commonly exist but haven't been fully explored yet. The subcellular perturbation generated by ultrasound and targeted microbubbles covers a wide range of strength, from mild, intermediate to intense, providing a broad biomedical relevance. With µm2 spatial sensing ability and up to 1ms temporal resolution, we present spatiotemporal details of the instantaneous cellular contractile force changes followed by attenuated and delayed global responses. The correlation between the cell mechanical responses and cell fates highlights the important role of the instantaneous mechanical responses in the entire cellular reactive processes. Supported by mathematical modeling, our work provides new insights into the dynamics and mechanisms of cell mechanics.
Collapse
Affiliation(s)
- Meiru Zhang
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Suyan Zhang
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Jianmin Shi
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Hu
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Shuying Wu
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Zhaoguang Zan
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Pu Zhao
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Changkai Gao
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyao Du
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Yulin Wang
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Feng Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xing Fu
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Peng Qin
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenzhen Fan
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China; State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
38
|
Modaresifar K, Ganjian M, Díaz-Payno PJ, Klimopoulou M, Koedam M, van der Eerden BC, Fratila-Apachitei LE, Zadpoor AA. Mechanotransduction in high aspect ratio nanostructured meta-biomaterials: The role of cell adhesion, contractility, and transcriptional factors. Mater Today Bio 2022; 16:100448. [PMID: 36238966 PMCID: PMC9552121 DOI: 10.1016/j.mtbio.2022.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
Black Ti (bTi) surfaces comprising high aspect ratio nanopillars exhibit a rare combination of bactericidal and osteogenic properties, framing them as cell-instructive meta-biomaterials. Despite the existing data indicating that bTi surfaces induce osteogenic differentiation in cells, the mechanisms by which this response is regulated are not fully understood. Here, we hypothesized that high aspect ratio bTi nanopillars regulate cell adhesion, contractility, and nuclear translocation of transcriptional factors, thereby inducing an osteogenic response in the cells. Upon the observation of significant changes in the morphological characteristics, nuclear localization of Yes-associated protein (YAP), and Runt-related transcription factor 2 (Runx2) expression in the human bone marrow-derived mesenchymal stem cells (hMSCs), we inhibited focal adhesion kinase (FAK), Rho-associated protein kinase (ROCK), and YAP in separate experiments to elucidate their effects on the subsequent expression of Runx2. Our findings indicated that the increased expression of Runx2 in the cells residing on the bTi nanopillars compared to the flat Ti is highly dependent on the activity of FAK and ROCK. A mechanotransduction pathway is then postulated in which the FAK-dependent adhesion of cells to the extreme topography of the surface is in close relation with ROCK to increase the endogenous forces within the cells, eventually determining the cell shape and area. The nuclear translocation of YAP may also enhance in response to the changes in cell shape and area, resulting in the translation of mechanical stimuli to biochemical factors such as Runx2.
Collapse
Affiliation(s)
- Khashayar Modaresifar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands
| | - Mahya Ganjian
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands
| | - Pedro J. Díaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Maria Klimopoulou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands
| | - Marijke Koedam
- Department of Internal Medicine, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Bram C.J. van der Eerden
- Department of Internal Medicine, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands
| |
Collapse
|
39
|
Wang J, Fan Y, Sanger JM, Sanger JW. STED analysis reveals the organization of nonmuscle muscle II, muscle myosin II, and F-actin in nascent myofibrils. Cytoskeleton (Hoboken) 2022; 79:122-132. [PMID: 36125330 DOI: 10.1002/cm.21729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/30/2023]
Abstract
A three-step model has been proposed to describe myofibril assembly in vertebrate cardiac and skeletal muscle cells beginning with premyofibrils, followed by nascent myofibrils, and ending as mature myofibrils (reviewed in Sanger, Wang, et al. (2017). Assembly and maintenance of myofibrils in striated muscle. Handbook of Experimental Pharmacology 235, 39-75; Wang, Fan, (2020). Myofibril assembly and the roles of the ubiquitin proteasome system. Cytoskeleton 77, 456-479). Premyofibrils are composed of minisarcomeres that contain nonmuscle myosin II filaments interdigitating with actin filaments embedded at their barbed ends in muscle-specific alpha-actinin-rich Z-bodies. Sarcomeres in mature myofibrils have filaments of muscle myosin II that interact with actin filaments that are attached to muscle alpha-actinin in Z-bands. Nascent myofibrils, the transitional step between premyofibrils and mature myofibrils, possess two types of myosins II, that is, nonmuscle myosin II and muscle myosin II. The relationship of these two different myosins II in nascent myofibrils, however, is not clear. Stimulated emission depletion (STED) microscopic analyses of nascent myofibrils in both embryonic chick cardiomyocytes, and hiPSC-derived cardiomyocytes revealed that nonmuscle myosin II is in the middle of the nascent myofibril, surrounded by overlapping muscle myosin II filaments at the periphery, and non-striated filamentous actin is present in the nascent myofibril. These findings support the original three-step model of myofibril assembly proposed by Rhee, Sanger, and Sanger, (1994). The premyofibrils: Evidence for its role in myofibrillogenesis. Cell Motility and the Cytoskeleton 28, 1-24.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
40
|
Wang Y, Wang N, Yang Y, Chen Y, Zhang Z. Cellular nanomechanics derived from pattern-dependent focal adhesion and cytoskeleton to balance gene transfection of malignant osteosarcoma. J Nanobiotechnology 2022; 20:499. [DOI: 10.1186/s12951-022-01713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractGene transfection was supposed to be the most promising technology to overcome the vast majority of diseases and it has been popularly reported in clinical applications of gene therapy. In spite of the rapid development of novel transfection materials and methods, the influence of morphology-dependent nanomechanics of malignant osteosarcoma on gene transfection is still unsettled. In this study, cell spreading and adhesion area was adjusted by the prepared micropatterns to regulate focal adhesion (FA) formation and cytoskeletal organization in osteosarcoma cells. The micropattern-dependent FA and cytoskeleton could induce different cellular nanomechanics to affect cell functions. Our results indicated that transfection efficiency was improved with enlarging FA area and cell nanomechanics in micropatterned osteosarcoma. The difference of gene transfection in micropatterned cells was vigorously supported by cellular internalization capacity, Ki67 proliferation ability and YAP mechanotranduction through the regulation of focal adhesion and cytoskeletal mechanics. This study is an attempt to disclose the relationship of cell nanomechanics and gene transfection for efficient gene delivery and develop multifunctional nanomedicine biomaterials for accurate gene therapy in osteosarcoma cells.
Collapse
|
41
|
Legerstee K, Sueters J, Abraham TE, Slotman JA, Kremers GJ, Hoogenboom JP, Houtsmuller AB. Correlative light and electron microscopy reveals fork-shaped structures at actin entry sites of focal adhesions. Biol Open 2022; 11:283176. [PMID: 36409550 PMCID: PMC9836080 DOI: 10.1242/bio.059417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Focal adhesions (FAs) are the main cellular structures to link the intracellular cytoskeleton to the extracellular matrix. FAs mediate cell adhesion, are important for cell migration and are involved in many (patho)-physiological processes. Here we examined FAs and their associated actin fibres using correlative fluorescence and scanning electron microscopy (SEM). We used fluorescence images of cells expressing paxillin-GFP to define the boundaries of FA complexes in SEM images, without using SEM contrast enhancing stains. We observed that SEM contrast was increased around the actin fibre entry site in 98% of FAs, indicating increases in protein density and possibly also phosphorylation levels in this area. In nearly three quarters of the FAs, these nanostructures had a fork shape, with the actin forming the stem and the high-contrast FA areas the fork. In conclusion, the combination of fluorescent and electron microscopy allowed accurate localisation of a highly abundant, novel fork structure at the FA-actin interface.
Collapse
Affiliation(s)
- Karin Legerstee
- Erasmus Medical Centre Rotterdam, Department of Pathology, Optical Imaging Centre, 3000 CA, Rotterdam, The Netherlands
| | - Jason Sueters
- Delft University of Technology, Department of Imaging Physics, 2628 CD, Delft, The Netherlands
| | - Tsion E. Abraham
- Erasmus Medical Centre Rotterdam, Department of Pathology, Optical Imaging Centre, 3000 CA, Rotterdam, The Netherlands
| | - Johan A. Slotman
- Erasmus Medical Centre Rotterdam, Department of Pathology, Optical Imaging Centre, 3000 CA, Rotterdam, The Netherlands
| | - Gert-Jan Kremers
- Erasmus Medical Centre Rotterdam, Department of Pathology, Optical Imaging Centre, 3000 CA, Rotterdam, The Netherlands
| | - Jacob P. Hoogenboom
- Delft University of Technology, Department of Imaging Physics, 2628 CD, Delft, The Netherlands
| | - Adriaan B. Houtsmuller
- Erasmus Medical Centre Rotterdam, Department of Pathology, Optical Imaging Centre, 3000 CA, Rotterdam, The Netherlands,Author for correspondence ()
| |
Collapse
|
42
|
Bohere J, Eldridge-Thomas BL, Kolahgar G. Vinculin recruitment to α-catenin halts the differentiation and maturation of enterocyte progenitors to maintain homeostasis of the Drosophila intestine. eLife 2022; 11:e72836. [PMID: 36269226 PMCID: PMC9586559 DOI: 10.7554/elife.72836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Mechanisms communicating changes in tissue stiffness and size are particularly relevant in the intestine because it is subject to constant mechanical stresses caused by peristalsis of its variable content. Using the Drosophila intestinal epithelium, we investigate the role of vinculin, one of the best characterised mechanoeffectors, which functions in both cadherin and integrin adhesion complexes. We discovered that vinculin regulates cell fate decisions, by preventing precocious activation and differentiation of intestinal progenitors into absorptive cells. It achieves this in concert with α-catenin at sites of cadherin adhesion, rather than as part of integrin function. Following asymmetric division of the stem cell into a stem cell and an enteroblast (EB), the two cells initially remain connected by adherens junctions, where vinculin is required, only on the EB side, to maintain the EB in a quiescent state and inhibit further divisions of the stem cell. By manipulating cell tension, we show that vinculin recruitment to adherens junction regulates EB activation and numbers. Consequently, removing vinculin results in an enlarged gut with improved resistance to starvation. Thus, mechanical regulation at the contact between stem cells and their progeny is used to control tissue cell number.
Collapse
Affiliation(s)
- Jerome Bohere
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| | - Buffy L Eldridge-Thomas
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| | - Golnar Kolahgar
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
43
|
Le Coq J, Acebrón I, Rodrigo Martin B, López Navajas P, Lietha D. New insights into FAK structure and function in focal adhesions. J Cell Sci 2022; 135:277381. [PMID: 36239192 DOI: 10.1242/jcs.259089] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Focal adhesion kinase (FAK; also known as PTK2) was discovered three decades ago and is now recognised as a key player in the regulation of cell-matrix adhesion and mesenchymal cell migration. Although it is essential during development, FAK also drives invasive cancer progression and metastasis. On a structural level, the basic building blocks of FAK have been described for some time. However, a picture of how FAK integrates into larger assemblies in various cellular environments, including one of its main cellular locations, the focal adhesion (FA) complex, is only beginning to emerge. Nano-resolution data from cellular studies, as well as atomic structures from reconstituted systems, have provided first insights, but also point to challenges that remain for obtaining a full structural understanding of how FAK is integrated in the FA complex and the structural changes occurring at different stages of FA maturation. In this Review, we discuss the known structural features of FAK, the interactions with its partners within the FA environment on the cell membrane and propose how its initial assembly in nascent FAs might change during FA maturation under force.
Collapse
Affiliation(s)
- Johanne Le Coq
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Iván Acebrón
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Bárbara Rodrigo Martin
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Pilar López Navajas
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Daniel Lietha
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
44
|
The explorations of dynamic interactions of paxillin at the focal adhesions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140825. [PMID: 35926716 DOI: 10.1016/j.bbapap.2022.140825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Paxillin is one of the most important adapters in integrin-mediated adhesions that performs numerous crucial functions relying on its dynamic interactions. Its structural behavior serves different purposes, providing a base for several activities. The various domains of paxillin display different functions in the whole process of cell movements and have a significant role in cell adhesion, migration, signal transmission, and protein-protein interactions. On the other hand, some paxillin-associated proteins provide a unique spatiotemporal mechanism for regulating its dynamic characteristics in the tissue homeostasis and make it a more complex and decisive protein at the focal adhesions. This review briefly describes the structural adaptations and molecular mechanisms of recruitment of paxillin into adhesions, explains paxillin's binding dynamics and impact on adhesion stability and turnover, and reveals a variety of paxillin-associated regulatory mechanisms and how paxillin is embedded into the signaling networks.
Collapse
|
45
|
Marks PC, Hewitt BR, Baird MA, Wiche G, Petrie RJ. Plectin linkages are mechanosensitive and required for the nuclear piston mechanism of three-dimensional cell migration. Mol Biol Cell 2022; 33:ar104. [PMID: 35857713 DOI: 10.1091/mbc.e21-08-0414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cells migrating through physiologically relevant three-dimensional (3D) substrates such as cell-derived matrix (CDM) use actomyosin and vimentin intermediate filaments to pull the nucleus forward and pressurize the front of the cell as part of the nuclear piston mechanism of 3D migration. In this study, we tested the role of the cytoskeleton cross-linking protein plectin in facilitating the movement of the nucleus through 3D matrices. We find that the interaction of F-actin and vimentin filaments in cells on 2D glass and in 3D CDM requires actomyosin contractility. Plectin also facilitated these interactions and interacts with vimentin in response to NMII contractility and substrate stiffness, suggesting that the association of plectin and vimentin is mechanosensitive. We find that this mechanosensitive plectin complex slows down 2D migration but is critical for pulling the nucleus forward and generating compartmentalized intracellular pressure in 3D CDM, as well as low-pressure lamellipodial migration in 3D collagen. Finally, plectin expression helped to polarize NMII to in front of the nucleus and to localize the vimentin network around the nucleus. Together, our data suggest that plectin cross-links vimentin and actomyosin filaments, organizes the vimentin network, and polarizes NMII to facilitate the nuclear piston mechanism of 3D cell migration.
Collapse
Affiliation(s)
- Pragati C Marks
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Breanne R Hewitt
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Michelle A Baird
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ryan J Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
46
|
Sun X, Alushin GM. Cellular force-sensing through actin filaments. FEBS J 2022; 290:2576-2589. [PMID: 35778931 PMCID: PMC9945651 DOI: 10.1111/febs.16568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
The actin cytoskeleton orchestrates cell mechanics and facilitates the physical integration of cells into tissues, while tissue-scale forces and extracellular rigidity in turn govern cell behaviour. Here, we discuss recent evidence that actin filaments (F-actin), the core building blocks of the actin cytoskeleton, also serve as molecular force sensors. We delineate two classes of proteins, which interpret forces applied to F-actin through enhanced binding interactions: 'mechanically tuned' canonical actin-binding proteins, whose constitutive F-actin affinity is increased by force, and 'mechanically switched' proteins, which bind F-actin only in the presence of force. We speculate mechanically tuned and mechanically switched actin-binding proteins are biophysically suitable for coordinating cytoskeletal force-feedback and mechanical signalling processes, respectively. Finally, we discuss potential mechanisms mediating force-activated actin binding, which likely occurs both through the structural remodelling of F-actin itself and geometric rearrangements of higher-order actin networks. Understanding the interplay of these mechanisms will enable the dissection of force-activated actin binding's specific biological functions.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| |
Collapse
|
47
|
Choi J, Park S. A nanomechanical strategy involving focal adhesion kinase for overcoming drug resistance in breast cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102559. [PMID: 35390528 DOI: 10.1016/j.nano.2022.102559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Despite implementation of nanomechanical studies in cancer research, studies on the nanomechanical aspects of drug resistance in cancer are lacking. Here, we established the mechanical signatures of drug-resistant breast cancer cells using atomic force microscopy-based indentation techniques and functionalized nanopatterned substrates (NPS). Additionally, we examined the expression of proteins pertinent to focal adhesions in order to elucidate the molecular signatures responsible for the acquisition of drug resistance in breast cancer cells. Drug-resistant breast cancer cells exhibited mechanical reinforcement, increased actin stress fibers, dysfunctional mechano-reciprocal interaction with the NPS, vinculin overexpression, and improved focal adhesion kinase (FAK) activity. Owing to differences in FAK activation upon co-treatment with a FAK inhibitor, the drug-resistant breast cancer cells were eradicated more efficiently than invasive breast cancer cells having pro-survival activity. These findings demonstrated the potential of a novel co-treatment regimen using FAK inhibitors for overcoming drug resistance in breast cancer cells.
Collapse
Affiliation(s)
- Jinsol Choi
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Soyeun Park
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
48
|
Liu S, Kanchanawong P. Emerging interplay of cytoskeletal architecture, cytomechanics and pluripotency. J Cell Sci 2022; 135:275761. [PMID: 35726598 DOI: 10.1242/jcs.259379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells (PSCs) are capable of differentiating into all three germ layers and trophoblasts, whereas tissue-specific adult stem cells have a more limited lineage potency. Although the importance of the cytoskeletal architecture and cytomechanical properties in adult stem cell differentiation have been widely appreciated, how they contribute to mechanotransduction in PSCs is less well understood. Here, we discuss recent insights into the interplay of cellular architecture, cell mechanics and the pluripotent states of PSCs. Notably, the distinctive cytomechanical and morphodynamic profiles of PSCs are accompanied by a number of unique molecular mechanisms. The extent to which such mechanobiological signatures are intertwined with pluripotency regulation remains an open question that may have important implications in developmental morphogenesis and regenerative medicine.
Collapse
Affiliation(s)
- Shiying Liu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore 117411, Republic of Singapore
| |
Collapse
|
49
|
Chang Chien CY, Chou SH, Lee HH. Integrin molecular tension required for focal adhesion maturation and YAP nuclear translocation. Biochem Biophys Rep 2022; 31:101287. [PMID: 35669986 PMCID: PMC9162951 DOI: 10.1016/j.bbrep.2022.101287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Focal adhesions (FAs) provide the cells linkages to extracellular matrix (ECM) at sites of integrins binding and transmit mechanical forces between the ECM and the actin cytoskeleton. Cells sense and respond to physical stimuli from their surrounding environment through the activation of mechanosensitive signaling pathways, a process called mechanotransduction. In this study, we used RGD-peptide conjugated DNA tension gauge tethers (TGTs) with different tension tolerance (Ttol) to determine the molecular forces required for FA maturation in different sizes and YAP nuclear translocation. We found that the limitation of FA sizes in cells seeded on TGTs with different Ttol were less than 1 μm, 2 μm, 3 μm, and 6 μm for Ttol values of 43 pN, 50 pN, 54 pN, and 56 pN, respectively. This suggests that the molecular tension across integrins increases gradually as FA size increases throughout FA maturation. For YAP nuclear translocation, significant YAP nuclear localization was observed only in the cells seeded on the TGTs with Ttol ≥ 54 pN, but not on TGTs with Ttol ≤ 50 pN, suggesting a threshold of molecular force across integrins for YAP nuclear translocation lies in the range of 50 pN–54 pN. Defining forces required for FA maturation and YAP nuclear translocation. Integrin tension enhances gradually with the increase of FA size. Forces required for YAP nuclear translocation lies in the range of 50–54 pN.
Collapse
Affiliation(s)
- Cheng-Yu Chang Chien
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taiwan
| | - Shih-Hua Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taiwan
| | - Hsiao-Hui Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Taiwan
| |
Collapse
|
50
|
Bates M, Keller-Findeisen J, Przybylski A, Hüper A, Stephan T, Ilgen P, Cereceda Delgado AR, D'Este E, Egner A, Jakobs S, Sahl SJ, Hell SW. Optimal precision and accuracy in 4Pi-STORM using dynamic spline PSF models. Nat Methods 2022; 19:603-612. [PMID: 35577958 PMCID: PMC9119851 DOI: 10.1038/s41592-022-01465-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022]
Abstract
Coherent fluorescence imaging with two objective lenses (4Pi detection) enables single-molecule localization microscopy with sub-10 nm spatial resolution in three dimensions. Despite its outstanding sensitivity, wider application of this technique has been hindered by complex instrumentation and the challenging nature of the data analysis. Here we report the development of a 4Pi-STORM microscope, which obtains optimal resolution and accuracy by modeling the 4Pi point spread function (PSF) dynamically while also using a simpler optical design. Dynamic spline PSF models incorporate fluctuations in the modulation phase of the experimentally determined PSF, capturing the temporal evolution of the optical system. Our method reaches the theoretical limits for precision and minimizes phase-wrapping artifacts by making full use of the information content of the data. 4Pi-STORM achieves a near-isotropic three-dimensional localization precision of 2–3 nm, and we demonstrate its capabilities by investigating protein and nucleic acid organization in primary neurons and mammalian mitochondria. A dynamic model of the 4Pi point spread function enables localization microscopy with exceptional three-dimensional resolution and a simpler optical design. 4Pi-STORM images of neurons and mitochondria reveal new details of nanoscale protein and nucleic acid organization.
Collapse
Affiliation(s)
- Mark Bates
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. .,Department of Optical Nanoscopy, Institute for NanoPhotonics, Göttingen, Germany.
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Adrian Przybylski
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andreas Hüper
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Ilgen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Angel R Cereceda Delgado
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Alexander Egner
- Department of Optical Nanoscopy, Institute for NanoPhotonics, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Steffen J Sahl
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. .,Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|