1
|
Wang Z, Song A, Tao B, Miao M, Luo YQ, Wang J, Yin Z, Xiao R, Zhou X, Shang XY, Hu S, Liang K, Danko CG, Chen FX. The phosphatase PP1 sustains global transcription by promoting RNA polymerase II pause release. Mol Cell 2024; 84:4824-4842.e7. [PMID: 39603240 DOI: 10.1016/j.molcel.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
RNA polymerase II progression from initiation to elongation is driven in part by a cascade of protein kinases acting on the core transcription machinery. Conversely, the corresponding phosphatases, notably PP2A and PP1-the most abundant serine-threonine phosphatases in cells-are thought to mainly impede polymerase progression, respectively restraining pause release at promoters and elongation at terminators. Here, we reveal an unexpected role of PP1, within the phosphatase 1 nuclear targeting subunit (PNUTS)-PP1 complex, in sustaining global transcriptional activation in human cells. Acute disruption of PNUTS-PP1 leads to severe defects in the release of paused polymerase and subsequent downregulation for the majority of transcribed genes. PNUTS-PP1 promotes pause release by dephosphorylating multiple substrates, including the 7SK small nuclear ribonucleoprotein particle (snRNP) subunit MEPCE, a known pausing regulator. PNUTS-PP1 exhibits antagonistic functions compared with Integrator-PP2A (INTAC) phosphatase, which generally inhibits pause release. Our research thus highlights opposing roles of PP1 and PP2A in modulating genome-wide transcriptional pausing and gene expression.
Collapse
Affiliation(s)
- Zhenning Wang
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Aixia Song
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bolin Tao
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Maojian Miao
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Qing Luo
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingwen Wang
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhinang Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruijing Xiao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xinwen Zhou
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xue-Ying Shang
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shibin Hu
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kaiwei Liang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Fei Xavier Chen
- Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Rithvik A, Wadhavane S, Rasool M. Decoding poly (RC)-binding protein 1 (PCBP1), the underrated guard at the foothill of ferroptosis. Pathol Res Pract 2024; 266:155771. [PMID: 39700662 DOI: 10.1016/j.prp.2024.155771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
PCBP1 is a multifunctional adaptor protein, whose function as an iron chaperone and epigenetic regulator of several chemical messengers involved in ferroptosis has garnered much attention. Herein, this review, several attempts have been made to simplify our understanding of the complex roles of PCBP1. The review begins by elucidating the relevance of PCBP1 in key events governing ferroptosis. We expeditiously shed light on some of the important mechanisms that have critical implications for the ferroptosis landscape. For instance, senescence, EMT, hypoxia, and regulation of the cell cycle and immune checkpoints, among others, have been demonstrated to influence ferroptosis sensitivity to varying degrees. Thus, this review entails a conscious attempt to carefully examine the relevance of PCBP1 in such potential mechanisms. Furthermore, we investigated the therapeutic relevance of PCBP1 in tumor biology and autoimmunity, while underscoring the contrasting perspective of ferroptosis targeting across the disease spectrum. Finally, we debate the different strategies that can be exploited to target PCBP1 in promoting or inhibiting ferroptosis.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sakshi Wadhavane
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
3
|
Chen Y, Dai J, Chen P, Dai Q, Chen Y, Li Y, Lu M, Qin S, Wang Q. Long non-coding RNAs-sphingolipid metabolism nexus: Potential targets for cancer treatment. Pharmacol Res 2024; 210:107539. [PMID: 39647803 DOI: 10.1016/j.phrs.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of cancer pathogenesis, influencing various cellular processes and contributing to tumorigenesis. Sphingolipid metabolism has garnered interest as a potential target for cancer therapy owing to its considerable diagnostic and prognostic value. Recent studies have demonstrated that lncRNAs regulate tumor-associated metabolic reprogramming via sphingolipid metabolism. However, the precise nature of the interactions between lncRNAs and sphingolipid metabolism remains unclear. This review summarizes the key roles of lncRNAs and sphingolipid metabolism in tumorigenesis. We emphasize that the interaction between lncRNAs and sphingolipid metabolism influences their impact on both cancer prognosis and drug resistance. These findings suggest that lncRNA-sphingolipid metabolism interaction holds great potential as a newl target for cancer treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jing Dai
- School of pharmacy, Chengdu Medical college, Chengdu, China.
| | - Peng Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Quan Dai
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ya Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yuying Li
- Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Man Lu
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Shugang Qin
- Department of Exerimental Research, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiuju Wang
- Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
4
|
Eftekhari Kenzerki M, Mohajeri Khorasani A, Zare I, Amirmahani F, Ghasemi Y, Hamblin MR, Mousavi P. Deciphering the role of LOC124905135-related non-coding RNA cluster in human cancers: A comprehensive review. Heliyon 2024; 10:e39931. [PMID: 39641053 PMCID: PMC11617737 DOI: 10.1016/j.heliyon.2024.e39931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), are essential regulators of processes, such as the cell cycle and apoptosis. In addition to interacting with intracellular complexes and participating in diverse molecular pathways, ncRNAs can be used as clinical diagnostic biomarkers and therapeutic targets for fighting cancer. Studying ncRNA gene clusters is crucial for understanding their role in cancer and developing new treatments. LOC124905135 is a protein-coding gene encoding a collagen alpha-1(III) chain-like protein, and also acts as a gene for several ncRNAs, including miR-3619, PRR34 antisense RNA 1 (PRR34-AS1), PRR34, long intergenic ncRNA 2939 (LINC02939), LOC112268288, and MIRLET7BHG. It also serves as a host gene for three miRNAs (hsa-let7-A3, hsa-miR-4763, and hsa-let-7b). Notably, the ncRNAs derived from this particular genomic region significantly affect various cell functions, including the cell cycle and apoptosis. This cluster of ncRNAs is dysregulated in several types of cancer, exhibiting mutations, alterations in copy number, and being subject to DNA methylation and histone modification. In summary, the ncRNAs derived from the LOC124905135 cluster could be used as targets for diagnosis, therapy monitoring, and drug discovery in human cancers.
Collapse
Affiliation(s)
- Maryam Eftekhari Kenzerki
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran
| | - Farzane Amirmahani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
5
|
Chen LL, Kim VN. Small and long non-coding RNAs: Past, present, and future. Cell 2024; 187:6451-6485. [PMID: 39547208 DOI: 10.1016/j.cell.2024.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Since the introduction of the central dogma of molecular biology in 1958, various RNA species have been discovered. Messenger RNAs transmit genetic instructions from DNA to make proteins, a process facilitated by housekeeping non-coding RNAs (ncRNAs) such as small nuclear RNAs (snRNAs), ribosomal RNAs (rRNAs), and transfer RNAs (tRNAs). Over the past four decades, a wide array of regulatory ncRNAs have emerged as crucial players in gene regulation. In celebration of Cell's 50th anniversary, this Review explores our current understanding of the most extensively studied regulatory ncRNAs-small RNAs and long non-coding RNAs (lncRNAs)-which have profoundly shaped the field of RNA biology and beyond. While small RNA pathways have been well documented with clearly defined mechanisms, lncRNAs exhibit a greater diversity of mechanisms, many of which remain unknown. This Review covers pivotal events in their discovery, biogenesis pathways, evolutionary traits, action mechanisms, functions, and crosstalks among ncRNAs. We also highlight their roles in pathophysiological contexts and propose future research directions to decipher the unknowns of lncRNAs by leveraging lessons from small RNAs.
Collapse
Affiliation(s)
- Ling-Ling Chen
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; New Cornerstone Science Laboratory, Shenzhen, China.
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Vinasco-Sandoval T, Moratille S, Crechet F, Mesloub Y, Montanari J, Auvré F, Deleuze JF, Foray N, Fortunel NO, Martin MT. Long Noncoding VIM-AS1: Biomarker of Breast Fibrosis Susceptibility After Radiation Therapy and Promoter of Transforming Growth Factor Beta1-Driven Fibrosis. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03448-5. [PMID: 39436333 DOI: 10.1016/j.ijrobp.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
PURPOSE Fibrosis is a common late complication of radiation therapy. Molecular dysregulations leading to fibrosis have been characterized for the coding part of the genome, notably those involving the TGFB1 gene network. However, because a large part of the human genome encodes RNA transcripts that are not translated into proteins, exploring the involvement of the noncoding part of the genome in fibrosis susceptibility and development was the aim of this work. METHODS AND MATERIALS Breast cancer patients having or not having developed severe breast fibrosis after radiation therapy were retrospectively selected from the COPERNIC collection. Exome sequencing and RNA-seq transcriptomic profiling were performed on 19 primary dermal fibroblast strains isolated from the patients' nonirradiated skin. Functional experiments were based on fibrogenic induction by transforming growth factor-Beta1 (TGFB1) and gene knockdown in healthy donor fibroblasts. RESULTS Coding and noncoding transcriptomes discriminated fibrosis from nonfibrosis conditions, and a signature of breast fibrosis susceptibility comprising 15 long noncoding RNAs (lncRNAs) was identified. A hazard ratio validation showed that the lncRNA vimentin antisense long noncoding RNA 1 (VIM-AS1) was the best biomarker associated with fibrosis risk. This lncRNA has not been previously associated with any fibrotic disorder, but we found it upregulated in data sets from cardiac fibrosis and scleroderma, suggesting a general role in tissue fibrosis. Functional experiments demonstrated a profibrotic action of VIM-AS1 because its knockdown reduced myofibroblast activation, collagen matrix production, and dermal organoid contraction. RNA-seq data analysis after VIM-AS1 silencing also pointed out the regulation of replication, cell cycle, and DNA repair. Mechanistically, because VIM-AS1 was found coregulated with the vimentin gene, these data support a profibrotic function of the TGFB1/VIM-AS1/vimentin axis, targeting the dynamics of fibroblast-myofibroblast transition. CONCLUSIONS Noncoding RNA analysis can provide specific biomarkers relevant to the prediction of normal tissue responses after radiation therapy, which opens perspectives of next-generation approaches for treatment, in the frame of the recent developments of RNA-based technologies.
Collapse
Affiliation(s)
- Tatiana Vinasco-Sandoval
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France
| | - Sandra Moratille
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France
| | - Françoise Crechet
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France
| | - Yasmina Mesloub
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France
| | - Juliette Montanari
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France
| | - Frederic Auvré
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France
| | - Jean-François Deleuze
- CEA, Institut de Biologie François Jacob (IBFJ), Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Nicolas Foray
- INSERM, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, Lyon, France
| | - Nicolas O Fortunel
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France.
| | - Michele T Martin
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France.
| |
Collapse
|
7
|
Karam JAQ, Fréreux C, Mohanty BK, Dalton AC, Dincman TA, Palanisamy V, Howley BV, Howe PH. The RNA-binding protein PCBP1 modulates transcription by recruiting the G-quadruplex-specific helicase DHX9. J Biol Chem 2024; 300:107830. [PMID: 39342995 PMCID: PMC11538862 DOI: 10.1016/j.jbc.2024.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
PCBP1, polycytosine (poly(C)) binding protein 1, an RNA and single-stranded DNA (ssDNA) binding protein, binds poly(C) DNA tracts but it remains unclear whether its ability to bind ssDNA contributes to transcriptional regulation. Here, we report that PCBP1's DNA binding sites are enriched at transcription start sites and that by binding to promoter regions, PCBP1 regulates transcription in addition to splicing and translation. At PCBP1 target genes, we show that PCBP1 interacts with several RNA/DNA hybrid (R-loop) associated G-quadruplex resolving helicases. Furthermore, we find that PCBP1 interacts with RNA Helicase A (DHX9) to modulate transcription by regulating DHX9 accumulation and activity. PCBP1 depletion leads to defects in R-loop processing and dysregulation of transcription of PCBP1 target genes. PCBP1's high sequence specificity and interaction with helicases suggest that its mechanism in transcription involves guiding helicases to specific loci during transcription, thereby modulating their activity.
Collapse
Affiliation(s)
- Joseph A Q Karam
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Cécile Fréreux
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina, USA
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Division of Molecular Medicine, Department of Internal Medicine, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
8
|
Gallardo-Dodd CJ, Kutter C. The regulatory landscape of interacting RNA and protein pools in cellular homeostasis and cancer. Hum Genomics 2024; 18:109. [PMID: 39334294 PMCID: PMC11437681 DOI: 10.1186/s40246-024-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Biological systems encompass intricate networks governed by RNA-protein interactions that play pivotal roles in cellular functions. RNA and proteins constituting 1.1% and 18% of the mammalian cell weight, respectively, orchestrate vital processes from genome organization to translation. To date, disentangling the functional fraction of the human genome has presented a major challenge, particularly for noncoding regions, yet recent discoveries have started to unveil a host of regulatory functions for noncoding RNAs (ncRNAs). While ncRNAs exist at different sizes, structures, degrees of evolutionary conservation and abundances within the cell, they partake in diverse roles either alone or in combination. However, certain ncRNA subtypes, including those that have been described or remain to be discovered, are poorly characterized given their heterogeneous nature. RNA activity is in most cases coordinated through interactions with RNA-binding proteins (RBPs). Extensive efforts are being made to accurately reconstruct RNA-RBP regulatory networks, which have provided unprecedented insight into cellular physiology and human disease. In this review, we provide a comprehensive view of RNAs and RBPs, focusing on how their interactions generate functional signals in living cells, particularly in the context of post-transcriptional regulatory processes and cancer.
Collapse
Affiliation(s)
- Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
9
|
Chen K, You Y, Tang W, Tian X, Zhu C, Yin Z, Zeng M, He X. HAND2-AS1 plays a tumor-suppressive role in hepatoblastoma through the negative regulation of CDK1. Heliyon 2024; 10:e35930. [PMID: 39286228 PMCID: PMC11402935 DOI: 10.1016/j.heliyon.2024.e35930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Objective Hepatoblastoma (HB) is the most commonly seen pediatric liver malignancy. The preliminary experiment of our research group found that cyclin dependent kinase 1 (CDK1) was upregulated in HB. By in silico analysis, long noncoding RNA (lncRNA) HAND2 antisense RNA 1 (HAND2-AS1) was determined as the research object. Herein, HAND2-AS1 expression in HB and its effect and mechanism on HB were extensively investigated. Methods CDK1-related lncRNAs were searched using the microarray data from the Gene Expression Omnibus (GEO) database and Gene Expression Profiling Interactive Analysis (GEPIA) online database. qRT-PCR, Western blot, and immunohistochemistry were performed to determine the mRNA expression and protein levels of target genes. MTT, flow cytometry and DAPI staining assays were conducted to measure proliferation activity, cell cycle progression, and apoptosis of HB cells. The interaction between lncRNA and protein was determined by RNA pull-down and FISH assays. Luciferase assay was applied to identify whether HAND2-AS1 stimulates the transcription of CDK1. CDK1 mRNA stability was detected through actinomycin D assay. Aycloheximide assay was used to detect the CDK1 protein stability. Results HAND2-AS1 was downregulated in HB tissues and cells. HAND2-AS1 overexpression impeded HB cells proliferation activity and cycle progression while inducing cell apoptosis of HB cells, while knockdown of HAND2-AS1 emerged the opposite effect. HAND2-AS1 negatively correlated with CDK1. HAND2-AS1 downregulated CDK1 expression by affecting the transcriptional activity, mRNA and protein stability of CDK1. Furthermore, HAND2-AS1 impeded HB cell proliferation and cycle progression while inducing cell apoptosis by downregulating CDK1. Conclusion Our research highlights that HAND2-AS1 can exert a tumor-suppressive effect on HB through the negative regulation of CDK1, and the HAND2-AS1/CDK1 is expected to be a diagnostic molecular marker and therapeutic target for HB in clinical practice.
Collapse
Affiliation(s)
- Keke Chen
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Yalan You
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Wenfang Tang
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Xin Tian
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Chengguang Zhu
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Zexi Yin
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Minhui Zeng
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Xiangling He
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| |
Collapse
|
10
|
Poliseno L, Lanza M, Pandolfi PP. Coding, or non-coding, that is the question. Cell Res 2024; 34:609-629. [PMID: 39054345 PMCID: PMC11369213 DOI: 10.1038/s41422-024-00975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/30/2024] [Indexed: 07/27/2024] Open
Abstract
The advent of high-throughput sequencing uncovered that our genome is pervasively transcribed into RNAs that are seemingly not translated into proteins. It was also found that non-coding RNA transcripts outnumber canonical protein-coding genes. This mindboggling discovery prompted a surge in non-coding RNA research that started unraveling the functional relevance of these new genetic units, shaking the classic definition of "gene". While the non-coding RNA revolution was still taking place, polysome/ribosome profiling and mass spectrometry analyses revealed that peptides can be translated from non-canonical open reading frames. Therefore, it is becoming evident that the coding vs non-coding dichotomy is way blurrier than anticipated. In this review, we focus on several examples in which the binary classification of coding vs non-coding genes is outdated, since the same bifunctional gene expresses both coding and non-coding products. We discuss the implications of this intricate usage of transcripts in terms of molecular mechanisms of gene expression and biological outputs, which are often concordant, but can also surprisingly be discordant. Finally, we discuss the methodological caveats that are associated with the study of bifunctional genes, and we highlight the opportunities and challenges of therapeutic exploitation of this intricacy towards the development of anticancer therapies.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.
- Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Martina Lanza
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Siena, Siena, Italy
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, USA.
| |
Collapse
|
11
|
Jian J, Feng Y, Wang R, Li C, Zhang L, Ruan Y, Luo B, Liang G, Liu T. METTL3-Regulated lncRNA SNHG7 Drives MNNG-Induced Epithelial-Mesenchymal Transition in Gastric Precancerous Lesions. TOXICS 2024; 12:573. [PMID: 39195675 PMCID: PMC11360688 DOI: 10.3390/toxics12080573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
As a representative item of chemical carcinogen, MNNG is closely associated with the onset of gastric cancer (GC), where N6-methyladonosine (m6A) RNA methylation is recognized as a critical epigenetic event. In our previous study, we found that the m6A modification by methyltransferase METTL3 was up-regulated in MNNG-exposed malignant GES-1 cells (MC cells) compared to control cells in vitro, and long non-coding RNA SNHG7 as a downstream target of the METTL3. However, the functional role of METTL3 in mediating the SNHG7 axis in MNNG-induced GC remains unclear. In the present study, we continuously investigate the functional role of METTL3 in mediating the SNHG7 axis in MNNG-induced GC. RIP-PCR and m6A-IP-qPCR were used to examine the molecular mechanism underlying the METTL3/m6A/SNHG7 axis in MNNG-induced GC. A METTL3 knockout mice model was constructed and exposed by MNNG. Western blot analysis, IHC analysis, and RT-qPCR were used to measure the expression of METTL3, SNHG7, and EMT markers. In this study, we demonstrated that in MNNG-induced GC tumorigenesis, the m6A modification regulator METTL3 facilitates cellular EMT and biological functions through the m6A/SNHG7 axis using in vitro and in vivo models. In conclusion, our study provides novel insights into critical epigenetic molecular events vital to MNNG-induced gastric carcinogenesis. These findings suggest the potential therapeutic targets of METTL3 for GC treatment.
Collapse
Affiliation(s)
- Jiabei Jian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| | - Yanlu Feng
- Qinghai Provincial Center for Disease Control and Prevention, Institute of Immunization Planning, Xining 810000, China;
| | - Ruiying Wang
- Gansu Provincial Center for Disease Prevention and Control, Lanzhou 730000, China;
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
| | - Lin Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| | - Ye Ruan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, China;
| | - Tong Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| |
Collapse
|
12
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
13
|
Blanchard CE, Gomeiz AT, Avery K, Gazzah EE, Alsubaie AM, Sikaroodi M, Chiari Y, Ward C, Sanchez J, Espina V, Petricoin E, Baldelli E, Pierobon M. Signaling dynamics in coexisting monoclonal cell subpopulations unveil mechanisms of resistance to anti-cancer compounds. Cell Commun Signal 2024; 22:377. [PMID: 39061010 PMCID: PMC11282632 DOI: 10.1186/s12964-024-01742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Tumor heterogeneity is a main contributor of resistance to anti-cancer targeted agents though it has proven difficult to study. Unfortunately, model systems to functionally characterize and mechanistically study dynamic responses to treatment across coexisting subpopulations of cancer cells remain a missing need in oncology. METHODS Using single cell cloning and expansion techniques, we established monoclonal cell subpopulations (MCPs) from a commercially available epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer cell line. We then used this model sensitivity to the EGFR inhibitor osimertinib across coexisting cell populations within the same tumor. Pathway-centered signaling dynamics associated with response to treatment and morphological characteristics of the MCPs were assessed using Reverse Phase Protein Microarray. Signaling nodes differentially activated in MCPs less sensitive to treatment were then pharmacologically inhibited to identify target signaling proteins putatively implicated in promoting drug resistance. RESULTS MCPs demonstrated highly heterogeneous sensitivities to osimertinib. Cell viability after treatment increased > 20% compared to the parental line in selected MCPs, whereas viability decreased by 75% in other MCPs. Reduced treatment response was detected in MCPs with higher proliferation rates, EGFR L858R expression, activation of EGFR binding partners and downstream signaling molecules, and expression of epithelial-to-mesenchymal transition markers. Levels of activation of EGFR binding partners and MCPs' proliferation rates were also associated with response to c-MET and IGFR inhibitors. CONCLUSIONS MCPs represent a suitable model system to characterize heterogeneous biomolecular behaviors in preclinical studies and identify and functionally test biological mechanisms associated with resistance to targeted therapeutics.
Collapse
Affiliation(s)
- Claire E Blanchard
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Alison T Gomeiz
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Kyle Avery
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Emna El Gazzah
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Abduljalil M Alsubaie
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, VA, 20110, USA
| | - Ylenia Chiari
- Department of Biology, George Mason University, Fairfax, VA, 22030, USA
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2TQ, UK
| | - Chelsea Ward
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Jonathan Sanchez
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Mariaelena Pierobon
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA.
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
14
|
Shi L, Han X, Liu F, Long J, Jin Y, Chen S, Duan G, Yang H. Review on Long Non-Coding RNAs as Biomarkers and Potentially Therapeutic Targets for Bacterial Infections. Curr Issues Mol Biol 2024; 46:7558-7576. [PMID: 39057090 PMCID: PMC11276060 DOI: 10.3390/cimb46070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The confrontation between humans and bacteria is ongoing, with strategies for combating bacterial infections continually evolving. With the advancement of RNA sequencing technology, non-coding RNAs (ncRNAs) associated with bacterial infections have garnered significant attention. Recently, long ncRNAs (lncRNAs) have been identified as regulators of sterile inflammatory responses and cellular defense against live bacterial pathogens. They are involved in regulating host antimicrobial immunity in both the nucleus and cytoplasm. Increasing evidence indicates that lncRNAs are critical for the intricate interactions between host and pathogen during bacterial infections. This paper emphatically elaborates on the potential applications of lncRNAs in clinical hallmarks, cellular damage, immunity, virulence, and drug resistance in bacterial infections in greater detail. Additionally, we discuss the challenges and limitations of studying lncRNAs in the context of bacterial infections and highlight clear directions for this promising field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (L.S.); (X.H.); (F.L.); (J.L.); (Y.J.); (S.C.); (G.D.)
| |
Collapse
|
15
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
16
|
Ma X, He Y, Liu C, Zhu T, Li D, Li W, Sun G, Kang X. Long Noncoding RNA 6302 Regulates Chicken Preadipocyte Differentiation by Targeting SLC22A16. Genes (Basel) 2024; 15:758. [PMID: 38927694 PMCID: PMC11203196 DOI: 10.3390/genes15060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The excessive deposition of abdominal adipocytes in chickens is detrimental to poultry production. However, the regulatory factors that affect abdominal adipogenesis in chickens are still poorly understood. SLC22A16 is differentially expressed in abdominal preadipocytes and 10-day differentiated adipocytes in chickens, but its role in regulating chicken adipogenesis has not been reported. In this study, the function of SLC22A16 in chicken abdominal preadipocytes was investigated. SLC22A16 is significantly upregulated during abdominal adipocyte differentiation. The overexpression of SLC2A16 upregulated the expression of adipogenic marker genes and proliferation-related genes, and promoted the proliferation of adipocytes and the accumulation of triglycerides. The knockdown of SLC22A16 downregulated the expression of adipogenic marker genes and proliferation-related genes, inhibited the proliferation of adipocytes, and impaired the accumulation of triglycerides in adipocytes. In addition, LNC6302 was differentially expressed in abdominal preadipocytes and mature adipocytes, and was significantly positively correlated with the expression of SLC22A16. Interference with LNC6302 inhibits the expression of adipogenic marker genes and proliferation-related genes. The data supported the notion that LNC6302 promotes the differentiation of chicken abdominal adipocytes by cis-regulating the expression of SLC22A16. This study identified the role of SLC22A16 in the differentiation and proliferation of chicken adipocytes, providing a potential target for improving abdominal adipogenesis in chickens.
Collapse
Affiliation(s)
- Xiangfei Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| | - Yuehua He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| | - Tingqi Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Guirong Sun
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| |
Collapse
|
17
|
Zhang YE, Stuelten CH. Alternative splicing in EMT and TGF-β signaling during cancer progression. Semin Cancer Biol 2024; 101:1-11. [PMID: 38614376 PMCID: PMC11180579 DOI: 10.1016/j.semcancer.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological process during development where epithelial cells transform to acquire mesenchymal characteristics, which allows them to migrate and colonize secondary tissues. Many cellular signaling pathways and master transcriptional factors exert a myriad of controls to fine tune this vital process to meet various developmental and physiological needs. Adding to the complexity of this network are post-transcriptional and post-translational regulations. Among them, alternative splicing has been shown to play important roles to drive EMT-associated phenotypic changes, including actin cytoskeleton remodeling, cell-cell junction changes, cell motility and invasiveness. In advanced cancers, transforming growth factor-β (TGF-β) is a major inducer of EMT and is associated with tumor cell metastasis, cancer stem cell self-renewal, and drug resistance. This review aims to provide an overview of recent discoveries regarding alternative splicing events and the involvement of splicing factors in the EMT and TGF-β signaling. It will emphasize the importance of various splicing factors involved in EMT and explore their regulatory mechanisms.
Collapse
Affiliation(s)
- Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Christina H Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Gu L, Yue X, Niu S, Ma J, Liu S, Pan M, Song L, Su Q, Tan Y, Li Y, Chang J. Systematical identification of key genes and regulatory genetic variants associated with prognosis of esophageal squamous cell carcinoma. Mol Carcinog 2024; 63:1013-1023. [PMID: 38380955 DOI: 10.1002/mc.23704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) stands as a highly lethal malignancy characterized by pronounced recurrence and metastasis, resulting in a bleak 5-year survival rate. Despite extensive investigations, encompassing genome-wide association studies, the identification of robust prognostic markers has remained elusive. In this study, leveraging four independent data sets comprising 404 ESCC patients, we conducted a systematic analysis to unveil pivotal genes influencing overall survival. our meta-analysis identified 278 genes significantly associated with ESCC prognosis. Further exploration of the prognostic landscape involved an examination of expression quantitative trait loci for these genes, leading to the identification of six tag single nucleotide polymorphisms predictive of overall survival in a cohort of 904 ESCC patients. Notably, functional annotation spotlighted rs11227223, residing in the enhancer region of nuclear paraspeckle assembly transcript 1 (NEAT1), as a crucial variant likely exerting a substantive biological role. Through a series of biochemistry experiments, we conclusively demonstrated that the rs11227223-T allele, indicative of a poorer prognosis, augmented NEAT1 expression. Our results underscore the substantive role of NEAT1 and its regulatory variant in prognostic predictions for ESCC. This comprehensive analysis not only advances our comprehension of ESCC prognosis but also unveils a potential avenue for targeted interventions, offering promise for enhanced clinical outcomes.
Collapse
Affiliation(s)
- Linglong Gu
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinying Yue
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyuan Niu
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialing Ma
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shasha Liu
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miaoxin Pan
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Song
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Su
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqian Tan
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueping Li
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Zeinelabdeen Y, Abaza T, Yasser MB, Elemam NM, Youness RA. MIAT LncRNA: A multifunctional key player in non-oncological pathological conditions. Noncoding RNA Res 2024; 9:447-462. [PMID: 38511054 PMCID: PMC10950597 DOI: 10.1016/j.ncrna.2024.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has unveiled a wide range of transcripts that do not encode proteins but play key roles in several cellular and molecular processes. Long noncoding RNAs (lncRNAs) are specific class of ncRNAs that are longer than 200 nucleotides and have gained significant attention due to their diverse mechanisms of action and potential involvement in various pathological conditions. In the current review, the authors focus on the role of lncRNAs, specifically highlighting the Myocardial Infarction Associated Transcript (MIAT), in non-oncological context. MIAT is a nuclear lncRNA that has been directly linked to myocardial infarction and is reported to control post-transcriptional processes as a competitive endogenous RNA (ceRNA) molecule. It interacts with microRNAs (miRNAs), thereby limiting the translation and expression of their respective target messenger RNA (mRNA) and regulating protein expression. Yet, MIAT has been implicated in other numerous pathological conditions such as other cardiovascular diseases, autoimmune disease, neurodegenerative diseases, metabolic diseases, and many others. In this review, the authors emphasize that MIAT exhibits distinct expression patterns and functions across different pathological conditions and is emerging as potential diagnostic, prognostic, and therapeutic agent. Additionally, the authors highlight the regulatory role of MIAT and shed light on the involvement of lncRNAs and specifically MIAT in various non-oncological pathological conditions.
Collapse
Affiliation(s)
- Yousra Zeinelabdeen
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Tasneem Abaza
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Biotechnology and Biomolecular Biochemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
| |
Collapse
|
20
|
Lozano-Vidal N, Stanicek L, Bink DI, Juni RP, Hooglugt A, Kremer V, Phelp P, van Bergen A, MacInnes AW, Dimmeler S, Boon RA. Aging-regulated PNUTS maintains endothelial barrier function via SEMA3B suppression. Commun Biol 2024; 7:541. [PMID: 38714838 PMCID: PMC11076560 DOI: 10.1038/s42003-024-06230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Age-related diseases pose great challenges to health care systems worldwide. During aging, endothelial senescence increases the risk for cardiovascular disease. Recently, it was described that Phosphatase 1 Nuclear Targeting Subunit (PNUTS) has a central role in cardiomyocyte aging and homeostasis. Here, we determine the role of PNUTS in endothelial cell aging. We confirm that PNUTS is repressed in senescent endothelial cells (ECs). Moreover, PNUTS silencing elicits several of the hallmarks of endothelial aging: senescence, reduced angiogenesis and loss of barrier function. Findings are validate in vivo using endothelial-specific inducible PNUTS-deficient mice (Cdh5-CreERT2;PNUTSfl/fl), termed PNUTSEC-KO. Two weeks after PNUTS deletion, PNUTSEC-KO mice present severe multiorgan failure and vascular leakage. Transcriptomic analysis of PNUTS-silenced HUVECs and lungs of PNUTSEC-KO mice reveal that the PNUTS-PP1 axis tightly regulates the expression of semaphorin 3B (SEMA3B). Indeed, silencing of SEMA3B completely restores barrier function after PNUTS loss-of-function. These results reveal a pivotal role for PNUTS in endothelial homeostasis through a SEMA3B downstream pathway that provides a potential target against the effects of aging in ECs.
Collapse
Affiliation(s)
- Noelia Lozano-Vidal
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Laura Stanicek
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Institute of Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Diewertje I Bink
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Rio P Juni
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Aukie Hooglugt
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Veerle Kremer
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Philippa Phelp
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Anke van Bergen
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Alyson W MacInnes
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Potsdamer Strasse 58, 10785, Berlin, Germany
| | - Reinier A Boon
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Institute of Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Potsdamer Strasse 58, 10785, Berlin, Germany.
| |
Collapse
|
21
|
Qi L, Xing J, Yuan Y, Lei M. Noncoding RNAs in atherosclerosis: regulation and therapeutic potential. Mol Cell Biochem 2024; 479:1279-1295. [PMID: 37418054 PMCID: PMC11116212 DOI: 10.1007/s11010-023-04794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
Atherosclerosis, a chronic disease of arteries, results in high mortality worldwide as the leading cause of cardiovascular disease. The development of clinically relevant atherosclerosis involves the dysfunction of endothelial cells and vascular smooth muscle cells. A large amount of evidence indicates that noncoding RNAs, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in various physiological and pathological processes. Recently, noncoding RNAs were identified as key regulators in the development of atherosclerosis, including the dysfunction of endothelial cells, and vascular smooth muscle cells and it is pertinent to understand the potential function of noncoding RNAs in atherosclerosis development. In this review, the latest available research relates to the regulatory role of noncoding RNAs in the progression of atherosclerosis and the therapeutic potential for atherosclerosis is summarized. This review aims to provide a comprehensive overview of the regulatory and interventional roles of ncRNAs in atherosclerosis and to inspire new insights for the prevention and treatment of this disease.
Collapse
MESH Headings
- Humans
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/therapy
- Atherosclerosis/pathology
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Luyao Qi
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China
| | - Jixiang Xing
- Peripheral Vascular Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300150, Tianjin, China
| | - Yuesong Yuan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, 250014, Jinan, Shandong, China
| | - Ming Lei
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China.
| |
Collapse
|
22
|
Zhu Z, Li M, Weng J, Li S, Guo T, Guo Y, Xu Y. LncRNA GAS6-AS1 contributes to 5-fluorouracil resistance in colorectal cancer by facilitating the binding of PCBP1 with MCM3. Cancer Lett 2024; 589:216828. [PMID: 38521199 DOI: 10.1016/j.canlet.2024.216828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
5-Fluorouracil (5-FU) resistance has always been a formidable obstacle in the adjuvant treatment of advanced colorectal cancer (CRC). In recent years, long non-coding RNAs have emerged as key regulators in various pathophysiological processes including 5-FU resistance. TRG is a postoperative pathological score of the chemotherapy effectiveness for CRC, of which TRG 0-1 is classified as chemotherapy sensitivity and TRG 3 as chemotherapy resistance. Here, RNA-seq combined with weighted gene correlation network analysis confirmed the close association of GAS6-AS1 with TRG. GAS6-AS1 expression was positively correlated with advanced clinicopathological features and poor prognosis in CRC. GAS6-AS1 increased the 50% inhibiting concentration of 5-FU, enhanced cell proliferation and accelerated G1/S transition, both with and without 5-FU, both in vitro and in vivo. Mechanistically, GAS6-AS1 enhanced the stability of MCM3 mRNA by recruiting PCBP1, consequently increasing MCM3 expression. Furthermore, PCBP1 and MCM3 counteracted the effects of GAS6-AS1 on 5-FU resistance. Notably, the PDX model indicated that combining chemotherapeutic drugs with GAS6-AS1 knockdown yielded superior outcomes in vivo. Together, our findings elucidate that GAS6-AS1 directly binds to PCBP1, enhancing MCM3 expression and thereby promoting 5-FU resistance. GAS6-AS1 may serve as a robust biomarker and potential therapeutic target for combination therapy in CRC.
Collapse
Affiliation(s)
- Zhonglin Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Minghan Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Shanbao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Tianan Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yang Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
23
|
Abdullaev B, Alsaab HO, Hjazi A, Alkhafaji AT, Alawadi AH, Hamzah HF. The mechanisms behind the dual role of long non-coding RNA (lncRNA) metastasis suppressor-1 in human tumors: Shedding light on the molecular mechanisms. Pathol Res Pract 2024; 256:155189. [PMID: 38452581 DOI: 10.1016/j.prp.2024.155189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
When the expression levels of metastasis suppressor-1 (MTSS1) were discovered to be downregulated in a metastatic cancer cell line in 2002, it was proposed that MTSS1 functioned as a suppressor of metastasis. The 755 amino acid long protein MTSS1 connects to actin and organizes the cytoskeleton. Its gene is located on human chromosome 8q24. The suppressor of metastasis in metastatic cancer was first found to be MTSS1. Subsequent reports revealed that MTSS1 is linked to the prevention of metastasis in a variety of cancer types, including hematopoietic cancers like diffuse large B cell lymphoma and esophageal, pancreatic, and stomach cancers. Remarkably, conflicting results have also been documented. For instance, it has been reported that MTSS1 expression levels are elevated in a subset of melanomas, hepatocellular carcinoma associated with hepatitis B, head and neck squamous cell carcinoma, and lung squamous cell carcinoma. This article provides an overview of the pathological effects of lncRNA MTSS1 dysregulation in cancer. In order to facilitate the development of MTSS1-based therapeutic targeting, we also shed light on the current understanding of MTS1.
Collapse
Affiliation(s)
- Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Republic ofUzbekistan
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
24
|
Walter NG. Are non-protein coding RNAs junk or treasure?: An attempt to explain and reconcile opposing viewpoints of whether the human genome is mostly transcribed into non-functional or functional RNAs. Bioessays 2024; 46:e2300201. [PMID: 38351661 DOI: 10.1002/bies.202300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
The human genome project's lasting legacies are the emerging insights into human physiology and disease, and the ascendance of biology as the dominant science of the 21st century. Sequencing revealed that >90% of the human genome is not coding for proteins, as originally thought, but rather is overwhelmingly transcribed into non-protein coding, or non-coding, RNAs (ncRNAs). This discovery initially led to the hypothesis that most genomic DNA is "junk", a term still championed by some geneticists and evolutionary biologists. In contrast, molecular biologists and biochemists studying the vast number of transcripts produced from most of this genome "junk" often surmise that these ncRNAs have biological significance. What gives? This essay contrasts the two opposing, extant viewpoints, aiming to explain their bases, which arise from distinct reference frames of the underlying scientific disciplines. Finally, it aims to reconcile these divergent mindsets in hopes of stimulating synergy between scientific fields.
Collapse
Affiliation(s)
- Nils G Walter
- Center for RNA Biomedicine, Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Li B, Xiong X, Xu J, Peng D, Nie G, Wen N, Wang Y, Lu J. METTL3-mediated m 6A modification of lncRNA TSPAN12 promotes metastasis of hepatocellular carcinoma through SENP1-depentent deSUMOylation of EIF3I. Oncogene 2024; 43:1050-1062. [PMID: 38374407 DOI: 10.1038/s41388-024-02970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
In a previous study, we discovered that the level of lnc-TSPAN12 was significantly elevated in hepatocellular carcinoma (HCC) and correlated with a low survival rate. However, the function and mechanism of lnc-TSPAN12 in modulating epithelial-mesenchymal transition (EMT) and metastasis in HCC remains poorly understood. This study demonstrates that lnc-TSPAN12 positively influences migration, invasion, and EMT of HCC cells in vitro and promotes hepatic metastasis in vivo. The modification of N6-methyladenosine, driven by METTL3, is essential for the stability of lnc-TSPAN12, which may partially contribute to the upregulation of lnc-TSPAN12. Mechanistically, lnc-TSPAN12 exhibits direct interactions with EIF3I and SENP1, acting as a scaffold to enhance the SENP1-EIF3I interaction. As a result, the SUMOylation of EIF3I is inhibited, preventing its ubiquitin-mediated degradation. Ultimately, this activates the Wnt/β-catenin signaling pathway, stimulating EMT and metastasis in HCC. Our findings shed light on the regulatory mechanism of lnc-TSPAN12 in HCC metastasis and identify the lnc-TSPAN12-EIF3I/SENP1 axis as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Bei Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianze Xiong
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianrong Xu
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dingzhong Peng
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guilin Nie
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ningyuan Wen
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaoqun Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiong Lu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
26
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
27
|
Xiong W, Zhang X, Zhou JD, Tan MX, Liu Y, Yan Y, Lei HJ, Peng JR, Liu W, Tan P. Astragaloside IV (ASIV) Mediates Endothelial Progenitor Cell (EPC) Exosomal LINC01963 to Inhibit Pyroptosis and Oxidative Stress in High Glucose-impaired Endothelial Cells. Curr Mol Med 2024; 24:252-263. [PMID: 36631922 DOI: 10.2174/1566524023666230111163718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Hyperglycemia is widespread in the world's population, increasing the risk of many diseases. This study aimed to explore the regulatory effect and mechanism of astragaloside IV (ASIV)-mediated endothelial progenitor cells (EPCs) exosomal LINC01963 in endothelial cells (HUVECs) impaired by high glucose. METHODS Morphologies of exosomes were observed by light microscope and electron microscope. Immunofluorescence was used to identify EPCs and detect the expressions of caspase-1. LINC01963 was detected by quantitative reverse transcription PCR. NLRP3, ASC, and caspase-3 were detected by Western Blot. Nanoparticle tracking analysis was carried out to analyze the exosome diameter. High-throughput sequencing was applied to screen target lncRNAs. The proliferation of endothelial cells was measured by cell counting kit-8 assay. The apoptosis level of HUVECs was detected by flow cytometry and TdT-mediated dUTP Nick-End labeling. The levels of IL- 1β, IL-18, ROS, SOD, MDA, and LDH were measured by enzyme-linked immunosorbent assay. RESULTS ASIV could promote the secretion of the EPC exosome. LINC01963 was obtained by high-throughput sequencing. It was observed that high glucose could inhibit the proliferation, reduce the level of SOD, the expression of NLRP3, ASC, and caspase- 1, increase the levels of IL-1β, IL-18, ROS, MDA, and LDH, and promote apoptosis of HUVECs. Whereas LINC01963 could inhibit the apoptosis of HUVECs, the increase the expression of NLRP3, ASC, and caspase-1, and decrease the levels of IL-1β, IL-18, ROS, MDA, and LDH. CONCLUSION EPCs exosomal LINC01963 play an inhibitory role in high glucoseinduced pyroptosis and oxidative stress of HUVECs. This study provides new ideas and directions for treating hyperglycemia and researching exosomal lncRNAs.
Collapse
Affiliation(s)
- Wu Xiong
- 1Department of Burns and Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Zhang
- Hunan Brain Hospital, Changsha, China, Hunan, China
- Clinical Medical School of the Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jian-da Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei-Xin Tan
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yu Liu
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Mongolia
| | - Yu Yan
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hua-Juan Lei
- Department of Anesthesiology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jia-Rui Peng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pei Tan
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
28
|
Liu S, Jiao B, Zhao H, Liang X, Jin F, Liu X, Hu J. LncRNAs-circRNAs as Rising Epigenetic Binary Superstars in Regulating Lipid Metabolic Reprogramming of Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303570. [PMID: 37939296 PMCID: PMC10767464 DOI: 10.1002/advs.202303570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Indexed: 11/10/2023]
Abstract
As one of novel hallmarks of cancer, lipid metabolic reprogramming has recently been becoming fascinating and widely studied. Lipid metabolic reprogramming in cancer is shown to support carcinogenesis, progression, distal metastasis, and chemotherapy resistance by generating ATP, biosynthesizing macromolecules, and maintaining appropriate redox status. Notably, increasing evidence confirms that lipid metabolic reprogramming is under the control of dysregulated non-coding RNAs in cancer, especially lncRNAs and circRNAs. This review highlights the present research findings on the aberrantly expressed lncRNAs and circRNAs involved in the lipid metabolic reprogramming of cancer. Emphasis is placed on their regulatory targets in lipid metabolic reprogramming and associated mechanisms, including the clinical relevance in cancer through lipid metabolism modulation. Such insights will be pivotal in identifying new theranostic targets and treatment strategies for cancer patients afflicted with lipid metabolic reprogramming.
Collapse
Affiliation(s)
- Shanshan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Benzheng Jiao
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Hongguang Zhao
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xinyue Liang
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Fengyan Jin
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xiaodong Liu
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Radiation Medicine Department, School of Public Health and ManagementWenzhou Medical UniversityWenzhou325035China
| | - Ji‐Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Palo Alto Veterans Institute for ResearchStanford University Medical SchoolPalo AltoCA94304USA
| |
Collapse
|
29
|
El-Ashmawy NE, Khedr EG, Abo-Saif MA, Hamouda SM. Long noncoding RNAs as regulators of epithelial mesenchymal transition in breast cancer: A recent review. Life Sci 2024; 336:122339. [PMID: 38097110 DOI: 10.1016/j.lfs.2023.122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
AIMS Breast cancer (BC) is the most frequently occurring cancer in women worldwide. BC patients are often diagnosed at advanced stages which are characterized by low survival rates. Distant metastasis is considered a leading cause of mortalities among BC patients. Epithelial-to-mesenchymal transition (EMT) is a transdifferentiation program that is necessary for cancer cells to acquire metastatic potential. In the last decade, long noncoding RNAs (lncRNAs) proved their significant contribution to different hallmarks of cancer, including EMT and metastasis. The primary aim of our review is to analyze recent studies concerning the molecular mechanisms of lncRNAs implicated in EMT regulation in BC. MATERIALS AND METHODS We adopted a comprehensive search on databases of PubMed, Web of Science, and Google Scholar using the following keywords: lncRNAs, EMT, breast cancer, and therapeutic targeting. KEY FINDINGS The different roles of lncRNAs in the mechanisms and signaling pathways governing EMT in BC were summarized. LncRNAs could induce or inhibit EMT through WNT/β-catenin, transforming growth factor-β (TGF-β), Notch, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) pathways as well as via their interaction with histone modifying complexes and miRNAs. SIGNIFICANCE LncRNAs are key regulators of EMT and BC metastasis, presenting potential targets for therapeutic interventions. Further research is necessary to investigate the practical application of lncRNAs in clinical therapeutics.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Eman G Khedr
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Mariam A Abo-Saif
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Sara M Hamouda
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| |
Collapse
|
30
|
Lin J, Liu Y, Liu P, Qi W, Liu J, He X, Liu Q, Liu Z, Yin J, Lin J, Bao H, Lin J. SNHG17 alters anaerobic glycolysis by resetting phosphorylation modification of PGK1 to foster pro-tumor macrophage formation in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2023; 42:339. [PMID: 38098044 PMCID: PMC10722693 DOI: 10.1186/s13046-023-02890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Within the tumor immune microenvironment (TME), tumor-associated macrophages (TAMs) are crucial in modulating polarization states to influence cancer development through metabolic reprogramming. While long non-coding RNAs (lncRNAs) have been shown to play a pivotal role in the progression of various cancers, the underlying mechanisms by which lncRNAs alter M2 polarization through macrophage metabolism remodeling remain unelucidated. METHODS RNA sequencing was used to screen for differentially expressed lncRNAs in TAMs and normal tissue-resident macrophages (NTRMs) isolated from pancreatic ductal adenocarcinoma (PDAC) tissues, whilst RT-qPCR and FISH were employed to detect the expression level of SNHG17. Moreover, a series of in vivo and in vitro experiments were conducted to assess the functions of SNHG17 from TAMs in the polarization and glycolysis of M2-like macrophages and in the proliferation and metastasis of pancreatic cancer cells (PCs). Furthermore, Western blotting, RNA pull-down, mass spectrometry, RIP, and dual-luciferase assays were utilized to explore the underlying mechanism through which SNHG17 induces pro-tumor macrophage formation. RESULTS SNHG17 was substantially enriched in TAMs and was positively correlated with a worse prognosis in PDAC. Meanwhile, functional assays determined that SNHG17 promoted the malignant progression of PCs by enhancing M2 macrophage polarization and anaerobic glycolysis. Mechanistically, SNHG17 could sponge miR-628-5p to release PGK1 mRNA and concurrently interact with the PGK1 protein, activating the pro-tumorigenic function of PGK1 by enhancing phosphorylation at the T168A site of PGK1 through ERK1/2 recruitment. Lastly, SNHG17 knockdown could reverse the polarization status of macrophages in PDAC. CONCLUSIONS The present study illustrated the essential role of SNHG17 and its molecular mechanism in TAMs derived from PDAC, indicating that SNHG17 might be a viable target for PDAC immunotherapy.
Collapse
Affiliation(s)
- Jiayu Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Pengyi Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenxin Qi
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xingfeng He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Jingxin Yin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiewei Lin
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Haili Bao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Jianhong Lin
- Department of Pharmacy, The Third Hospital of Xiamen, Xiamen, 361100, China.
| |
Collapse
|
31
|
Tian Q, Liu X, Li A, Wu H, Xie Y, Zhang H, Wu F, Chen Y, Bai C, Zhang X. LINC01936 inhibits the proliferation and metastasis of lung squamous cell carcinoma probably by EMT signaling and immune infiltration. PeerJ 2023; 11:e16447. [PMID: 38084139 PMCID: PMC10710776 DOI: 10.7717/peerj.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/21/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose To discover the biological function and potential mechanism of LINC01936 in the development of lung squamous cell carcinoma (LUSC). Methods Transcriptome data of LUSC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to analyze the differentially expressed lncRNAs in LUSC and normal tissues by R "DEseq2", "edgeR" and "limma" packages. The subcellular localization of LINC01936 was predicted by lncLocator. Cell proliferation and apoptosis were measured by CCK-8, MTT assay and Hoechst fluorescence staining. The migration and invasion were detected by Transwell assay. The function and pathway enrichment analysis were performed by Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene set variation analysis (GSVA). The downstream targets of LINC01936 were predicted using RNA-Protein Interaction Prediction (RPISeq) program. The effect of LINC01936 on tumor immune infiltration was analyzed using Pearson Correlation Analysis using R "ggpubr" package. Results Based on the gene expression data of LUSC from TCGA database, 1,603, 1,702 and 529 upregulated and 536, 436 and 630 downregulated lncRNAs were obtained by DEseq2, edgeR and limma programs, respectively. For GSE88862 dataset, we acquired 341 differentially expressed lncRNAs (206 upregulated and 135 downregulated). Venn plot for the intersection of above differential expressed lncRNAs showed that there were 29 upregulated and 23 downregulated genes. LINC01936 was one of downregulated lncRNAs in LUSC tissues. The biological analysis showed that the overexpression of LINC01936 significantly reduced proliferation, migration and invasion of LUSC cells, and promoted cell apoptosis. The knockdown of LINC01936 promoted cell proliferation and metastasis. Pathway and GSVA analysis indicated that LINC01936 might participated in DNA repair, complement, cell adhesion and EMT, etc. LINC01936 was predicted to interact with TCF21, AOC3, RASL12, MEOX2 or HSPB7, which are involved in EMT and PI3K-AKT-MTOR pathway, etc. The expression of LINC01936 was also positively correlated with the infiltrating immune cells in LUSC. Conclusions LINC01936 is downregulated in LUSC. LINC01936 affected proliferation, migration and invasion of LUSC cells probably by EMT and immune infiltration, which might serve as a new target for the treatment of LUSC.
Collapse
Affiliation(s)
- Qinqin Tian
- The Second Affiliated Hospital of Army Medical University, Department of Clinical Laboratory, Chongqing, China
- North China University of Science and Technology, College of Life Science, Tangshan, China
| | - Xiyao Liu
- North China University of Science and Technology, College of Life Science, Tangshan, China
| | - Ang Li
- North China University of Science and Technology, School of Public Health, Tangshan, China
| | - Hongjiao Wu
- North China University of Science and Technology, School of Public Health, Tangshan, China
| | - Yuning Xie
- North China University of Science and Technology, School of Public Health, Tangshan, China
| | - Hongmei Zhang
- North China University of Science and Technology, School of Public Health, Tangshan, China
| | - Fengjun Wu
- North China University of Science and Technology, College of Life Science, Tangshan, China
| | - Yating Chen
- North China University of Science and Technology, College of Life Science, Tangshan, China
| | - Congcong Bai
- North China University of Science and Technology, College of Life Science, Tangshan, China
| | - Xuemei Zhang
- North China University of Science and Technology, College of Life Science, Tangshan, China
- North China University of Science and Technology, School of Public Health, Tangshan, China
| |
Collapse
|
32
|
Ma J, Wu Y, Cen L, Wang Z, Jiang K, Lian B, Sun C. Cold-inducible lncRNA266 promotes browning and the thermogenic program in white adipose tissue. EMBO Rep 2023; 24:e55467. [PMID: 37824433 PMCID: PMC10702832 DOI: 10.15252/embr.202255467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Cold-induced nonshivering thermogenesis has contributed to the improvement of several metabolic syndromes caused by obesity. Several long noncoding RNAs (lncRNAs) have been shown to play a role in brown fat biogenesis and thermogenesis. Here we show that the lncRNA lnc266 is induced by cold exposure in inguinal white adipose tissue (iWAT). In vitro functional studies reveal that lnc266 promotes brown adipocyte differentiation and thermogenic gene expression. At room temperature, lnc266 has no effects on white fat browning and systemic energy consumption. However, in a cold environment, lnc266 promotes white fat browning and thermogenic gene expression in obese mice. Moreover, lnc266 increases core body temperature and reduces body weight gain. Mechanistically, lnc266 does not directly regulate Ucp1 expression. Instead, lnc266 sponges miR-16-1-3p and thus abolishes the repression of miR-16-1-3p on Ucp1 expression. As a result, lnc266 promotes preadipocyte differentiation toward brown-like adipocytes and stimulates thermogenic gene expression. Overall, lnc266 is a cold-inducible lncRNA in iWAT, with a key role in white fat browning and the thermogenic program.
Collapse
Affiliation(s)
- Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of MedicineNantong UniversityNantongChina
| | - Yuting Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of MedicineNantong UniversityNantongChina
| | - Lixue Cen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of MedicineNantong UniversityNantongChina
| | - Zhe Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of MedicineNantong UniversityNantongChina
| | - Ketao Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of MedicineNantong UniversityNantongChina
| | - Bolin Lian
- School of Life SciencesNantong UniversityNantongChina
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of MedicineNantong UniversityNantongChina
| |
Collapse
|
33
|
Shan Y, Xia T, Xie W, Wan W, Wu N, Yuan Z, Hu Q, Chen Z, Li C, Wu L, Wu W, Cai T, Xiang Y, Bai L, Li Y. Construction of an EMT-related lncRNA prognostic signature for lung adenocarcinoma and functional verification of its hub gene LINC01615. J Cancer Res Clin Oncol 2023; 149:17781-17793. [PMID: 37934255 DOI: 10.1007/s00432-023-05476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) plays a vital role in the progression of lung adenocarcinoma (LUAD). Long non-coding RNAs (lncRNAs) participate in the EMT process as an important regulatory factor and have the potential to serve as prognostic biomarkers. We aimed to construct a novel lncRNA prognostic signature for LUAD based on EMT-related lncRNAs, identify EMT-related hub lncRNA, and investigate its biological functions. METHODS RNA-seq data, clinical and survival information were obtained from The Cancer Genome Atlas database. The EMT-related lncRNA prognostic signature (EMTscore) was constructed using the Least Absolute Shrinkage and Selection Operator Cox regression analysis. The efficiency of EMTscore in predicting the prognosis of LUAD was evaluated through the area under the time-dependent receiver operating characteristic (ROC) curves. The hub lncRNA of the prognostic signature was selected using a co-expression network map, and its effects on cell proliferation and metastasis were explored by in vitro experiments. RESULTS We constructed a prognostic signature (EMTscore) containing 8 tumor-high expressed lncRNAs. The EMTscore performed well in predicting overall survival rates with AUC values of 0.708 at 5 years in the training set. EMTscore could independently predict the survival of LUAD, with HR = 4.011 (95% CI 2.430-6.622) in the multivariate Cox regression. Importantly, we identified LINC01615 as the hub lncRNA in the EMTscore and revealed that LINC01615 enhanced the proliferation, migration, and EMT of lung cancer cells. CONCLUSIONS A new EMT-related lncRNA prognostic signature named EMTscore was developed, and LINC01615 was identified as the hub lncRNA of EMTscore. The hub lncRNA LINC01615 had an oncogenic biological function in LUAD.
Collapse
Affiliation(s)
- Yifan Shan
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Tingting Xia
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Weijia Xie
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Weiping Wan
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Na Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhiquan Yuan
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Qin Hu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zheng Chen
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Chengying Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Wenhui Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Li Bai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, People's Republic of China.
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
34
|
Xie W, Chen X, Zheng Z, Wang F, Zhu X, Lin Q, Sun Y, Wong KC. LncRNA-Top: Controlled deep learning approaches for lncRNA gene regulatory relationship annotations across different platforms. iScience 2023; 26:108197. [PMID: 37965148 PMCID: PMC10641498 DOI: 10.1016/j.isci.2023.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
By soaking microRNAs (miRNAs), long non-coding RNAs (lncRNAs) have the potential to regulate gene expression. Few methods have been created based on this mechanism to anticipate the lncRNA-gene relationship prediction. Hence, we present lncRNA-Top to forecast potential lncRNA-gene regulation relationships. Specifically, we constructed controlled deep-learning methods using 12417 lncRNAs and 16127 genes. We have provided retrospective and innovative views among negative sampling, random seeds, cross-validation, metrics, and independent datasets. The AUC, AUPR, and our defined precision@k were leveraged to evaluate performance. In-depth case studies demonstrate that 47 out of 100 projected top unknown pairings were recorded in publications, supporting the predictive power. Our additional software can annotate the scores with target candidates. The lncRNA-Top will be a helpful tool to uncover prospective lncRNA targets and better comprehend the regulatory processes of lncRNAs.
Collapse
Affiliation(s)
- Weidun Xie
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Xingjian Chen
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Zetian Zheng
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Fuzhou Wang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Xiaowei Zhu
- Department of Neuroscience, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Qiuzhen Lin
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Hong Kong Institute for Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| |
Collapse
|
35
|
Kim TJ, Kim YG, Jung W, Jang S, Ko HG, Park CH, Byun JS, Kim DY. Non-Coding RNAs as Potential Targets for Diagnosis and Treatment of Oral Lichen Planus: A Narrative Review. Biomolecules 2023; 13:1646. [PMID: 38002328 PMCID: PMC10669845 DOI: 10.3390/biom13111646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease that is characterized by the infiltration of T cells into the oral mucosa, causing the apoptosis of basal keratinocytes. OLP is a multifactorial disease of unknown etiology and is not solely caused by the malfunction of a single key gene but rather by various intracellular and extracellular factors. Non-coding RNAs play a critical role in immunological homeostasis and inflammatory response and are found in all cell types and bodily fluids, and their expression is closely regulated to preserve normal physiologies. The dysregulation of non-coding RNAs may be highly implicated in the onset and progression of diverse inflammatory disorders, including OLP. This narrative review summarizes the role of non-coding RNAs in molecular and cellular changes in the oral epithelium during OLP pathogenesis.
Collapse
Affiliation(s)
- Tae-Jun Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Yu Gyung Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Won Jung
- Department of Oral Medicine, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Chan Ho Park
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Seok Byun
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
36
|
Mu W, Zhou Z, Shao L, Wang Q, Feng W, Tang Y, He Y, Wang Y. Advances in the relationship between ferroptosis and epithelial-mesenchymal transition in cancer. Front Oncol 2023; 13:1257985. [PMID: 38023171 PMCID: PMC10661308 DOI: 10.3389/fonc.2023.1257985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular reprogramming process that converts epithelial cells into mesenchymal-like cells with migratory and invasive capabilities. The initiation and regulation of EMT is closely linked to a range of transcription factors, cell adhesion molecules and signaling pathways, which play a key role in cancer metastasis and drug resistance. The regulation of ferroptosis is intricately linked to various cell death pathways, intracellular iron homeostasis, and the protein network governing iron supply and storage. The ability of ferroptosis to disrupt cancer cells and overcome drug resistance lies in its control of intracellular iron ion levels. EMT process can promote the accumulation of iron ions, providing conditions for ferroptosis. Conversely, ferroptosis may impact the regulatory network of EMT by modulating transcription factors, signaling pathways, and cell adhesion molecules. Thus, ferroptosis related genes and signaling pathways and oxidative homeostasis play important roles in the regulation of EMT. In this paper, we review the role of ferroptosis related genes and their signaling pathways in regulating cancer EMT to better understand the crosstalk mechanism between ferroptosis and EMT, aiming to provide better therapeutic strategies for eradicating cancer cells and overcoming drug resistance.
Collapse
Affiliation(s)
- Wenrong Mu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| | - Zubang Zhou
- Department of Ultrasound, Gansu Provincial Hospital, Gansu, China
| | - Liping Shao
- Department of Ultrasound, Gansu Provincial Hospital, Gansu, China
| | - Qi Wang
- Department of Ultrasound, Gansu Provincial Hospital, Gansu, China
| | - Wanxue Feng
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| | - Yuling Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| | - Yizong He
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| | - Yuanlin Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| |
Collapse
|
37
|
Wu S, Li R, Jiang Y, Yu J, Zheng J, Li Z, Li M, Xin K, Wang Y, Xu Z, Li S, Chen X. Liquid biopsy in urothelial carcinoma: Detection techniques and clinical applications. Biomed Pharmacother 2023; 165:115027. [PMID: 37354812 DOI: 10.1016/j.biopha.2023.115027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
The types of urothelial carcinoma (UC) include urothelial bladder cancer and upper tract urothelial carcinoma. Current diagnostic techniques cannot meet the needs of patients. Liquid biopsy is an accurate method of determining the molecular profile of UC and is a cutting-edge and popular technique that is expected to complement existing detection techniques and benefit patients with UC. Circulating tumor cells, cell-free DNA, cell-free RNA, extracellular vesicles, proteins, and metabolites can be found in the blood, urine, or other bodily fluids and are examined during liquid biopsies. This article focuses on the components of liquid biopsies and their clinical applications in UC. Liquid biopsies have tremendous potential in multiple aspects of precision oncology, from early diagnosis and treatment monitoring to predicting prognoses. They may therefore play an important role in the management of UC and precision medicine.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rong Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuanhong Jiang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jiazheng Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
38
|
Zhang Y, Wang X, Zhang C, Yi H. The dysregulation of lncRNAs by epigenetic factors in human pathologies. Drug Discov Today 2023; 28:103664. [PMID: 37348827 DOI: 10.1016/j.drudis.2023.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Dysregulation of long noncoding RNAs (lncRNAs) contributes to numerous human diseases, including cancers and autoimmune diseases (ADs). Given the importance of lncRNAs in disease initiation and progression, a deeper understanding of their complex regulatory network is required to facilitate their use as therapeutic targets for ADs. In this review, we summarize how lncRNAs are dysregulated in pathological states by epigenetic factors, including RNA-binding proteins, chemical modifications (N6-methyladenosine, 5-methylcytosine, 7-methylguanosine, adenosine-to-inosine editing, microRNA, alternative splicing, DNA methylation, and histone modification). Moreover, the roles of lncRNA epigenetic regulators in immune response and ADs are discussed, providing new insights into the complicated epigenetic factor-lncRNA network, thus, laying a theoretical foundation for future research and clinical application of lncRNAs.
Collapse
Affiliation(s)
- Yanli Zhang
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China; Department of Echocardiography, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaocong Wang
- Department of Echocardiography, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Zhang
- Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China.
| |
Collapse
|
39
|
Li Y, Zhang H, Hu B, Wang P, Wang W, Liu J. Post-transcriptional regulation of erythropoiesis. BLOOD SCIENCE 2023; 5:150-159. [PMID: 37546708 PMCID: PMC10400058 DOI: 10.1097/bs9.0000000000000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/11/2023] [Indexed: 08/08/2023] Open
Abstract
Erythropoiesis is a complex, precise, and lifelong process that is essential for maintaining normal body functions. Its strict regulation is necessary to prevent a variety of blood diseases. Normal erythropoiesis is precisely regulated by an intricate network that involves transcription levels, signal transduction, and various epigenetic modifications. In recent years, research on post-transcriptional levels in erythropoiesis has expanded significantly. The dynamic regulation of splicing transitions is responsible for changes in protein isoform expression that add new functions beneficial for erythropoiesis. RNA-binding proteins adapt the translation of transcripts to the protein requirements of the cell, yielding mRNA with dynamic translation efficiency. Noncoding RNAs, such as microRNAs and lncRNAs, are indispensable for changing the translational efficiency and/or stability of targeted mRNAs to maintain the normal expression of genes related to erythropoiesis. N6-methyladenosine-dependent regulation of mRNA translation plays an important role in maintaining the expression programs of erythroid-related genes and promoting erythroid lineage determination. This review aims to describe our current understanding of the role of post-transcriptional regulation in erythropoiesis and erythroid-associated diseases, and to shed light on the physiological and pathological implications of the post-transcriptional regulation machinery in erythropoiesis. These may help to further enrich our understanding of the regulatory network of erythropoiesis and provide new strategies for the diagnosis and treatment of erythroid-related diseases.
Collapse
Affiliation(s)
- Yanan Li
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haihang Zhang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Bin Hu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Pan Wang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wei Wang
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
40
|
Li Y, Chen B, Jiang X, Li Y, Wang X, Huang S, Wu X, Xiao Y, Shi D, Huang X, He L, Chen X, Ouyang Y, Li J, Song L, Lin C. A Wnt-induced lncRNA-DGCR5 splicing switch drives tumor-promoting inflammation in esophageal squamous cell carcinoma. Cell Rep 2023; 42:112542. [PMID: 37210725 DOI: 10.1016/j.celrep.2023.112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Alternative splicing (AS) is a critical mechanism for the aberrant biogenesis of long non-coding RNA (lncRNA). Although the role of Wnt signaling in AS has been implicated, it remains unclear how it mediates lncRNA splicing during cancer progression. Herein, we identify that Wnt3a induces a splicing switch of lncRNA-DGCR5 to generate a short variant (DGCR5-S) that correlates with poor prognosis in esophageal squamous cell carcinoma (ESCC). Upon Wnt3a stimulation, active nuclear β-catenin acts as a co-factor of FUS to facilitate the spliceosome assembly and the generation of DGCR5-S. DGCR5-S inhibits TTP's anti-inflammatory activity by protecting it from PP2A-mediated dephosphorylation, thus fostering tumor-promoting inflammation. Importantly, synthetic splice-switching oligonucleotides (SSOs) disrupt the splicing switch of DGCR5 and potently suppress ESCC tumor growth. These findings uncover the mechanism for Wnt signaling in lncRNA splicing and suggest that the DGCR5 splicing switch may be a targetable vulnerability in ESCC.
Collapse
Affiliation(s)
- Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Boyu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xingyu Jiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yudong Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xin Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuxia Wu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lixin He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Institute of Oncology, Tumor Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
41
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 689] [Impact Index Per Article: 344.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Xu JB, Cao J, Xia J, Zhu Y, He Y, Cao MG, Fang BM, Thiery JP, Zhou W. Breast metastatic tumors in lung can be substituted by lung-derived malignant cells transformed by alternative splicing H19 lncRNA. Breast Cancer Res 2023; 25:59. [PMID: 37254190 DOI: 10.1186/s13058-023-01662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023] Open
Abstract
Metastasis accounts for most cancer-associated deaths; yet, this complex process remains poorly understood, particularly the relationship between distant metastasis and primary site-derived cells. Here, we modified the classical MMTV-PyMT breast carcinoma model to trace the fate of mammary-derived carcinoma cells. We show that within the lung, when the metastatic breast carcinoma cells are conditionally depleted, transformed lung epithelial cells generate new metastases. Metastatic breast carcinoma cells transmit H19 long noncoding (lnc) RNA to lung epithelial cells through exosomes. SF3B1 bearing mutations at arginine-625 alternatively splices H19 lncRNA in lung epithelial cells, which selectively acts like a molecular sponge to sequester let-7a and induces Myc upregulation. Under the conditional elimination of primary site-derived breast carcinoma cells, lung malignant cells expressing the mutated SF3B1 splice variant dominate the newly created tumors. Our study suggests that these new carcinoma cells originating from within the colonized organ can replace the primary site-derived malignant cells whenever their expansion is abrogated using an inducible diphtheria toxin receptor in our designed system. These findings should call for a better understanding of metastatic tumors with the specific origin during cancer metastasis.
Collapse
Affiliation(s)
- Jin Biao Xu
- School of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Jun Cao
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jin Xia
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Zhu
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi He
- School of Medicine, Ningbo University, Ningbo, 3115211, China
| | - Ming Guo Cao
- School of Medicine, Lishui University, Lishui, 323000, China
| | - Bing Mu Fang
- Lishui City People's Hospital, Lishui, 323000, China
| | - Jean Paul Thiery
- Guangzhou Laboratory, Guangzhou, 510700, China.
- Institute of Molecular and Cell Biology, A-STAR, Singapore, 138673, Singapore.
| | - Wu Zhou
- School of Medicine, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
43
|
Mishra AB, Nishank SS. Therapeutic targeting approach on epithelial-mesenchymal plasticity to combat cancer metastasis. Med Oncol 2023; 40:190. [PMID: 37247000 DOI: 10.1007/s12032-023-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/06/2023] [Indexed: 05/30/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) is a process in which epithelial cells lose their characteristics and acquire mesenchymal properties, leading to increased motility and invasiveness, which are key factors in cancer metastasis. Targeting EMP has emerged as a promising therapeutic approach to combat cancer metastasis. Various strategies have been developed to target EMP, including inhibition of key signaling pathways, such as TGF-β, Wnt/β-catenin, and Notch, that regulate EMP, as well as targeting specific transcription factors, such as Snail, Slug, and Twist, that promote EMP. Additionally, targeting the tumor microenvironment, which plays a critical role in promoting EMP, has also shown promise. Several preclinical and clinical studies have demonstrated the efficacy of EMP-targeting therapies in inhibiting cancer metastasis. However, further research is needed to optimize these strategies and improve their clinical efficacy. Overall, therapeutic targeting of EMP represents a promising approach for the development of novel cancer therapies that can effectively inhibit metastasis, a major cause of cancer-related mortality.
Collapse
|
44
|
Liu M, Zhang S, Zhou H, Hu X, Li J, Fu B, Wei M, Huang H, Wu H. The interplay between non-coding RNAs and alternative splicing: from regulatory mechanism to therapeutic implications in cancer. Theranostics 2023; 13:2616-2631. [PMID: 37215575 PMCID: PMC10196821 DOI: 10.7150/thno.83920] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Alternative splicing (AS) is a common and conserved process in eukaryotic gene regulation. It occurs in approximately 95% of multi-exon genes, greatly enriching the complexity and diversity of mRNAs and proteins. Recent studies have found that in addition to coding RNAs, non-coding RNAs (ncRNAs) are also inextricably linked with AS. Multiple different types of ncRNAs are generated by AS of precursor long non-coding (pre-lncRNAs) or precursor messenger RNAs (pre-mRNAs). Furthermore, ncRNAs, as a novel class of regulators, can participate in AS regulation by interacting with the cis-acting elements or trans-acting factors. Several studies have implicated abnormal expression of ncRNAs and ncRNA-related AS events in the initiation, progression, and therapy resistance in various types of cancers. Therefore, owing to their roles in mediating drug resistance, ncRNAs, AS-related factors and AS-related novel antigens may serve as promising therapeutic targets in cancer treatment. In this review, we summarize the interaction between ncRNAs and AS processes, emphasizing their great influences on cancer, especially on chemoresistance, and highlighting their potential values in clinical treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Subo Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Heng Zhou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Jianing Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, Liaoning, P. R. China
| | - Huilin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| |
Collapse
|
45
|
Arunima A, van Schaik EJ, Samuel JE. The emerging roles of long non-coding RNA in host immune response and intracellular bacterial infections. Front Cell Infect Microbiol 2023; 13:1160198. [PMID: 37153158 PMCID: PMC10160451 DOI: 10.3389/fcimb.2023.1160198] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The long non-coding RNAs (lncRNAs) are evolutionarily conserved classes of non-coding regulatory transcripts of > 200 nucleotides in length. They modulate several transcriptional and post-transcriptional events in the organism. Depending on their cellular localization and interactions, they regulate chromatin function and assembly; and alter the stability and translation of cytoplasmic mRNAs. Although their proposed range of functionality remains controversial, there is increasing research evidence that lncRNAs play a regulatory role in the activation, differentiation and development of immune signaling cascades; microbiome development; and in diseases such as neuronal and cardiovascular disorders; cancer; and pathogenic infections. This review discusses the functional roles of different lncRNAs in regulation of host immune responses, signaling pathways during host-microbe interaction and infection caused by obligate intracellular bacterial pathogens. The study of lncRNAs is assuming significance as it could be exploited for development of alternative therapeutic strategies for the treatment of severe and chronic pathogenic infections caused by Mycobacterium, Chlamydia and Rickettsia infections, as well as commensal colonization. Finally, this review summarizes the translational potential of lncRNA research in development of diagnostic and prognostic tools for human diseases.
Collapse
Affiliation(s)
| | | | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
46
|
Nandi S, Mondal A, Ghosh A, Mukherjee S, Das C. Lnc-ing epigenetic mechanisms with autophagy and cancer drug resistance. Adv Cancer Res 2023; 160:133-203. [PMID: 37704287 DOI: 10.1016/bs.acr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a diverse class of RNA molecules that regulate various physiological processes and have been reported to be involved in several human pathologies ranging from neurodegenerative disease to cancer. Therapeutic resistance is a major hurdle for cancer treatment. Over the past decade, several studies has emerged on the role of lncRNAs in cancer drug resistance and many trials have been conducted employing them. LncRNAs also regulate different cell death pathways thereby maintaining a fine balance of cell survival and death. Autophagy is a complex cell-killing mechanism that has both cytoprotective and cytotoxic roles. Similarly, autophagy can lead to the induction of both chemosensitization and chemoresistance in cancer cells upon therapeutic intervention. Recently the role of lncRNAs in the regulation of autophagy has also surfaced. Thus, lncRNAs can be used in cancer therapeutics to alleviate the challenges of chemoresistance by targeting the autophagosomal axis. In this chapter, we discuss about the role of lncRNAs in autophagy-mediated cancer drug resistance and its implication in targeted cancer therapy.
Collapse
Affiliation(s)
- Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Indian Institute of Science Education and Research, Kolkata, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
47
|
Li D, Hu J, Li S, Zhou C, Feng M, Li L, Gao Y, Chen X, Wu X, Cao Y, Hao B, Chen L. LINC01393, a Novel Long Non-Coding RNA, Promotes the Cell Proliferation, Migration and Invasion through MiR-128-3p/NUSAP1 Axis in Glioblastoma. Int J Mol Sci 2023; 24:ijms24065878. [PMID: 36982952 PMCID: PMC10056594 DOI: 10.3390/ijms24065878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is a potential molecular marker and intervention target for glioblastoma (GBM). In this study, we aim to investigate upstream regulatory lncRNAs and miRNAs of NUSAP1 through both experimental and bioinformatic methods. We screened upstream lncRNAs and miRNAs of NUSAP1 through multiple databases based on ceRNA theory. Then, in vitro and in vivo experiments were performed to elucidate the relevant biological significance and regulatory mechanism among them. Finally, the potential downstream mechanism was discussed. LINC01393 and miR-128-3p were screened as upstream regulatory molecules of NUSAP1 by TCGA and ENCORI databases. The negative correlations among them were confirmed in clinical specimens. Biochemical studies revealed that overexpression or knockdown of LINC01393 respectively enhanced or inhibited malignant phenotype of GBM cells. MiR-128-3p inhibitor reversed LINC01393 knockdown-mediated impacts on GBM cells. Then, dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to validate LINC01393/miR-128-3p/NUSAP1 interactions. In vivo, LINC01393-knockdown decreased tumor growth and improved mice survival, while restoration of NUSAP1 partially reversed these effects. Additionally, enrichment analysis and western blot revealed that the roles of LINC01393 and NUSAP1 in GBM progression were associated with NF-κB activation. Our findings showed that LINC01393 sponged miR-128-3p to upregulate NUSAP1, thereby promoting GBM development and progression via activating NF-κB pathway. This work deepens understanding of GBM mechanisms and provides potential novel therapeutic targets for GBM.
Collapse
Affiliation(s)
- Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Junda Hu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Sen Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xiaojun Wu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Bin Hao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
48
|
Lee J, Roh JL. Epithelial-Mesenchymal Plasticity: Implications for Ferroptosis Vulnerability and Cancer Therapy. Crit Rev Oncol Hematol 2023; 185:103964. [PMID: 36931615 DOI: 10.1016/j.critrevonc.2023.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Cancers polarized to a mesenchymal or poorly differentiated state can often evade cell death induced by conventional therapies. The epithelial-mesenchymal transition is involved in lipid metabolism and increases polyunsaturated fatty acid levels in cancer cells, contributing to chemo- and radio-resistance. Altered metabolism in cancer enables invasion and metastasis but is prone to lipid peroxidation under oxidative stress. Cancers with mesenchymal rather than epithelial signatures are highly vulnerable to ferroptosis. Therapy-resistant persister cancer cells show a high mesenchymal cell state and dependence on the lipid peroxidase pathway, which can respond more sensitively to ferroptosis inducers. Cancer cells may survive under specific metabolic and oxidative stress conditions, and targeting this unique defense system can selectively kill only cancer cells. Therefore, this article summarizes the core regulatory mechanisms of ferroptosis in cancer, the relationship between ferroptosis and epithelial-mesenchymal plasticity, and the implications of epithelial-mesenchymal transition for ferroptosis-based cancer therapy.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
49
|
Tao X, Li S, Chen G, Wang J, Xu S. Approaches for Modes of Action Study of Long Non-Coding RNAs: From Single Verification to Genome-Wide Determination. Int J Mol Sci 2023; 24:ijms24065562. [PMID: 36982636 PMCID: PMC10054671 DOI: 10.3390/ijms24065562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides (nt) that are not translated into known functional proteins. This broad definition covers a large collection of transcripts with diverse genomic origins, biogenesis, and modes of action. Thus, it is very important to choose appropriate research methodologies when investigating lncRNAs with biological significance. Multiple reviews to date have summarized the mechanisms of lncRNA biogenesis, their localization, their functions in gene regulation at multiple levels, and also their potential applications. However, little has been reviewed on the leading strategies for lncRNA research. Here, we generalize a basic and systemic mind map for lncRNA research and discuss the mechanisms and the application scenarios of ‘up-to-date’ techniques as applied to molecular function studies of lncRNAs. Taking advantage of documented lncRNA research paradigms as examples, we aim to provide an overview of the developing techniques for elucidating lncRNA interactions with genomic DNA, proteins, and other RNAs. In the end, we propose the future direction and potential technological challenges of lncRNA studies, focusing on techniques and applications.
Collapse
Affiliation(s)
- Xiaoyuan Tao
- Xianghu Laboratory, Hangzhou 311231, China
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sujuan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengchun Xu
- Xianghu Laboratory, Hangzhou 311231, China
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence:
| |
Collapse
|
50
|
Mattick JS. RNA out of the mist. Trends Genet 2023; 39:187-207. [PMID: 36528415 DOI: 10.1016/j.tig.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
RNA has long been regarded primarily as the intermediate between genes and proteins. It was a surprise then to discover that eukaryotic genes are mosaics of mRNA sequences interrupted by large tracts of transcribed but untranslated sequences, and that multicellular organisms also express many long 'intergenic' and antisense noncoding RNAs (lncRNAs). The identification of small RNAs that regulate mRNA translation and half-life did not disturb the prevailing view that animals and plant genomes are full of evolutionary debris and that their development is mainly supervised by transcription factors. Gathering evidence to the contrary involved addressing the low conservation, expression, and genetic visibility of lncRNAs, demonstrating their cell-specific roles in cell and developmental biology, and their association with chromatin-modifying complexes and phase-separated domains. The emerging picture is that most lncRNAs are the products of genetic loci termed 'enhancers', which marshal generic effector proteins to their sites of action to control cell fate decisions during development.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|