1
|
Watanabe A, Nagatomo M, Hirose A, Hikone Y, Kishimoto N, Miura S, Yasutake T, Abe T, Misumi S, Inoue M. Total Syntheses of Phorbol and 11 Tigliane Diterpenoids and Their Evaluation as HIV Latency-Reversing Agents. J Am Chem Soc 2024; 146:8746-8756. [PMID: 38486375 DOI: 10.1021/jacs.4c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Tigliane diterpenoids possess exceptionally complex structures comprising common 5/7/6/3-membered ABCD-rings and disparate oxygen functionalities. While tiglianes display a wide range of biological activities, compounds with HIV latency-reversing activity can eliminate viral reservoirs, thereby serving as promising leads for new anti-HIV agents. Herein, we report collective total syntheses of phorbol (13) and 11 tiglianes 14-24 with various acylation patterns and oxidation states, and their evaluation as HIV latency-reversing agents. The syntheses were strategically divided into five stages to increase the structural complexity. First, our previously established sequence enabled the expeditious preparation of ABC-tricycle 9 in 15 steps. Second, hydroxylation of 9 and ring-contractive D-ring formation furnished phorbol (13). Third, site-selective attachment of two acyl groups to 13 produced four phorbol diesters 14-17. Fourth, the oxygen functionalities were regio- and stereoselectively installed to yield five tiglianes 18-22. Fifth, further oxidation to the most densely oxygenated acerifolin A (23) and tigilanol tiglate (24) was realized through organizing a 3D shape of the B-ring. Assessment of the HIV latency-reversing activities of the 12 tiglianes revealed seven tiglianes (14-17 and 22-24) with 20- to 300-fold improved efficacy compared with prostratin (12), a representative latency-reversing agent. Therefore, the robust synthetic routes to a variety of tiglianes with promising activities devised in this study provide opportunities for advancing HIV eradication strategies.
Collapse
Affiliation(s)
- Ayumu Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Hirose
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuto Hikone
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Satoshi Miura
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tae Yasutake
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Towa Abe
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Appendino G, Gaeta S. Tigliane Diterpenoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 125:1-189. [PMID: 39546131 DOI: 10.1007/978-3-031-67180-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The distribution, chemistry, and molecular bioactivity of tiglianes are reviewed from the very beginning of the studies on these diterpenoids, summarizing their clinical and toxicological literature mostly in its more recent and controversial aspects, and critically analyzing various proposals for their biosynthesis.
Collapse
Affiliation(s)
- Giovanni Appendino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani, 2, 28100, Novara, Italy.
| | - Simone Gaeta
- Research & Development-Chemistry Research, QBiotics Group Limited, 165, Moggill Road, Taringa, QLD, 4068, Australia
| |
Collapse
|
3
|
Maioli C, Amin HI, Chianese G, Minassi A, Reddell PW, Gaeta S, Taglialatela-Scafati O, Appendino G. Novel Skeletal Rearrangements of the Tigliane Diterpenoid Core. JOURNAL OF NATURAL PRODUCTS 2023; 86:2685-2690. [PMID: 37991924 PMCID: PMC10749460 DOI: 10.1021/acs.jnatprod.3c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
To investigate the role of the secondary 5-hydroxy group in the activity of the anticancer drug tigilanol tiglate (2b) (Stelfonta), oxidation of this epoxytigliane diterpenoid from the Australian rainforest plant Fontainea picrosperma was attempted. Eventually, 5-dehydrotigilanol tiglate (3a) proved too unstable to be characterized in terms of biological activity and, therefore, was not a suitable tool compound for bioactivity studies. On the other hand, a series of remarkable skeletal rearrangements associated with the presence of a 5-keto group were discovered during its synthesis, including a dismutative ring expansion of ring A and a mechanistically unprecedented dyotropic substituent swap around the C-4/C-10 bond. Taken together, these observations highlight the propensity of the α-hydroxy-β-diketone system to trigger complex skeletal rearrangements and pave the way to new areas of the natural products chemical space.
Collapse
Affiliation(s)
- Chiara Maioli
- Dipartimento
di Scienze del Farmaco, Università
degli Studi del Piemonte Orientale Amedeo Avogadro, Largo Donegani 2, 28100 Novara, Italy
| | - Hawraz Ibrahim
M. Amin
- Dipartimento
di Scienze del Farmaco, Università
degli Studi del Piemonte Orientale Amedeo Avogadro, Largo Donegani 2, 28100 Novara, Italy
| | - Giuseppina Chianese
- Dipartimento
di Farmacia, Università di Napoli
Federico II, Via Montesano
49, 80131 Napoli, Italy
| | - Alberto Minassi
- Dipartimento
di Scienze del Farmaco, Università
degli Studi del Piemonte Orientale Amedeo Avogadro, Largo Donegani 2, 28100 Novara, Italy
| | - Paul W. Reddell
- QBiotics
Group Limited, 165, Moggill
Road, 4068, Taringa, Brisbane, QLD, Australia
| | - Simone Gaeta
- Dipartimento
di Scienze del Farmaco, Università
degli Studi del Piemonte Orientale Amedeo Avogadro, Largo Donegani 2, 28100 Novara, Italy
- QBiotics
Group Limited, 165, Moggill
Road, 4068, Taringa, Brisbane, QLD, Australia
| | | | - Giovanni Appendino
- Dipartimento
di Scienze del Farmaco, Università
degli Studi del Piemonte Orientale Amedeo Avogadro, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
4
|
Sun Y, Feng J, Qin S, Fu S, Liu B. Asymmetric Construction of the Core of C 6, C 7-Epoxy Daphnane Diterpenoid Orthoesters. Org Lett 2023; 25:8072-8076. [PMID: 37916924 DOI: 10.1021/acs.orglett.3c03136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Asymmetric construction of the core of C6, C7-epoxy daphnane diterpenoid orthoesters is developed through a convergent synthetic strategy. The salient features include a diastereoselective nucleophilic assembly of two bulky cyclic fragments, an oxidative cleavage/transesterification/aldol cascade to fashion the seven-membered ring, and a base-mediated transesterification/retro-aldol/aldol/epoxidation cascade to install the epoxy moiety with proper stereochemistry.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing Feng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Song Qin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Otsuki K, Li W. Tigliane and daphnane diterpenoids from Thymelaeaceae family: chemistry, biological activity, and potential in drug discovery. J Nat Med 2023; 77:625-643. [PMID: 37294498 PMCID: PMC10465420 DOI: 10.1007/s11418-023-01713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Tigliane and daphnane diterpenoids are characteristically distributed in plants of the Thymelaeaceae family as well as the Euphorbiaceae family and are structurally diverse due to the presence of polyoxygenated functionalities in the polycyclic skeleton. These diterpenoids are known as toxic components, while they have been shown to exhibit a wide variety of biological activities, such as anti-cancer, anti-HIV, and analgesic activity, and are attracting attention in the field of natural product drug discovery. This review focuses on naturally occurring tigliane and daphnane diterpenoids from plants of the Thymelaeaceae family and provides an overview of their chemical structure, distribution, isolation, structure determination, chemical synthesis, and biological activities, with a prime focus on the recent findings.
Collapse
Affiliation(s)
- Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
6
|
Wender PA, Gentry ZO, Fanelli DJ, Luu-Nguyen QH, McAteer OD, Njoo E. Practical synthesis of the therapeutic leads tigilanol tiglate and its analogues. Nat Chem 2022; 14:1421-1426. [PMID: 36192432 PMCID: PMC10079359 DOI: 10.1038/s41557-022-01048-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
Tigilanol tiglate is a natural product diterpenoid in clinical trials for the treatment of a broad range of cancers. Its unprecedented protein kinase C isoform selectivity make it and its analogues exceptional leads for PKC-related clinical indications, which include human immunodeficiency virus and AIDS eradication, antigen-enhanced cancer immunotherapy, Alzheimer's disease and multiple sclerosis. Currently, the only source of tigilanol tiglate is a rain forest tree, Fontainea picrosperma, whose limited number and restricted distribution (northeastern Australia) has prompted consideration of designed tree plantations to address supply needs. Here we report a practical laboratory synthesis of tigilanol tiglate that proceeds in 12 steps (12% overall yield, >80% average yield per step) and can be used to sustainably supply tigilanol tiglate and its analogues, the latter otherwise inaccessible from the natural source. The success of this synthesis is based on a unique strategy for the installation of an oxidation pattern common to many biologically active tiglianes, daphnanes and their analogues.
Collapse
Affiliation(s)
- Paul A Wender
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Department of Systems and Chemical Biology, Stanford University, Stanford, CA, USA.
| | | | - David J Fanelli
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Owen D McAteer
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Edward Njoo
- Department of Chemistry, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Mitra S, Sarkar R, Chakrabarty A, Mukherjee S. Hydroxy-directed iridium-catalyzed enantioselective formal β-C(sp 2)-H allylic alkylation of α,β-unsaturated carbonyls. Chem Sci 2022; 13:12491-12497. [PMID: 36382287 PMCID: PMC9629034 DOI: 10.1039/d2sc03966d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/12/2022] [Indexed: 02/12/2024] Open
Abstract
Hydroxy-directed iridium-catalyzed enantioselective formal β-C(sp2)-H allylic alkylation of kojic acid and structurally related α,β-unsaturated carbonyl compounds is developed. This reaction, catalyzed by an Ir(i)/(P,olefin) complex, utilizes the nucleophilic character of α-hydroxy α,β-unsaturated carbonyls, to introduce an allyl group at its β-position in a branched-selective manner in good to excellent yield with uniformly high enantioselectivity (up to >99.9 : 0.1 er). To the best of our knowledge, this report represents the first example of the use of kojic acid in a transition metal catalyzed highly enantioselective transformation.
Collapse
Affiliation(s)
- Sankash Mitra
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| | - Rahul Sarkar
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| | - Aditya Chakrabarty
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| |
Collapse
|
8
|
Li SF, Wang XY, Li GL, Jiao YY, Wang WH, Wu XK, Zhang LW. Potential HIV latency-reversing agents with STAT1-activating activity from the leaves of Wikstroemia chamaedaphne. PHYTOCHEMISTRY 2022; 203:113395. [PMID: 36027969 DOI: 10.1016/j.phytochem.2022.113395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Developing highly effective HIV latency-reversing agent is an inportmant approach for the treatment of AIDS via the "shock and kill" of latent HIV. In this study, two unreported modified daphnane-type diterpenes (chamaedaphnelide A and epi-chamaedaphnelide A) and one unreported tigliane-type diterpene (chamaedaphnelide B), along with four known daphnane-type diterpenes and one known tigliane-type diterpene were obtained from the leaves of Wikstroemia chamaedaphne. Chamaedaphnelide A and epi-chamaedaphnelide A represents the first A ring cleavage daphnane-type backbone. Chamaedaphnelide A, epi-chamaedaphnelide A, chamaedaphnelide B, and 6α,7α-epoxy-5β-hydroxy-12-deoxyphorbol-13-decanoate showed HIV latency-reversing activity, especially chamaedaphnelide B and 6α,7α-epoxy-5β-hydroxy-12-deoxyphorbol-13-decanoate displayed equally potential to positive drugs prostratin with reversing latent HIV on more than 100-fold compared to unstimulated cells. Furthermore, the activation of STAT1 was involved in the HIV latency-reversing activity of these diterpenes, firstly demonstrating that daphnane- and tigliane-type diterpenes can rapidly activate STAT1 activity. Indeed, these results also supported that activating STAT1 activity is a pathway for reversing latent HIV.
Collapse
Affiliation(s)
- Shi-Fei Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, People's Republic of China.
| | - Xiu-Yi Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, People's Republic of China; Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Gong-Lu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Ying-Ying Jiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Wen-Hao Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Xing-Kang Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Li-Wei Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
9
|
Janin YL. On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein J Org Chem 2022; 18:1355-1378. [PMID: 36247982 PMCID: PMC9531561 DOI: 10.3762/bjoc.18.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
This perspective is an attempt to document the problems that medicinal chemists are facing in drug discovery. It is also trying to identify relevant/possible, research areas in which academics can have an impact and should thus be the subject of grant calls. Accordingly, it describes how hit discovery happens, how compounds to be screened are selected from available chemicals and the possible reasons for the recurrent paucity of useful/exploitable results reported. This is followed by the successful hit to lead stories leading to recent and original antibacterials which are, or about to be, used in human medicine. Then, illustrated considerations and suggestions are made on the possible inputs of academic medicinal chemists. This starts with the observation that discovering a "good" hit in the course of a screening campaign still rely on a lot of luck - which is within the reach of academics -, that the hit to lead process requires a lot of chemistry and that if public-private partnerships can be important throughout these stages, they are absolute requirements for clinical trials. Concerning suggestions to improve the current hit success rate, one academic input in organic chemistry would be to identify new and pertinent chemical space, design synthetic accesses to reach these and prepare the corresponding chemical libraries. Concerning hit to lead programs on a given target, if no new hits are available, previously reported leads along with new structural data can be pertinent starting points to design, prepare and assay original analogues. In conclusion, this text is an actual plea illustrating that, in many countries, academic research in medicinal chemistry should be more funded, especially in the therapeutic area neglected by the industry. At the least, such funds would provide the intensive to secure series of hopefully relevant chemical entities which appears to often lack when considering the results of academic as well as industrial screening campaigns.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| |
Collapse
|
10
|
Vasilev VH, Spessert L, Yu K, Maimone TJ. Total Synthesis of Resiniferatoxin. J Am Chem Soc 2022; 144:16332-16337. [PMID: 36043948 DOI: 10.1021/jacs.2c08200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
From both structural and functional perspectives, the large family of daphnane diterpene orthoesters (DDOs) represent a truly remarkable class of natural products. As potent lead compounds for the treatment of pain, neurodegeneration, HIV/AIDS, and cancer, their medicinal potential continues to be heavily investigated, yet synthetic routes to DDO natural products remain rare. Herein we report a distinct approach to this class of complex diterpenes, highlighted by a 15-step total synthesis of the flagship DDO, resiniferatoxin.
Collapse
Affiliation(s)
- Vasil H Vasilev
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Lukas Spessert
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Kuan Yu
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Thomas J Maimone
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Cui Y, Lv J, Song T, Ren J, Wang Z. Highly efficient construction of an oxa-[3.2.1]octane-embedded 5-7-6 tricyclic carbon skeleton and ring-opening of the bridged ring via C-O bond cleavage. RSC Adv 2022; 12:9519-9523. [PMID: 35424922 PMCID: PMC8985103 DOI: 10.1039/d2ra01315k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
We report herein a highly efficient strategy for construction of a bridged oxa-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton through [3 + 2] IMCC (intramolecular [3 + 2] cross-cycloaddition), and the substituents and/or stereochemistries on C-4, C-6, C-7 and C-10 fully match those in the rhamnofolane, tigliane and daphnane diterpenoids. Furthermore, ring-opening of the bridged oxa-[3.2.1]octane via C–O bond cleavage was also successfully achieved. We reported a highly efficient construction of an oxa-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton with a full match of the substituents and stereochemistries on C-4/-6/-7/-10 with those in the rhamnofolane/tigliane/daphnane diterpenoids.![]()
Collapse
Affiliation(s)
- Yi Cui
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Jiayuan Lv
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Tianhang Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Jun Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Zhongwen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| |
Collapse
|
12
|
Bailly C. Yuanhuacin and Related Anti-Inflammatory and Anticancer Daphnane Diterpenes from Genkwa Flos-An Overview. Biomolecules 2022; 12:192. [PMID: 35204693 PMCID: PMC8961543 DOI: 10.3390/biom12020192] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The dried flower buds of the plant Daphne genkwa Sieb. et Zucc. have been largely used in traditional Chinese medicine for the treatment of inflammatory diseases. Numerous diterpenoids have been isolated from the Genkwa Flos (yuanhua in Chinese), including a series of daphnane-type diterpene designated as yuanhuacin (YC, often improperly designated as yuanhuacine) and analogues with a patronymic name. The series includes ten daphnane-type diterpenes: yuanhuacin, yuanhuadin (YD), yuanhuafin (YF), yuanhuagin (YG), yuanhuahin (YH), yuanhuajin (YJ), yuanhualin (YL), yuanhuamin (YM), yuanhuapin (YP), and yuanhuatin (YT). They are distinct from the rare flavonoid yuanhuanin. The series comprises several anticancer agents, such as the lead compound YC, which has revealed potent activity in vitro and in vivo against models of lung and breast cancers. The main signaling pathways implicated in the antitumor effects have been delineated. Protein kinase C is a key factor of activity for YC, but in general the molecular targets at the origin of the activity of these compounds remain little defined. Promising anticancer effects have been reported with analogues YD and YT, whereas compounds YF and YP are considered more toxic. The pharmacological activity of each compound is presented, as well as the properties of Genkwa Flos extracts. The potential toxic effects associated with the use of these compounds are also underlined.
Collapse
|
13
|
Affiliation(s)
- Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd Chengdu Sichuan 610064 China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd Chengdu Sichuan 610064 China
| |
Collapse
|
14
|
Hirose A, Watanabe A, Ogino K, Nagatomo M, Inoue M. Unified Total Syntheses of Rhamnofolane, Tigliane, and Daphnane Diterpenoids. J Am Chem Soc 2021; 143:12387-12396. [PMID: 34319739 DOI: 10.1021/jacs.1c06450] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rhamnofolane, tigliane, and daphnane diterpenoids are structurally complex natural products with multiple oxygen functionalities, making them synthetically challenging. While these diterpenoids share a 5/7/6-trans-fused ring system (ABC-ring), the three-carbon substitutions at the C13- and C14-positions on the C-ring and appending oxygen functional groups differ among them, accounting for the disparate biological activities of these natural products. Here, we developed a new, unified strategy for expeditious total syntheses of five representative members of these three families, crotophorbolone (1), langduin A (2), prostratin (3), resiniferatoxin (4), and tinyatoxin (5). Retrosynthetically, 1-5 were simplified into their common ABC-ring 6 by detaching the three-carbon units and the oxygen-appended groups. Intermediate 6 with six stereocenters was assembled from four achiral fragments in 12 steps by integrating three powerful transformations, as follows: (i) asymmetric Diels-Alder reaction to induce formation of the C-ring; (ii) π-allyl Stille coupling reaction to set the trisubstituted E-olefin of the B-ring; and (iii) Eu(fod)3-promoted 7-endo cyclization of the B-ring via the generation of a bridgehead radical. Then 6 was diversified into 1-5 by selective installation of the different functional groups. Attachment of the C14-β-isopropenyl and isopropyl groups led to 1 and 2, respectively, while oxidative acetoxylation and C13,14-β-dimethylcyclopropane formation gave rise to 3. Finally, formation of an α-oriented caged orthoester by C13-stereochemical inversion and esterification with two different homovanillic acids delivered 4 and 5 with a C13-β-isopropenyl group. This unified synthetic route to 1-5 required only 16-20 total steps, demonstrating the exceptional efficiency of the present strategy.
Collapse
Affiliation(s)
- Akira Hirose
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayumu Watanabe
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Ogino
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Fermaintt CS, Peramuna T, Cai S, Takahashi-Ruiz L, Essif JN, Grant CV, O’Keefe BR, Mooberry SL, Cichewicz RH, Risinger AL. Yuanhuacine Is a Potent and Selective Inhibitor of the Basal-Like 2 Subtype of Triple Negative Breast Cancer with Immunogenic Potential. Cancers (Basel) 2021; 13:cancers13112834. [PMID: 34200174 PMCID: PMC8201195 DOI: 10.3390/cancers13112834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
The heterogeneity of triple negative breast cancer (TNBC) has led to efforts to further subtype this disease with the hope of identifying new molecular liabilities and drug targets. Furthermore, the finding that TNBC is the most inherently immunogenic type of breast cancer provides the potential for effective treatment with immune checkpoint inhibitors and immune adjuvants. Thus, we devised a dual screen to identify compounds from natural product extracts with TNBC subtype selectivity that also promote the expression of cytokines associated with antitumor immunity. These efforts led to the identification of yuanhuacine (1) as a potent and highly selective inhibitor of the basal-like 2 (BL2) subtype of TNBC that also promoted an antitumor associated cytokine signature in immune cells. The mechanism of action of yuanhuacine for both phenotypes depends on activation of protein kinase C (PKC), defining a novel target for the treatment of this clinical TNBC subtype. Yuanhuacine showed potent antitumor efficacy in animals bearing BL2 tumors further demonstrating that PKC could function as a potential pharmacological target for the treatment of the BL2 subtype of TNBC.
Collapse
Affiliation(s)
- Charles S. Fermaintt
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (C.S.F.); (L.T.-R.); (J.N.E.); (C.V.G.); (S.L.M.)
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry and Natural Products Discovery Group, University of Oklahoma, Norman, OK 73019, USA; (T.P.); (S.C.); (R.H.C.)
| | - Shengxin Cai
- Department of Chemistry and Biochemistry and Natural Products Discovery Group, University of Oklahoma, Norman, OK 73019, USA; (T.P.); (S.C.); (R.H.C.)
| | - Leila Takahashi-Ruiz
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (C.S.F.); (L.T.-R.); (J.N.E.); (C.V.G.); (S.L.M.)
| | - Jacob Nathaniel Essif
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (C.S.F.); (L.T.-R.); (J.N.E.); (C.V.G.); (S.L.M.)
| | - Corena V. Grant
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (C.S.F.); (L.T.-R.); (J.N.E.); (C.V.G.); (S.L.M.)
| | - Barry R. O’Keefe
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Susan L. Mooberry
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (C.S.F.); (L.T.-R.); (J.N.E.); (C.V.G.); (S.L.M.)
| | - Robert H. Cichewicz
- Department of Chemistry and Biochemistry and Natural Products Discovery Group, University of Oklahoma, Norman, OK 73019, USA; (T.P.); (S.C.); (R.H.C.)
| | - April L. Risinger
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (C.S.F.); (L.T.-R.); (J.N.E.); (C.V.G.); (S.L.M.)
- Correspondence: ; Tel.: +1-210-567-6267
| |
Collapse
|
16
|
Liu Z, Ding Z, Chen K, Xu M, Yu T, Tong G, Zhang H, Li P. Balancing skeleton and functional groups in total syntheses of complex natural products: a case study of tigliane, daphnane and ingenane diterpenoids. Nat Prod Rep 2021; 38:1589-1617. [PMID: 33508045 DOI: 10.1039/d0np00086h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Total synthesis of natural products has greatly contributed to natural product research, organic synthesis and drug discovery and development. However, in most cases, the efficiency of total synthesis is far from sufficient for direct practical industrial application. Thus, designing a concise and efficient synthetic route with balanced efforts between building the complex skeleton and introducing functional groups is highly desirable. In this critical review, we first present an introduction of this issue and a philosophical framework that cover possible synthetic approaches. Next, we have chosen the biogenetically closely related, biologically important and synthetically extremely challenging natural products, tiglianes, daphnanes and ingenanes as the particular case for the discussion, since in the past 40 years many synthetic approaches have been reported. The successes and pitfalls included therefore serve as the basis to draw some conclusions that may inspire future development in this area.
Collapse
Affiliation(s)
- Zhi Liu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Kai Chen
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Guanghu Tong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, LaJolla, California 92037, USA
| | - Hailong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China. and State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
17
|
Tomanik M, Hsu IT, Herzon SB. Fragment Coupling Reactions in Total Synthesis That Form Carbon-Carbon Bonds via Carbanionic or Free Radical Intermediates. Angew Chem Int Ed Engl 2021; 60:1116-1150. [PMID: 31869476 DOI: 10.1002/anie.201913645] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Fragment coupling reactions that form carbon-carbon bonds are valuable transformations in synthetic design. Advances in metal-catalyzed cross-coupling reactions in the early 2000s brought a high level of predictability and reliability to carbon-carbon bond constructions involving the union of unsaturated fragments. By comparison, recent years have witnessed an increase in fragment couplings proceeding via carbanionic and open-shell (free radical) intermediates. The latter has been driven by advances in methods to generate and utilize carbon-centered radicals under mild conditions. In this Review, we survey a selection of recent syntheses that have implemented carbanion- or radical-based fragment couplings to form carbon-carbon bonds. We aim to highlight the strategic value of these disconnections in their respective settings and to identify extensible lessons from each example that might be instructive to students.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Ian Tingyung Hsu
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.,Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, USA
| |
Collapse
|
18
|
Tomanik M, Hsu IT, Herzon SB. Fragmentverknüpfungen in der Totalsynthese – Bildung von C‐C‐Bindungen über intermediäre Carbanionen oder freie Radikale. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201913645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Tomanik
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Ian Tingyung Hsu
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Seth B. Herzon
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
- Department of Pharmacology Yale University 333 Cedar St New Haven CT USA
| |
Collapse
|
19
|
Katti S, Igumenova TI. Structural insights into C1-ligand interactions: Filling the gaps by in silico methods. Adv Biol Regul 2021; 79:100784. [PMID: 33526356 PMCID: PMC8867786 DOI: 10.1016/j.jbior.2020.100784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023]
Abstract
Protein Kinase C isoenzymes (PKCs) are the key mediators of the phosphoinositide signaling pathway, which involves regulated hydrolysis of phosphatidylinositol (4,5)-bisphosphate to diacylglycerol (DAG) and inositol-1,4,5-trisphosphate. Dysregulation of PKCs is implicated in many human diseases making this class of enzymes an important therapeutic target. Specifically, the DAG-sensing cysteine-rich conserved homology-1 (C1) domains of PKCs have emerged as promising targets for pharmaceutical modulation. Despite significant progress, the rational design of the C1 modulators remains challenging due to difficulties associated with structure determination of the C1-ligand complexes. Given the dearth of experimental structural data, computationally derived models have been instrumental in providing atomistic insight into the interactions of the C1 domains with PKC agonists. In this review, we provide an overview of the in silico approaches for seven classes of C1 modulators and outline promising future directions.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, United States.
| |
Collapse
|
20
|
Ni FQ, Wu SQ, Li W, Li Q, Yin S. Stereoselective Construction of the Methylcyclopentane Core of Peditithins B-H with Five Continuous Stereocenters. Org Lett 2020; 22:9360-9364. [PMID: 33215930 DOI: 10.1021/acs.orglett.0c03615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stereoselective construction of the methylcyclopentane core (3) of jatrophane diterpenoids peditithins B-H was achieved in 14 steps from commercially available d-(+)-ribono-1,4-lactone (9). The linear 5-ene-heptanal derived from 9 was cyclized to the five-membered ring by an intramolecular carbonyl ene reaction, and five continuous stereocenters on 3 were stereoselectively introduced via a successive substrate-controlled manner, involving diastereoselective 1,4-addition, MoOPH-induced hydroxylation, and stereospecific epoxidation.
Collapse
Affiliation(s)
- Fu-Qiang Ni
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shu-Qi Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qingjiang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
21
|
|
22
|
Min L, Hu YJ, Fan JH, Zhang W, Li CC. Synthetic applications of type II intramolecular cycloadditions. Chem Soc Rev 2020; 49:7015-7043. [PMID: 32869796 DOI: 10.1039/d0cs00365d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type II intramolecular cycloadditions ([4+2], [4+3], [4+4] and [5+2]) have emerged recently as an efficient and powerful strategy for the construction of bridged ring systems. In general, type II cycloadditions provide access to a wide range of bridged bicyclo[m.n.1] ring systems with high regio- and diastereoselectivity in an easy and straightforward manner. In each section of this review, an overview of the corresponding type II cycloadditions is presented, which is followed by highlights of method development and synthetic applications in natural product synthesis. The goal of this review is to provide a survey of recent advances in the field covering literature up to 2020. The review will serve as a useful reference for organic chemists engaged in the total synthesis of natural products containing bridged bicyclo[m.n.1] ring systems and provide strong stimulus for invention and further advances in this exciting research field.
Collapse
Affiliation(s)
- Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | | | | | | | | |
Collapse
|
23
|
Trinel M, Le Lamer AC, Jullian V, Jacquemin D, Graton J, Cristofoli V, Crossay E, Yassine M, Rolland C, Vergnolle N, Mejia K, Joel Cabanillas B, Racaud-Sultan C, Fabre N. Daphnanes diterpenes from the latex of Hura crepitans L. And activity against human colorectal cancer cells Caco-2. Bioorg Chem 2020; 103:104132. [PMID: 32768743 DOI: 10.1016/j.bioorg.2020.104132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/16/2022]
Abstract
Hura crepitans (Euphorbiaceae) is a tree from South America that produces an irritant latex used as a fish poison. A bio-guided fractionation of an ethanolic extract of the latex led to the isolation and structural identification of three known daphnane-type diterpenes (1-3) including huratoxin (1), together with two new analogs (4, 5). Compound 1 was found to exhibit significant and selective cell growth inhibition against the colorectal cancer cell line Caco-2, with morphological modifications suggesting formations mimicking the intestinal crypt architecture. The underlying mechanism of 1 was further investigated, in comparison with 12-O-tetradecanoylphorbol-13-acetate (TPA), revealing two different mechanisms.
Collapse
Affiliation(s)
- Manon Trinel
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | | | - Valérie Jullian
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France; Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Denis Jacquemin
- CEISAM, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, Faculté des Sciences et des Techniques, Université de Nantes, France
| | - Jérôme Graton
- CEISAM, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, Faculté des Sciences et des Techniques, Université de Nantes, France
| | | | - Elise Crossay
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | - May Yassine
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Kember Mejia
- Instituto de Investigaciones de la Amazonia Peruana (IIAP), Iquitos, Peru
| | - Billy Joel Cabanillas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | | | - Nicolas Fabre
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| |
Collapse
|
24
|
Abstract
As a natural diterpenoid, crotophorbolone possesses a challenging trans,trans-5/7/6 framework decorated with six contiguous stereogenic centers and is structurally and biogenetically related to tigliane-type diterpenoids with intriguing bioactivities such as phorbol and prostratin. Based on the convergent strategy, we completed an eighteen-step total synthesis of crotophorbolone starting from (−)-carvone and (+)-dimethyl-2,3-O-isopropylidene-l-tartrate. The key elements of the synthesis involve expedient installation of the six-membered ring and the five-membered ring with multiple functional groups at an early stage, cyclization of the seven-membered ring through alkenylation of the ketone between the five-membered ring and the six-membered ring, functional group-sensitive ring-closing metathesis and final selective introduction of hydroxyls at C20 and C4. Convergent total synthesis of crotophorbolone was accomplished in 18 longest linear steps. Observation of unexpected thermodynamic stability of a cis,trans-5/7/6 tricycle would benefit synthetic design of tigliane- and daphnane-related diterpenoids.![]()
Collapse
Affiliation(s)
- Tianzi Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Ying Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Canhui Tu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Ting Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| |
Collapse
|
25
|
Pell CJ, Ozerov OV. Synthesis and Rh-catalyzed reductive cyclization of 1,6-enynes and 1,6-diynes containing alkynylboronate termini. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Zhang L, Cao T, Jiang H, Zhu S. Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ling Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 510640 Guangzhou China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 510640 Guangzhou China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 510640 Guangzhou China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 510640 Guangzhou China
- State Key Laboratory of Elemento-Organic ChemistryNankai University 300071 Tianjing China
- Singfar Laboratories 510670 Guangzhou China
| |
Collapse
|
27
|
Tong G, Ding Z, Liu Z, Ding YS, Xu L, Zhang H, Li P. Total Synthesis of Prostratin, a Bioactive Tigliane Diterpenoid: Access to Multi-Stereocenter Cyclohexanes from a Phenol. J Org Chem 2020; 85:4813-4837. [DOI: 10.1021/acs.joc.0c00022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guanghu Tong
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhengwei Ding
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhi Liu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - You-Song Ding
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Hailong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
28
|
Zhang L, Cao T, Jiang H, Zhu S. Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angew Chem Int Ed Engl 2020; 59:4670-4677. [PMID: 31961991 DOI: 10.1002/anie.201915212] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/18/2020] [Indexed: 12/26/2022]
Abstract
An unprecedented deconstructive reorganization strategy for the de novo synthesis of hydroxylated benzofurans from kojic acid- or maltol-derived alkynes is reported. In this reaction, both the benzene and furan rings were simultaneously constructed, whereas the pyrone moiety of the kojic acid or maltol was deconstructed and then reorganized into the benzene ring as a six-carbon component. Through this strategy, at least one free hydroxyl group was introduced into the benzene ring in a substitution-pattern tunable fashion without protection-deprotection and redox adjustment. With this method, a large number of hydroxylated benzofuran derivatives with different substitution-patterns have been prepared efficiently. This methodology has also been shown as the key step in a collective total synthesis of hydroxylated benzofuran-containing natural products (11 examples).
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjing, China.,Singfar Laboratories, 510670, Guangzhou, China
| |
Collapse
|
29
|
Otsuki K, Li W, Asada Y, Chen CH, Lee KH, Koike K. Daphneodorins A-C, Anti-HIV Gnidimacrin Related Macrocyclic Daphnane Orthoesters from Daphne odora. Org Lett 2020; 22:11-15. [PMID: 31680527 PMCID: PMC7437546 DOI: 10.1021/acs.orglett.9b03539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three novel gnidimacrin related macrocyclic daphnanes (GMDs), daphneodorins A-C (2-4), were isolated from Daphne odora Thunb., together with gnidimacrin (1). Their structures were established by extensive physicochemical and spectroscopic analyses. Compounds 2 and 3 potently inhibited HIV-1 replication at subnanomolar concentrations (EC50 0.16 and 0.25 nM, respectively). Compounds 2-4 represent a novel type of GMDs that are highly oxygenated on the macrocyclic ring, suggesting good potential for anti-HIV drug development by further chemical modification.
Collapse
Affiliation(s)
- Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Yoshihisa Asada
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Tiachung, 40447, Taiwan
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
30
|
Zhou NN, Ning SS, Li LQ, Zhang JY, Fan MJ, Yang DS, Zhu HT. Brønsted-acid-catalyzed one-pot tandem annulation/[5 + 2]-cycloaddition of o-propargyl alcohol benzaldehydes with alkynes: regioselective and stereoselective synthesis of dibenzo[a,f]azulen-12-ones. Org Chem Front 2020. [DOI: 10.1039/d0qo00522c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The one-pot synthesis of dibenzo[a,f]azulen-12-ones has been established starting from o-propargyl alcohol benzaldehydes and alkynes.
Collapse
Affiliation(s)
- Ni-Ni Zhou
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Si-Si Ning
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Lin-Qiang Li
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Jie-Yun Zhang
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Ming-Jin Fan
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - De-Suo Yang
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| |
Collapse
|
31
|
Ding Z, Liu Z, Tong G, Hu L, He Y, Bao Y, Lei Z, Zhang H, Li P. Facile synthesis of the daphnane and tigliane framework by semi-flow tube-based-bubbling photooxidation and diastereoselective conjugate addition. Org Chem Front 2020. [DOI: 10.1039/d0qo00424c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The common [5-7-6] tricyclic framework in tigliane and daphnane natural diterpenes containing five contiguous stereocenters has been synthesized in 9 steps from readily available starting materials in a completely stereocontrolled manner.
Collapse
Affiliation(s)
- Zhengwei Ding
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Zhi Liu
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Guanghu Tong
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Linlin Hu
- Department of Applied Chemistry
- Xi'an University of Technology
- Xi'an 710048
- China
| | - Yangqing He
- Department of Applied Chemistry
- Xi'an University of Technology
- Xi'an 710048
- China
| | - Yueyun Bao
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Zhouhang Lei
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Hailong Zhang
- Department of Medicinal Chemistry
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Pengfei Li
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
| |
Collapse
|
32
|
Le TM, Huynh T, Endre G, Szekeres A, Fülöp F, Szakonyi Z. Stereoselective synthesis and application of isopulegol-based bi- and trifunctional chiral compounds. RSC Adv 2020; 10:38468-38477. [PMID: 35517552 PMCID: PMC9057261 DOI: 10.1039/d0ra07739a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
A new family of isopulegol-based bi- and trifunctional chiral ligands such as triols, tetrols, aminodiols and aminotriols was developed from commercially available (−)-isopulegol with antibacterial, antifungal and antioxidant activities.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry
- University of Szeged
- Interdisciplinary Excellence Centre
- H-6720 Szeged
- Hungary
| | - Thu Huynh
- Department of Microbiology
- University of Szeged
- 6726 Szeged
- Hungary
| | - Gábor Endre
- Department of Microbiology
- University of Szeged
- 6726 Szeged
- Hungary
| | - András Szekeres
- Department of Microbiology
- University of Szeged
- 6726 Szeged
- Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry
- University of Szeged
- Interdisciplinary Excellence Centre
- H-6720 Szeged
- Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry
- University of Szeged
- Interdisciplinary Excellence Centre
- H-6720 Szeged
- Hungary
| |
Collapse
|
33
|
Zhang L, Shi Q, Cao T, Zhu S. Catalytic regio- and stereoselective intermolecular [5+2] cycloaddition via conjugative activation of oxidopyrylium. Chem Commun (Camb) 2020; 56:9533-9536. [PMID: 32691033 DOI: 10.1039/d0cc04309e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic stereodivergent intermolecular [5+2] cycloaddition of maltol-type oxidopyrylium through conjugative activation was reported.
Collapse
Affiliation(s)
- Ling Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Qiu Shi
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Tongxiang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
34
|
|
35
|
Le TM, Szilasi T, Volford B, Szekeres A, Fülöp F, Szakonyi Z. Stereoselective Synthesis and Investigation of Isopulegol-Based Chiral Ligands. Int J Mol Sci 2019; 20:ijms20164050. [PMID: 31430981 PMCID: PMC6719113 DOI: 10.3390/ijms20164050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 01/18/2023] Open
Abstract
A library of isopulegol-based bi-, tri- and tetrafunctional chiral ligands has been developed from commercially available (−)-isopulegol and applied as chiral catalysts in the addition of diethylzinc to benzaldehyde. Michael addition of primary amines towards α-methylene-γ-butyrolactone, followed by reduction, was accomplished to provide aminodiols in highly stereoselective transformations. Stereoselective epoxidation of (+)-neoisopulegol, derived from natural (−)-isopulegol, and subsequent oxirane ring opening with primary amines afforded aminodiols. The regioselective ring closure of N-substituted aminodiols with formaldehyde was also investigated. Hydroxylation of (+)-neoisopulegol resulted in diol, which was then transformed into aminotriols by aminolysis of its epoxides. Dihydroxylation of (+)-neoisopulegol or derivatives with OsO4/NMO gave neoisopulegol-based di-, tri- and tetraols in highly stereoselective reactions. The antimicrobial activity of aminodiol and aminotriol derivatives as well as di-, tri- and tetraols was also explored. In addition, structure–activity relationships were examined by assessing substituent effects on the aminodiol and aminotriol systems.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary excellent center, H-6720 Szeged, Eötvös utca 6, Hungary
- Stereochemistry Research Group of the Hungarian Academy of Sciences, H-6720 Szeged, Eötvös utca 6, Hungary
| | - Tamás Szilasi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary excellent center, H-6720 Szeged, Eötvös utca 6, Hungary
| | - Bettina Volford
- Department of Microbiology, University of Szeged, 6726 Szeged, Közép fasor 52, Hungary
| | - András Szekeres
- Department of Microbiology, University of Szeged, 6726 Szeged, Közép fasor 52, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary excellent center, H-6720 Szeged, Eötvös utca 6, Hungary
- Stereochemistry Research Group of the Hungarian Academy of Sciences, H-6720 Szeged, Eötvös utca 6, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary excellent center, H-6720 Szeged, Eötvös utca 6, Hungary.
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary.
| |
Collapse
|
36
|
Morikawa H, Yamaguchi JI, Sugimura SI, Minamoto M, Gorou Y, Morinaga H, Motokucho S. Systematic synthetic study of four diastereomerically distinct limonene-1,2-diols and their corresponding cyclic carbonates. Beilstein J Org Chem 2019; 15:130-136. [PMID: 30745988 PMCID: PMC6350878 DOI: 10.3762/bjoc.15.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/17/2018] [Indexed: 01/02/2023] Open
Abstract
In order to produce versatile and potentially functional terpene-based compounds, a (R)-limonene-derived diol and its corresponding five-membered cyclic carbonate were prepared. The diol (cyclic carbonate) comprises four diastereomers based on the stereochemical configuration of the diol (and cyclic carbonate) moiety. By choosing the appropriate starting compounds (trans- and cis-limonene oxide) and conditions, the desired diastereomers were synthesised in moderate to high yields with, in most cases, high stereoselectivity. Comparison of the NMR data of the obtained diols and carbonates revealed that the four different diastereomers of each compound could be distinguished by reference to their characteristic signals.
Collapse
Affiliation(s)
- Hiroshi Morikawa
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030, Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Jun-Ichi Yamaguchi
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030, Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Shun-Ichi Sugimura
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030, Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Masato Minamoto
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030, Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Yuuta Gorou
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030, Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Hisatoyo Morinaga
- Faculty of Education, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37, Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Suguru Motokucho
- Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki-city 852-8521, Japan
| |
Collapse
|
37
|
Burns JM, Boittier ED. Pathway Bifurcation in the (4 + 3)/(5 + 2)-Cycloaddition of Butadiene and Oxidopyrylium Ylides: The Significance of Molecular Orbital Isosymmetry. J Org Chem 2019; 84:5997-6005. [DOI: 10.1021/acs.joc.8b03236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jed M. Burns
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4067 Queensland, Australia
| | - Eric D. Boittier
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4067 Queensland, Australia
| |
Collapse
|
38
|
Nguyen LV, Beeler AB. Synthesis of Complex Stereoheptads en Route to Daphnane Diterpene Orthoesters. Org Lett 2018; 20:5177-5180. [DOI: 10.1021/acs.orglett.8b02124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Long V. Nguyen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Aaron B. Beeler
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
39
|
Feng J, Yin H, Man Y, Fu S, Liu B. Asymmetric Synthesis of the Ring A Substructure of Genkwadane A. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Feng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry, Sichuan University; Chengdu Sichuan 610064 China
| | - Hongli Yin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry, Sichuan University; Chengdu Sichuan 610064 China
| | - Yi Man
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry, Sichuan University; Chengdu Sichuan 610064 China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry, Sichuan University; Chengdu Sichuan 610064 China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry, Sichuan University; Chengdu Sichuan 610064 China
| |
Collapse
|
40
|
Calderón-Montaño JM, Martínez-Sánchez SM, Burgos-Morón E, Guillén-Mancina E, Jiménez-Alonso JJ, García F, Aparicio A, López-Lázaro M. Screening for selective anticancer activity of plants from Grazalema Natural Park, Spain. Nat Prod Res 2018; 33:3454-3458. [PMID: 29842791 DOI: 10.1080/14786419.2018.1480620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since plants are an important source of anticancer drugs, we have carried out a random screening for selective anticancer activity of 57 extracts from 45 plants collected in Grazalema Natural Park, an area in the South of Spain of high plant diversity and endemism. Using lung cancer cells (A549) and lung non-malignant cells (MRC-5), we found that several extracts were more cytotoxic and selective against the cancer cells than the standard anticancer agent cisplatin. Five active extracts were further tested in cancer and normal cell lines from other tissues, including three skin cell lines with increasing degree of malignancy. An extract from the leaves of Daphne laureola L. (Thymelaeaceae) showed a striking potency and selectivity on lung cancer cells and leukemia cells; the IC50 values against these cancer cells were approximately 10,000-fold lower than against the normal cells. Daphnane-type diterpene orthoesters may be responsible for this highly selective anticancer activity.
Collapse
Affiliation(s)
| | | | - Estefanía Burgos-Morón
- Faculty of Pharmacy, Department of Pharmacology, University of Seville , Sevilla , Spain
| | - Emilio Guillén-Mancina
- Faculty of Pharmacy, Department of Pharmacology, University of Seville , Sevilla , Spain
| | | | - Felipe García
- Faculty of Pharmacy, Department of Vegetal Biology and Ecology, University of Seville , Sevilla , Spain
| | - Abelardo Aparicio
- Faculty of Pharmacy, Department of Vegetal Biology and Ecology, University of Seville , Sevilla , Spain
| | - Miguel López-Lázaro
- Faculty of Pharmacy, Department of Pharmacology, University of Seville , Sevilla , Spain
| |
Collapse
|
41
|
Cao T, Kong Y, Luo K, Chen L, Zhu S. Cascade Claisen Rearrangement: Rapid Synthesis of Polysubstituted Salicylaldehydes and Total Syntheses of Hemigossypol and Gossypol. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tongxiang Cao
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Yi Kong
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Kui Luo
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Lianfen Chen
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Shifa Zhu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
42
|
Cao T, Kong Y, Luo K, Chen L, Zhu S. Cascade Claisen Rearrangement: Rapid Synthesis of Polysubstituted Salicylaldehydes and Total Syntheses of Hemigossypol and Gossypol. Angew Chem Int Ed Engl 2018; 57:8702-8707. [DOI: 10.1002/anie.201801612] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/11/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Tongxiang Cao
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Yi Kong
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Kui Luo
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Lianfen Chen
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Shifa Zhu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
43
|
Morikawa H, Minamoto M, Gorou Y, Yamaguchi JI, Morinaga H, Motokucho S. Two Diastereomers of d-Limonene-Derived Cyclic Carbonates from d-Limonene Oxide and Carbon Dioxide with a Tetrabutylammonium Chloride Catalyst. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroshi Morikawa
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-02927
| | - Masato Minamoto
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-02927
| | - Yuuta Gorou
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-02927
| | - Jun-ichi Yamaguchi
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-02927
| | - Hisatoyo Morinaga
- Faculty of Education, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Yamanashi 400-8510
| | - Suguru Motokucho
- Chemistry and Material Engineering Program, Nagasaki University, Nagasaki-shi, Nagasaki 852-8521
| |
Collapse
|
44
|
Liu L, Cheng HL, Ma WQ, Hou SH, Tu YQ, Zhang FM, Zhang XM, Wang SH. Improved synthesis of 8-oxabicyclo[3.2.1]octanes via tandem C-H oxidation/oxa-[3,3] Cope rearrangement/aldol cyclization. Chem Commun (Camb) 2018; 54:196-199. [PMID: 29226934 DOI: 10.1039/c7cc08511g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tandem C-H oxidation/oxa-[3,3] Cope rearrangement/aldol reaction of allylic silylethers promoted by T+BF4-(tempo oxoammonium tetrafluoroborate)/ZnBr2 has been successfully developed allowing the efficient construction of 8-oxabicyclo[3.2.1]octanes and their analogs with a wide substrate scope.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Applied Organic Chemistry & School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Hai-Long Cheng
- State Key Laboratory of Applied Organic Chemistry & School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Wen-Qiang Ma
- State Key Laboratory of Applied Organic Chemistry & School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Si-Hua Hou
- State Key Laboratory of Applied Organic Chemistry & School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China. and School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Shao-Hua Wang
- State Key Laboratory of Applied Organic Chemistry & School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
45
|
Feng J, Yu T, Zhang Z, Li J, Fu S, Chen J, Liu B. Asymmetric synthesis of the fully functionalized six-membered ring of trigoxyphin A. Chem Commun (Camb) 2018; 54:7665-7668. [DOI: 10.1039/c8cc04351e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An asymmetric synthesis strategy of the fully functionalized six-membered ring of trigoxyphin A, a daphnane-type diterpenoid, has been accomplished concisely from a d-tartrate derivative on a multi-gram scale.
Collapse
Affiliation(s)
- Jing Feng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Tianzi Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhijiang Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jinpeng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Juan Chen
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
46
|
Wender PA, Ebner C, Fennell BD, Inagaki F, Schröder B. Ynol Ethers as Ketene Equivalents in Rhodium-Catalyzed Intermolecular [5 + 2] Cycloaddition Reactions. Org Lett 2017; 19:5810-5813. [PMID: 29034684 PMCID: PMC5833981 DOI: 10.1021/acs.orglett.7b02765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The previously unexplored metal-catalyzed [5 + 2] cycloadditions of vinylcyclopropanes (VCPs) and electron-rich alkynes (ynol ethers) have been found to provide a highly efficient, direct route to dioxygenated seven-membered rings, a common feature of numerous natural and non-natural targets and building blocks for synthesis. The reactions proceed in high yield at room temperature and tolerate a broad range of functionalities. Substituted VCPs were found to react with high regioselectivity.
Collapse
Affiliation(s)
- Paul A. Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Christian Ebner
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Brandon D. Fennell
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | | | | |
Collapse
|
47
|
Hashimoto S, Katoh SI, Kato T, Urabe D, Inoue M. Total Synthesis of Resiniferatoxin Enabled by Radical-Mediated Three-Component Coupling and 7-endo Cyclization. J Am Chem Soc 2017; 139:16420-16429. [DOI: 10.1021/jacs.7b10177] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Satoshi Hashimoto
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shun-ichiro Katoh
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takehiro Kato
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Urabe
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
48
|
Farag AK, Elkamhawy A, Londhe AM, Lee KT, Pae AN, Roh EJ. Novel LCK/FMS inhibitors based on phenoxypyrimidine scaffold as potential treatment for inflammatory disorders. Eur J Med Chem 2017; 141:657-675. [PMID: 29107425 DOI: 10.1016/j.ejmech.2017.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/19/2017] [Accepted: 10/02/2017] [Indexed: 01/24/2023]
Abstract
Tyrosine kinases including LCK and FMS are involved in inflammatory disorders as well as many types of cancer. Our team has designed and synthesized thirty novel pyrimidine based inhibitors targeting LCK, classified into four different series (amides, ureas, imines (Schiff base) and benzylamines). Twelve of them showed nanomolar IC50 values. Compound 7g showed excellent selectivity profile and was selectively potent over FMS kinase (IC50 value of 4.6 nM). Molecular docking study was performed to help us rationalize the obtained results and predict the possible binding mode for our compounds in both LCK and FMS. Based on the obtained biological assay data and modelling results, a detailed SAR study was discussed. As a further testing regarding the anti-inflammatory effect of the new compounds, in vitro cellular assay over RAW 264.7 macrophages was performed. Compound 7g exhibited excellent anti-inflammatory effect. Therefore, we report the design of novel phenoxypyrimidine derivatives as potent and selective LCK inhibitors and the discovery of 7g as potent and selective FMS/LCK dual inhibitor for the potential application in inflammatory disorders including rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ashwini M Londhe
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ae Nim Pae
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
49
|
Li Y, Dai M. Total Syntheses of the Reported Structures of Curcusones I and J through Tandem Gold Catalysis. Angew Chem Int Ed Engl 2017; 56:11624-11627. [PMID: 28708291 PMCID: PMC5682107 DOI: 10.1002/anie.201706845] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 11/12/2022]
Abstract
Total syntheses of the reported structures of the rhamnofolane diterpene natural products curcusones I and J in racemic form were achieved. The synthetic strategy features a novel tandem gold-catalyzed furan formation and furan-allene [4+3] cycloaddition to build the 5,7-fused ring system with an oxa-bridge in one step, and a stereoselective exo-Diels-Alder reaction to form the 6-membered ring. The newly developed tandem gold catalysis is quite general and can be scaled up. Our syntheses suggest that structural revisions of curcusones I and J are needed.
Collapse
Affiliation(s)
- Yong Li
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
50
|
Kwon K, Ham JS, Kim HY, Sampath V, Lee HY. A Formal Total Synthesis of (+)-Frondosin A. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kuktae Kwon
- Department of Chemistry; Korea Advanced Institute of Science&Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jin Su Ham
- Department of Chemistry; Korea Advanced Institute of Science&Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Hyoun Young Kim
- Department of Chemistry; Korea Advanced Institute of Science&Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Vasu Sampath
- Department of Chemistry; Korea Advanced Institute of Science&Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Hee-Yoon Lee
- Department of Chemistry; Korea Advanced Institute of Science&Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|