1
|
Lu S, Zhang Z, Zhu Y, Tao Y, Lin Q, Zhang Q, Lv X, Hua L, Chen Z, Wang H, Zhuang GL, Zhang QC, Guo C, Li X, Yu X. Enhancing Effect of Fullerene Guest and Counterion on the Structural Stability and Electrical Conductivity of Octahedral Metallo-Supramolecular Cages. Angew Chem Int Ed Engl 2024; 63:e202410710. [PMID: 38949854 DOI: 10.1002/anie.202410710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Metallo-supramolecular cages have garnered tremendous attention for their diverse yet molecular-level precision structures. However, the physical properties of these supramolecular ensembles, which are of potential significance in molecular electronics, remain largely unexplored. We herein constructed a series of octahedral metallo-cages and cage-fullerene complexes with notably enhanced structural stability. As such, we could systematically evaluate the electrical conductivity of these ensembles at both the single-molecule level and aggregated bulk state (as well-defined films). Our findings reveal that counteranions and fullerene guests play a pivotal role in determining the electrical conductivity of the aggregated state, while such effects are less significant for single-molecule conductance. Both the counteranions and fullerenes effectively tune the electronic structures and packing density of metallo-supramolecular assemblies, and facilitate efficient charge transfer between the cage hosts and fullerenes, resulting in a notable one order of magnitude increase in the electrical conductivity of the aggregated state.
Collapse
Affiliation(s)
- Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ziang Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yiying Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ye Tao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Quanjie Lin
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Qian Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xin Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Lei Hua
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Gui-Lin Zhuang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Qian-Chong Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
2
|
Zhang Z, Bai Q, Zhai Z, Long Q, Han E, Zhao H, Zhou CW, Lin H, Zhang W, Ning GH, Xie TZ, Wang P, Wu T. Multiple-stimuli fluorescent responsive metallo-organic helicated cage arising from monomer and excimer emission. Nat Commun 2024; 15:7261. [PMID: 39179587 PMCID: PMC11344131 DOI: 10.1038/s41467-024-51792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Effectively regulating monomer and excimer emission in a singular supramolecular luminous platform is challenging due to high difficulty of precise control over its aggregation and dispersion behavior when subjected to external stimuli. Here, we show a metallo-cage (MTH) featuring a triple helical motif that displays a unique dual emission. It arises from both intramolecular monomer and intermolecular excimer, respectively. The distorted molecular conformation and the staggered stacking mode of MTH excimer are verified through single crystal X-ray diffraction analysis. These structural features facilitate the switch between monomer and excimer emission, which are induced by changes in concentration and temperature. Significantly, adjusting the equilibrium between these two states in MTH enables the production of vibrant white light emission in both solution and solid state. Moreover, when combined with a PMMA (polymethyl methacrylate) substrate, the resulting thin films can serve as straightforward fluorescence thermometer and thermally activated information encryption materials.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Zirui Zhai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Qingwu Long
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, China
| | - Ermeng Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, China
| | - Haobo Lin
- School of Physics and Materials Science, Guangzhou University, Guangzhou, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
3
|
Ibáñez S, Mejuto C, Cerón K, Sanz Miguel PJ, Peris E. A corannulene-based metallobox for the encapsulation of fullerenes. Chem Sci 2024; 15:13415-13420. [PMID: 39183911 PMCID: PMC11339943 DOI: 10.1039/d4sc03661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
A corannulene-bis-N-imidazolium salt was used for the synthesis of two corannulene-bis-N-heterocyclic carbenes of dirhodium(i) complexes of formula (corannulene-di-NHC)[RhCl(COD)]2 and (corannulene-di-NHC)[RhCl(CO)2]2. Both complexes were characterized by spectroscopic techniques, and the electron-donating properties of the corannulene-di-NHC ligand were studied by means of infrared spectroscopy and cyclic voltammetry. The complex (corannulene-di-NHC)[RhCl(COD)]2 was used for the encapsulation of fullerenes C60 and C70, generating host-guest complexes with 2 : 1 stoichiometry, as evidenced by 1H NMR and ITC titrations. Then, a tetra-rhodium(i) metallo-rectangle supported by two corannulene-bis-imidazolylidene ligands and two cofacial 4,4'-bipyridine ligands was prepared and characterized. This metallobox is capable of quantitatively encapsulating fullerenes C60 and C70, forming complexes that are highly stable even at high temperatures. The molecular structure of the metallobox with encapsulated C60 reveals a perfect size and shape complementarity that benefits from the concave-convex π-π interaction between the polyaromatic surfaces of the host and the guest.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| | - Carmen Mejuto
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| | - Katherin Cerón
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| | - Pablo J Sanz Miguel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón E-12071 Spain
| |
Collapse
|
4
|
Xiao W, Geng R, Bi D, Luo Y, Zhang Z, Gan Q, Liu Y, Zhu J. pH/H 2O 2 Cascade-Responsive Nanoparticles of Lipid-Like Prodrugs through Dynamic-Covalent and Coordination Interactions for Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308790. [PMID: 38396276 DOI: 10.1002/smll.202308790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Traditional lipid nanoparticles (LNPs) suffer from low drug loading capacity (DLC), weak stability, and lack of responsiveness. Conventional approaches to address these issues involve the synthesis of lipid-prodrug by incorporating responsive covalent linkers. However, such approaches often result in suboptimal sensitivity for drug release and undermine therapeutic effectiveness. Herein, the study reports a fundamentally different concept for designing lipid-like prodrugs through boron-nitrogen (B-N) coordination and dynamic covalent interaction. The 5-fluorouracil-based lipid-like prodrugs, featuring a borate ester consisting of a glycerophosphoryl choline head and a boronic acid-modified 5Fu/dodecanamine complex tail, are used to prepare pH/H2O2 cascade-responsive LNPs (5Fu-LNPs). The 5Fu-LNPs exhibit enhanced DLC and stability in a neutral physiological environment due to the B-N coordination and enhanced hydrophobicity. In tumors, acidic pH triggers the dissociation of B-N coordination to release prodrugs, which further responds to low H2O2 concentrations to release drugs, showcasing a potent pH/H2O2-cascade-responsive property. Importantly, 5Fu-LNPs demonstrate greater antitumor efficiency and lower toxicity compared to the commercial 5Fu. These results highlight 5Fu-LNPs as a safer and more effective alternative to chemotherapy. This work presents a unique LNP fabrication strategy that can overcome the limitations of conventional LNPs and broaden the range of intelligent nanomaterial preparation techniques.
Collapse
Affiliation(s)
- Wanyue Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rui Geng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yi Luo
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zihan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quan Gan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jintao Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
5
|
Geue N, Winpenny REP, Barran PE. Ion Mobility Mass Spectrometry for Large Synthetic Molecules: Expanding the Analytical Toolbox. J Am Chem Soc 2024; 146:8800-8819. [PMID: 38498971 PMCID: PMC10996010 DOI: 10.1021/jacs.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Understanding the composition, structure and stability of larger synthetic molecules is crucial for their design, yet currently the analytical tools commonly used do not always provide this information. In this perspective, we show how ion mobility mass spectrometry (IM-MS), in combination with tandem mass spectrometry, complementary techniques and computational methods, can be used to structurally characterize synthetic molecules, make and predict new complexes, monitor disassembly processes and determine stability. Using IM-MS, we present an experimental and computational framework for the analysis and design of complex molecular architectures such as (metallo)supramolecular cages, nanoclusters, interlocked molecules, rotaxanes, dendrimers, polymers and host-guest complexes.
Collapse
Affiliation(s)
- Niklas Geue
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Richard E. P. Winpenny
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
6
|
Inaba H, Shisaka Y, Ariyasu S, Sakakibara E, Ueda G, Aiba Y, Shimizu N, Sugimoto H, Shoji O. Heme-substituted protein assembly bridged by synthetic porphyrin: achieving controlled configuration while maintaining rotational freedom. RSC Adv 2024; 14:8829-8836. [PMID: 38495978 PMCID: PMC10941265 DOI: 10.1039/d4ra01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The use of biological host-guest interactions, specifically the binding of hemoprotein to heme, has attracted significant research interest in the design of artificial protein assemblies. However, because of the inherent flexibility of the propionic acid group of heme, it is difficult to control the positioning and orientation of the protein unit and to construct well-ordered structures. Herein, we report a heme-substituted protein dimer composed of the native hemoprotein HasA, which accommodates a tetraphenylporphyrin bearing an additional metal coordination site. The specific binding of the tetraphenylporphyrin with an additional metal coordination site that protrudes in a fixed direction confines the configuration of the dimer structure to a defined bent form. The small-angle X-ray scattering profile shows the dimer structure with a bent form and suggests dynamic rotational behavior while keeping its bent-core structure, resembling a bevel gear. This unique dimer structure demonstrates that the design of heme-substituted protein assemblies can be expanded to protein assemblies while maintaining the rotational freedom of the individual protein units.
Collapse
Affiliation(s)
- Hiroaki Inaba
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| | - Yuma Shisaka
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| | - Shinya Ariyasu
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| | - Erika Sakakibara
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| | - Garyo Ueda
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| | - Yuichiro Aiba
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
- RIKEN SPring-8 Center 1-1-1 Kouto Sayo Hyogo 679-5148 Japan
| | | | - Osami Shoji
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| |
Collapse
|
7
|
Zhao H, Wijerathna AMSD, Dong Q, Bai Q, Jiang Z, Yuan J, Wang J, Chen M, Zirnheld M, Li R, Liu D, Wang P, Zhang Y, Li Y. Adjusting the Architecture of Heptagonal Metallo-Macrocycles by Embedding Metal Nodes into the Backbone. Angew Chem Int Ed Engl 2024; 63:e202318029. [PMID: 38087428 DOI: 10.1002/anie.202318029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Indexed: 12/30/2023]
Abstract
Coordination-driven self-assembly has been extensively employed for the bottom-up construction of discrete metallo-macrocycles. However, the prevalent use of benzene rings as the backbone limits the formation of large metallo-macrocycles with more than six edges. Herein, by embedding metal nodes into the ligand backbone, we successfully regulated the ligand arm angle and assembled two giant heptagonal metallo-macrocycles with precise control. The angle between two arms at position 4 of the central terpyridine (tpy) extended after complexation with metal ions, leading to ring expansion of the metallo-macrocycle. The assembled structures were straightforwardly identified through multi-dimensional NMR spectroscopy (1 H, COSY, NOESY), multidimensional mass spectrometry analysis (ESI-MS and TWIM-MS), transmission electron microscopy (TEM), as well as scanning tunneling microscopy (STM). In addition, the catalytic performances of metallo-macrocycles in the oxidation of thioanisole were studied, with both supramolecules exhibiting good conversion rates. Furthermore, fiber-like nanostructures were observed from single-molecule heptagons by hierarchical self-assembly.
Collapse
Affiliation(s)
- He Zhao
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | | | - Qiangqiang Dong
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jun Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Markus Zirnheld
- Department of Physics, Old Dominion University, Norfolk, VA 23529, USA
| | - Rockwell Li
- Department of Physics, Old Dominion University, Norfolk, VA 23529, USA
| | - Die Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, China
| | - Yuan Zhang
- Department of Physics, Old Dominion University, Norfolk, VA 23529, USA
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
8
|
Chang X, Xu Y, von Delius M. Recent advances in supramolecular fullerene chemistry. Chem Soc Rev 2024; 53:47-83. [PMID: 37853792 PMCID: PMC10759306 DOI: 10.1039/d2cs00937d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 10/20/2023]
Abstract
Fullerene chemistry has come a long way since 1990, when the first bulk production of C60 was reported. In the past decade, progress in supramolecular chemistry has opened some remarkable and previously unexpected opportunities regarding the selective (multiple) functionalization of fullerenes and their (self)assembly into larger structures and frameworks. The purpose of this review article is to provide a comprehensive overview of these recent developments. We describe how macrocycles and cages that bind strongly to C60 can be used to block undesired addition patterns and thus allow the selective preparation of single-isomer addition products. We also discuss how the emergence of highly shape-persistent macrocycles has opened opportunities for the study of photoactive fullerene dyads and triads as well as the preparation of mechanically interlocked compounds. The preparation of two- or three-dimensional fullerene materials is another research area that has seen remarkable progress over the past few years. Due to the rapidly decreasing price of C60 and C70, we believe that these achievements will translate into all fields where fullerenes have traditionally (third-generation solar cells) and more recently been applied (catalysis, spintronics).
Collapse
Affiliation(s)
- Xingmao Chang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| |
Collapse
|
9
|
Bai Q, Guan YM, Wu T, Liu Y, Zhai Z, Long Q, Jiang Z, Su P, Xie TZ, Wang P, Zhang Z. Anion-Regulated Hierarchical Self-Assembly and Chiral Induction of Metallo-Tetrahedra. Angew Chem Int Ed Engl 2023; 62:e202309027. [PMID: 37552154 DOI: 10.1002/anie.202309027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
The precise control over hierarchical self-assembly of superstructures relying on the elaboration of multiple noncovalent interactions between basic building blocks is both elusive and highly desirable. We herein report a terpyridine-based metallo-cage T with a tetrahedral motif and utilized it as an efficient building block for the controlled hierarchical self-assembly of superstructures in response to different halide ions. Initially, the hierarchical superstructure of metallo-cage T adopted a hexagonal close-packed structure. By adding Cl- /Br- or I- , drastically different hierarchical superstructures with highly-tight hexagonal packing or graphite-like packing arrangements, respectively, have been achieved. These unusual halide-ion-triggered hierarchical structural changes resulted in quite distinct intermolecular channels, which provided new insights into the mechanism of three-dimensional supramolecular aggregation and crystal growth based on macromolecular construction. In addition, the chiral induction of the metallo-cage T can be realized with the addition of chiral anions, which stereoselectively generated either PPPP- or MMMM-type enantiomers.
Collapse
Affiliation(s)
- Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ying Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zirui Zhai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Qingwu Long
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528333, China
| | - Zhiyuan Jiang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Su P, Zhang W, Guo C, Liu H, Xiong C, Tang R, He C, Chen Z, Yu X, Wang H, Li X. Constructing Ultrastable Metallo-Cages via In Situ Deprotonation/Oxidation of Dynamic Supramolecular Assemblies. J Am Chem Soc 2023; 145:18607-18622. [PMID: 37566725 DOI: 10.1021/jacs.3c06211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Coordination-driven self-assembly enables the spontaneous construction of metallo-supramolecules with high precision, facilitated by dynamic and reversible metal-ligand interactions. The dynamic nature of coordination, however, results in structural lability in many metallo-supramolecular assembly systems. Consequently, it remains a formidable challenge to achieve self-assembly reversibility and structural stability simultaneously in metallo-supramolecular systems. To tackle this issue, herein, we incorporate an acid-/base-responsive tridentate ligand into multitopic building blocks to precisely construct a series of metallo-supramolecular cages through coordination-driven self-assembly. These dynamic cagelike assemblies can be transformed to their static states through mild in situ deprotonation/oxidation, leading to ultrastable skeletons that can withstand high temperatures, metal ion chelators, and strong acid/base conditions. This in situ transformation provides a reliable and powerful approach to manipulate the kinetic features and stability of metallo-supramolecules and allows for modulation of encapsulation and release behaviors of metallo-cages when utilizing nanoscale quantum dots (QDs) as guest molecules.
Collapse
Affiliation(s)
- Pingru Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China
| | - Wenjing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Hong Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanhong Xiong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Runxu Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanxin He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
11
|
Zhou LP, Feng XS, Hu SJ, Sun QF. Controlled Self-Assembly, Isomerism, and Guest Uptake/Release of Charge-Reversible Lanthanide-Organic Octahedral Cages. J Am Chem Soc 2023; 145:17845-17855. [PMID: 37545096 DOI: 10.1021/jacs.3c04921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Charge plays a crucial role in the function of molecular and supramolecular systems, but coordination hosts capable of orthogonal charge regulation remain elusive so far. In this study, we report the condition-dependent self-assembly of charge-reversible lanthanide-organic tetra-capped octahedral cages, i.e., [Ln6(H3L)4]6+ and [Ln6L4]6-, from a series of lanthanide ions (Ln3+; Ln = Lu, Yb, Eu) and a tritopic tetradentate acylhydrazone ligand (H6L) featuring multiple deprotonation states and propeller conformations. While direct self-assembly under basic conditions produced a mixture of various ΔxΛ6-x-[Ln6L4]6- (x = 0-6) stereoisomers, racemic Δ6- and Λ6-[Ln6L4]6- could be exclusively obtained from the first self-assembly of Δ6- and Λ6-[Ln6(H3L)4]6+ under neutral conditions followed by post-assembly deprotonation. Rich isomerism on the tetra-capped octahedral cages arising from the coupling between the metal-centered Δ/Λ chirality and the ligand conformations has been discussed based on X-ray single-crystal structures of the C3-symmetric Δ3Λ3-Ln6L4 and T-symmetric Δ6/Λ6-Ln6L4 complexes. Host-guest studies confirmed that positively charged rac-Δ6/Λ6-[Ln6(H3L)4]6+ could bind anionic sulfonates, and negatively charged rac-Δ6/Λ6-[Ln6L4]6- exhibited strong encapsulation ability toward ammonium guests, where acid/base-triggered guest uptake/release could be realized taking advantage of the charge reversibility of the cage. Moreover, photophysical studies revealed visible-light-sensitized and guest-encapsulation-enhanced NIR emissions on the rac-Δ6/Λ6-Yb6L4 cage. This work not only enriches the library of functional lanthanide-organic cages but also provides a promising candidate with charge reversibility for the development of smart supramolecular materials.
Collapse
Affiliation(s)
- Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xiao-Shan Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
12
|
Begato F, Licini G, Zonta C. Programmed guest confinement via hierarchical cage to cage transformations. Chem Sci 2023; 14:8147-8151. [PMID: 37538831 PMCID: PMC10395264 DOI: 10.1039/d3sc01368e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/11/2023] [Indexed: 08/05/2023] Open
Abstract
Taking inspiration from Nature, where (bio)molecular geometry variations are exploited to tune a large variety of functions, supramolecular chemistry has continuously developed novel systems in which, as a consequence of a specific stimulus, structural changes occur. Among the different architectures, supramolecular cages have been continuously investigated for their capability to act as functional hosts where guests can be released in a controlled fashion. In this paper, a novel methodology based on the use of phenanthrenequinone is applied to selectively change the binding properties of a tris(2-pyridylmethyl)amine TPMA-based cage. In particular, subcomponent substitution has been used to change structural cage features thus controlling the inclusion ratio of competing guests differing in size or chirality.
Collapse
Affiliation(s)
- Federico Begato
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Cristiano Zonta
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
13
|
Banerjee R, Bhattacharyya S, Mukherjee PS. Synthesis of an Adaptable Molecular Barrel and Guest Mediated Stabilization of Its Metastable Higher Homologue. JACS AU 2023; 3:1998-2006. [PMID: 37502154 PMCID: PMC10369414 DOI: 10.1021/jacsau.3c00224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/29/2023]
Abstract
Structural and functional modulation of three-dimensional artificial macromolecular systems is of immense importance. Designing supramolecular cages that can show stimuli mediated reversible switching between higher-order structures is quite challenging. We report here construction of a Pd6 trifacial barrel (1) by coordination self-assembly. Surprisingly, barrel 1 was found to exhibit guest-responsive behavior. In presence of fullerenes C60 and C70, 1 unprecedentedly transformed to its metastable higher homologue Pd8 tetrafacial barrel (2), forming stable host-guest complexes (C60)3⊂2 and (C70)2⊂2, respectively. Again, encapsulated fullerenes could be extracted from the cavity of 2 using 1,2-dichlorobenzene, leading to its facile conversion to the parent trifacial barrel 1. Such reversible structural interconversion between an adaptable molecular barrel and its guest stabilized higher homologue is an uncommon observation.
Collapse
|
14
|
Liu HK, Ronson TK, Wu K, Luo D, Nitschke JR. Anionic Templates Drive Conversion between a Zn II9L 6 Tricapped Trigonal Prism and Zn II6L 4 Pseudo-Octahedra. J Am Chem Soc 2023. [PMID: 37440669 PMCID: PMC10375523 DOI: 10.1021/jacs.3c03981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
This work introduces the use of 8-aminoquinoline subcomponents to generate complex three-dimensional structures. Together with a tris(formylpyridine), 8-aminoquinoline condensed around ZnII templates to produce a tris(tridentate) ligand. This ligand is incorporated into either a tricapped trigonal prismatic ZnII9L6 structure or a pair of pseudo-octahedral ZnII6L4 diastereomers, with S4 and D2 symmetries. Introduction of a methyl group onto the aminoquinoline modulated the coordination sphere of ZnII, which favored the ZnII9L6 structure and disfavored the ZnII6L4 assembly. The tricapped trigonal prismatic ZnII9L6 architecture converted into a single ZnII6L4 cage diastereomer following the addition of a dianionic 4,4'-dinitrostilbene-2,2'-disulfonate guest. Four of these guests clustered tightly at the four windows of the ZnII6L4 cage, held in place through electrostatic interactions and hydrogen bonding, stabilize a single diastereomeric configuration with S4 symmetry.
Collapse
Affiliation(s)
- Hua-Kui Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Dong Luo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
15
|
Xue W, Wu K, Ouyang N, Brotin T, Nitschke JR. Allosterically Regulated Guest Binding Determines Framework Symmetry for an Fe II 4 L 4 Cage. Angew Chem Int Ed Engl 2023; 62:e202301319. [PMID: 36866857 PMCID: PMC10947561 DOI: 10.1002/anie.202301319] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 03/04/2023]
Abstract
Self-assembly of a flexible tritopic aniline and 3-substituted 2-formylpyridine subcomponents around iron(II) templates gave rise to a low-spin FeII 4 L4 capsule, whereas a high-spin FeII 3 L2 sandwich species formed when a sterically hindered 6-methyl-2-formylpyridine was used. The FeII 4 L4 cage adopted a new structure type with S4 symmetry, having two mer-Δ and two mer-Ʌ metal vertices, as confirmed by NMR and X-ray crystallographic analysis. The flexibility of the face-capping ligand endows the resulting FeII 4 L4 framework with conformational plasticity, enabling it to adapt structurally from S4 to T or C3 symmetry upon guest binding. The cage also displayed negative allosteric cooperativity in simultaneously binding different guests within its cavity and at the apertures between its faces.
Collapse
Affiliation(s)
- Weichao Xue
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Kai Wu
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Nianfeng Ouyang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Thierry Brotin
- Laboratoire de chimieUniversité LyonEns de Lyon, CNRS UMR 518269342LyonFrance
| | | |
Collapse
|
16
|
Lu S, Morrow DJ, Li Z, Guo C, Yu X, Wang H, Schultz JD, O'Connor JP, Jin N, Fang F, Wang W, Cui R, Chen O, Su C, Wasielewski MR, Ma X, Li X. Encapsulating Semiconductor Quantum Dots in Supramolecular Cages Enables Ultrafast Guest-Host Electron and Vibrational Energy Transfer. J Am Chem Soc 2023; 145:5191-5202. [PMID: 36745391 DOI: 10.1021/jacs.2c11981] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the field of supramolecular chemistry, host-guest systems have been extensively explored to encapsulate a wide range of substrates, owing to emerging functionalities in nanoconfined space that cannot be achieved in dilute solutions. However, host-guest chemistry is still limited to encapsulation of small guests. Herein, we construct a water-soluble metallo-supramolecular hexagonal prism with a large hydrophobic cavity by anchoring multiple polyethylene glycol chains onto the building blocks. Then, assembled prisms are able to encapsulate quantum dots (QDs) with diameters of less than 5.0 nm. Furthermore, we find that the supramolecular cage around each QD strongly modifies the photophysics of the QD by universally increasing the rates of QD relaxation processes via ultrafast electron and vibrational energy transfer. Taken together, these efforts expand the scope of substrates in host-guest systems and provide a new approach to tune the optical properties of QDs.
Collapse
Affiliation(s)
- Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Darien J Morrow
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wu Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ran Cui
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chenliang Su
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Center for Molecular Quantum Transduction, Northwestern-Argonne Institute of Science and Engineering, 2205 Tech Drive, Evanston, Illinois 60208, United States.,Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
17
|
Zhang H, Li Y, Zhang YF, Qiao XJ, Sun LY, Li J, Wang YY, Han YF. Solvato-Controlled Assembly and Structural Transformation of Emissive Poly-NHC-Based Organometallic Cages and Their Applications in Amino Acid Sensing and Fluorescence Imaging. Chemistry 2023; 29:e202300209. [PMID: 36762405 DOI: 10.1002/chem.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Stimuli-induced structural transformation of supramolecular cages has drawn increasing attention because of their sensitive feature to external variations as model systems to simulate biological processes. However, combining structural transformation and useful functions has remained a difficult task. This study reports the solvato-controlled self-assembly of two unique topologies with different emission characteristics, a water-soluble Ag8 L4 cage (A) and an Ag4 L2 cage (B), produced from the same sulfonate-pendant tetraphenylethene (TPE) bridged tetrakis-(1,2,4-triazolium) ligand. Both cages show interesting solvent-responsive reversible structural transformation, and the change of fluorescence signals can efficiently track the process. Additionally, water-soluble cage A exhibits unique properties in thermochromism, thiol amino acid sensing, and subcellular imaging in aqueous media.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Fan Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiu-Juan Qiao
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
18
|
Manick AD, Li C, Antonetti E, Albalat M, Cotelle Y, Nava P, Dutasta JP, Chatelet B, Martinez A. Probing the Importance of Host Symmetry on Carbohydrate Recognition. Chemistry 2023; 29:e202203212. [PMID: 36563113 DOI: 10.1002/chem.202203212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/24/2022]
Abstract
The design of molecular cages with low symmetry could allow for more specific tuning of their properties and better mimic the unsymmetrical and complex environment of protein pockets. However, the added value of lowering symmetry of molecular receptors has been rarely demonstrated. Herein, C3 - and C1 -symmetrical cages, presenting the same recognition sites, have been synthesized and investigated as hosts for carbohydrate recognition. Structurally related derivatives of glucose, galactose and mannose were found to have greater affinity to the receptor with the lowest symmetry than to their C3 -symmetrical analogue. According to the host cavity modelling, the C1 symmetry receptor exhibits a wider opening than its C3 -symmetrical counterpart, providing easier access and thus promoting guest proximity to binding sites. Moreover, our results show the high stereo- and substrate selectivity of the C1 symmetry cage with respect to its C3 counterpart in the recognition of sugars.
Collapse
Affiliation(s)
- Anne-Doriane Manick
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Chunyang Li
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China.,Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Elise Antonetti
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Muriel Albalat
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Yoann Cotelle
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Paola Nava
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Jean-Pierre Dutasta
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France
| | - Bastien Chatelet
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Alexandre Martinez
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| |
Collapse
|
19
|
Su P, Wei B, Guo C, Hu Y, Tang R, Zhang S, He C, Lin J, Yu X, Chen Z, Li H, Wang H, Li X. Metallo-Supramolecular Hexagonal Wreath with Four Switchable States Based on a pH-Responsive Tridentate Ligand. J Am Chem Soc 2023; 145:3131-3145. [PMID: 36696285 DOI: 10.1021/jacs.2c12504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In biological systems, many biomacromolecules (e.g., heme proteins) are capable of switching their states reversibly in response to external stimuli, endowing these natural architectures with a high level of diversity and functionality. Although tremendous efforts have been made to advance the complexity of artificial supramolecules, it remains a challenge to construct metallo-supramolecular systems that can carry out reversible interconversion among multiple states. Here, a pH-responsive tridentate ligand, 2,6-di(1H-imidazole-2-yl)pyridine (H2DAP), is incorporated into the multitopic building block for precise construction of giant metallo-supramolecular hexagonal wreaths with three metal ions, i.e., Fe(II), Co(II), and Ni(II), through coordination-driven self-assembly. In particular, a Co-linked wreath enables in situ reversible interconversion among four states in response to pH and oxidant/reductant with highly efficient conversion without losing structural integrity. During the state interconversion cycles, the physical properties of the assembled constructs are finely tuned, including the charge states of the backbone, valency of metal ions, and paramagnetic/diamagnetic features of complexes. Such discrete wreath structures with a charge-switchable backbone further facilitate layer-by-layer assembly of metallo-supramolecules on the substrate.
Collapse
Affiliation(s)
- Pingru Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Biaowen Wei
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yaqi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Runxu Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Jing Lin
- School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518055, Guangdong, China
| |
Collapse
|
20
|
Sen S, Ishiwari F, Kaur R, Ishida M, Ray D, Kikuchi K, Mori T, Bähring S, Lynch VM, Saeki A, Guldi DM, Sessler JL, Jana A. Supramolecular Recognition within a Nanosized "Buckytrap" That Exhibits Substantial Photoconductivity. J Am Chem Soc 2023; 145:1031-1039. [PMID: 36608693 DOI: 10.1021/jacs.2c10555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report here a nanosized "buckytrap", 1, constructed from two bis-zinc(II) expanded-TTF (exTTF) porphyrin subunits. Two forms, 1a and 1b, differing in the axial ligands, H2O vs tetrahydrofuran (THF), were isolated and characterized. Discrete host-guest inclusion complexes are formed upon treatment with fullerenes as inferred from a single-crystal X-ray structural analyses of 1a with C70. The fullerene is found to be encapsulated within the inner pseudohexagonal cavity of 1a. In contrast, the corresponding free-base derivative (2) was found to form infinite ball-and-socket type supramolecular organic frameworks (3D-SOFs) with fullerenes, (2•C60)n or (2•C70)n. This difference is ascribed to the fact that in 1a and 1b the axial positions are blocked by a H2O or THF ligand. Emission spectroscopic studies supported a 1:1 host-guest binding stoichiometry, allowing association constants of (2.0 ± 0.5) × 104 M-1 and (4.3 ± 0.9) × 104 M-1 to be calculated for C60 and C70, respectively. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) studies of solid films of the Zn-complex 1a revealed that the intrinsic charge carrier transport, i.e., pseudo-photoconductivity (ϕ∑μ), increases upon fullerene inclusion (e.g., ϕ∑μ = 1.53 × 10-4 cm2 V-1 s-1 for C60⊂(1a)2 and ϕ∑μ = 1.45 × 10-4 cm2 V-1 s-1 for C70⊂(1a)2 vs ϕ∑μ = 2.49 × 10-5 cm2 V-1 s-1 for 1a) at 298 K. These findings provide support for the notion that controlling the nature of self-assembly supramolecular constructs formed from exTTF-porphyrin dimers through metalation or choice of fullerene can be used to regulate key functional features, including photoconductivity.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street Stop A 5300, Austin, Texas 78712-1224, United States
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ramandeep Kaur
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Debmalya Ray
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Koichi Kikuchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Takehiko Mori
- Department of Materials Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguru-ku, Tokyo 152-8552, Japan
| | - Steffen Bähring
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street Stop A 5300, Austin, Texas 78712-1224, United States
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street Stop A 5300, Austin, Texas 78712-1224, United States
| | - Atanu Jana
- Applied Supramolecular Chemistry Research Laboratory, Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), Gandhinagar, Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| |
Collapse
|
21
|
Chai L, Ju Y, Xing J, Ma X, Zhao X, Tan Y. Nanographene Metallaprisms: Structure, Stimulated Transformation, and Emission Enhancement. Angew Chem Int Ed Engl 2022; 61:e202210268. [DOI: 10.1002/anie.202210268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ling Chai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yang‐Yang Ju
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jiang‐Feng Xing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiao‐Hui Ma
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Jing Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yuan‐Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
22
|
Bobylev EO, Poole DA, de Bruin B, Reek JNH. M 6L 12 Nanospheres with Multiple C 70 Binding Sites for 1O 2 Formation in Organic and Aqueous Media. J Am Chem Soc 2022; 144:15633-15642. [PMID: 35977385 PMCID: PMC9437924 DOI: 10.1021/jacs.2c05507] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Singlet oxygen is a potent oxidant with major applications
in organic
synthesis and medicinal treatment. An efficient way to produce singlet
oxygen is the photochemical generation by fullerenes which exhibit
ideal thermal and photochemical stability. In this contribution we
describe readily accessible M6L12 nanospheres
with unique binding sites for fullerenes located at the windows of
the nanospheres. Up to four C70 can be associated with
a single nanosphere, presenting an efficient method for fullerene
extraction and application. Depending on the functionality located
on the outside of the sphere, they act as vehicles for 1O2 generation in organic or in aqueous media using white
LED light. Excellent productivity in 1O2 generation
and consecutive oxidation of 1O2 acceptors using
C70⊂[Pd6L12], C60⊂[Pd6L12] or fullerene soot extract
was observed. The methodological design principles allow preparation
and application of highly effective multifullerene binding spheres.
Collapse
Affiliation(s)
- Eduard O Bobylev
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam The Netherlands
| | - David A Poole
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam The Netherlands
| | - Bas de Bruin
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam The Netherlands
| | - Joost N H Reek
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam The Netherlands
| |
Collapse
|
23
|
Chai L, Ju YY, Xing JF, Ma XH, Zhao XJ, Tan YZ. Nanographene Metallaprisms: Structure, Stimulated Transformation, and Emission Enhancement. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | | | - Yuan-Zhi Tan
- Xiamen University Department of Chemistry Siminnan Road 422 361005 Xiamen CHINA
| |
Collapse
|
24
|
Benchimol E, Nguyen BNT, Ronson TK, Nitschke JR. Transformation networks of metal-organic cages controlled by chemical stimuli. Chem Soc Rev 2022; 51:5101-5135. [PMID: 35661155 PMCID: PMC9207707 DOI: 10.1039/d0cs00801j] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/29/2022]
Abstract
The flexibility of biomolecules enables them to adapt and transform as a result of signals received from the external environment, expressing different functions in different contexts. In similar fashion, coordination cages can undergo stimuli-triggered transformations owing to the dynamic nature of the metal-ligand bonds that hold them together. Different types of stimuli can trigger dynamic reconfiguration of these metal-organic assemblies, to switch on or off desired functionalities. Such adaptable systems are of interest for applications in switchable catalysis, selective molecular recognition or as transformable materials. This review highlights recent advances in the transformation of cages using chemical stimuli, providing a catalogue of reported strategies to transform cages and thus allow the creation of new architectures. Firstly we focus on strategies for transformation through the introduction of new cage components, which trigger reconstitution of the initial set of components. Secondly we summarize conversions triggered by external stimuli such as guests, concentration, solvent or pH, highlighting the adaptation processes that coordination cages can undergo. Finally, systems capable of responding to multiple stimuli are described. Such systems constitute composite chemical networks with the potential for more complex behaviour. We aim to offer new perspectives on how to design transformation networks, in order to shed light on signal-driven transformation processes that lead to the preparation of new functional metal-organic architectures.
Collapse
Affiliation(s)
- Elie Benchimol
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Bao-Nguyen T Nguyen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
25
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
26
|
Hirao T, Haino T. Supramolecular Ensembles Formed via Calix[5]arene-Fullerene Host-Guest Interactions. Chem Asian J 2022; 17:e202200344. [PMID: 35647739 DOI: 10.1002/asia.202200344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Indexed: 11/09/2022]
Abstract
This minireview introduces the research directions for the synthesis of supramolecular fullerene polymers. First, the discovery of host-guest complexes of pristine fullerenes is briefed. We focus on progress in supramolecular fullerene polymers directed by the use of calix[5]arene-fullerene interactions, which comprise linear, networked, helical arrays of fullerenes in supramolecular ensembles. The unique self-sorting behavior of right-handed and left-handed helical supramolecular fullerene arrays is discussed. Thereafter, an extensive investigation of the calix[5]arene-fullerene interaction for control over the chain structures of covalent polymers is introduced.
Collapse
Affiliation(s)
- Takehiro Hirao
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku, Chemistry, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, JAPAN
| | - Takeharu Haino
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku, Department of Chemistry, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, JAPAN
| |
Collapse
|
27
|
Yang Q, Li XL, Ashebr T, Zhao L, Tang J. Self‐assembly of lanthanide crescent‐like and macrocyclic clusters from versatile o‐vanillin‐based ligands. Chem Asian J 2022; 17:e202200496. [DOI: 10.1002/asia.202200496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qianqian Yang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Xiao-Lei Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Tesfay Ashebr
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Lang Zhao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jinkui Tang
- Changchun Institute of Applied Chemistry State Key Laboratory of Rare Earth Resource Utilization Renmin Street 5625 130022 Changchun CHINA
| |
Collapse
|
28
|
Dong J, Liu L, Tan C, Xu Q, Zhang J, Qiao Z, Chu D, Liu Y, Zhang Q, Jiang J, Han Y, Davis AP, Cui Y. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 2022; 602:606-611. [PMID: 35197620 DOI: 10.1038/s41586-022-04407-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022]
Abstract
Two-dimensional materials with monolayer thickness and extreme aspect ratios are sought for their high surface areas and unusual physicochemical properties1. Liquid exfoliation is a straightforward and scalable means of accessing such materials2, but has been restricted to sheets maintained by strong covalent, coordination or ionic interactions3-10. The exfoliation of molecular crystals, in which repeat units are held together by weak non-covalent bonding, could generate a greatly expanded range of two-dimensional crystalline materials with diverse surfaces and structural features. However, at first sight, these weak forces would seem incapable of supporting such intrinsically fragile morphologies. Against this expectation, we show here that crystals composed of discrete supramolecular coordination complexes can be exfoliated by sonication to give free-standing monolayers approximately 2.3 nanometres thick with aspect ratios up to approximately 2,500:1, sustained purely by apolar intermolecular interactions. These nanosheets are characterized by atomic force microscopy and high-resolution transmission electron microscopy, confirming their crystallinity. The monolayers possess complex chiral surfaces derived partly from individual supramolecular coordination complex components but also from interactions with neighbours. In this respect, they represent a distinct type of material in which molecular components are all equally exposed to their environment, as if in solution, yet with properties arising from cooperation between molecules, because of crystallinity. This unusual nature is reflected in the molecular recognition properties of the materials, which bind carbohydrates with strongly enhanced enantiodiscrimination relative to individual molecules or bulk three-dimensional crystals.
Collapse
Affiliation(s)
- Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China.,School of Chemistry, University of Bristol, Bristol, UK
| | - Lingmei Liu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Chunxia Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qisong Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, P. R. China
| | - Zhiwei Qiao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Dandan Chu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, P. R. China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | | | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China.
| |
Collapse
|
29
|
|
30
|
Zhang D, Gan Q, Plajer AJ, Lavendomme R, Ronson TK, Lu Z, Jensen JD, Laursen BW, Nitschke JR. Templation and Concentration Drive Conversion Between a Fe II12L 12 Pseudoicosahedron, a Fe II4L 4 Tetrahedron, and a Fe II2L 3 Helicate. J Am Chem Soc 2022; 144:1106-1112. [PMID: 35014803 PMCID: PMC9097479 DOI: 10.1021/jacs.1c11536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/30/2022]
Abstract
We report the construction of three structurally distinct self-assembled architectures: FeII12L12 pseudoicosahedron 1, FeII2L3 helicate 2, and FeII4L4 tetrahedron 3, formed from a single triazatriangulenium subcomponent A under different reaction conditions. Pseudoicosahedral capsule 1 is the largest formed through subcomponent self-assembly to date, with an outer-sphere diameter of 5.4 nm and a cavity volume of 15 nm3. The outcome of self-assembly depended upon concentration, where the formation of pseudoicosahedron 1 was favored at higher concentrations, while helicate 2 exclusively formed at lower concentrations. The conversion of pseudoicosahedron 1 or helicate 2 into tetrahedron 3 occurred following the addition of a CB11H12- or B12F122- template.
Collapse
Affiliation(s)
- Dawei Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, People’s Republic
of China
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Quan Gan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
- Hubei Key
Laboratory of Bioinorganic Chemistry & Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Alex J. Plajer
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
- Oxford Chemistry, Chemical Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Roy Lavendomme
- COMOC—Center
for Ordered Materials, Organometallics and Catalysis, Department of
Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Zifei Lu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Jesper D. Jensen
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Bo W. Laursen
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| |
Collapse
|
31
|
Ueda M, Kimura M, Miyagawa S, Naito M, Takaya H, Tokunaga Y. Four- and two-armed hetero porphyrin dimers: their specific recognition and self-sorting behaviours. Org Biomol Chem 2022; 20:387-395. [PMID: 34908079 DOI: 10.1039/d1ob01694f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study we self-assembled the four-armed porphyrin hetero dimer capsule Cap4, stabilized through amidinium-carboxylate salt bridges, in CH2Cl2 and CHCl3. The dimer capsule Cap4 was kinetically and thermodynamically more stable than the corresponding two-armed dimer Cap2. The number of arms strongly influenced their recognition behaviour; guests possessing small aromatic faces (e.g., 1,3,5-trinitrobenzene) preferred residing in the cavity of the two-armed capsule Cap2, rather than in Cap4, both thermodynamically and kinetically; in contrast, large aromatic guests (e.g., 9,10-dibromoanthracene) were encapsulated predominantly by Cap4 because of favourable entropic effects. The number of arms enabled self-sorting behaviour of the dimer formation; complexation studies using an equimolar mixture of the four porphyrin constituents of the two capsules revealed the quantitative formation of the corresponding dimers Cap2 and Cap4. Furthermore, we examined the specific molecular recognition of Cap2 and Cap4; NMR experiments of mixtures of Cap2 and Cap4 in the presence of favourable guests for Cap2 and Cap4 revealed that these guest molecules were encapsulated selectively by their preferred hosts.
Collapse
Affiliation(s)
- Masahiro Ueda
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan.
| | - Masaki Kimura
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan.
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan.
| | - Masaya Naito
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan.
| | - Hikaru Takaya
- International Research Centre for Elements Science, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan.,Institute for Molecular Science, National Institute of Natural Science, Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan.
| |
Collapse
|
32
|
Jiang Z, Wu T, Li Y, Wang J, Chen M, Su P, Zhang Z, Xie T, Wang P. Organic-Ru2+ Cluster Initiated Dendritic-faced Metallo-Octahedron and Its Unpredictable Photoactivity. Chem Commun (Camb) 2022; 58:6344-6347. [DOI: 10.1039/d2cc00366j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel 3D metal-organic ligand consists of a folded Ru(II) connected tetrameric cycle and two sets of 60° juxtaposed bisterpyridine arms was synthesized and its complexation with Zn2+ gave...
Collapse
|
33
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
34
|
Gao X, Cui Z, Shen YR, Liu D, Lin YJ, Jin GX. Synthesis and Near-Infrared Photothermal Conversion of Discrete Supramolecular Topologies Featuring Half-Sandwich [Cp*Rh] Units. J Am Chem Soc 2021; 143:17833-17842. [PMID: 34641681 DOI: 10.1021/jacs.1c09333] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although a large number of novel supramolecular topologies featuring half-sandwich [Cp*Rh] units have been reported, investigations into the properties of these architectures are astoundingly rare. In addition, the bidentate ligands employed to prepare these species have remained relatively homogeneous (i.e., symmetrical bis(pyri-4-dyl) ligands). To address these paucities in the field, the novel unsymmetrical ligand L2 and the rarely reported pyri-3-dyl ligand L3, all bearing aromatic phenazine groups (an N-heterocyclic analog of anthracene), were synthesized in addition to the common symmetrical pyri-4-dyl L1. [3]Catenane, [2]catenane, and Borromean rings assemblies were constructed successfully by the self-assembly of L1 with different building blocks. Afterward, ligand L2 was applied to prepare two novel molecular-tweezer-like compounds. Lastly, a twisted [2]catenane (relative to the [2]catenane constructed using L1) and a sandwiched metallarectangle were obtained using L3. π-π stacking interactions were observed to play a significant role in stabilizing these topologies, which also promoted nonradiative migration and triggered photothermal conversion in both the solution and the solid state. In the solution state, a clear rule of thumb was derived whereby the NIR photothermal conversion efficiency increased as the π-π stacking increased, and a very high photothermal conversion efficiency (35.5-62.4%) was observed. In addition, this family of half-sandwich-based assemblies also exhibited good photothermal conversion properties in the crystalline and noncrystal powder states. This research provides a novel method to synthesize excellent NIR photothermal conversion materials featuring half-sandwich [Cp*Rh] units and points to potential applications in the near future.
Collapse
Affiliation(s)
- Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Zheng Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yue-Rong Shen
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Dong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
35
|
Shen Y, Gao X, Cui Z, Jin G. Rational Design and Synthesis of Interlocked [2]Catenanes Featuring
Half‐Sandwich
Cp*Rh/Ir Units and
Pyrene‐Based
Ligands
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yue‐Rong Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| | - Xiang Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| | - Zheng Cui
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| | - Guo‐Xin Jin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| |
Collapse
|
36
|
Chen H, Gu ZG, Zhang J. Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks. Chem Sci 2021; 12:12346-12352. [PMID: 34603664 PMCID: PMC8480342 DOI: 10.1039/d1sc03089b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022] Open
Abstract
The development of chiral crystalline porous materials (CPMs) containing multiple chiral building blocks plays an important role in chiral chemistry and applications but is a challenging task. Herein, we report the first example of bichiral building block based enantiopure CPM films containing metal-organic cages (MOCs) and metal complexes. The functionalized substrate was immersed subsequently into homochiral metal complex (R)- or (S)-Mn(DCH)3 (DCH = 1,2-diaminocyclohexane) and racemic Ti4L6 cage (L = embonate) solutions by a layer-by-layer growth method. During the assembly process, the substrate surface coordinated with (R)- or (S)-Mn(DCH)3 can, respectively, layer-by-layer chiroselectively connect Δ- or Λ-Ti4L6 cages to form homochiral (R, Δ)- or (S, Λ)-CPM films with a preferred [111] growth orientation, tunable thickness and homogeneous surface. The resulting enantiopure CPM films show strong chirality, photoluminescence, and circularly polarized luminescence (CPL) properties as well as good enantioselective adsorption toward enantiomers of 2-butanol and methyl-lactate. The present in situ surface chiroselective strategy opens a new route to assemble homochiral CPM films containing multiple chiral building blocks for chiral applications.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
37
|
Affiliation(s)
- Edmundo G. Percástegui
- Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria Ciudad de México 04510 México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM Carretera Toluca-Atlacomulco km 14.5, Toluca Estado de México 50200 México
| |
Collapse
|
38
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
Wu T, Jiang Z, Bai Q, Li Y, Mao S, Yu H, Wojtas L, Tang Z, Chen M, Zhang Z, Xie TZ, Wang M, Li X, Wang P. Supramolecular triangular orthobicupola: Self-assembly of a giant Johnson solid J27. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Vidal A, Battistin F, Balducci G, Iengo E, Alessio E. A Flexible Synthetic Strategy for the Preparation of Heteroleptic Metallacycles of Porphyrins. Inorg Chem 2021; 60:11503-11513. [PMID: 34264053 PMCID: PMC8389808 DOI: 10.1021/acs.inorgchem.1c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a stepwise synthetic strategy for the preparation of the unprecedented heteroleptic 2+2 neutral metallacycle [{t,c,c-RuCl2(CO)2}2(4'cisDPyP)(3'cisDPyP)] (5), in which two different 5,10-meso-dipyridylporphyrins, 4'cisDPyP [i.e., 5,10-bis(4'-pyridyl)-15,20-diphenylporphyrin] and 3'cisDPyP [i.e., 5,10-bis(3'-pyridyl)-15,20-diphenylporphyrin], are joined through equal 90°-angular Ru(II) connectors. The synthesis of 5 was accomplished through the preparation of a reactive ditopic intermediate in which one of the two pyridylporphyrins is linked to two neutral ruthenium fragments, each having one residual readily available coordination site (a dmso-O). Thus, compound 5 was obtained under mild conditions through two complementary routes: either by treatment of [{t,c,c-RuCl2(CO)2(dmso-O)}2(4'cisDPyP)] (3) with 1 equiv of 3'cisDPyP or, alternatively, by treatment of [{t,c,c-RuCl2(CO)2(dmso-O)}2(3'cisDPyP)] (4) with 1 equiv of 4'cisDPyP. Heteroleptic metallacycle 5 was isolated in pure form in acceptable yield and fully characterized. Spectroscopic data and a molecular model show that 5 has an L-shaped geometry, with the two porphyrins almost orthogonal to one another. The modular approach that we established is highly flexible and opens the way to several possible exciting developments.
Collapse
Affiliation(s)
- Alessio Vidal
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Federica Battistin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Gabriele Balducci
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Elisabetta Iengo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
41
|
|
42
|
Ubasart E, Borodin O, Fuertes-Espinosa C, Xu Y, García-Simón C, Gómez L, Juanhuix J, Gándara F, Imaz I, Maspoch D, von Delius M, Ribas X. A three-shell supramolecular complex enables the symmetry-mismatched chemo- and regioselective bis-functionalization of C 60. Nat Chem 2021; 13:420-427. [PMID: 33859394 DOI: 10.1038/s41557-021-00658-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 02/05/2021] [Indexed: 02/02/2023]
Abstract
Molecular Russian dolls (matryoshkas) have proven useful for testing the limits of preparative supramolecular chemistry but applications of these architectures to problems in other fields are elusive. Here we report a three-shell, matryoshka-like complex-in which C60 sits inside a cycloparaphenylene nanohoop, which in turn is encapsulated inside a self-assembled nanocapsule-that can be used to address a long-standing challenge in fullerene chemistry, namely the selective formation of a particular fullerene bis-adduct. Spectroscopic evidence indicates that the ternary complex is sufficiently stable in solution for the two outer shells to affect the addition chemistry of the fullerene guest. When the complex is subjected to Bingel cyclopropanation conditions, the exclusive formation of a single trans-3 fullerene bis-adduct was observed in a reaction that typically yields more than a dozen products. The selectivity facilitated by this matryoshka-like approach appears to be a general phenomenon and could be useful for applications where regioisomerically pure C60 bis-adducts have been shown to have superior properties compared with isomer mixtures.
Collapse
Affiliation(s)
- Ernest Ubasart
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
| | - Oleg Borodin
- Institute of Organic Chemistry, Ulm University, Ulm, Germany
| | - Carles Fuertes-Espinosa
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
| | - Youzhi Xu
- Institute of Organic Chemistry, Ulm University, Ulm, Germany
| | - Cristina García-Simón
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
| | - Laura Gómez
- Serveis Tècnics de Recerca, Universitat de Girona, Girona, Spain
| | | | - Felipe Gándara
- Materials Science Institute of Madrid, Spanish National Research Council, Madrid, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Ulm, Germany.
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain.
| |
Collapse
|
43
|
Wang H, Wang K, Xu Y, Wang W, Chen S, Hart M, Wojtas L, Zhou LP, Gan L, Yan X, Li Y, Lee J, Ke XS, Wang XQ, Zhang CW, Zhou S, Zhai T, Yang HB, Wang M, He J, Sun QF, Xu B, Jiao Y, Stang PJ, Sessler JL, Li X. Hierarchical Self-Assembly of Nanowires on the Surface by Metallo-Supramolecular Truncated Cuboctahedra. J Am Chem Soc 2021; 143:5826-5835. [PMID: 33848163 DOI: 10.1021/jacs.1c00625] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Parastichy, the spiral arrangement of plant organs, is an example of the long-range apparent order seen in biological systems. These ordered arrangements provide scientists with both an aesthetic challenge and a mathematical inspiration. Synthetic efforts to replicate the regularity of parastichy may allow for molecular-scale control over particle arrangement processes. Here we report the packing of a supramolecular truncated cuboctahedron (TCO) into double-helical (DH) nanowires on a graphite surface with a non-natural parastichy pattern ascribed to the symmetry of the TCOs and interactions between TCOs. Such a study is expected to advance our understanding of the design inputs needed to create complex, but precisely controlled, hierarchical materials. It is also one of the few reported helical packing structures based on Platonic or Archimedean solids since the discovery of the Boerdijk-Coxeter helix. As such, it may provide experimental support for studies of packing theory at the molecular level.
Collapse
Affiliation(s)
- Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| | - Kun Wang
- Departments of Physics and Astronomy & Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Yaping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Wu Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shaohua Chen
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Matthew Hart
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lin Gan
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiming Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Juhoon Lee
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Xian-Sheng Ke
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chang-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shasha Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Jiaqing He
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Bingqian Xu
- College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia 30602, United States
| | - Yang Jiao
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| |
Collapse
|
44
|
Wu K, Zhang B, Drechsler C, Holstein JJ, Clever GH. Rückgrat‐verknüpfte Liganden erhöhen die Vielfalt in heteroleptischen Koordinationskäfigen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kai Wu
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| | - Bo Zhang
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| | - Christoph Drechsler
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| | - Julian J. Holstein
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
45
|
Liu D, Li K, Chen M, Zhang T, Li Z, Yin JF, He L, Wang J, Yin P, Chan YT, Wang P. Russian-Doll-Like Molecular Cubes. J Am Chem Soc 2021; 143:2537-2544. [PMID: 33378184 DOI: 10.1021/jacs.0c11703] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanosized cage-within-cage compounds represent a synergistic molecular self-assembling form of three-dimensional architecture that has received particular research focus. Building multilayered ultralarge cages to simulate complicated virus capsids is believed to be a tough synthetic challenge. Here, we synthesize two large double-shell supramolecular cages by facile self-assembly of presynthesized metal-organic hexatopic terpyridine ligands with metal ions. Differing from the mixture of prisms formed from the inner tritopic ligand, the redesigned metal-organic hexatopic ligands bearing high geometric constraints that led to the exclusive formation of discrete double-shell structures. These two unique nested cages are composed of inner cubes (5.1 nm) and outer huge truncated cubes (12.0 and 13.2 nm) with six large bowl-shape subcages distributed on six faces. The results with molecular weights of 75 232 and 77 667 Da were among the largest synthetic cage-in-cage supramolecules reported to date. The composition, size and shape were unambiguously characterized by a combination of 1H NMR, DOSY, ESI-MS, TWIM-MS, TEM, AFM, and SAXS. This work provides an interesting model for functional recognition, delivery, and detection of various guest molecules in the field of supramolecular materials.
Collapse
Affiliation(s)
- Die Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Kaixiu Li
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Tingting Zhang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhengguang Li
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Lipeng He
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jun Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.,Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
46
|
Shi J, Li Y, Jiang X, Yu H, Li J, Zhang H, Trainer DJ, Hla SW, Wang H, Wang M, Li X. Self-Assembly of Metallo-Supramolecules with Dissymmetrical Ligands and Characterization by Scanning Tunneling Microscopy. J Am Chem Soc 2021; 143:1224-1234. [PMID: 33395279 DOI: 10.1021/jacs.0c12508] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetrical and dissymmetrical structures are widespread and play a critical role in nature and life systems. In the field of metallo-supramolecular assemblies, it is still in its infancy for constructing artificial architectures using dissymmetrical building blocks. Herein, we report the self-assembly of supramolecular systems based on two dissymmetrical double-layered ligands. With the aid of ultra-high-vacuum, low-temperature scanning tunneling microscopy (UHV-LT-STM), we were able to investigate four isomeric structures corresponding to four types of binding modes of ligand LA with two major conformations complexes A. The distribution of isomers measured by STM and total binding energy of each isomer obtained by density functional theory (DFT) calculations suggested that the most abundant isomer could be the most stable one with highest total binding energy. Finally, through shortening the linker between inner and outer layers and the length of arms, the arrangement of dissymmetrical ligand LB could be controlled within one binding mode corresponding to the single conformation for complexes B.
Collapse
Affiliation(s)
- Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China.,College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yiming Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China.,Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Daniel J Trainer
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Saw Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China.,Shenzhen University General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
47
|
Ji C, Wang G, Wang H. Progress in Metal-Organic Supramolecular System Based on Subcomponent Self-Assembly. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Cheng PM, Cai LX, Li SC, Hu SJ, Yan DN, Zhou LP, Sun QF. Guest-Reaction Driven Cage to Conjoined Twin-Cage Mitosis-Like Host Transformation. Angew Chem Int Ed Engl 2020; 59:23569-23573. [PMID: 32902925 DOI: 10.1002/anie.202011474] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/12/2022]
Abstract
We report here a guest-reaction-induced mitosis-like host transformation from a known Pd4 L2 cage 1 to a conjoined Pd6 L3 twin-cage 2 featuring two separate cavities. The encapsulation of 1-hydroxymethyl-2-naphthol (G1), a known ortho-quinone methide (o-QMs) precursor, within the hydrophobic cavity of cage 1 is found crucial to realize the cage to twin-cage conversion. Confined G1 molecules within the nanocavity undergo self-coupling dimerization reaction to form 2,2'-dihydroxy-1,1'-dinaphthylmethane (G2) which then triggers the cage to twin-cage mitosis. The same conversion also proceeds, in a much faster rate, via the direct templation of G2, confirming the induced-fit transformation mechanism. The structure of the (G2)2 ⊂2 host-guest complex has been established by X-ray crystallographic study, where cis- to trans- conformational switch on one bridging ligand is revealed.
Collapse
Affiliation(s)
- Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,College of Chemistry and Material Science, Fujian Normal University, Fuzhou, 350007, PR China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Shao-Chuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dan-Ni Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
49
|
Wu K, Zhang B, Drechsler C, Holstein JJ, Clever GH. Backbone-Bridging Promotes Diversity in Heteroleptic Cages. Angew Chem Int Ed Engl 2020; 60:6403-6407. [PMID: 33113268 PMCID: PMC7986237 DOI: 10.1002/anie.202012425] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Indexed: 01/17/2023]
Abstract
The combination of shape-complementary bis-monodentate ligands LA and LB with PdII cations yields heteroleptic cages cis-[Pd2 LA 2 LB 2 ] by self-sorting. Herein, we report how such assemblies can be diversified by introduction of covalent backbone bridges between two LA units. Together with solvent and guest effects, the flexibility of these linkers can modulate nuclearity, topology, and number of cavities in a family of four structurally diverse assemblies. Ligand LA1 , with flexible linker, reacts in CH3 CN with its LB counterpart to a tetranuclear dimer D1. In DMSO, however, a trinuclear pseudo-tetrahedron T1 is formed. The product of LA2 , with rigid linker, looks similar to D1, but with a rotated ligand arrangement. In presence of an anionic guest, this dimer D2 transforms and a hexanuclear prismatic barrel P2 crystallizes. We demonstrate how controlling a ligand's coordination mode can trigger structural differentiation and increase complexity in metallo-supramolecular assembly.
Collapse
Affiliation(s)
- Kai Wu
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Bo Zhang
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Christoph Drechsler
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
50
|
Koo J, Kim I, Kim Y, Cho D, Hwang IC, Mukhopadhyay RD, Song H, Ko YH, Dhamija A, Lee H, Hwang W, Kim S, Baik MH, Kim K. Gigantic Porphyrinic Cages. Chem 2020. [DOI: 10.1016/j.chempr.2020.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|