1
|
Rahman A, Mondal S, Modak M, Singh A, Thayat NS, Singh H, Clegg JK, Poswal HK, Haridas V, Thomas SP. Large Local Internal Stress in an Elastically Bent Molecular Crystal Revealed by Raman Shifts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402120. [PMID: 39045899 DOI: 10.1002/smll.202402120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Indexed: 07/25/2024]
Abstract
The structural dynamics involved in the mechanical flexibility of molecular crystals and the internal stress in such flexible materials remain obscure. Here, the study reports an elastically bending lipidated molecular crystal that shows systematic shifts in characteristic vibrational frequencies across the bent crystal region - revealing the nature of structural changes during bending and the local internal stress distribution. The blueshifts in the bond stretching modes (such as C═O and C-H modes) in the inner arc region and redshifts in the outer arc region of the bent crystals observed via micro-Raman mapping are counterintuitive to the bending models based on intermolecular hydrogen bonds. Correlating these shifts with the trends observed from high-pressure Raman studies on the crystal reveals the local stress difference between the inner arc and outer arc regions of the bent crystal to be ≈2 GPa, more than an order of magnitude higher than the previously proposed value in elastically bending crystals. High local internal stress can have direct ramifications on the properties of molecular piezoelectric energy harvesters, actuators, semiconductors, and flexible optoelectronic materials.
Collapse
Affiliation(s)
- Atiqur Rahman
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Srijan Mondal
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Mantu Modak
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Center, Mumbai, 400085, India
| | - Ashi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Navdeep S Thayat
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Himanshu K Poswal
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Center, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, 678623, India
| | - Sajesh P Thomas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
2
|
Zhang Y, Zheng X, Saito Y, Takeda T, Hoshino N, Takahashi K, Nakamura T, Akutagawa T, Noro SI. Solution State-Like Reactivity of a Flexible Crystalline Werner-Type Metal Complex. Angew Chem Int Ed Engl 2024; 63:e202407924. [PMID: 39092669 DOI: 10.1002/anie.202407924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 08/04/2024]
Abstract
Flexible crystalline solids exhibit unique properties in response to external stimuli like heat and light. However, challenges exist in developing crystalline solids that have similar degrees of flexibility as in solution. Herein, we report the preparation of the new flexible crystalline metal complex [Cd(CF3SO3)2(4-spy)4] (4-spy=4-styrylpyridine), which contains photoreactive 4-spy ligand. Unlike traditional solids, this metal complex displays solution state-like [2+2] photocycloaddition reactivity. Specifically, UV irradiation of the crystalline material leads to formation of the same diverse array of dimers and cis isomer that are generated by photoreaction in the solution state. In addition, the photoresponsive flexibility of the solid leads to a photosalient effect and photo-induced formation of pores. The origin of the solution state-like photoreactivity of the solid is related to properties of the Cd(II) cation and fluorinated CF3SO3 anion, and the multi-orientational arrangement of the 4-spy ligands.
Collapse
Affiliation(s)
- Yunya Zhang
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Xin Zheng
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yuki Saito
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
- Present address, Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Japan
| | - Norihisa Hoshino
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, 950-2181, Japan
| | - Kiyonori Takahashi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan
| | - Takayoshi Nakamura
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-hiroshima, 739-8526, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
| | - Shin-Ichiro Noro
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
3
|
Zhu J, Wu W, Qi H, Yao Y, Yu H, Huang X, Wang N, Wang T, Hao H. Dynamic organic crystals as exceptionally efficient artificial natural light-harvesting actuators. Chem Sci 2024:d4sc05684a. [PMID: 39449685 PMCID: PMC11495514 DOI: 10.1039/d4sc05684a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Dynamic organic crystal materials that can directly convert solar energy into mechanical work hold the potential to be efficient artificial actuators. However, developing dynamic organic crystals that can efficiently transform natural light energy into mechanical energy is still quite challenging. Herein, a novel dynamic organic crystal whose two polymorphs (Form I and Form II) are both capable of effectively converting natural light into work was successfully synthesized. Under the irradiation of ultraviolet (UV), blue and natural light, the on/off toggling of a photosalient effect could be triggered. Specifically, under UV light irradiation, Form I demonstrates output work densities of about 4.2-8.4 × 104 J m-3 and 1.6-4.9 × 102 J m-3 before and after disintegration, respectively. Form II exhibits output work densities of about 1.3 × 102 to 1.9 × 103 J m-3 by means of photoinduced bending, suggesting that controllable bending may be more favorable for energy harvesting than the photosalient effect. Utilizing the exceptionally high energy transduction efficiency of Form I, we developed a natural light-driven micro-actuator that can realize output work densities of 2.8-5.0 × 104 J m-3. The natural light-harvesting performance of this actuator significantly surpasses those of previously reported photomechanical crystals and could even be comparable to thermal actuators.
Collapse
Affiliation(s)
- Jiaxuan Zhu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Wenbo Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Haoqiang Qi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Yutong Yao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Hui Yu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| |
Collapse
|
4
|
Vinod Kumar A, Pattanayak P, Khapre A, Nandi A, Purkayastha P, Chandrasekar R. Capturing the Interplay Between TADF and RTP Through Mechanically Flexible Polymorphic Optical Waveguides. Angew Chem Int Ed Engl 2024; 63:e202411054. [PMID: 38924274 DOI: 10.1002/anie.202411054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Polymorphism plays a pivotal role in generating a range of crystalline materials with diverse photophysical and mechanical attributes, all originating from the same molecule. Here, we showcase two distinct polymorphs: green (GY) emissive and orange (OR) emissive crystals of 5'-(4-(diphenylamino)phenyl)-[2,2'-bithiophene]-5-carbaldehyde (TPA-CHO). These polymorphs display differing optical characteristics, with GY exhibiting thermally activated delayed fluorescence (TADF) and OR showing room temperature phosphorescence (RTP). Additionally, both polymorphic crystals display mechanical flexibility and optical waveguiding capabilities. Leveraging the AFM-tip-based mechanophotonics technique, we position the GY optical waveguide at varying lengths perpendicular to the OR waveguide. This approach facilitates the exploration of the interplay between TADF and RTP phenomena by judiciously controlling the optical path length of crystal waveguides. Essentially, our approach provides a clear pathway for understanding and controlling the photophysical processes in organic molecular crystals, paving the way for advancements in polymorphic crystal-based photonic circuit technologies.
Collapse
Affiliation(s)
- Avulu Vinod Kumar
- Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Pradip Pattanayak
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | - Ankur Khapre
- Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Arnab Nandi
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | - Rajadurai Chandrasekar
- Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India
| |
Collapse
|
5
|
Lin J, Zhou J, Wang Z, Li L, Li M, Xu J, Wu S, Naumov P, Gong J. Low-Temperature Flexibility of Chiral Organic Crystals with Highly Efficient Second-Harmonic Generation. Angew Chem Int Ed Engl 2024:e202416856. [PMID: 39291894 DOI: 10.1002/anie.202416856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
Flexible crystals with unique mechanical properties have presented potential for applications in optoelectronics, soft robotics and sensors. However, there have been no reports of low-temperature-resistant flexible crystals with second-order nonlinear optical properties (NLO). Here, we report flexible chiral Schiff-base crystals capable of efficient second harmonic generation (SHG). Both enantiomers and the racemic form of these crystals are mechanically flexible in two directions at both room temperature and at 77 K, although their mechanical responses differ. The enantiomers display SHG with an intensity of up to 12 times that of potassium dihydrogenphosphate (KDP) when pumped at 980 nm, and they also have high laser-induced damage thresholds (LDT). Even when bent, the crystals retain strong second harmonic generation, although with a different intensity distribution depending on the polarization, compared to when they are straight. This work describes the first instance of flexible organic single-crystalline material with NLO properties and lays the foundation for the development of mechanically flexible organic NLO materials.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Jianmin Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Zhihua Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300350, P. R. China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, P.O. Box 38044, Abu Dhabi, United Arab Emirates
| | - Maolin Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300350, P. R. China
| | - Songgu Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Center for Smart Engineering Materials, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts Bul. Krste, Misirkov 2, MK-1000, Skopje, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
6
|
Al-Handawi MB, Commins P, Dalaq AS, Santos-Florez PA, Polavaram S, Didier P, Karothu DP, Zhu Q, Daqaq M, Li L, Naumov P. Ferroelastic ionic organic crystals that self-heal to 95. Nat Commun 2024; 15:8095. [PMID: 39285159 PMCID: PMC11405411 DOI: 10.1038/s41467-024-51625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
The realm of self-healing materials integrates chemical and physical mechanisms that prevent wear and fracturing and extend the operational lifetime. Unlike the favorable rheology of amorphous soft materials that facilitates efficient contact between fragments, the efficiency of recovery of atomistically ordered materials is restricted by slower interfacial mass transport and the need for ideal physical alignment, which limits their real-world application. We report drastic enhancements in efficiency and recovery time in the self-healing of anilinium bromide, challenging these limitations. Crystals of this material recovered up to 49% within seconds and up to 95% after 100 min via ferroelastic detwinning. The spatial evolution of strain during cracking and healing was measured in real time using digital image correlation. Favorable alignment and strong ionic bonding across the interface of partially fractured crystals facilitate self-healing. This study elevates organic crystals close to the best-in-class self-healing polymers and sets an approach for durable crystal-based optoelectronics.
Collapse
Affiliation(s)
- Marieh B Al-Handawi
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Patrick Commins
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Ahmed S Dalaq
- Bioengineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Pedro A Santos-Florez
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Srujana Polavaram
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Illkirch, France
| | - Durga Prasad Karothu
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Qiang Zhu
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Mohammed Daqaq
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, NY, USA
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, PO Box 38044, Abu Dhabi, UAE.
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, USA.
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Skopje, Macedonia.
| |
Collapse
|
7
|
Ranjan S, Kumar AV, Chandrasekar R, Takamizawa S. Spatially controllable and mechanically switchable isomorphous organoferroeleastic crystal optical waveguides and networks. Nat Commun 2024; 15:7478. [PMID: 39209836 PMCID: PMC11362157 DOI: 10.1038/s41467-024-51504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
The precise, reversible, and diffusionless shape-switching ability of organic ferroelastic crystals, while maintaining their structural integrity, positions them as promising materials for next-generation hybrid photonic devices. Herein, we present versatile bi-directional ferroelasticity and optical waveguide properties of three isomorphous, halogen-based, Schiff base organic crystals. These crystals exhibit sharp bending at multiple interfaces driven by molecular movement around the CH = N bond and subsequent 180° rotational twinning, offering controlled light path manipulation. The ferroelastic nature of these crystals allowed the construction of robust hybrid photonic structures, including Z-shaped configurations, closed-loop networks, and staircase-like hybrid optical waveguides. This study highlights the potential of shape-switchable organoferroelastic crystals as waveguides for applications in programmable photonic devices.
Collapse
Affiliation(s)
- Subham Ranjan
- Department of Materials System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
| | - Avulu Vinod Kumar
- School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046, Telangana, India
| | - Rajadurai Chandrasekar
- School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046, Telangana, India.
| | - Satoshi Takamizawa
- Department of Materials System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan.
| |
Collapse
|
8
|
Dar AH, Rahman A, Mondal S, Barman A, Gupta M, Chowdhury PK, Thomas SP. Mechanical Tuning of Fluorescence Lifetime and Bandgap in an Elastically Flexible Molecular Semiconductor Crystal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406184. [PMID: 39118551 DOI: 10.1002/smll.202406184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Despite having superior transport properties, lack of mechanical flexibility is a major drawback of crystalline molecular semiconductors as compared to their polymer analogues. Here single crystals of an organic semiconductor are reported that are not only flexible but exhibit systematic tuning of bandgaps, fluorescence lifetime, and emission wavelengths upon elastically bending. Spatially resolved fluorescence lifetime imaging and confocal fluorescence microscopy reveals systematic trends in the lifetime decay across the bent crystal region along with shifts in the emission wavelength. From the outer arc to the inner arc of the bent crystal, a significant decrease in the lifetime of ≈1.9 ns is observed, with a gradual bathochromic shift of ≈10 nm in the emission wavelength. For the crystal having a bandgap of 2.73 eV, the directional stress arising from bending leads to molecular reorientation effects and variations in the extent of intermolecular interactions- which are correlated to the lowering of bandgap and the evolution of the projected density of states. The systematic changes in the interactions quantified using electron density topological analysis in the compressed inner arc and elongated outer arc region are correlated to the non-radiative decay processes, thus rationalizing the tuning of fluorescence lifetime.
Collapse
Affiliation(s)
- Arif Hassan Dar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Atiqur Rahman
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Srijan Mondal
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Argha Barman
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Monika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sajesh P Thomas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
9
|
Kusumoto S, Wakabayashi K, Rakumitsu K, Harrowfield J, Kim Y, Koide Y. Photo- and Stress-Induced Bending of (E)-1,2-Bis(pyridinium-4-yl)ethene Dinitrate Crystals. Chemistry 2024; 30:e202401564. [PMID: 38797716 DOI: 10.1002/chem.202401564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
We report on the elastic and photodynamic properties of (E)-1,2-bis(pyridinium-4-yl)ethene dinitrate [H2Ebpe](NO3)2, whose needle-like crystals can be reversibly deformed by applying external mechanical stress. The macro-scale mechanical properties of [H2Ebpe](NO3)2 crystals were quantified by a three-point bending test, which gave a stress-strain curve with an elastic modulus of 1.18 GPa, and its values are lower than those of other flexible elastic organic crystals. It can also be reversibly bent through the [2+2] cycloaddition reaction of the olefin moiety, depending on the direction of UV irradiation.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Kaede Wakabayashi
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Kenta Rakumitsu
- Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino, Tokyo, 180-8633, Japan
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, Strasbourg, 67083, France
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yoshihiro Koide
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| |
Collapse
|
10
|
Di Q, Al-Handawi MB, Li L, Naumov P, Zhang H. A Thermosalient and Mechanically Compliant Organic Crystalline Optical Waveguide Switcher. Angew Chem Int Ed Engl 2024; 63:e202403914. [PMID: 38658315 DOI: 10.1002/anie.202403914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
The dense and ordered molecular arrangements endow dynamic molecular crystals with fast response, rapid energy conversion, low energy dissipation, and strong coupling between heat/light and mechanical energy. Most of the known dynamic crystals can only respond to a single stimulus, and materials that can respond to multiple stimuli are rare. Here, we report an organic crystalline material that can be bent plastically and is also thermosalient, as its crystals can move when they undergo a reversible phase transition. The crystals transmit light regardless of their shape or crystalline phase. The combination of light transduction and reversible thermomechanical deformation provides an opportunity to switch the waveguiding capability of the material in a narrow temperature range, which holds a tremendous potential for applications in heat-averse electronic components, such as central processing units. Unlike existing electronics, the material we report here is completely organic and therefore much lighter, potentially reducing the overall weight of electronic circuits.
Collapse
Affiliation(s)
- Qi Di
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | | | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, 38044, Abu Dhabi, UAE
- Department of Science and Engineering, Sorbonne University Abu Dhabi, 38044, Abu Dhabi, UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, 38044, Abu Dhabi, UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi, 129188, Abu Dhabi, UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK-1000, Skopje, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, 10003, New York, USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| |
Collapse
|
11
|
Zhang Y, Li YX, Gao KG, Zhang JH, Hu JS, Tao J, Yao ZS. An elastic single crystal composed of one-dimensional chiral coordination polymers. Dalton Trans 2024; 53:8905-8909. [PMID: 38757356 DOI: 10.1039/d4dt01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A single crystal composed of one-dimensional coordinated polymers, [CdCl2(1-methyl-2-pyridone)]n, has been synthesized and characterized. This compound exhibits outstanding elastic bending due to the molecular spring nature of the CdCl2 coordination framework and weak intermolecular interactions between the coordination chains. Owing to the helical arrangement of organic ligands surrounding the coordination structure, the compound crystallizes in a chiral space group. As a result, it displays compelling circular dichroism spectra and second harmonic generation properties.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Yu-Xia Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Kai-Ge Gao
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jia-Hui Zhang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Jie-Sheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| |
Collapse
|
12
|
Ghora M, Manna RK, Park SK, Oh S, Kim SI, Park SY, Gierschner J, Varghese S. Molecular Packing Topology and Interactions to Decipher Mechanical Compliances in Dicyano-Distyrylbenzene Derivatives. Chemistry 2024:e202401023. [PMID: 38807442 DOI: 10.1002/chem.202401023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Flexible optoelectronics is the need of the hour as the market moves toward wearable and conformable devices. Crystalline π-conjugated materials offer high performance as active materials compared to their amorphous counterpart, but they are typically brittle. This poses a significant challenge that needs to be overcome to unfold their potential in optoelectronic devices. Unveiling the molecular packing topology and identifying interaction descriptors that can accommodate strain offers essential guiding principles for developing conjugated materials as active components in flexible optoelectronics. The molecular packing and interaction topology of eight crystal systems of dicyano-distyrylbenzene derivatives are investigated. Face-to-face π-stacks in an inclined orientation relative to the bending surface can accommodate expansion and compression with minimal molecular motion from their equilibrium positions. This configuration exhibits good compliance towards mechanical strain, while a similar structure with a criss-cross arrangement capable of distributing applied strain equally in opposite directions enhances the flexibility. Molecular arrangements that cannot reversibly undergo expansion and compression exhibit brittleness. In the isometric CT crystals, the disproportionate strength of the interactions along the bending plane and orthogonal directions makes these materials sustain a moderate bending strain. These results provide an updated explanation for the elastic bending in semiconducting π-conjugated crystals.
Collapse
Affiliation(s)
- Madhubrata Ghora
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Ranjit Kumar Manna
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Sang Kyu Park
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Joellabuk-do, 55324, South Korea
| | - Sangyoon Oh
- Department of Materials Science and Engineering and Research Institute of Advanced Material, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Il Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Material, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo Young Park
- Department of Materials Science and Engineering and Research Institute of Advanced Material, Seoul National University, Seoul, 08826, Republic of Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049, Spain
| | - Shinto Varghese
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| |
Collapse
|
13
|
Lin J, Zhou J, Li L, Tahir I, Wu S, Naumov P, Gong J. Highly efficient in crystallo energy transduction of light to work. Nat Commun 2024; 15:3633. [PMID: 38684679 PMCID: PMC11059232 DOI: 10.1038/s41467-024-47881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Various mechanical effects have been reported with molecular materials, yet organic crystals capable of multiple dynamic effects are rare, and at present, their performance is worse than some of the common actuators. Here, we report a confluence of different mechanical effects across three polymorphs of an organic crystal that can efficiently convert light into work. Upon photodimerization, acicular crystals of polymorph I display output work densities of about 0.06-3.94 kJ m-3, comparable to ceramic piezoelectric actuators. Prismatic crystals of the same form exhibit very high work densities of about 1.5-28.5 kJ m-3, values that are comparable to thermal actuators. Moreover, while crystals of polymorph II roll under the same conditions, crystals of polymorph III are not photochemically reactive; however, they are mechanically flexible. The results demonstrate that multiple and possibly combined mechanical effects can be anticipated even for a simple organic crystal.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Jianmin Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, UAE
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, PO Box, 38044, Abu Dhabi, UAE
| | - Ibrahim Tahir
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, UAE
| | - Songgu Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, UAE.
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, UAE.
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK‒1000, Skopje, Macedonia.
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| |
Collapse
|
14
|
Wei C, Li L, Zheng Y, Wang L, Ma J, Xu M, Lin J, Xie L, Naumov P, Ding X, Feng Q, Huang W. Flexible molecular crystals for optoelectronic applications. Chem Soc Rev 2024; 53:3687-3713. [PMID: 38411997 DOI: 10.1039/d3cs00116d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The cornerstones of the advancement of flexible optoelectronics are the design, preparation, and utilization of novel materials with favorable mechanical and advanced optoelectronic properties. Molecular crystalline materials have emerged as a class of underexplored yet promising materials due to the reduced grain boundaries and defects anticipated to provide enhanced photoelectric characteristics. An inherent drawback that has precluded wider implementation of molecular crystals thus far, however, has been their brittleness, which renders them incapable of ensuring mechanical compliance required for even simple elastic or plastic deformation of the device. It is perplexing that despite a plethora of reports that have in the meantime become available underpinning the flexibility of molecular crystals, the "discovery" of elastically or plastically deformable crystals remains limited to cases of serendipitous and laborious trial-and-error approaches, a situation that calls for a systematic and thorough assessment of these properties and their correlation with the structure. This review provides a comprehensive and concise overview of the current understanding of the origins of crystal flexibility, the working mechanisms of deformations such as plastic and elastic bending behaviors, and insights into the examples of flexible molecular crystals, specifically concerning photoelectronic changes that occur in deformed crystals. We hope this summary will provide a reference for future experimental and computational efforts with flexible molecular crystals aimed towards improving their mechanical behavior and optoelectronic properties, ultimately intending to advance the flexible optoelectronic technology.
Collapse
Affiliation(s)
- Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - Yingying Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Lizhi Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Jingyao Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, Skopje MK-1000, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Xuehua Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Quanyou Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
15
|
Meng J, Su Y, Zhu H, Cai T. Shape memory and self-healing in a molecular crystal with inverse temperature symmetry breaking. Chem Sci 2024; 15:5738-5745. [PMID: 38638237 PMCID: PMC11023024 DOI: 10.1039/d3sc06800e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Mechanically responsive molecular crystals have attracted increasing attention for their potential as actuators, sensors, and switches. However, their inherent structural rigidity usually makes them vulnerable to external stimuli, limiting their usage in many applications. Here, we present the mechanically compliant single crystals of penciclovir, a first-line antiviral drug, achieved through an unconventional ferroelastic transformation with inverse temperature symmetry breaking. These crystals display a diverse set of self-restorative behaviors well above room temperature (385 K), including ferroelasticity, superelasticity, and shape memory effects, suggesting their promising applications in high-temperature settings. Crystallographic analysis reveals that cooperative molecular displacement within the layered crystal structure is responsible for these unique properties. Most importantly, these ferroelastic crystals manifest a polymer-like self-healing behavior even after severe cracking induced by thermal or mechanical stresses. These findings suggest the potential for similar memory and restorative effects in other molecular crystals featuring layered structures and provide valuable insights for leveraging organic molecules in the development of high-performance, ultra-flexible molecular crystalline materials with promising applications.
Collapse
Affiliation(s)
- Jiantao Meng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Yuan Su
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Hang Zhu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University Nanjing 211198 People's Republic of China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University Nanjing 211198 People's Republic of China
| |
Collapse
|
16
|
Chen Q, Tang B, Ye K, Zhang H. Elastic Organic Crystals Exhibiting Amplified Spontaneous Emission Waveguides with Standard Red Chromaticity of the Rec.2020 Gamut. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311762. [PMID: 38215287 DOI: 10.1002/adma.202311762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Indexed: 01/14/2024]
Abstract
The use of mechanically flexible molecular crystals as optical transuding media is demonstrated for a plethora of applications; however, the spectral peaks of optical outputs located mainly in the range of 400-600 nm are insufficient for practical telecommunication and full-color display applications. Herein, two elastically bendable organic crystals are reported that show red emission of the rec.709 gamut under 365 nm UV light irradiation yet generate rec.2020 gamut red optical waveguides and amplified spontaneous emissions when irradiated by a 355 nm laser. Capitalizing on the extended π-conjugation and donor-acceptor character, as well as mechanical elasticity, these organic crystals exhibit flexible optical waveguides with Commission Internationale de L'Eclairage (CIE) coordinates of (0.70, 0.29), nearly identical to the red chromaticity of the rec.2020 gamut required for ultrahigh-definition (UHD) displays. Notably, one of the elastic crystals functions as a soft resonance cavity, resulting in amplified spontaneous emission waveguides with CIE coordinates of (0.71, 0.29) and the standard red chromaticity of the rec.2020 gamut, both in straight and bent states. This study presents a new avenue for the development of high-purity red-emissive crystalline materials to create all-organic, lightweight, and mechanically compliant optical telecommunication and UHD display devices.
Collapse
Affiliation(s)
- Quanliang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, 130012, P. R. China
| | - Baolei Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, 130012, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, 130012, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
17
|
Hsieh B, Wu LC, Grosjean A. FlɛX: a computer vision program to evaluate strain in flexible crystals. J Appl Crystallogr 2024; 57:552-554. [PMID: 38596744 PMCID: PMC11001399 DOI: 10.1107/s1600576723008282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/20/2023] [Indexed: 04/11/2024] Open
Abstract
The program FlɛX (flexural ɛ for xtals) has been developed for a quick, easy and accurate evaluation of the maximum deformation reached in flexible crystals from a simple optical microscope picture. The program takes advantage of computer vision libraries to find the contours of a bent crystal and fit these to semicircles. It can then calculate the theoretical maximum deformation along its long axis using equations from the Euler-Bernoulli beam theory.
Collapse
Affiliation(s)
- Benjamin Hsieh
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Lai-Chin Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Arnaud Grosjean
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
18
|
Giri P, Panda A, Panda MK. Photoinduced Puffing with Large Volume Expansion and Photomechanical Motions induced by Topochemical [4+4] Reactions in Molecular Crystal Solvates. Chemistry 2024; 30:e202303836. [PMID: 38198243 DOI: 10.1002/chem.202303836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
In this work, we report the first example of two crystal solvates of an anthracene-benzhydrazide based molecule (Ant) that display very distinct photo-responsive behaviour when 365 or 405 nm or visible light is illuminated. For the first time, the crystal hydrate that has water molecule in the lattice (hereafter named as Ant-H2O) display fascinating puffing behavior with large volume expansion upto 50 % accompanied with surface modulation when illuminated with 405 nm light, a phenomenon very much similar to the rice or popcorn puffing by thermal treatment. Utilizing the properties of photoconverted Ant-H2O crystals, we have demonstrated their application in photoinduced enhanced liquid absorption using various liquids/solutions. The other crystal solvate having DMF in the crystal lattice (hereafter named as Ant-DMF) responds to 405 nm light by bending, twisting, chopping, jumping or splitting etc. The chopping of Ant-DMF crystal was also observed under ambient/white light but at a slower rate compared to 405 nm light. Single crystal X-ray diffraction study reveals that the photoinduced puffing and photomechanical effects of these materials are rooted to the topochemical [4+4] cycloaddition reaction between the anthracene moieties that facilitate molecular packing change assisted by the reconfiguration of intermolecular non-covalent interactions involving lattice trapped solvent molecules.
Collapse
Affiliation(s)
- Prasenjit Giri
- Department of Chemistry, Jadavpur University, Kolkata, 700032
| | - Atanu Panda
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Ibaraki, Japan
- Current affiliation: Amity University, Amity Institute of Applied Science, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Manas K Panda
- Department of Chemistry, Jadavpur University, Kolkata, 700032
| |
Collapse
|
19
|
Wang Z, Han W, Shi R, Han X, Zheng Y, Xu J, Bu XH. Mechanoresponsive Flexible Crystals. JACS AU 2024; 4:279-300. [PMID: 38425899 PMCID: PMC10900217 DOI: 10.1021/jacsau.3c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024]
Abstract
Flexible crystals have gained significant attention owing to their remarkable pliability, plasticity, and adaptability, making them highly popular in various research and application fields. The main challenges in developing flexible crystals lie in the rational design, preparation, and performance optimization of such crystals. Therefore, a comprehensive understanding of the fundamental origins of crystal flexibility is crucial for establishing evaluation criteria and design principles. This Perspective offers a retrospective analysis of the development of flexible crystals over the past two decades. It summarizes the elastic standards and possible plastic bending mechanisms tailored to diverse flexible crystals and analyzes the assessment of their theoretical basis and applicability. Meanwhile, the compatibility between crystal elasticity and plasticity has been discussed, unveiling the immense prospects of elastic/plastic crystals for applications in biomedicine, flexible electronic devices, and flexible optics. Furthermore, this Perspective presents state-of-the-art experimental avenues and analysis methods for investigating molecular interactions in molecular crystals, which is vital for the future exploration of the mechanisms of crystal flexibility.
Collapse
Affiliation(s)
- Zhihua Wang
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Wenqing Han
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Rongchao Shi
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Xiao Han
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Yongshen Zheng
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Jialiang Xu
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300350, P. R. China
| | - Xian-He Bu
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300350, P. R. China
| |
Collapse
|
20
|
Yang X, Al-Handawi MB, Li L, Naumov P, Zhang H. Hybrid and composite materials of organic crystals. Chem Sci 2024; 15:2684-2696. [PMID: 38404393 PMCID: PMC10884791 DOI: 10.1039/d3sc06469g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
Organic molecular crystals have historically been viewed as delicate and fragile materials. However, recent studies have revealed that many organic crystals, especially those with high aspect ratios, can display significant flexibility, elasticity, and shape adaptability. The discovery of mechanical compliance in organic crystals has recently enabled their integration with responsive polymers and other components to create novel hybrid and composite materials. These hybrids exhibit unique structure-property relationships and synergistic effects that not only combine, but occasionally also enhance the advantages of the constituent crystals and polymers. Such organic crystal composites rapidly emerge as a promising new class of materials for diverse applications in optics, electronics, sensing, soft robotics, and beyond. While specific, mostly practical challenges remain regarding scalability and manufacturability, being endowed with both structurally ordered and disordered components, the crystal-polymer composite materials set a hitherto unexplored yet very promising platform for the next-generation adaptive devices. This Perspective provides an in-depth analysis of the state-of-the-art in design strategies, dynamic properties and applications of hybrid and composite materials centered on organic crystals. It addresses the current challenges and provides a future outlook on this emerging class of multifunctional, stimuli-responsive, and mechanically robust class of materials.
Collapse
Affiliation(s)
- Xuesong Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Marieh B Al-Handawi
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi PO Box 38044 Abu Dhabi UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts Bul. Krste Misirkov 2 MK-1000 Skopje Macedonia
- Molecular Design Institute, Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
21
|
Borah SS, Khan M, Gogoi P, Kalita N, Thakuria R, Nath NK. Revisiting Dimorphs of 4-n-octyloxybenzoic Acid: Contrasting Mechanical Property and Surface Wettability. Chem Asian J 2024:e202301090. [PMID: 38327100 DOI: 10.1002/asia.202301090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
4-n-octyloxy benzoic acid is known to exhibit liquid crystalline properties, and under normal pressure and temperature conditions, it exists as at least two crystalline polymorphs. We revisited the system and discovered that single crystals of one of the polymorphs display plastic deformation, whereas the other is brittle. n-octyl chains are arranged in an end-to-end fashion, forming slip planes in the plastically deformable polymorph, whereas they are interdigitated in the crystal structure of the brittle polymorph. Due to the difference in the arrangement of the -COOH group and alkyl chains, the major faces of the crystals of both polymorphs possess significant differences in the wettability towards moisture.
Collapse
Affiliation(s)
- Silpi S Borah
- Department of Chemistry, National Institute of Technology, Meghalaya, 793003, India
| | - Mohsin Khan
- Department of Chemistry, Gauhati University, Guwahati, 781014, Assam, India
| | - Pulakesh Gogoi
- Department of Chemistry, National Institute of Technology, Meghalaya, 793003, India
| | - Nabadeep Kalita
- Department of Chemistry, Gauhati University, Guwahati, 781014, Assam, India
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati, 781014, Assam, India
| | - Naba K Nath
- Department of Chemistry, National Institute of Technology, Meghalaya, 793003, India
| |
Collapse
|
22
|
Kato H, Horii Y, Noguchi M, Fujimori H, Kajiwara T. Molecular elastic crystals exhibiting slow magnetic relaxations. Chem Commun (Camb) 2023; 59:14587-14590. [PMID: 37991259 DOI: 10.1039/d3cc04770a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
We report an elastic crystal of a copper(II) porphyrinato complex that exhibits slow magnetic relaxations and is a promising candidate for an external-force-responsive spin qubit.
Collapse
Affiliation(s)
- Hinako Kato
- Graduate School of Humanities and Science, Nara Women's University, Kitauoya-Higashimachi, Nara 630-8506, Japan.
| | - Yoji Horii
- Graduate School of Humanities and Science, Nara Women's University, Kitauoya-Higashimachi, Nara 630-8506, Japan.
| | - Mariko Noguchi
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Hiroki Fujimori
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Takashi Kajiwara
- Graduate School of Humanities and Science, Nara Women's University, Kitauoya-Higashimachi, Nara 630-8506, Japan.
| |
Collapse
|
23
|
Murthy Potla K, Parameshwar Adimule S, Poojith N, Osório FAP, Valverde C, Sheena Mary Y, Vankayalapati S. A comparative study of structural and spectroscopic properties of three structurally similar mechanically bending organic single crystals - 2-Amino-3-nitro-5-halo (halo = Cl, Br, or I) pyridine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123093. [PMID: 37418906 DOI: 10.1016/j.saa.2023.123093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
In recent years, scientists have been very interested in single crystals of monoaromatic compounds with mechanical softness, but they are hard to find. The present work reports a comparative study of structural, spectroscopic, and quantum chemical investigations of three structurally similar mechanically bending monoaromatic compounds, namely, 2-amino-3-nitro-5-chloro pyridine (I), 2-amino-3-nitro-5-bromo pyridine (II), and 2-amino-3-nitro-5-iodo pyridine (III). The mechanical responses of the three organic crystals studied here are very intriguing due to the similarity of their chemical structures, which only differ in the presence of halogen atoms (Cl, Br, and I) at the fifth position of the pyridine ring and are explained through examining intermolecular interaction energies from energy frameworks analysis, slip layer topology, and Hirshfeld surface analysis. The crystals of all the three feature one dimensional ribbons comprising alternating NaminoH⋯Onitro and NaminoH⋯Npyridine hydrogen bonds that form R22(12) and R22(8) dimeric rings, respectively. In (III), weak I⋯I interactions link the adjacent ribbons forming a two dimensional sheet. Layer-like structures are observed in all three crystals, with no significant interactions between the adjacent architectures (ribbons or sheets). Energy framework calculations are used for estimating the bending ability of the three compounds, with the three following the order Cl ≪ Br < I. The iterative electrostatic scheme coupled with the supermolecule approach (SM) at the DFT/CAM-B3LYP/aug-cc-pVTZ level is used to calculate the third-order nonlinear susceptibility (χ3) values in a simulated crystalline environment for the static case as well as two typical electric field frequency values, (λ = 1064 nm) and (λ = 532 nm). In addition, estimates of the topological studies (localized orbital locator and electron localization function) and reactivity characteristics (global reactivity parameters, molecular electrostatic potential, and Fukui function) are made for the compounds under investigation. Docking studies done using AutoDock software with a protein target (PDB ID: 6CM4) revealed that three compounds could be used to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Krishna Murthy Potla
- Department of Chemistry, Velagapudi Ramakrishna Siddhartha Engineering College (Autonomous), Kanuru 520 007, Vijayawada, Andhra Pradesh, India
| | - Suchetan Parameshwar Adimule
- Department of Studies and Research in Chemistry, University College of Science, Tumkur University, Tumkur 572 103, Karnataka, India
| | - Nuthalapati Poojith
- Department of Pharmacology, Sri Ramachandra Institute of Higher Education and Research, Ramachandra Nagar, Porur, Chennai 600 116, India.
| | - Francisco A P Osório
- Instituto de Física, Universidade Federal de Goias, 74690-900 Goiânia, GO, Brazil; Pontifícia Universida de Católica de Goiás, 74605-100 Goiânia, GO, Brazil
| | - Clodoaldo Valverde
- Laboratório de Modelagem Molecular Aplicada e Simulação (LaMMAS), Campus de CiênciasExatas e Tecnológicas, UniversidadeEstadual de Goiás, 75001-970 Anápolis, GO, Brazil; Universidade Paulista, 74845-090 Goiânia, GO, Brazil
| | | | - Suneetha Vankayalapati
- Department of Chemistry, Velagapudi Ramakrishna Siddhartha Engineering College (Autonomous), Kanuru 520 007, Vijayawada, Andhra Pradesh, India
| |
Collapse
|
24
|
Lin Y, Liu S, Yan D. Flexible Crystal Heterojunctions of Low-Dimensional Organic Metal Halides Enabling Color-Tunable Space-Resolved Optical Waveguides. RESEARCH (WASHINGTON, D.C.) 2023; 6:0259. [PMID: 37915767 PMCID: PMC10616971 DOI: 10.34133/research.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Molecular luminescent materials with optical waveguide have wide application prospects in light-emitting diodes, sensors, and logic gates. However, the majority of traditional optical waveguide systems are based on brittle molecular crystals, which limited the fabrication, transportation, storage, and adaptation of flexible devices under diverse application situations. To date, the design and synthesis of photofunctional materials with high flexibility, novel optical waveguide, and multi-port color-tunable emission in the same solid-state system remain an open challenge. Here, we have constructed new types of zero-dimensional organic metal halides (Au-4-dimethylaminopyridine [DMAP] and In-DMAP) with a rarely high elasticity and rather low loss coefficients for optical waveguide. Theoretical calculations on the intermolecular interactions showed that the high elasticity of 2 molecular crystalline materials was original from their herringbone structure and slip plane. Based on one-dimensional flexible microrods of 2 crystals and the 2-dimensional microplate of the Mn-DMAP, heterojunctions with multi-color and space-resolved optical waveguides have been fabricated. The formation mechanism of heterojunctions is based on the surface selective growth on account of the low lattice mismatch ratio between contacting crystal planes. Therefore, this work describes the first attempt to the design of metal-halide-based crystal heterojunctions with high flexibility and optical waveguide, expanding the prospects of traditional luminescent materials for smart optical devices, such as logic gates and multiplexers.
Collapse
Affiliation(s)
| | | | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry,
Beijing Normal University, Beijing 100875, China
| |
Collapse
|
25
|
Wang Z, Xiang W, Shi C, Xiao S, Wu R, Yu X, Ma L, Qin Z, Lei H, Chen X, Fang G, Qin P. Bifunctional Interface Passivation via Copper Acetylacetonate for Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49739-49748. [PMID: 37842970 DOI: 10.1021/acsami.3c09720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Manipulating interface defects can minimize interfacial nonradiative recombination, thus increasing the stability and performance of perovskite solar cells (PSCs). Here, copper acetylacetonate [Cu(acac)2] as a passivator is used to treat the interface between Spiro-OMeTAD and perovskite. Owing to the strong chelation, the uncoordinated Pb2+ could react with -C═O/-COH functional groups, firmly anchoring acetylacetonate at this interface or the grain boundaries (GBs) of perovskite films to construct multiple ligand bridges, accompanied by the p-type copper iodide formation with copper substituting lead. Simultaneously, Cu+-Cu2+ pairs transfer electrons from Pb0 to I0, suppressing deep level defects of Pb0 and I0 near the perovskite interface. These can be beneficial to hole-transferring. Moreover, the Schiff base complexes with hydrophobicity, from the reaction of acetylacetonate with perovskite, can lead to tightly packed adjacent perovskite surfaces and self-seal the GBs of the perovskite, inhibiting moisture diffusion for long-term stability. Consequently, the Cu(acac)2-based PSC has achieved more than 24% champion efficiency while retaining ca. 92% of the initial power conversion efficiency after 1680 h of storage.
Collapse
Affiliation(s)
- Ziyi Wang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| | - Wuchen Xiang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| | - Chang Shi
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| | - Shuping Xiao
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| | - Rui Wu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| | - Xueli Yu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| | - Zhongli Qin
- School of Electronics and Information Engineering, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Hongwei Lei
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xiangbai Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| | - Guojia Fang
- School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Pingli Qin
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| |
Collapse
|
26
|
Ranjan S, Ryu M, Morioka R, Kamegaki S, Ng SH, Smith D, Vongsvivut J, Tobin MJ, Juodkazis S, Morikawa J, Takamizawa S. Structural and Thermal Diffusivity Analysis of an Organoferroelastic Crystal Showing Scissor-Like Two-Directional Deformation Induced by Uniaxial Compression. J Am Chem Soc 2023; 145:23027-23036. [PMID: 37824218 DOI: 10.1021/jacs.3c05545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A two-directional ferroelastic deformation in organic crystals is unprecedented owing to its anisotropic crystal packing, in contrast to isotropic symmetrical packing in inorganic compounds and polymers. Thereby, finding and constructing multidirectional ferroelastic deformations in organic compounds is undoubtedly complex and at once calls for deep comprehension. Herein, we demonstrate the first example of a two-directional ferroelastic deformation with a unique scissor-like movement in single crystals of trans-3-hexenedioic acid by the application of uniaxial compression stress. A detailed structural investigation of the mechanical deformation at the macroscopic and microscopic levels by three distinct force measurement techniques (including shear and three-point bending test), single crystal X-ray diffraction techniques, and polarized synchrotron-FTIR microspectroscopy highlighted that mechanical twinning promoted the deformation. The presence of two crystallographically equivalent faces and the herringbone arrangement promoted the two-directional ferroelastic deformation. In addition, anisotropic heat transfer properties in the parent and the deformed domains were investigated by thermal diffusivity measurement on all three axes using microscale temperature-wave analysis (μ-TWA). A correlation between the anisotropic structural arrangement and the difference in thermal diffusivity and mechanical behavior in the two-directional organoferroelastic deformation could be established. The structural and molecular level information from this two-directional ferroelastic deformation would lead to a more profound understanding of the structure-property relationship in multidirectional deformation in organic crystals.
Collapse
Affiliation(s)
- Subham Ranjan
- Department of Materials System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | - Meguya Ryu
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| | - Ryota Morioka
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Shuji Kamegaki
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Victoria 3122, Australia
| | - Daniel Smith
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Victoria 3122, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Victoria 3122, Australia
- International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Junko Morikawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Satoshi Takamizawa
- Department of Materials System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| |
Collapse
|
27
|
Erba A, Desmarais JK, Casassa S, Civalleri B, Donà L, Bush IJ, Searle B, Maschio L, Edith-Daga L, Cossard A, Ribaldone C, Ascrizzi E, Marana NL, Flament JP, Kirtman B. CRYSTAL23: A Program for Computational Solid State Physics and Chemistry. J Chem Theory Comput 2023; 19:6891-6932. [PMID: 36502394 PMCID: PMC10601489 DOI: 10.1021/acs.jctc.2c00958] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 12/14/2022]
Abstract
The Crystal program for quantum-mechanical simulations of materials has been bridging the realm of molecular quantum chemistry to the realm of solid state physics for many years, since its first public version released back in 1988. This peculiarity stems from the use of atom-centered basis functions within a linear combination of atomic orbitals (LCAO) approach and from the corresponding efficiency in the evaluation of the exact Fock exchange series. In particular, this has led to the implementation of a rich variety of hybrid density functional approximations since 1998. Nowadays, it is acknowledged by a broad community of solid state chemists and physicists that the inclusion of a fraction of Fock exchange in the exchange-correlation potential of the density functional theory is key to a better description of many properties of materials (electronic, magnetic, mechanical, spintronic, lattice-dynamical, etc.). Here, the main developments made to the program in the last five years (i.e., since the previous release, Crystal17) are presented and some of their most noteworthy applications reviewed.
Collapse
Affiliation(s)
- Alessandro Erba
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Jacques K. Desmarais
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Silvia Casassa
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Bartolomeo Civalleri
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Lorenzo Donà
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Ian J. Bush
- STFC
Rutherford Appleton Laboratory, Chilton Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Barry Searle
- SFTC
Daresbury Laboratory, Daresbury, Cheshire WA4 4AD, United Kingdom
| | - Lorenzo Maschio
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Loredana Edith-Daga
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Alessandro Cossard
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Chiara Ribaldone
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Eleonora Ascrizzi
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Naiara L. Marana
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Jean-Pierre Flament
- Université
de Lille, CNRS, UMR 8523 — PhLAM — Physique des Lasers, Atomes et Molécules, 59000 Lille, France
| | - Bernard Kirtman
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| |
Collapse
|
28
|
Mishra MK, Mahur P, Manimunda P, Mishra K. Recent Advances in Nanomechanical Measurements and Their Application for Pharmaceutical Crystals. Mol Pharm 2023; 20:4848-4867. [PMID: 37642458 DOI: 10.1021/acs.molpharmaceut.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mechanical behavior of pharmaceutical crystals directly impacts the formulation development and manufacturing of drug products. The understanding of crystal structure-mechanical behavior of pharmaceutical and molecular crystals has recently gained substantial attention among pharmaceutical and materials scientists with the advent of advanced nanomechanical testing instruments like nanoindentation. For the past few decades, instrumented nanoindentation was a popular technique for measuring the mechanical properties of thin films and small-length scale materials. More recently it is being implemented to investigate the mechanical properties of pharmaceutical crystals. Integration of correlative microscopy techniques and environmental control opened the door for advanced structure-property correlation under processing conditions. Preventing the degradation of active pharmaceutical ingredients from external factors such as humidity, temperature, or pressure is important during processing. This review deals with the recent developments in the synchronized nanomechanical measurements of pharmaceutical crystals toward the fast and effective development of high-quality pharmaceutical drug products. This review also summarizes some recent reports to intensify how one can design and control the nanomechanical properties of pharmaceutical solids. Measurement challenges and the scope for studying nanomechanical properties of pharmaceutical crystals using nanoindentation as a function of crystal structure and in turn to develop fundamental knowledge in the structure-property relationship with the implications for drug manufacturing and development are discussed in this review. This review further highlights recently developed capabilities in nanoindentation, for example, variable temperature nanoindentation testing, in situ imaging of the indented volume, and nanoindentation coupled Raman spectroscopy that can offer new quantitative details on nanomechanical behavior of crystals and will play a decisive role in the development of coherent theories for nanomechanical study of pharmaceutical crystal.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Department of Chemistry, School of Advanced Sciences (SAS), VIT University, Vellore 632014, Tamil Nadu, India
| | - Pinki Mahur
- Department of Chemistry, School of Advanced Sciences (SAS), VIT University, Vellore 632014, Tamil Nadu, India
| | | | - Kamini Mishra
- Department of Chemistry, School of Advanced Sciences (SAS), VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
29
|
Germann LS, Carlino E, Taurino A, Magdysyuk OV, Voinovich D, Dinnebier RE, Bučar D, Hasa D. Modulating Thermal Properties of Polymers through Crystal Engineering. Angew Chem Int Ed Engl 2023; 62:e202212688. [PMID: 36617841 PMCID: PMC10947328 DOI: 10.1002/anie.202212688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Crystal engineering has exclusively focused on the development of advanced materials based on small organic molecules. We now demonstrate how the cocrystallization of a polymer yields a material with significantly enhanced thermal stability but equivalent mechanical flexibility. Isomorphous replacement of one of the cocrystal components enables the formation of solid solutions with melting points that can be readily fine-tuned over a usefully wide temperature range. The results of this study credibly extend the scope of crystal engineering and cocrystallization from small molecules to polymers.
Collapse
Affiliation(s)
- Luzia S. Germann
- Max Planck Institute for Solid State ResearchHeisenberg Straße 170569StuttgartGermany
| | - Elvio Carlino
- Istituto di Cristallografia—Consiglio Nazionale delle Ricerche (IC—CNR)Via Amendola 122/O70126BariItaly
| | - Antonietta Taurino
- Institute for Microelectronics and Microsystems, Consiglio Nazionale delle Ricerche (IMM—CNR)Via Monteroni73100LecceItaly
| | - Oxana V. Magdysyuk
- Diamond Light Source Ltd.Harwell Science and Innovation CampusDidcotOX11 0DEUK
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia Giorgieri 134127TriesteItaly
| | - Robert E. Dinnebier
- Max Planck Institute for Solid State ResearchHeisenberg Straße 170569StuttgartGermany
| | - Dejan‐Krešimir Bučar
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia Giorgieri 134127TriesteItaly
| |
Collapse
|
30
|
Chen YS, Wang CH, Hu YH, Lu CYD, Yang JS. An Elastic Organic Crystal Enables Macroscopic Photoinduced Crystal Elongation. J Am Chem Soc 2023; 145:6024-6028. [PMID: 36840927 DOI: 10.1021/jacs.2c13210] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Among the various types of photomechanical deformations of organic crystals, photoinduced elongation of millimeter-scale crystals has yet to be demonstrated. Here we report that the millimeter-sized crystalline rods of an anthracene-pentiptycene hybrid organic π-system (1) are highly elastic and able to elongate up to 21.6% or 0.40 mm without fragmentation upon undergoing [4 + 4] photodimerization reactions. Both the mechanical and photomechanical effects reveal a strong cohesion of the system, even at the interface of 1 and its photodimer 2 and under the conditions of randomized molecular packing, representing a new class of mechanically adaptive organic crystals.
Collapse
Affiliation(s)
- Yu-Shan Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hsuan Hu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Yi David Lu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
31
|
Thompson AJ, Powell JA, Melville JN, McMurtrie JC, Clegg JK. Crystals of Aliphatic Derivatives of [Cu(acac) 2 ] have Distinct Atomic-Scale Mechanisms of Bending. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207431. [PMID: 36932939 DOI: 10.1002/smll.202207431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Molecular crystals displaying elastic flexibility have important applications in the fields of optoelectronics and nanophotonic technologies. Understanding the mechanisms by which these materials bend is critical to the design of future materials incorporating these properties. Based on the known elastic properties of bis(acetylacetonato)copper(II), a series of 14 aliphatic derivatives are synthesized and crystallized. All those which grew in a needle morphology display noticeable elasticity, with 1D chains of π-stacked molecules parallel to the long metric length of the crystal a consistent crystallographic feature. Crystallographic mapping is used to measure the mechanism of elasticity at an atomic-scale. Symmetric derivatives with ethyl and propyl side chains are found to have different mechanisms of elasticity, which are further distinguished from the previously reported mechanism of bis(acetylacetonato)copper(II). While crystals of bis(acetylacetonato)copper(II) are known to bend elastically via a molecular rotation mechanism, the elasticity of the compounds presented is facilitated by expansion of their π-stacking interactions.
Collapse
Affiliation(s)
- Amy J Thompson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Joshua A Powell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jamie N Melville
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
32
|
Mišura O, Pisačić M, Borovina M, Đaković M. Tailoring Enhanced Elasticity of Crystalline Coordination Polymers. CRYSTAL GROWTH & DESIGN 2023; 23:1318-1322. [PMID: 36879768 PMCID: PMC9983303 DOI: 10.1021/acs.cgd.2c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The approach for enhancing the elasticity of crystals with suboptimal elastic performances through a rational design was presented. A hydrogen-bonding link was identified as a critical feature in the structure of the parent material, the Cd(II) coordination polymer [CdI2(I-pz)2] n (I-pz = iodopyrazine), to determine the mechanical output and was modified via cocrystallization. Small organic coformers resembling the initial organic ligand but with readily available hydrogens were selected to improve the identified link, and the extent of strengthening the critical link was in an excellent correlation with the delivered enhancement of elastic flexibility materials.
Collapse
|
33
|
Makino Y, Yoshida M, Hayashi S, Sasaki T, Takamizawa S, Kobayashi A, Kato M. Elastic and bright assembly-induced luminescent crystals of platinum(II) complexes with near-unity emission quantum yield. Dalton Trans 2023. [PMID: 36847788 DOI: 10.1039/d3dt00192j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Molecular crystals of Pt(II) complexes with metallophilic interactions can provide bright assembly-induced luminescence with colour tunability. However, the brittleness of many of these crystals makes their application in flexible optical materials difficult. Herein, we have achieved the elastic deformation of crystals of polyhalogenated Pt(II) complexes exhibiting bright assembly-induced luminescence. A crystal of [Pt(bpic)(dFppy)] (Hbpic = 5-bromopicolinic acid, HdFppy = 2-(2,4-difluorophenyl)pyridine) and a co-crystal of [Pt(bpic)(dFppy)] and [Pt(bpic)(ppy)] (Hppy = 2-phenylpyridine) were found to exhibit significant elastic deformation due to their highly anisotropic interaction topologies. While the crystal of [Pt(bpic)(dFppy)] exhibited monomer-based ligand-centred 3ππ* emission with an emission quantum yield of 0.40, the co-crystal exhibited bright, triplet metal-metal-to-ligand charge transfer (3MMLCT) emission owing to Pt⋯Pt interactions, thereby achieving a significantly higher emission quantum yield of 0.94.
Collapse
Affiliation(s)
- Yusuke Makino
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Shotaro Hayashi
- School of Environmental Science and Engineering and Research Centre for Molecular Design, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Toshiyuki Sasaki
- Department of Materials System Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Satoshi Takamizawa
- Department of Materials System Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
34
|
Samanta R, Das S, Mondal S, Alkhidir T, Mohamed S, Senanayak SP, Reddy CM. Elastic organic semiconducting single crystals for durable all-flexible field-effect transistors: insights into the bending mechanism. Chem Sci 2023; 14:1363-1371. [PMID: 36794186 PMCID: PMC9906658 DOI: 10.1039/d2sc05217b] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Although many examples of mechanically flexible crystals are currently known, their utility in all-flexible devices is not yet adequately demonstrated, despite their immense potential for fabricating high performance flexible devices. Here, we report two alkylated diketopyrrolopyrrole (DPP) semiconducting single crystals, one of which displays impressive elastic mechanical flexibility whilst the other is brittle. Using the single crystal structures and density functional theory (DFT) calculations, we show that the methylated diketopyrrolopyrrole (DPP-diMe) crystals, with dominant π-stacking interactions and large contributions from dispersive interactions, are superior in terms of their stress tolerance and field-effect mobility (μ FET) when compared to the brittle crystals of the ethylated diketopyrrolopyrrole derivative (DPP-diEt). Periodic dispersion-corrected DFT calculations revealed that upon the application of 3% uniaxial strain along the crystal growth (a)-axis, the elastically flexible DPP-diMe crystal displays a soft energy barrier of only 0.23 kJ mol-1 while the brittle DPP-diEt crystal displays a significantly larger energy barrier of 3.42 kJ mol-1, in both cases relative to the energy of the strain-free crystal. Such energy-structure-function correlations are currently lacking in the growing literature on mechanically compliant molecular crystals and have the potential to support a deeper understanding of the mechanism of mechanical bending. The field effect transistors (FETs) made of flexible substrates using elastic microcrystals of DPP-diMe retained μ FET (from 0.019 cm2 V-1 s-1 to 0.014 cm2 V-1 s-1) more efficiently even after 40 bending cycles when compared to the brittle microcrystals of DPP-diEt which showed a significant drop in μ FET just after 10 bending cycles. Our results not only provide valuable insights into the bending mechanism, but also demonstrate the untapped potential of mechanically flexible semiconducting crystals for designing all flexible durable field-effect transistor devices.
Collapse
Affiliation(s)
- Ranita Samanta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur Nadia West Bengal 741246 India
| | - Susobhan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur Nadia West Bengal 741246 India
| | - Saikat Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur Nadia West Bengal 741246 India
| | - Tamador Alkhidir
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology P.O. Box 127788 Abu Dhabi United Arab Emirates
| | - Sharmarke Mohamed
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology P.O. Box 127788 Abu Dhabi United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology P.O. Box 127788 Abu Dhabi United Arab Emirates
| | - Satyaprasad P Senanayak
- Nanoelectronics and Device Physics Lab, School of Physical Sciences, National Institute of Science Education and Research, An OCC of HBNI Jatni 752050 India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur Nadia West Bengal 741246 India
| |
Collapse
|
35
|
Lin J, Cao Y, Liu Y, Li M, Chen Y, Zhou J, Wu S, Gong J. Structural origins of two-dimensional elastic bending in a nonaromatic organic molecular crystal. Chem Commun (Camb) 2023; 59:619-622. [PMID: 36533608 DOI: 10.1039/d2cc05169a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mechanically flexible crystals are generally obtained based on weak interactions in the aromatic systems. Here, we reported the remarkable 2D elastic bending behaviors in a nonaromatic organic molecular crystal. The strong hydrogen bonding interactions are also verified to play a crucial role in the reversible bending.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Yuechao Cao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Yanbo Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Maolin Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Yifu Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Jianmin Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Songgu Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
36
|
Kusumoto S, Kim Y, Hayami S. Flexible metal complex crystals in response to external mechanical stimuli. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Structural influence of the length and functionality of N,N-donor spacers in Cd(II) ladder-type coordination polymers. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
An LC, Li X, Li ZG, Li Q, Beldon PJ, Gao FF, Li ZY, Zhu S, Di L, Zhao S, Zhu J, Comboni D, Kupenko I, Li W, Ramamurty U, Bu XH. Plastic bending in a semiconducting coordination polymer crystal enabled by delamination. Nat Commun 2022; 13:6645. [PMCID: PMC9636129 DOI: 10.1038/s41467-022-34351-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractCoordination polymers (CPs) are a class of crystalline solids that are considered brittle, due to the dominance of directional coordination bonding, which limits their utility in flexible electronics and wearable devices. Hence, engineering plasticity into functional CPs is of great importance. Here, we report plastic bending of a semiconducting CP crystal, Cu-Trz (Trz = 1,2,3-triazolate), that originates from delamination facilitated by the discrete bonding interactions along different crystallographic directions in the lattice. The coexistence of strong coordination bonds and weak supramolecular interactions, together with the unique molecular packing, are the structural features that enable the mechanical flexibility and anisotropic response. The spatially resolved analysis of short-range molecular forces reveals that the strong coordination bonds, and the adaptive C–H···π and Cu···Cu interactions, synergistically lead to the delamination of the local structures and consequently the associated mechanical bending. The proposed delamination mechanism offers a versatile tool for designing the plasticity of CPs and other molecular crystals.
Collapse
|
39
|
Lynes AD, Lovitt JI, Rotella C, Boland JJ, Gunnlaugsson T, Hawes CS. Crystal engineering studies of a series of pyridine-3,5-dicarboxamide ligands possessing alkyl ester arms, and their coordination chemistry. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Hierarchical structures, surface morphology and mechanical elasticity of lamellar crystals dominated by halogen effects. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Di Q, Li L, Miao X, Lan L, Yu X, Liu B, Yi Y, Naumov P, Zhang H. Fluorescence-based thermal sensing with elastic organic crystals. Nat Commun 2022; 13:5280. [PMID: 36075917 PMCID: PMC9458730 DOI: 10.1038/s41467-022-32894-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Operation of temperature sensors over extended temperature ranges, and particularly in extreme conditions, poses challenges with both the mechanical integrity of the sensing material and the operational range of the sensor. With an emissive bendable organic crystalline material, here we propose that organic crystals can be used as mechanically robust and compliant fluorescence-based thermal sensors with wide range of temperature coverage and complete retention of mechanical elasticity. The exemplary material described remains elastically bendable and shows highly linear correlation with the emission wavelength and intensity between 77 K to 277 K, while it also transduces its own fluorescence in active waveguiding mode. This universal new approach expands the materials available for optical thermal sensing to a vast number of organic crystals as a new class of engineering materials and opens opportunities for the design of lightweight, organic fluorescence-based thermal sensors that can operate under extreme temperature conditions such as are the ones that will be encountered in future space exploration missions. A mechanically compliant and robust sensing material is essential for accurate and reliable thermal sensing. Here, the authors report the use of elastic organic crystals as fluorescence-based thermal sensors that cover a wide range of temperatures with complete retention of the sensor’s elasticity.
Collapse
Affiliation(s)
- Qi Di
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.,Department of Sciences and Engineering, Sorbonne University Abu Dhabi, PO Box 38044, Abu Dhabi, UAE
| | - Xiaodan Miao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Linfeng Lan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Xu Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Bin Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE. .,Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE. .,Department of Chemistry, Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China.
| |
Collapse
|
42
|
Chinnasamy R, Ravi J, Vinay Pradeep V, Manoharan D, Emmerling F, Bhattacharya B, Ghosh S, Chandrasekar R. Adaptable Optical Microwaveguides From Mechanically Flexible Crystalline Materials. Chemistry 2022; 28:e202200905. [DOI: 10.1002/chem.202200905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | - Jada Ravi
- Advanced Organic Photonic Materials and Technology Laboratory School of Chemistry and Centre for Nanotechnology University of Hyderabad Gachibowli Hyderabad 500046 India
| | - Vuppu Vinay Pradeep
- Advanced Organic Photonic Materials and Technology Laboratory School of Chemistry and Centre for Nanotechnology University of Hyderabad Gachibowli Hyderabad 500046 India
| | - Deepak Manoharan
- Department of Chemistry SRM Institute of Science and Technology Chennai 603 203 India
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Biswajit Bhattacharya
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Soumyajit Ghosh
- Department of Chemistry SRM Institute of Science and Technology Chennai 603 203 India
| | - Rajadurai Chandrasekar
- Advanced Organic Photonic Materials and Technology Laboratory School of Chemistry and Centre for Nanotechnology University of Hyderabad Gachibowli Hyderabad 500046 India
| |
Collapse
|
43
|
Pan X, Zheng A, Yu X, Di Q, Li L, Duan P, Ye K, Naumov P, Zhang H. A Low-Temperature-Resistant Flexible Organic Crystal with Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202203938. [PMID: 35441771 DOI: 10.1002/anie.202203938] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/12/2022]
Abstract
Flexible organic crystals with unique mechanical properties and excellent optical properties are of paramount significance for their wide applications in various research fields such as adaptive optics and soft robotics. However, low-temperature-resistant flexible organic crystal with circularly polarized luminescence (CPL) has never been reported. Herein, chiral organic crystals with CPL activity and low-temperature flexibility (77 K) are fabricated by the solvent diffusion method from chiral Schiff base, S(R)-4-bromo-2-(((1-phenylethyl)imino)methyl)phenol (S(R)-BPEMP). The corresponding chirooptical properties for the two enantiomeric crystals were thoroughly investigated, including the measurements of circular dichroism (CD) and CPL. To the best of our knowledge, this is the first report on low-molecular-weight flexible organic crystals with CPL activity, and we believe that the results will give a new impetus to the research of organic crystals.
Collapse
Affiliation(s)
- Xiuhong Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Anyi Zheng
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xu Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Qi Di
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates.,Department of Sciences and Engineering, Sorbonne University Abu Dhabi, 38044, Abu Dhabi, United Arab Emirates
| | - Pengfei Duan
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Chinese Academy of Sciences, 100190, Beijing, China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates.,Molecular Design Institute, Department of Chemistry, New York University, 10003, New York, USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| |
Collapse
|
44
|
Cotman AE, Dub PA, Sterle M, Lozinšek M, Dernovšek J, Zajec Ž, Zega A, Tomašič T, Cahard D. Catalytic Stereoconvergent Synthesis of Homochiral β-CF 3, β-SCF 3, and β-OCF 3 Benzylic Alcohols. ACS ORGANIC & INORGANIC AU 2022; 2:396-404. [PMID: 36217345 PMCID: PMC9542724 DOI: 10.1021/acsorginorgau.2c00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
We describe an efficient
catalytic strategy for enantio- and diastereoselective
synthesis of homochiral β-CF3, β-SCF3, and β-OCF3 benzylic alcohols. The approach is
based on dynamic kinetic resolution (DKR) with Noyori–Ikariya
asymmetric transfer hydrogenation leading to simultaneous construction
of two contiguous stereogenic centers with up to 99.9% ee, up to 99.9:0.1
dr, and up to 99% isolated yield. The origin of the stereoselectivity
and racemization mechanism of DKR is rationalized by density functional
theory calculations. Applicability of the previously inaccessible
chiral fluorinated alcohols obtained by this method in two directions
is further demonstrated: As building blocks for pharmaceuticals, illustrated
by the synthesis of heat shock protein 90 inhibitor with in vitro
anticancer activity, and in particular, needle-shaped crystals of
representative stereopure products that exhibit either elastic or
plastic flexibility, which opens the door to functional materials
based on mechanically responsive chiral molecular crystals.
Collapse
Affiliation(s)
- Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maša Sterle
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Dominique Cahard
- CNRS UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| |
Collapse
|
45
|
Pan X, Zheng A, Yu X, Di Q, Li L, Duan P, Ye K, Naumov P, Zhang H. A Low‐Temperature‐Resistant Flexible Organic Crystal with Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiuhong Pan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 130012 Changchun China
| | - Anyi Zheng
- Center for Excellence in Nanoscience Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Chinese Academy of Sciences 100190 Beijing China
| | - Xu Yu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 130012 Changchun China
| | - Qi Di
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 130012 Changchun China
| | - Liang Li
- Smart Materials Lab New York University Abu Dhabi 129188 Abu Dhabi United Arab Emirates
- Department of Sciences and Engineering Sorbonne University Abu Dhabi 38044 Abu Dhabi United Arab Emirates
| | - Pengfei Duan
- Center for Excellence in Nanoscience Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Chinese Academy of Sciences 100190 Beijing China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 130012 Changchun China
| | - Panče Naumov
- Smart Materials Lab New York University Abu Dhabi 129188 Abu Dhabi United Arab Emirates
- Molecular Design Institute Department of Chemistry New York University 10003 New York USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 130012 Changchun China
| |
Collapse
|
46
|
Kusumoto S, Suzuki R, Tachibana M, Sekine Y, Kim Y, Hayami S. Recrystallization solvent-dependent elastic/plastic flexibility of an n-dodecyl-substituted tetrachlorophthalimide. Chem Commun (Camb) 2022; 58:5411-5414. [PMID: 35416213 DOI: 10.1039/d2cc00663d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A long alkyl-chained organic molecule, 4,5,6,7-tetrachloro-2-dodecylisoindoline-1,3-dione (1), was crystallized into needle-like crystals in dichloromethane (1DCM) or plate-like ones in tetrahydrofuran (1THF) depending on the recrystallisation solvent. X-ray crystallography analyses revealed the alkyl chains of the molecules, in which they were assembled differently, with the former responding flexibly bendable and elastic deformation, and the later being a permanent plastic one by external mechanical stress. The elastic modulus (E) and hardness (H) indicating both compliant and soft nature, reflecting their weak interaction in crystals, were quantified from the nano-indentation test.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Ryo Suzuki
- Department of Materials System Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Masaru Tachibana
- Department of Materials System Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. .,Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. .,Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
47
|
Hayashi S. Elastic Molecular Crystals: Their Deformation-induced Reversible Unit Cell Changes with Specific Poisson Effect. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shotaro Hayashi
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology
| |
Collapse
|
48
|
Altering elastic-plastic mechanical response of a series of isostructural metal-organic complexes crystals. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1203-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Pisačić M, Kodrin I, Trninić A, Đaković M. Two-Dimensional Anisotropic Flexibility of Mechanically Responsive Crystalline Cadmium(II) Coordination Polymers. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:2439-2448. [PMID: 35281974 PMCID: PMC8910440 DOI: 10.1021/acs.chemmater.2c00062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Crystals of a family of six one-dimensional (1D) coordination polymers of cadmium(II) with cyanopyridines [[CdX2L2] n , where X = Cl, Br, or I and L = 3-cyanopyridine (3-CNpy) or 4-cyanopyridine (4-CNpy)] presented a variety of morphologies and mechanical responses with dominant two-dimensional (2D) anisotropic flexibility, which has not been previously reported. All mechanically adaptable crystals were 2D flexible and displayed a variety of direction-dependent responses; in addition to 2D isotropic flexibility observed for solely elastic materials, 2D anisotropic flexibility was noticed for both elastic and elastic → plastic crystals. The consequences of fine and controlled structural variations on mechanical behavior were additionally explored via microfocus single-crystal X-ray diffraction and complementary theoretical studies, revealing that the relative strength and direction of the hydrogen bonding interactions were the key parameters in delivering a specific mechanical response.
Collapse
|
50
|
Li J, Li J, Liu H, Zhang L, Lu Y, Zhou Z. Structural landscape investigations on bendable plastic crystals of isonicotinamide polymorphs. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|