1
|
Singh A, Majee P, Mishra L, Prajapat SK, Sharma TK, Kalia M, Kumar A. Role of RNA G-Quadruplexes in the Japanese Encephalitis Virus Genome and Their Recognition as Prospective Antiviral Targets. ACS Infect Dis 2024. [PMID: 39436355 DOI: 10.1021/acsinfecdis.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
G-quadruplexes (GQs) have been primarily studied in the context of cancer and neurodegenerative pathologies. However, recent research has shifted focus to their existence and functional roles in viral genomes, revealing GQ-regulated key pathways in various human pathogenic viruses. While GQ structures have been reported in the genomes of emerging and re-emerging viruses, RNA viruses have been understudied compared to DNA viruses, including notable examples such as human immunodeficiency virus-1, hepatitis C virus, Ebola virus, Nipah virus, Zika virus, and SARS-CoV-2. The flavivirus family, comprising the Japanese encephalitis virus (JEV), poses a significant global threat due to recurring outbreaks yet lacks approved antivirals. In this study, we identified and characterized eight putative G-quadruplex-forming motifs within essential genes involved in genome replication, assembly, and internalization in the host cell, conserved across different JEV isolates. The formation and stability of these motifs were validated through a multitude of biophysical and cell-based assays. The interaction and binding affinity of these motifs with the known GQ-binding ligand BRACO-19 were supported by biophysical assays, confirming the capability of these motifs to form GQ structures. Notably, BRACO-19 also exerted antiviral properties through reduction of viral replication and infectious virus titers as well as inhibition of viral protein expression, as evaluated by the cell-based assays. This comprehensive molecular characterization of G-quadruplex structures within the JEV genome highlights their potential as promising antiviral targets for intervention strategies against JEV infection through GQ-specific ligands.
Collapse
Affiliation(s)
- Aakriti Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Prativa Majee
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Laxmi Mishra
- Virology Research Group, Regional Centre for Biotechnology, Faridabad 121001, India
| | | | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar 382355, India
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, Faridabad 121001, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| |
Collapse
|
2
|
Liu X, Qi Q, Xiong W, Shen W, Zhang K, Fan R, Zhang Y, Zhao Y, Xu X, Li M, Zhou E, Tian T, Zhou X. Unveiling a Potent Small Molecule Disruptor for RNA G-Quadruplexes Tougher Than DNA G-Quadruplex Disruption. ACS Chem Biol 2024; 19:2032-2040. [PMID: 39225324 DOI: 10.1021/acschembio.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This research presents a unique small molecule characterized by its ability to effectively disrupt RNA G-quadruplexes (G4s), which are notably more stable than their DNA counterparts. We conducted a comprehensive series of in vitro experiments to thoroughly assess the disruptive capabilities of this molecule on RNA G4s. These experiments included comparisons with established G4 stabilizers and DNA G4 disruptors, providing a multifaceted evaluation of the molecule's efficacy. Our extensive in vitro analyses demonstrated that this molecule effectively alters G4 structures and interactions with the BG4 protein, a well-recognized G4-specific antibody. These findings underscore the molecule's potential to modulate G4-protein interactions, indicating promising applications for manipulating cellular functions associated with G4 dynamics in future research.
Collapse
Affiliation(s)
- Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Kaisong Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Ruochen Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuanyuan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Yunting Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Xinyan Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Ming Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Enyi Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
3
|
Fracchioni G, Vailati S, Grazioli M, Pirota V. Structural Unfolding of G-Quadruplexes: From Small Molecules to Antisense Strategies. Molecules 2024; 29:3488. [PMID: 39124893 PMCID: PMC11314335 DOI: 10.3390/molecules29153488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures that have gathered significant interest in medicinal chemistry over the past two decades due to their unique structural features and potential roles in a variety of biological processes and disorders. Traditionally, research efforts have focused on stabilizing G4s, while in recent years, the attention has progressively shifted to G4 destabilization, unveiling new therapeutic perspectives. This review provides an in-depth overview of recent advances in the development of small molecules, starting with the controversial role of TMPyP4. Moreover, we described effective metal complexes in addition to G4-disrupting small molecules as well as good G4 stabilizing ligands that can destabilize G4s in response to external stimuli. Finally, we presented antisense strategies as a promising approach for destabilizing G4s, with a particular focus on 2'-OMe antisense oligonucleotide, peptide nucleic acid, and locked nucleic acid. Overall, this review emphasizes the importance of understanding G4 dynamics as well as ongoing efforts to develop selective G4-unfolding strategies that can modulate their biological function and therapeutic potential.
Collapse
Affiliation(s)
- Giorgia Fracchioni
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| | - Sabrina Vailati
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- PhD National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Marta Grazioli
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| |
Collapse
|
4
|
Liu W, He X, Zhu Y, Li Y, Wang Z, Li P, Pan J, Wang J, Chu B, Yang G, Zhang M, He Q, Li Y, Li W, Zhang C. Identification of a conserved G-quadruplex within the E165R of African swine fever virus (ASFV) as a potential antiviral target. J Biol Chem 2024; 300:107453. [PMID: 38852886 PMCID: PMC11261444 DOI: 10.1016/j.jbc.2024.107453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Abstract
Identification of a conserved G-quadruplex in E165R of ASFVAfrican swine fever virus (ASFV) is a double-stranded DNA arbovirus with high transmissibility and mortality rates. It has caused immense economic losses to the global pig industry. Currently, no effective vaccines or medications are to combat ASFV infection. G-quadruplex (G4) structures have attracted increasing interest because of their regulatory role in vital biological processes. In this study, we identified a conserved G-rich sequence within the E165R gene of ASFV. Subsequently, using various methods, we verified that this sequence could fold into a parallel G4. In addition, the G4-stabilizers pyridostatin and 5,10,15,20-tetrakis-(N-methyl-4-pyridyl) porphin (TMPyP4) can bind and stabilize this G4 structure, thereby inhibiting E165R gene expression, and the inhibitory effect is associated with G4 formation. Moreover, the G4 ligand pyridostatin substantially impeded ASFV proliferation in Vero cells by reducing gene copy number and viral protein expression. These compelling findings suggest that G4 structures may represent a promising and novel antiviral target against ASFV.
Collapse
Affiliation(s)
- Wenhao Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Xinglin He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Yance Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Yaqin Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhihao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Pengfei Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jiajia Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Guoyu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| | - Chao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
5
|
Chaudhuri R, Prasanth T, Biswas D, Mandal S, Dash J. Combating multidrug-resistance in S. pneumoniae: a G-quadruplex binding inhibitor of efflux pump and its bio-orthogonal assembly. NAR MOLECULAR MEDICINE 2024; 1:ugae005. [PMID: 38694210 PMCID: PMC11059089 DOI: 10.1093/narmme/ugae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Antibiotic resistance poses a significant global health threat, necessitating innovative strategies to combat multidrug-resistant bacterial infections. Streptococcus pneumoniae, a pathogen responsible for various infections, harbors highly conserved DNA quadruplexes in genes linked to its pathogenesis. In this study, we introduce a novel approach to counter antibiotic resistance by stabilizing G-quadruplex structures within the open reading frames of key resistance-associated genes (pmrA, recD and hsdS). We synthesized An4, a bis-anthracene derivative, using Cu(I)-catalyzed azide-alkyne cycloaddition, which exhibited remarkable binding and stabilization of the G-quadruplex in the pmrA gene responsible for drug efflux. An4 effectively permeated multidrug-resistant S. pneumoniae strains, leading to a substantial 12.5-fold reduction in ciprofloxacin resistance. Furthermore, An4 downregulated pmrA gene expression, enhancing drug retention within bacterial cells. Remarkably, the pmrA G-quadruplex cloned into the pET28a(+) plasmid transformed into Escherichia coli BL21 cells can template Cu-free bio-orthogonal synthesis of An4 from its corresponding alkyne and azide fragments. This study presents a pioneering strategy to combat antibiotic resistance by genetically reducing drug efflux pump expression through G-quadruplex stabilization, offering promising avenues for addressing antibiotic resistance.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| | - Thumpati Prasanth
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| | - Debasmita Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| | - Subhranshu Mandal
- Laboratory Medicine, Chittaranjan National Cancer Institute, Kolkata, West Bengal 700156, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| |
Collapse
|
6
|
Bednarska K, Chowdhury R, Tobin JWD, Swain F, Keane C, Boyle S, Khanna R, Gandhi MK. Epstein-Barr virus-associated lymphomas decoded. Br J Haematol 2024; 204:415-433. [PMID: 38155519 DOI: 10.1111/bjh.19255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Epstein-Barr virus (EBV)-associated lymphomas cover a range of histological B- and T-cell non-Hodgkin and Hodgkin lymphoma subtypes. The role of EBV on B-cell malignant pathogenesis and its impact on the tumour microenvironment are intriguing but incompletely understood. Both the International Consensus Classification (ICC) and 5th Edition of the World Health Organization (WHO-HAEM5) proposals give prominence to the distinct clinical, prognostic, genetic and tumour microenvironmental features of EBV in lymphoproliferative disorders. There have been major advances in our biological understanding, in how to harness features of EBV and its host immune response for targeted therapy, and in using EBV as a method to monitor disease response. In this article, we showcase the latest developments and how they may be integrated to stimulate new and innovative approaches for further lines of investigation and therapy.
Collapse
Affiliation(s)
- Karolina Bednarska
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rakin Chowdhury
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Joshua W D Tobin
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Fiona Swain
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Colm Keane
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Stephen Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maher K Gandhi
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Gemmill DL, Nelson CR, Badmalia MD, Pereira HS, Kerr L, Wolfinger MT, Patel TR. The 3' terminal region of Zika virus RNA contains a conserved G-quadruplex and is unfolded by human DDX17. Biochem Cell Biol 2024; 102:96-105. [PMID: 37774422 DOI: 10.1139/bcb-2023-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023] Open
Abstract
Zika virus (ZIKV) infection remains a worldwide concern, and currently no effective treatments or vaccines are available. Novel therapeutics are an avenue of interest that could probe viral RNA-human protein communication to stop viral replication. One specific RNA structure, G-quadruplexes (G4s), possess various roles in viruses and all domains of life, including transcription and translation regulation and genome stability, and serves as nucleation points for RNA liquid-liquid phase separation. Previous G4 studies on ZIKV using a quadruplex forming G-rich sequences Mapper located a potential G-quadruplex sequence in the 3' terminal region (TR) and was validated structurally using a 25-mer oligo. It is currently unknown if this structure is conserved and maintained in a large ZIKV RNA transcript and its specific roles in viral replication. Using bioinformatic analysis and biochemical assays, we demonstrate that the ZIKV 3' TR G4 is conserved across all ZIKV isolates and maintains its structure in a 3' TR full-length transcript. We further established the G4 formation using pyridostatin and the BG4 G4-recognizing antibody binding assays. Our study also demonstrates that the human DEAD-box helicases, DDX3X132-607 and DDX17135-555, bind to the 3' TR and that DDX17135-555 unfolds the G4 present in the 3' TR. These findings provide a path forward in potential therapeutic targeting of DDX3X or DDX17's binding to the 3' TR G4 region for novel treatments against ZIKV.
Collapse
Affiliation(s)
- Dannielle L Gemmill
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Corey R Nelson
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Maulik D Badmalia
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Higor S Pereira
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Liam Kerr
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Michael T Wolfinger
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Währinger Strasse 29, 1090, Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria
- RNA Forecast e.U., 1140 Vienna, Austria
| | - Trushar R Patel
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Li Ka Shing Institute of Virology and Discovery Lab, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
8
|
Jana J, Vianney YM, Weisz K. Impact of loop length and duplex extensions on the design of hybrid-type G-quadruplexes. Chem Commun (Camb) 2024; 60:854-857. [PMID: 38131370 DOI: 10.1039/d3cc05625b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A G-rich core sequence G3-TCA-G3-T1,2-G3-T1,2-G3 can be designed to fold into a parallel or into two different (3+1) hybrid-type G-quadruplexes, among them an elusive topology with one lateral followed by two propeller loops. Favored folds can be rationalized based on the number of intervening thymidines and on additional complementary flanking sequences.
Collapse
Affiliation(s)
- Jagannath Jana
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff Str. 4, Greifswald D-17489, Germany.
| | - Yoanes Maria Vianney
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff Str. 4, Greifswald D-17489, Germany.
| | - Klaus Weisz
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff Str. 4, Greifswald D-17489, Germany.
| |
Collapse
|
9
|
De Magis A, Schult P, Schönleber A, Linke R, Ludwig KU, Kümmerer BM, Paeschke K. TMPRSS2 isoform 1 downregulation by G-quadruplex stabilization induces SARS-CoV-2 replication arrest. BMC Biol 2024; 22:5. [PMID: 38185627 PMCID: PMC10773119 DOI: 10.1186/s12915-023-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND SARS-CoV-2 infection depends on the host cell factors angiotensin-converting enzyme 2, ACE2, and the transmembrane serinprotease 2, TMPRSS2. Potential inhibitors of these proteins would be ideal targets against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. Our data opens the possibility that changes within TMPRSS2 can modulate the outcome during a SARS-CoV-2 infection. RESULTS We reveal that TMPRSS2 acts not only during viral entry but has also an important role during viral replication. In addition to previous functions for TMPRSS2 during viral entry, we determined by specific downregulation of distinct isoforms that only isoform 1 controls and supports viral replication. G-quadruplex (G4) stabilization by chemical compounds impacts TMPRSS2 gene expression. Here we extend and in-depth characterize these observations and identify that a specific G4 in the first exon of the TMPRSS2 isoform 1 is particular targeted by the G4 ligand and affects viral replication. Analysis of potential single nucleotide polymorphisms (SNPs) reveals that a reported SNP at this G4 in isoform 1 destroys the G4 motif and makes TMPRSS2 ineffective towards G4 treatment. CONCLUSION These findings uncover a novel mechanism in which G4 stabilization impacts SARS-CoV-2 replication by changing TMPRSS2 isoform 1 gene expression.
Collapse
Affiliation(s)
- Alessio De Magis
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Philipp Schult
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Antonia Schönleber
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Rebecca Linke
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Beate M Kümmerer
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127, Bonn, Germany
| | - Katrin Paeschke
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
10
|
Zareie AR, Dabral P, Verma SC. G-Quadruplexes in the Regulation of Viral Gene Expressions and Their Impacts on Controlling Infection. Pathogens 2024; 13:60. [PMID: 38251367 PMCID: PMC10819198 DOI: 10.3390/pathogens13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid structures that play significant roles in regulating various biological processes, including replication, transcription, translation, and recombination. Recent studies have identified G4s in the genomes of several viruses, such as herpes viruses, hepatitis viruses, and human coronaviruses. These structures are implicated in regulating viral transcription, replication, and virion production, influencing viral infectivity and pathogenesis. G4-stabilizing ligands, like TMPyP4, PhenDC3, and BRACO19, show potential antiviral properties by targeting and stabilizing G4 structures, inhibiting essential viral life-cycle processes. This review delves into the existing literature on G4's involvement in viral regulation, emphasizing specific G4-stabilizing ligands. While progress has been made in understanding how these ligands regulate viruses, further research is needed to elucidate the mechanisms through which G4s impact viral processes. More research is necessary to develop G4-stabilizing ligands as novel antiviral agents. The increasing body of literature underscores the importance of G4s in viral biology and the development of innovative therapeutic strategies against viral infections. Despite some ligands' known regulatory effects on viruses, a deeper comprehension of the multifaceted impact of G4s on viral processes is essential. This review advocates for intensified research to unravel the intricate relationship between G4s and viral processes, paving the way for novel antiviral treatments.
Collapse
Affiliation(s)
| | | | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, NV 89557, USA; (A.R.Z.); (P.D.)
| |
Collapse
|
11
|
Lv M, Ding Y, Zhang Y, Liu S. Targeting EBV-encoded products: Implications for drug development in EBV-associated diseases. Rev Med Virol 2024; 34:e2487. [PMID: 37905912 DOI: 10.1002/rmv.2487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
Epstein-Barr virus, a human gamma-herpesvirus, has a close connection to the pathogenesis of cancers and other diseases, which are a burden for public health worldwide. So far, several drugs or biomolecules have been discovered that can target EBV-encoded products for treatment, such as Silvestrol, affinity toxin, roscovitine, H20, H31, curcumin, thymoquinone, and ribosomal protein L22. These drugs activate or inhibit the function of some biomolecules, affecting subsequent signalling pathways by acting on the products of EBV. These drugs usually target LMP1, LMP2; EBNA1, EBNA2, EBNA3; EBER1, EBER2; Bam-HI A rightward transcript and BHRF1. Additionally, some promising findings in the fields of vaccines, immunological, and cellular therapies have been established. In this review, we mainly summarise the function of drugs mentioned above and unique mechanisms, hoping that we can help giving insight to the design of drugs for the treatment of EBV-associated diseases.
Collapse
Affiliation(s)
- Mengwen Lv
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women & Children Hospital, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Zareie AR, Verma SC. Nucleolin Regulates the Expression of Kaposi's Sarcoma-Associated Herpesvirus' Latency-Associated Nuclear Antigen through G-Quadruplexes in the mRNA. Viruses 2023; 15:2438. [PMID: 38140679 PMCID: PMC10747643 DOI: 10.3390/v15122438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes life-long latent infection and is linked to several human malignancies. Latency-associated nuclear antigen (LANA) is highly expressed during latency, and is responsible for the replication and maintenance of the viral genome. The expression of LANA is regulated at transcriptional/translational levels through multiple mechanisms, including the secondary structures in the mRNA sequence. LANA mRNA has multiple G-quadruplexes (G4s) that are bound by multiple proteins to stabilize/destabilize these secondary structures for regulating LANA. In this manuscript, we demonstrate the role of Nucleolin (NCL) in regulating LANA expression through its interaction with G-quadruplexes of LANA mRNA. This interaction reduced LANA's protein expression through the sequestration of mRNA into the nucleus, demonstrated by the colocalization of G4-carrying mRNA with NCL. Furthermore, the downregulation of NCL, by way of a short hairpin, showed an increase in LANA translation following an alteration in the levels of LANA mRNA in the cytoplasm. Overall, the data presented in this manuscript showed that G-quadruplexes-mediated translational control could be regulated by NCL, which can be exploited for controlling KSHV latency.
Collapse
Affiliation(s)
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, NV 89557, USA;
| |
Collapse
|
13
|
Liu J, Nagy N, Ayala-Torres C, Aguilar-Alonso F, Morais-Esteves F, Xu S, Masucci MG. Remodeling of the ribosomal quality control and integrated stress response by viral ubiquitin deconjugases. Nat Commun 2023; 14:8315. [PMID: 38097648 PMCID: PMC10721647 DOI: 10.1038/s41467-023-43946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
The strategies adopted by viruses to reprogram the translation and protein quality control machinery and promote infection are poorly understood. Here, we report that the viral ubiquitin deconjugase (vDUB)-encoded in the large tegument protein of Epstein-Barr virus (EBV BPLF1)-regulates the ribosomal quality control (RQC) and integrated stress responses (ISR). The vDUB participates in protein complexes that include the RQC ubiquitin ligases ZNF598 and LTN1. Upon ribosomal stalling, the vDUB counteracts the ubiquitination of the 40 S particle and inhibits the degradation of translation-stalled polypeptides by the proteasome. Impairment of the RQC correlates with the readthrough of stall-inducing mRNAs and with activation of a GCN2-dependent ISR that redirects translation towards upstream open reading frames (uORFs)- and internal ribosome entry sites (IRES)-containing transcripts. Physiological levels of active BPLF1 promote the translation of the EBV Nuclear Antigen (EBNA)1 mRNA in productively infected cells and enhance the release of progeny virus, pointing to a pivotal role of the vDUB in the translation reprogramming that enables efficient virus production.
Collapse
Affiliation(s)
- Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Ayala-Torres
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Aguilar-Alonso
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco Morais-Esteves
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Shanshan Xu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Dabral P, Uppal T, Verma SC. G-quadruplexes of KSHV oriLyt play important roles in promoting lytic DNA replication. Microbiol Spectr 2023; 11:e0531622. [PMID: 37800915 PMCID: PMC10714766 DOI: 10.1128/spectrum.05316-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/15/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Biological processes originating from the DNA and RNA can be regulated by the secondary structures present in the stretch of nucleic acids, and the G-quadruplexes are shown to regulate transcription, translation, and replication. In this study, we identified the presence of multiple G-quadruplex sites in the region (oriLyt) of Kaposi's sarcoma-associated herpesvirus (KSHV) DNA, which is essential for DNA replication during the lytic cycle. We demonstrated the roles of these G-quadruplexes through multiple biochemical and biophysical assays in controlling replication and efficient virus production. We demonstrated that KSHV achieves this by recruiting RecQ1 (helicase) at those G-quadruplex sites for efficient viral DNA replication. Analysis of the replicated DNA through nucleoside labeling and immunostaining showed a reduced initiation of DNA replication in cells with a pharmacologic stabilizer of G-quadruplexes. Overall, this study confirmed the role of the G-quadruplex in regulating viral DNA replication, which can be exploited for controlling viral DNA replication.
Collapse
Affiliation(s)
- Prerna Dabral
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Vitalant Research Institute, San Francisco, California, USA
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
15
|
Pathak R. G-Quadruplexes in the Viral Genome: Unlocking Targets for Therapeutic Interventions and Antiviral Strategies. Viruses 2023; 15:2216. [PMID: 38005893 PMCID: PMC10674748 DOI: 10.3390/v15112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
G-quadruplexes (G4s) are unique non-canonical four-stranded nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. Sequences with the potential to form quadruplex motifs (pG4s) are prevalent throughout the genomes of all organisms, spanning from prokaryotes to eukaryotes, and are enriched within regions of biological significance. In the past few years, the identification of pG4s within most of the Baltimore group viruses has attracted increasing attention due to their occurrence in regulatory regions of the genome and the subsequent implications for regulating critical stages of viral life cycles. In this context, the employment of specific G4 ligands has aided in comprehending the intricate G4-mediated regulatory mechanisms in the viral life cycle, showcasing the potential of targeting viral G4s as a novel antiviral strategy. This review offers a thorough update on the literature concerning G4s in viruses, including their identification and functional significance across most of the human-infecting viruses. Furthermore, it delves into potential therapeutic avenues targeting G4s, encompassing various G4-binding ligands, G4-interacting proteins, and oligonucleotide-based strategies. Finally, the article highlights both progress and challenges in the field, providing valuable insights into leveraging this unusual nucleic acid structure for therapeutic purposes.
Collapse
Affiliation(s)
- Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
16
|
Dinh VT, Loaëc N, Quillévéré A, Le Sénéchal R, Keruzoré M, Martins RP, Granzhan A, Blondel M. The hide-and-seek game of the oncogenic Epstein-Barr virus-encoded EBNA1 protein with the immune system: An RNA G-quadruplex tale. Biochimie 2023; 214:57-68. [PMID: 37473831 DOI: 10.1016/j.biochi.2023.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The Epstein-Barr virus (EBV) is the first oncogenic virus described in human. EBV infects more than 90% of the human population worldwide, but most EBV infections are asymptomatic. After the primary infection, the virus persists lifelong in the memory B cells of the infected individuals. Under certain conditions the virus can cause several human cancers, that include lymphoproliferative disorders such as Burkitt and Hodgkin lymphomas and non-lymphoid malignancies such as 100% of nasopharyngeal carcinoma and 10% of gastric cancers. Each year, about 200,000 EBV-related cancers emerge, hence accounting for at least 1% of worldwide cancers. Like all gammaherpesviruses, EBV has evolved a strategy to escape the host immune system. This strategy is mainly based on the tight control of the expression of its Epstein-Barr nuclear antigen-1 (EBNA1) protein, the EBV-encoded genome maintenance protein. Indeed, EBNA1 is essential for viral genome replication and maintenance but, at the same time, is also highly antigenic and T cells raised against EBNA1 exist in infected individuals. For this reason, EBNA1 is considered as the Achilles heel of EBV and the virus has seemingly evolved a strategy that employs the binding of nucleolin, a host cell factor, to RNA G-quadruplex (rG4) within EBNA1 mRNA to limit its expression to the minimal level required for function while minimizing immune recognition. This review recapitulates in a historical way the knowledge accumulated on EBNA1 immune evasion and discusses how this rG4-dependent mechanism can be exploited as an intervention point to unveil EBV-related cancers to the immune system.
Collapse
Affiliation(s)
- Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | | | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| |
Collapse
|
17
|
Yan MP, Wee CE, Yen KP, Stevens A, Wai LK. G-quadruplex ligands as therapeutic agents against cancer, neurological disorders and viral infections. Future Med Chem 2023; 15:1987-2009. [PMID: 37933551 DOI: 10.4155/fmc-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
G-quadruplexes (G4s) within the human genome have undergone extensive molecular investigation, with a strong focus on telomeres, gene promoters and repetitive regulatory sequences. G4s play central roles in regulating essential biological processes, including telomere maintenance, replication, transcription and translation. Targeting these molecular processes with G4-binding ligands holds substantial therapeutic potential in anticancer treatments and has also shown promise in treating neurological, skeletal and muscular disorders. The presence of G4s in bacterial and viral genomes also suggests that G4-binding ligands could be a critical tool in fighting infections. This review provides an overview of the progress and applications of G4-binding ligands, their proposed mechanisms of action, challenges faced and prospects for their utilization in anticancer treatments, neurological disorders and antiviral activities.
Collapse
Affiliation(s)
- Mock Phooi Yan
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Chua Eng Wee
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Khor Poh Yen
- Faculty Pharmacy & Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 3, Jalan Greentown, Ipoh, Perak, 30450, Malaysia
| | - Aaron Stevens
- Department of Pathology & Molecular Medicine, University of Otago, Wellington, 6021, New Zealand
| | - Lam Kok Wai
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
18
|
Fang P, Xie C, Pan T, Cheng T, Chen W, Xia S, Ding T, Fang J, Zhou Y, Fang L, Wei D, Xiao S. Unfolding of an RNA G-quadruplex motif in the negative strand genome of porcine reproductive and respiratory syndrome virus by host and viral helicases to promote viral replication. Nucleic Acids Res 2023; 51:10752-10767. [PMID: 37739415 PMCID: PMC10602871 DOI: 10.1093/nar/gkad759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023] Open
Abstract
G-quadruplex (G4) is a unique secondary structure formed by guanine-rich nucleic acid sequences. Growing studies reported that the genomes of some viruses harbor G4 structures associated with viral replication, opening up a new field to dissect viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV), a representative member of Arteriviridae, is an economically significant pathogen that has devastated the swine industry worldwide for over 30 years. In this study, we identified a highly conserved G-rich sequence with parallel-type G4 structure (named PRRSV-G4) in the negative strand genome RNA of PRRSV. Pyridostatin (PDS), a well-known G4-binding ligand, stabilized the PRRSV-G4 structure and inhibited viral replication. By screening the proteins interacting with PRRSV-G4 in PRRSV-infected cells and single-molecule magnetic tweezers analysis, we found that two helicases, host DDX18 and viral nsp10, interact with and efficiently unwound the PRRSV-G4 structure, thereby facilitating viral replication. Using a PRRSV reverse genetics system, we confirmed that recombinant PRRSV with a G4-disruptive mutation exhibited resistance to PDS treatment, thereby displaying higher replication than wild-type PRRSV. Collectively, these results demonstrate that the PRRSV-G4 structure plays a crucial regulatory role in viral replication, and targeting this structure represents a promising strategy for antiviral therapies.
Collapse
Affiliation(s)
- Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Congbao Xie
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, and Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Ting Pan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ting Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Tong Ding
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Junkang Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, and Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dengguo Wei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, and Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
19
|
Ghosh A, Pandey S, Joshi D, Rana P, Ansari A, Sundar J, Singh P, Khan Y, Ekka M, Chakraborty D, Maiti S. Identification of G-quadruplex structures in MALAT1 lncRNA that interact with nucleolin and nucleophosmin. Nucleic Acids Res 2023; 51:9415-9431. [PMID: 37558241 PMCID: PMC11314421 DOI: 10.1093/nar/gkad639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Nuclear-retained long non-coding RNAs (lncRNAs) including MALAT1 have emerged as critical regulators of many molecular processes including transcription, alternative splicing and chromatin organization. Here, we report the presence of three conserved and thermodynamically stable RNA G-quadruplexes (rG4s) located in the 3' region of MALAT1. Using rG4 domain-specific RNA pull-down followed by mass spectrometry and RNA immunoprecipitation, we demonstrated that the MALAT1 rG4 structures are specifically bound by two nucleolar proteins, Nucleolin (NCL) and Nucleophosmin (NPM). Using imaging, we found that the MALAT1 rG4s facilitate the localization of both NCL and NPM to nuclear speckles, and specific G-to-A mutations that disrupt the rG4 structures compromised the localization of both NCL and NPM in speckles. In vitro biophysical studies established that a truncated version of NCL (ΔNCL) binds tightly to all three rG4s. Overall, our study revealed new rG4s within MALAT1, established that they are specifically recognized by NCL and NPM, and showed that disrupting the rG4s abolished localization of these proteins to nuclear speckles.
Collapse
Affiliation(s)
- Arpita Ghosh
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Satya Prakash Pandey
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Dheeraj Chandra Joshi
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Priya Rana
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Asgar Hussain Ansari
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | | | - Praveen Singh
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Yasmeen Khan
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Mary Krishna Ekka
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura
Road, Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR),
Ghaziabad 201 002, India
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune
411 008, India
| |
Collapse
|
20
|
Wang J, Huang H, Zhao K, Teng Y, Zhao L, Xu Z, Zheng Y, Zhang L, Li C, Duan Y, Liang K, Zhou X, Cheng X, Xia Y. G-quadruplex in hepatitis B virus pregenomic RNA promotes its translation. J Biol Chem 2023; 299:105151. [PMID: 37567479 PMCID: PMC10485161 DOI: 10.1016/j.jbc.2023.105151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic DNA virus that has a very compact genome. Due to this genomic density, several distinct mechanisms are used to facilitate the viral life cycle. Recently, accumulating evidence show that G-quadruplex (G4) in different viruses play essential regulatory roles in key steps of the viral life cycle. Although G4 structures in the HBV genome have been reported, their function in HBV replication remains elusive. In this study, we treated an HBV replication-competent cell line and HBV-infected cells with the G4 structure stabilizer pyridostatin (PDS) and evaluated different HBV replication markers to better understand the role played by the G4. In both models, we found PDS had no effect on viral precore RNA (pcRNA) or pre-genomic RNA (pgRNA), but treatment did increase HBeAg/HBc ELISA reads and intracellular levels of viral core/capsid protein (HBc) in a dose-dependent manner, suggesting post-transcriptional regulation. To further dissect the mechanism of G4 involvement, we used in vitro-synthesized HBV pcRNA and pgRNA. Interestingly, we found PDS treatment only enhanced HBc expression from pgRNA but not HBeAg expression from pcRNA. Our bioinformatic analysis and CD spectroscopy revealed that pgRNA harbors a conserved G4 structure. Finally, we introduced point mutations in pgRNA to disrupt its G4 structure and observed the resulting mutant failed to respond to PDS treatment and decreased HBc level in in vitro translation assay. Taken together, our data demonstrate that HBV pgRNA contains a G4 structure that plays a vital role in the regulation of viral mRNA translation.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Haiyan Huang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yan Teng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Li Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yingcheng Zheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Lu Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Conghui Li
- Department of Pathophysiology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yurong Duan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Kaiwei Liang
- Department of Pathophysiology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Department of Pathology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China.
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China.
| |
Collapse
|
21
|
Dheekollu J, Wiedmer A, Soldan SS, Castro- Muñoz LJ, Chen C, Tang HY, Speicher DW, Lieberman PM. Regulation of EBNA1 protein stability and DNA replication activity by PLOD1 lysine hydroxylase. PLoS Pathog 2023; 19:e1010478. [PMID: 37262099 PMCID: PMC10263308 DOI: 10.1371/journal.ppat.1010478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/13/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that is causally associated with various malignancies and autoimmune disease. Epstein-Barr Nuclear Antigen 1 (EBNA1) is the viral-encoded DNA binding protein required for viral episome maintenance and DNA replication during latent infection in proliferating cells. EBNA1 is known to be a highly stable protein, but the mechanisms regulating protein stability and how this may be linked to EBNA1 function is not fully understood. Proteomic analysis of EBNA1 revealed interaction with Procollagen Lysine-2 Oxoglutarate 5 Dioxygenase (PLOD) family of proteins. Depletion of PLOD1 by shRNA or inhibition with small molecule inhibitors 2,-2' dipyridyl resulted in the loss of EBNA1 protein levels, along with a selective growth inhibition of EBV-positive lymphoid cells. PLOD1 depletion also caused a loss of EBV episomes from latently infected cells and inhibited oriP-dependent DNA replication. Mass spectrometry identified EBNA1 peptides with lysine hydroxylation at K460 or K461. Mutation of K460, but not K461 abrogates EBNA1-driven DNA replication of oriP, but did not significantly affect EBNA1 DNA binding. Mutations in both K460 and K461 perturbed interactions with PLOD1, as well as decreased EBNA1 protein stability. These findings suggest that PLOD1 is a novel interaction partner of EBNA1 that regulates EBNA1 protein stability and function in viral plasmid replication, episome maintenance and host cell survival.
Collapse
Affiliation(s)
- Jayaraju Dheekollu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Andreas Wiedmer
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Samantha S. Soldan
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Christopher Chen
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Hsin-Yao Tang
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David W. Speicher
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
22
|
Gao C, Deng J, Anwar N, Umer M, Chen J, Wu Q, Dong X, Xu H, He Y, Wang Z. Molecular crowding promotes the aggregation of parallel structured G-quadruplexes. Int J Biol Macromol 2023; 240:124442. [PMID: 37062387 DOI: 10.1016/j.ijbiomac.2023.124442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
G-quadruplexes are widely distributed in cells and are usually essential in mediating biological processes. The intracellular environment is often in a state of molecular crowding, and the current research considerably focuses on the effect of molecular crowding on the conformation of telomeric G-quadruplexes. However, G-quadruplex-forming oligonucleotides are primarily located in the promoter region of the proto-oncogene and on mRNA inside the cell and are reported to fold into parallel structures. Thus, studying the interaction mechanism between ligands and parallel structured G-quadruplexes under crowding conditions is crucial for the design of drugs targeting G-quadruplexes. In our study, molecular crowding was simulated through polyethylene glycol with an average molecular weight of 200 (PEG200) to investigate the parallel structure of the canonical G-quadruplexes c-KIT1, c-MYC, and 32KRAS and their interactions with ligands. Circular dichroism (CD) spectral scanning, fluorescence resonance energy transfer (FRET), and native polyacrylamide gel electrophoresis (PAGE) analysis revealed that molecular crowding failed to induce oligonucleotides to form parallel G-quadruplex structures in the explored model sequences while induced telomeric G-rich sequences to form antiparallel G-quadruplexes in solution without K+. Molecular crowding did not induce changes in their parallel structures but promoted the formation of G-quadruplex aggregates. Moreover, to some extent, molecular crowding also induced a looser structure of the monomer G-quadruplexes. Further studies showed that molecular crowding did not alter the binding stoichiometry of the ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino [4,3,2-kl] acridinium methosulfate (RHPS4) to c-KIT1, while it inhibited its interaction with parallel structured G-quadruplexes. This work provides new insights into developing anticancer drugs targeting parallel structured G-quadruplexes.
Collapse
Affiliation(s)
- Chao Gao
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jieya Deng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Naureen Anwar
- Department of Zoology, University of Narowal, Narowal, Punjab 51600, Pakistan
| | - Muhammad Umer
- Institute for Forest Resources and Environment of Guizhou and Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Jixin Chen
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Wu
- Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 40074, China
| | - Xingxing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Xu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhangqian Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
23
|
Pávová M, Reyes-Gutiérrez PE, Kozák J, Dobiaš J, Yurenko Y, Lepšík M, Teplý F, Weber J. Helquat dyes targeting G-quadruplexes as a new class of anti-HIV-1 inhibitors. Sci Rep 2023; 13:6096. [PMID: 37055553 PMCID: PMC10102027 DOI: 10.1038/s41598-023-33263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
The secondary structure of nucleic acids containing quartets of guanines, termed G-quadruplexes, is known to regulate the transcription of many genes. Several G-quadruplexes can be formed in the HIV-1 long terminal repeat promoter region and their stabilization results in the inhibition of HIV-1 replication. Here, we identified helquat-based compounds as a new class of anti-HIV-1 inhibitors that inhibit HIV-1 replication at the stage of reverse transcription and provirus expression. Using Taq polymerase stop and FRET melting assays, we have demonstrated their ability to stabilize G-quadruplexes in the HIV-1 long-terminal repeat sequence. Moreover, these compounds were not binding to the general G-rich region, but rather to G-quadruplex-forming regions. Finally, docking and molecular dynamics calculations indicate that the structure of the helquat core greatly affects the binding mode to the individual G-quadruplexes. Our findings can provide useful information for the further rational design of inhibitors targeting G-quadruplexes in HIV-1.
Collapse
Affiliation(s)
- Marcela Pávová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Paul Eduardo Reyes-Gutiérrez
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Jaroslav Kozák
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Juraj Dobiaš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Yevgen Yurenko
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Filip Teplý
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic.
| |
Collapse
|
24
|
Smith C, Khanna R. Adoptive T-cell therapy targeting Epstein-Barr virus as a treatment for multiple sclerosis. Clin Transl Immunology 2023; 12:e1444. [PMID: 36960148 PMCID: PMC10028422 DOI: 10.1002/cti2.1444] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Emergence of a definitive link between Epstein-Barr virus (EBV) and multiple sclerosis has provided an impetus to develop immune-based therapies to target EBV-infected B cells. Initial studies with autologous EBV-specific T-cell therapy demonstrated that this therapy is safe with minimal side effects and more importantly multiple patients showed both symptomatic and objective neurological improvements including improved quality of life, reduction of fatigue and reduced intrathecal IgG production. These observations have been successfully extended to an 'off-the-shelf' allogeneic EBV-specific T-cell therapy manufactured using peripheral blood lymphocytes of healthy seropositive individuals. This adoptive immunotherapy has also been shown to be safe with encouraging clinical responses. Allogeneic EBV T-cell therapy overcomes some of the limitations of autologous therapy and can be rapidly delivered to patients with improved therapeutic potential.
Collapse
Affiliation(s)
- Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| |
Collapse
|
25
|
Roy SS, Sharma S, Rizvi ZA, Sinha D, Gupta D, Rophina M, Sehgal P, Sadhu S, Tripathy MR, Samal S, Maiti S, Scaria V, Sivasubbu S, Awasthi A, Harshan KH, Jain S, Chowdhury S. G4-binding drugs, chlorpromazine and prochlorperazine, repurposed against COVID-19 infection in hamsters. Front Mol Biosci 2023; 10:1133123. [PMID: 37006620 PMCID: PMC10061221 DOI: 10.3389/fmolb.2023.1133123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has caused millions of infections and deaths worldwide. Limited treatment options and the threat from emerging variants underline the need for novel and widely accessible therapeutics. G-quadruplexes (G4s) are nucleic acid secondary structures known to affect many cellular processes including viral replication and transcription. We identified heretofore not reported G4s with remarkably low mutation frequency across >5 million SARS-CoV-2 genomes. The G4 structure was targeted using FDA-approved drugs that can bind G4s - Chlorpromazine (CPZ) and Prochlorperazine (PCZ). We found significant inhibition in lung pathology and lung viral load of SARS-CoV-2 challenged hamsters when treated with CPZ or PCZ that was comparable to the widely used antiviral drug Remdesivir. In support, in vitro G4 binding, inhibition of reverse transcription from RNA isolated from COVID-infected humans, and attenuated viral replication and infectivity in Vero cell cultures were clear in case of both CPZ and PCZ. Apart from the wide accessibility of CPZ/PCZ, targeting relatively invariant nucleic acid structures poses an attractive strategy against viruses like SARS-CoV-2, which spread fast and accumulate mutations quickly.
Collapse
Affiliation(s)
- Shuvra Shekhar Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalu Sharma
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Zaigham Abbas Rizvi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Dipanjali Sinha
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divya Gupta
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Mercy Rophina
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Paras Sehgal
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srikanth Sadhu
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Manas Ranjan Tripathy
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Sweety Samal
- Translational Health Science and Technology Institute, Faridabad, 411008, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-National Chemical Laboratory, Pune, 121001, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Awasthi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Krishnan H. Harshan
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Shantanu Chowdhury
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- *Correspondence: Shantanu Chowdhury,
| |
Collapse
|
26
|
Chung WC, Ravichandran S, Park D, Lee GM, Kim YE, Choi Y, Song MJ, Kim KK, Ahn JH. G-quadruplexes formed by Varicella-Zoster virus reiteration sequences suppress expression of glycoprotein C and regulate viral cell-to-cell spread. PLoS Pathog 2023; 19:e1011095. [PMID: 36630443 PMCID: PMC9873165 DOI: 10.1371/journal.ppat.1011095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/24/2023] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
G-quadruplex (G4) formed by repetitive guanosine-rich sequences plays important roles in diverse cellular processes; however, its roles in viral infection are not fully understood. In this study, we investigated the genome-wide distribution of G4-forming sequences (G4 motifs) in Varicella-Zoster virus (VZV) and found that G4 motifs are enriched in the internal repeat short and the terminal repeat short regions flanking the unique short region and also in some reiteration (R) sequence regions. A high density of G4 motifs in the R2 region was found on the template strand of ORF14, which encodes glycoprotein C (gC), a virulent factor for viral growth in skin. Analyses such as circular dichroism spectroscopy, thermal difference spectra, and native polyacrylamide gel electrophoresis with oligodeoxynucleotides demonstrated that several G4 motifs in ORF14 form stable G4 structures. In transfection assays, gC expression from the G4-disrupted ORF14 gene was increased at the transcriptional level and became more resistant to suppression by G4-ligand treatment. The recombinant virus containing the G4-disrupted ORF14 gene expressed a higher level of gC mRNA, while it showed a slightly reduced growth. This G4-disrupted ORF14 virus produced smaller plaques than the wild-type virus. Our results demonstrate that G4 formation via reiteration sequences suppresses gC expression during VZV infection and regulates viral cell-to-cell spread.
Collapse
Affiliation(s)
- Woo-Chang Chung
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Subramaniyam Ravichandran
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Daegyu Park
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Gwang Myeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Young-Eui Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Youngju Choi
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Moon Jung Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
27
|
Ruggiero E, Richter SN. Targeting G-quadruplexes to achieve antiviral activity. Bioorg Med Chem Lett 2023; 79:129085. [PMID: 36423824 PMCID: PMC9760570 DOI: 10.1016/j.bmcl.2022.129085] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
With the emergence of new viruses in the human population and the fast mutation rates of existing viruses, new antiviral targets and compounds are needed. Most existing antiviral drugs are active against proteins of a handful of viruses. Most of these proteins in the end affect viral nucleic acid processing, but direct nucleic acid targeting is less represented due to the difficulty of selectively acting at the nucleic acid of interest. Recently, nucleic acids have been shown to fold in structures alternative to the classic double helix and Watson and Crick base-pairing. Among these non-canonical structures, G-quadruplexes (G4s) have attracted interest because of their key biological roles that are being discovered. Molecules able to selectively target G4s have been developed and since G4s have been investigated as targets in several human pathologies, including viral infections. Here, after briefly introducing viruses, G4s and the G4-binding molecules with antiviral properties, we comment on the mechanisms at the base of the antiviral activity reported for G4-binding molecules. Understanding how G4-ligands act in infected cells will possibly help designing and developing next-generation antiviral drugs.
Collapse
Affiliation(s)
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Italy; Microbiology and Virology Unit, Padua University Hospital, Padua, Italy.
| |
Collapse
|
28
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
29
|
Qin G, Zhao C, Yang J, Wang Z, Ren J, Qu X. Unlocking G-Quadruplexes as Targets and Tools against COVID-19. CHINESE J CHEM 2022; 41:CJOC202200486. [PMID: 36711116 PMCID: PMC9874442 DOI: 10.1002/cjoc.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 02/01/2023]
Abstract
The applicability of G-quadruplexes (G4s) as antiviral targets, therapeutic agents and diagnostic tools for coronavirus disease 2019 (COVID-19) is currently being evaluated, which has drawn the extensive attention of the scientific community. During the COVID-19 pandemic, research in this field is rapidly accumulating. In this review, we summarize the latest achievements and breakthroughs in the use of G4s as antiviral targets, therapeutic agents and diagnostic tools for COVID-19, particularly using G4 ligands. Finally, strength and weakness regarding G4s in anti-SARS-CoV-2 field are highlighted for prospective future projects.
Collapse
Affiliation(s)
- Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
30
|
Teng Y, Zhu M, Chi Y, Li L, Jin Y. Can G-quadruplex become a promising target in HBV therapy? Front Immunol 2022; 13:1091873. [PMID: 36591216 PMCID: PMC9797731 DOI: 10.3389/fimmu.2022.1091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The chronic infection with hepatitis B virus (HBV) is an important health problem that affects millions of people worldwide. Current therapies for HBV always suffer from a poor response rate, common side effects, and the need for lifelong treatment. Novel therapeutic targets are expected. Interestingly, non-canonical structures of nucleic acids play crucial roles in the regulation of gene expression. Especially the formation of G-quadruplexes (G4s) in G-rich strands has been demonstrated to affect many bioprocesses including replication, transcription, and translation, showing great potential as targets in anticancer and antiviral therapies. In this review, we summarize recent antiviral studies about G4s and discuss the potential roles of G4 structures in antiviral therapy for HBV.
Collapse
Affiliation(s)
- Ye Teng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ming Zhu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuan Chi
- Pharmaceutical Department, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Lijing Li
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Lijing Li, ; Ye Jin,
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Lijing Li, ; Ye Jin,
| |
Collapse
|
31
|
Kabbara A, Vialet B, Marquevielle J, Bonnafous P, Mackereth CD, Amrane S. RNA G-quadruplex forming regions from SARS-2, SARS-1 and MERS coronoviruses. Front Chem 2022; 10:1014663. [PMID: 36479439 PMCID: PMC9719988 DOI: 10.3389/fchem.2022.1014663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/14/2023] Open
Abstract
COVID-19 (Corona Virus Disease 2019), SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) are infectious diseases each caused by coronavirus outbreaks. Small molecules and other therapeutics are rapidly being developed to treat these diseases, but the threat of new variants and outbreaks argue for the identification of additional viral targets. Here we identify regions in each of the three coronavirus genomes that are able to form G-quadruplex (G4) structures. G4s are structures formed by DNA or RNA with a core of two or more stacked planes of guanosine tetrads. In recent years, numerous DNA and RNA G4s have emerged as promising pharmacological targets for the treatment of cancer and viral infection. We use a combination of bioinformatics and biophysical approaches to identify conserved RNA G4 regions from the ORF1A and S sequences of SARS-CoV, SARS-CoV-2 and MERS-CoV. Although a general depletion of G4-forming regions is observed in coronaviridae, the preservation of these selected G4 sequences support a significance in viral replication. Targeting these RNA structures may represent a new antiviral strategy against these viruses distinct from current approaches that target viral proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Samir Amrane
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, Bordeaux, France
| |
Collapse
|
32
|
Bazzicalupi C, Bonardi A, Biver T, Ferraroni M, Papi F, Savastano M, Lombardi P, Gratteri P. Probing the Efficiency of 13-Pyridylalkyl Berberine Derivatives to Human Telomeric G-Quadruplexes Binding: Spectroscopic, Solid State and In Silico Analysis. Int J Mol Sci 2022; 23:ijms232214061. [PMID: 36430540 PMCID: PMC9693123 DOI: 10.3390/ijms232214061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction between the series of berberine derivatives 1-5 (NAX071, NAX120, NAX075, NAX077 and NAX079) and human telomeric G-quadruplexes (G4), which are able to inhibit the Telomerase enzyme's activity in malignant cells, was investigated. The derivatives bear a pyridine moiety connected by a hydrocarbon linker of varying length (n = 1-5, with n number of aliphatic carbon atoms) to the C13 position of the parent berberine. As for the G4s, both bimolecular 5'-TAGGGTTAGGGT-3' (Tel12) and monomolecular 5'-TAGGGTTAGGGTTAGGGTTAGGG-3' (Tel23) DNA oligonucleotides were considered. Spectrophotometric titrations, melting tests, X-ray diffraction solid state analysis and in silico molecular dynamics (MD) simulations were used to describe the different systems. The results were compared in search of structure-activity relationships. The analysis pointed out the formation of 1:1 complexes between Tel12 and all ligands, whereas both 1:1 and 2:1 ligand/G4 stoichiometries were found for the adduct formed by NAX071 (n = 1). Tel12, with tetrads free from the hindrance by the loop, showed a higher affinity. The details of the different binding geometries were discussed, highlighting the importance of H-bonds given by the berberine benzodioxole group and a correlation between the strength of binding and the hydrocarbon linker length. Theoretical (MD) and experimental (X-ray) structural studies evidence the possibility for the berberine core to interact with one or both G4 strands, depending on the constraints given by the linker length, thus affecting the G4 stabilization effect.
Collapse
Affiliation(s)
- Carla Bazzicalupi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
- Correspondence: (C.B.); (P.G.)
| | - Alessandro Bonardi
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA—Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Marta Ferraroni
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Francesco Papi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA—Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
| | - Matteo Savastano
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Paolo Lombardi
- Naxospharma srl, Via G. Di Vittorio 70, Novate Milanese, 20026 Milano, Italy
| | - Paola Gratteri
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA—Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
- Correspondence: (C.B.); (P.G.)
| |
Collapse
|
33
|
Angrand G, Quillévéré A, Loaëc N, Dinh VT, Le Sénéchal R, Chennoufi R, Duchambon P, Keruzoré M, Martins R, Teulade-Fichou MP, Fåhraeus R, Blondel M. Type I arginine methyltransferases are intervention points to unveil the oncogenic Epstein-Barr virus to the immune system. Nucleic Acids Res 2022; 50:11799-11819. [PMID: 36350639 PMCID: PMC9723642 DOI: 10.1093/nar/gkac915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome maintenance but is also highly antigenic. Hence, EBV seemingly evolved a system in which the glycine-alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA to the minimal level to ensure its essential function, thereby, at the same time, minimizing immune recognition. Therefore, defining intervention points at which to interfere with GAr-based inhibition of translation is an important step to trigger an immune response against EBV-carrying cancers. The host protein nucleolin (NCL) plays a critical role in this process via a direct interaction with G-quadruplexes (G4) formed in the GAr-encoding sequence of the viral EBNA1 mRNA. Here we show that the C-terminal arginine-glycine-rich (RGG) motif of NCL is crucial for its role in GAr-based inhibition of translation by mediating interaction of NCL with G4 of EBNA1 mRNA. We also show that this interaction depends on the type I arginine methyltransferase family, notably PRMT1 and PRMT3: drugs or small interfering RNA that target these enzymes prevent efficient binding of NCL on G4 of EBNA1 mRNA and relieve GAr-based inhibition of translation and of antigen presentation. Hence, this work defines type I arginine methyltransferases as therapeutic targets to interfere with EBNA1 and EBV immune evasion.
Collapse
Affiliation(s)
| | | | | | - Van-Trang Dinh
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Ronan Le Sénéchal
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Rahima Chennoufi
- Chemistry and Modelling for the Biology of Cancer, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Saclay, Orsay, Campus universitaire, Bat. 110, F-91405, France
| | - Patricia Duchambon
- Chemistry and Modelling for the Biology of Cancer, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Saclay, Orsay, Campus universitaire, Bat. 110, F-91405, France
| | - Marc Keruzoré
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | | | - Marie-Paule Teulade-Fichou
- Chemistry and Modelling for the Biology of Cancer, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Saclay, Orsay, Campus universitaire, Bat. 110, F-91405, France
| | - Robin Fåhraeus
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 27 rue Juliette Dodu, F-75010 Paris, France,RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Marc Blondel
- To whom correspondence should be addressed. Tel: +33 2 98 01 83 88;
| |
Collapse
|
34
|
Zheng AJL, Thermou A, Daskalogianni C, Malbert-Colas L, Karakostis K, Le Sénéchal R, Trang Dinh V, Tovar Fernandez MC, Apcher S, Chen S, Blondel M, Fahraeus R. The nascent polypeptide-associated complex (NAC) controls translation initiation in cis by recruiting nucleolin to the encoding mRNA. Nucleic Acids Res 2022; 50:10110-10122. [PMID: 36107769 PMCID: PMC9508830 DOI: 10.1093/nar/gkac751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/10/2022] [Indexed: 11/20/2022] Open
Abstract
Protein aggregates and abnormal proteins are toxic and associated with neurodegenerative diseases. There are several mechanisms to help cells get rid of aggregates but little is known on how cells prevent aggregate-prone proteins from being synthesised. The EBNA1 of the Epstein-Barr virus (EBV) evades the immune system by suppressing its own mRNA translation initiation in order to minimize the production of antigenic peptides for the major histocompatibility (MHC) class I pathway. Here we show that the emerging peptide of the disordered glycine–alanine repeat (GAr) within EBNA1 dislodges the nascent polypeptide-associated complex (NAC) from the ribosome. This results in the recruitment of nucleolin to the GAr-encoding mRNA and suppression of mRNA translation initiation in cis. Suppressing NAC alpha (NACA) expression prevents nucleolin from binding to the GAr mRNA and overcomes GAr-mediated translation inhibition. Taken together, these observations suggest that EBNA1 exploits a nascent protein quality control pathway to regulate its own rate of synthesis that is based on sensing the nascent GAr peptide by NAC followed by the recruitment of nucleolin to the GAr-encoding RNA sequence.
Collapse
Affiliation(s)
- Alice J L Zheng
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Aikaterini Thermou
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Chrysoula Daskalogianni
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Laurence Malbert-Colas
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Konstantinos Karakostis
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Ronan Le Sénéchal
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Van Trang Dinh
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Maria C Tovar Fernandez
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Sébastien Apcher
- Institut Gustave Roussy, Université Paris Sud, Unité 1015 département d’immunologie , 114, rue Edouard Vaillant , 94805 Villejuif , France
| | - Sa Chen
- Department of Medical Biosciences, Building 6M, Umeå University , 901 85 Umeå , Sweden
| | - Marc Blondel
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Robin Fahraeus
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- Department of Medical Biosciences, Building 6M, Umeå University , 901 85 Umeå , Sweden
- RECAMO, Masaryk Memorial Cancer Institute , Zluty kopec 7 , 65653 Brno , Czech Republic
| |
Collapse
|
35
|
Cryo-EM Structure and Functional Studies of EBNA1 Binding to the Family of Repeats and Dyad Symmetry Elements of Epstein-Barr Virus oriP. J Virol 2022; 96:e0094922. [PMID: 36037477 PMCID: PMC9472633 DOI: 10.1128/jvi.00949-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr nuclear antigen 1 (EBNA1) is a multifunctional viral-encoded DNA-binding protein essential for Epstein-Barr virus (EBV) DNA replication and episome maintenance. EBNA1 binds to two functionally distinct elements at the viral origin of plasmid replication (oriP), termed the dyad symmetry (DS) element, required for replication initiation and the family of repeats (FR) required for episome maintenance. Here, we determined the cryo-electron microscopy (cryo-EM) structure of the EBNA1 DNA binding domain (DBD) from amino acids (aa) 459 to 614 and its interaction with two tandem sites at the DS and FR. We found that EBNA1 induces a strong DNA bending angle in the DS, while the FR is more linear. The N-terminal arm of the DBD (aa 444 to 468) makes extensive contact with DNA as it wraps around the minor groove, with some conformational variation among EBNA1 monomers. Mutation of variable-contact residues K460 and K461 had only minor effects on DNA binding but had abrogated oriP-dependent DNA replication. We also observed that the AT-rich intervening DNA between EBNA1 binding sites in the FR can be occupied by the EBNA1 AT hook, N-terminal domain (NTD) aa 1 to 90 to form a Zn-dependent stable complex with EBNA1 DBD on a 2×FR DNA template. We propose a model showing EBNA1 DBD and NTD cobinding at the FR and suggest that this may contribute to the oligomerization of viral episomes important for maintenance during latent infection. IMPORTANCE EBV latent infection is causally linked to diverse cancers and autoimmune disorders. EBNA1 is the viral-encoded DNA binding protein required for episomal maintenance during latent infection and is consistently expressed in all EBV tumors. The interaction of EBNA1 with different genetic elements confers different viral functions, such as replication initiation at DS and chromosome tethering at FR. Here, we used cryo-EM to determine the structure of the EBNA1 DNA-binding domain (DBD) bound to two tandem sites at the DS and at the FR. We also show that the NTD of EBNA1 can interact with the AT-rich DNA sequence between tandem EBNA1 DBD binding sites in the FR. These results provide new information on the mechanism of EBNA1 DNA binding at DS and FR and suggest a higher-order oligomeric structure of EBNA1 bound to FR. Our findings have implications for targeting EBNA1 in EBV-associated disease.
Collapse
|
36
|
Belachew B, Gao J, Byrd AK, Raney KD. Hepatitis C virus non-structural protein NS3 unfolds viral G-quadruplex RNA structures. J Biol Chem 2022; 298:102486. [PMID: 36108740 PMCID: PMC9582721 DOI: 10.1016/j.jbc.2022.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/17/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver-related diseases and hepatocellular carcinoma. The helicase domain of one of the nonstructural proteins of HCV, NS3 (nonstructural protein 3), is essential for viral replication; however, its specific biological role is still under investigation. Here, we set out to determine the interaction between a purified recombinant full length NS3 and synthetic guanine-rich substrates that represent the conserved G-quadruplex (G4)-forming sequences in the HCV-positive and HCV-negative strands. We performed fluorescence anisotropy binding, G4 reporter duplex unwinding, and G4RNA trapping assays to determine the binding and G4 unfolding activity of NS3. Our data suggest that NS3 can unfold the conserved G4 structures present within the genome and the negative strand of HCV. Additionally, we found the activity of NS3 on a G4RNA was reduced significantly in the presence of a G4 ligand. The ability of NS3 to unfold HCV G4RNA could imply a novel biological role of the viral helicase in replication.
Collapse
Affiliation(s)
- Binyam Belachew
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
37
|
Qin G, Zhao C, Liu Y, Zhang C, Yang G, Yang J, Wang Z, Wang C, Tu C, Guo Z, Ren J, Qu X. RNA G-quadruplex formed in SARS-CoV-2 used for COVID-19 treatment in animal models. Cell Discov 2022; 8:86. [PMID: 36068208 PMCID: PMC9447362 DOI: 10.1038/s41421-022-00450-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
The ongoing COVID-19 pandemic has continued to affect millions of lives worldwide, leading to the urgent need for novel therapeutic strategies. G-quadruplexes (G4s) have been demonstrated to regulate life cycle of multiple viruses. Here, we identify several highly conservative and stable G4s in SARS-CoV-2 and clarify their dual-function of inhibition of the viral replication and translation processes. Furthermore, the cationic porphyrin compound 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4) targeting SARS-CoV-2 G4s shows excellent antiviral activity, while its N-methyl-2-pyridyl positional isomer TMPyP2 with low affinity for G4 has no effects on SARS-CoV-2 infection, suggesting that the antiviral activity of TMPyP4 attributes to targeting SARS-CoV-2 G4s. In the Syrian hamster and transgenic mouse models of SARS-CoV-2 infection, administration of TMPyP4 at nontoxic doses significantly suppresses SARS-CoV-2 infection, resulting in reduced viral loads and lung lesions. Worth to note, the anti-COVID-19 activity of TMPyP4 is more potent than remdesivir evidenced by both in vitro and in vivo studies. Our findings highlight SARS-CoV-2 G4s as a novel druggable target and the compelling potential of TMPyP4 for COVID-19 therapy. Different from the existing anti-SARS-CoV-2 therapeutic strategies, our work provides another alternative therapeutic tactic for SARS-CoV-2 infection focusing on targeting the secondary structures within SARS-CoV-2 genome, and would open a new avenue for design and synthesis of drug candidates with high selectivity toward the new targets.
Collapse
Affiliation(s)
- Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.,Hebei Agricultural University, College of Veterinary Medicine, 2596 Lucky South Street, Baoding, Hebei, China
| | - Guang Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China. .,University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
38
|
Zhai LY, Liu JF, Zhao JJ, Su AM, Xi XG, Hou XM. Targeting the RNA G-Quadruplex and Protein Interactome for Antiviral Therapy. J Med Chem 2022; 65:10161-10182. [PMID: 35862260 DOI: 10.1021/acs.jmedchem.2c00649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, G-quadruplexes (G4s), types of noncanonical four-stranded nucleic acid structures, have been identified in many viruses that threaten human health, such as HIV and Epstein-Barr virus. In this context, G4 ligands were designed to target the G4 structures, among which some have shown promising antiviral effects. In this Perspective, we first summarize the diversified roles of RNA G4s in different viruses. Next, we introduce small-molecule ligands developed as G4 modulators and highlight their applications in antiviral studies. In addition to G4s, we comprehensively review the medical intervention of G4-interacting proteins from both the virus (N protein, viral-encoded helicases, severe acute respiratory syndrome-unique domain, and Epstein-Barr nuclear antigen 1) and the host (heterogeneous nuclear ribonucleoproteins, RNA helicases, zinc-finger cellular nucelic acid-binding protein, and nucleolin) by inhibitors as an alternative way to disturb the normal functions of G4s. Finally, we discuss the challenges and opportunities in G4-based antiviral therapy.
Collapse
Affiliation(s)
- Li-Yan Zhai
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Jing-Fan Liu
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Jian-Jin Zhao
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Ai-Min Su
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China.,Laboratory of Biology and Applied Pharmacology, CNRS UMR 8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| |
Collapse
|
39
|
Katsuda Y, Sato SI, Inoue M, Tsugawa H, Kamura T, Kida T, Matsumoto R, Asamitsu S, Shioda N, Shiroto S, Oosawatsu Y, Yatsuzuka K, Kitamura Y, Hagihara M, Ihara T, Uesugi M. Small molecule-based detection of non-canonical RNA G-quadruplex structures that modulate protein translation. Nucleic Acids Res 2022; 50:8143-8153. [PMID: 35801908 PMCID: PMC9371906 DOI: 10.1093/nar/gkac580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Tandem repeats of guanine-rich sequences in RNA often form thermodynamically stable four-stranded RNA structures. Such RNA G-quadruplexes have long been considered to be linked to essential biological processes, yet their physiological significance in cells remains unclear. Here, we report a approach that permits the detection of RNA G-quadruplex structures that modulate protein translation in mammalian cells. The approach combines antibody arrays and RGB-1, a small molecule that selectively stabilizes RNA G-quadruplex structures. Analysis of the protein and mRNA products of 84 cancer-related human genes identified Nectin-4 and CapG as G-quadruplex-controlled genes whose mRNAs harbor non-canonical G-quadruplex structures on their 5′UTR region. Further investigations revealed that the RNA G-quadruplex of CapG exhibits a structural polymorphism, suggesting a possible mechanism that ensures the translation repression in a KCl concentration range of 25–100 mM. The approach described in the present study sets the stage for further discoveries of RNA G-quadruplexes.
Collapse
Affiliation(s)
- Yousuke Katsuda
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shin-Ichi Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Maimi Inoue
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hisashi Tsugawa
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Takuto Kamura
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tomoki Kida
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Rio Matsumoto
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Sefan Asamitsu
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shuhei Shiroto
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Yoshiki Oosawatsu
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Kenji Yatsuzuka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusuke Kitamura
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaki Hagihara
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Toshihiro Ihara
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.,School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
40
|
Perets EA, Olesen KB, Yan ECY. Chiral Sum Frequency Generation Spectroscopy Detects Double-Helix DNA at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5765-5778. [PMID: 35482888 DOI: 10.1021/acs.langmuir.2c00365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many DNA-based technologies involve the immobilization of DNA and therefore require a fundamental understanding of the DNA structure-function relationship at interfaces. We present three immobilization methods compatible with chiral sum frequency generation (SFG) spectroscopy at interfaces. They are the "anchor" method for covalently attaching DNA on a glass surface, the "island" method for dropcasting DNA on solid substrates, and the "buoy" method using a hydrocarbon moiety for localizing DNA at the air-water interface. Although SFG was previously used to probe DNA, the chiral and achiral SFG responses of single-stranded and double-stranded DNA have not been compared systemically. Using the three immobilization methods, we obtain the achiral and chiral C-H stretching spectra. The results introduce four potential applications of chiral SFG. First, chiral SFG gives null response from single-stranded DNA but prominent signals from double-stranded DNA, providing a simple binary readout for label-free detection of DNA hybridization. Second, with heterodyne detection, chiral SFG gives an opposite-signed spectral response useful for distinguishing native (D-) right-handed double helix from non-native (L-) left-handed double helix. Third, chiral SFG captures the aromatic C-H stretching modes of nucleobases that emerge upon hybridization, revealing the power of chiral SFG to probe highly localized molecular structures within DNA. Finally, chiral SFG is sensitive to macroscopic chirality but not local chiral centers and thus can detect not only canonical antiparallel double helix but also other DNA secondary structures, such as a poly-adenine parallel double helix. Our work benchmarks the SFG responses of DNA immobilized by the three distinct methods, building a basis for new chiral SFG applications to solve fundamental and biotechnological problems.
Collapse
Affiliation(s)
- Ethan A Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kristian B Olesen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
41
|
Characterization of an immune-evading doxycycline-inducible lentiviral vector for gene therapy in the spinal cord. Exp Neurol 2022; 355:114120. [DOI: 10.1016/j.expneurol.2022.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
|
42
|
Holoubek J, Bednářová K, Haviernik J, Huvarová I, Dvořáková Z, Černý J, Outlá M, Salát J, Konkol'ová E, Boura E, Růžek D, Vorlíčková M, Eyer L, Renčiuk D. Guanine quadruplexes in the RNA genome of the tick-borne encephalitis virus: their role as a new antiviral target and in virus biology. Nucleic Acids Res 2022; 50:4574-4600. [PMID: 35420134 PMCID: PMC9071444 DOI: 10.1093/nar/gkac225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
We have identified seven putative guanine quadruplexes (G4) in the RNA genome of tick-borne encephalitis virus (TBEV), a flavivirus causing thousands of human infections and numerous deaths every year. The formation of G4s was confirmed by biophysical methods on synthetic oligonucleotides derived from the predicted TBEV sequences. TBEV-5, located at the NS4b/NS5 boundary and conserved among all known flaviviruses, was tested along with its mutated variants for interactions with a panel of known G4 ligands, for the ability to affect RNA synthesis by the flaviviral RNA-dependent RNA polymerase (RdRp) and for effects on TBEV replication fitness in cells. G4-stabilizing TBEV-5 mutations strongly inhibited RdRp RNA synthesis and exhibited substantially reduced replication fitness, different plaque morphology and increased sensitivity to G4-binding ligands in cell-based systems. In contrast, strongly destabilizing TBEV-5 G4 mutations caused rapid reversion to the wild-type genotype. Our results suggest that there is a threshold of stability for G4 sequences in the TBEV genome, with any deviation resulting in either dramatic changes in viral phenotype or a rapid return to this optimal level of G4 stability. The data indicate that G4s are critical elements for efficient TBEV replication and are suitable targets to tackle TBEV infection.
Collapse
Affiliation(s)
- Jiří Holoubek
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Klára Bednářová
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| | - Jan Haviernik
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Ivana Huvarová
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic
| | - Zuzana Dvořáková
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| | - Jiří Černý
- Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, CZ-16500 Prague, Czech Republic
| | - Martina Outlá
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Jiří Salát
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Eva Konkol'ová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy ofSciences, CZ-16000 Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy ofSciences, CZ-16000 Prague, Czech Republic
| | - Daniel Růžek
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Michaela Vorlíčková
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| | - Luděk Eyer
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Daniel Renčiuk
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| |
Collapse
|
43
|
Kumar S, Ramamurthy C, Choudhary D, Sekar A, Patra A, Bhavesh NS, Vivekanandan P. Contrasting roles for G-quadruplexes in regulating human Bcl-2 and virus homologues KSHV KS-Bcl-2 and EBV BHRF1. Sci Rep 2022; 12:5019. [PMID: 35322051 PMCID: PMC8943185 DOI: 10.1038/s41598-022-08161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Herpesviruses are known to acquire several genes from their hosts during evolution. We found that a significant proportion of virus homologues encoded by HSV-1, HSV-2, EBV and KSHV and their human counterparts contain G-quadruplex motifs in their promoters. We sought to understand the role of G-quadruplexes in the regulatory regions of viral Bcl-2 homologues encoded by KSHV (KS-Bcl-2) and EBV (BHRF1). We demonstrate that the KSHV KS-Bcl-2 and the EBV BHRF1 promoter G-quadruplex motifs (KSHV-GQ and EBV-GQ) form stable intramolecular G-quadruplexes. Ligand-mediated stabilization of KS-Bcl-2 and BHRF1 promoter G-quadruplexes significantly increased the promoter activity resulting in enhanced transcription of these viral Bcl-2 homologues. Mutations disrupting KSHV-GQ and EBV-GQ inhibit promoter activity and render the KS-Bcl-2 and the BHRF1 promoters non-responsive to G-quadruplex ligand. In contrast, promoter G-quadruplexes of human bcl-2 gene inhibit promoter activity. Further, KS-Bcl-2 and BHRF1 promoter G-quadruplexes augment RTA (a virus-encoded transcription factor)-mediated increase in viral bcl-2 promoter activity. In sum, this work highlights how human herpesviruses have evolved to exploit promoter G-quadruplexes to regulate virus homologues to counter their cellular counterparts.
Collapse
Affiliation(s)
- Shivani Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chitteti Ramamurthy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Divya Choudhary
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Aashika Sekar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
44
|
Maiti AK. Identification of G-quadruplex DNA sequences in SARS-CoV2. Immunogenetics 2022; 74:455-463. [PMID: 35303126 PMCID: PMC8931451 DOI: 10.1007/s00251-022-01257-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
G-quadruplex structure or Putative Quadruplex Sequences (PQSs) are abundant in human, microbial, DNA, or RNA viral genomes. These sequences in RNA viral genome play critical roles in integration into human genome as LTR (Long Terminal Repeat), genome replication, chromatin rearrangements, gene regulation, antigen variation (Av), and virulence. Here, we investigated whether the genome of SARS-CoV2, an RNA virus, contained such potential G-quadruplex structures. Using bioinformatic tools, we searched for such sequences and found thirty-seven (forward strand (twenty-five) + reverse strand (Twelve)) QGRSs (Quadruplex forming G-Rich Sequences)/PQSs in SARS-CoV2 genome. These sequences are dispersed mainly in the upstream of SARS-CoV2 genes. We discuss whether existing PQS/QGRS ligands could inhibit the SARS-CoV2 replication and gene transcription as has been observed in other RNA viruses. Further experimental validation would determine the role of these G-quadruplex sequences in SARS-CoV2 genome function to survive in the host cells and identify therapeutic agents to destabilize these PQSs/QGRSs.
Collapse
Affiliation(s)
- Amit K Maiti
- Mydnavar, Department of Genetics and Genomics, 2645 Somerset Boulevard, Troy, MI, 48084, USA.
| |
Collapse
|
45
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to have devastating consequences worldwide. Recently, great efforts have been made to identify SARS-CoV-2 host factors, but the regulatory mechanisms of these host molecules, as well as the virus per se, remain elusive. Here we report a role of RNA G-quadruplex (RG4) in SARS-CoV-2 infection. Combining bioinformatics, biochemical and biophysical assays, we demonstrate the presence of RG4s in both SARS-CoV-2 genome and host factors. The biological and pathological importance of these RG4s is then exemplified by a canonical 3-quartet RG4 within Tmprss2, which can inhibit Tmprss2 translation and prevent SARS-CoV-2 entry. Intriguingly, G-quadruplex (G4)-specific stabilizers attenuate SARS-CoV-2 infection in pseudovirus cell systems and mouse models. Consistently, the protein level of TMPRSS2 is increased in lungs of COVID-19 patients. Our findings reveal a previously unknown mechanism underlying SARS-CoV-2 infection and suggest RG4 as a potential target for COVID-19 prevention and treatment. Understanding the mechanisms of SARS-CoV-2 infection is important to control the pandemic. Here the authors show the biological and pathological role of RNA G-quadruplex structure in both SARS-CoV-2 genome and host factors, particularly TMPRSS2.
Collapse
|
46
|
Mendes E, Aljnadi IM, Bahls B, Victor BL, Paulo A. Major Achievements in the Design of Quadruplex-Interactive Small Molecules. Pharmaceuticals (Basel) 2022; 15:300. [PMID: 35337098 PMCID: PMC8953082 DOI: 10.3390/ph15030300] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| | - Israa M. Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bruno L. Victor
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| |
Collapse
|
47
|
Lv L, Cui H, Chen Z, Zhou Y, Zhang L. G‐quadruplex ligands inhibit chikungunya virus replication. J Med Virol 2022; 94:2519-2527. [PMID: 35075669 DOI: 10.1002/jmv.27622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Lu Lv
- Department of Clinical Laboratory MedicineThe First Affifiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
- Department of Pathogen BiologySchool of Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Haoran Cui
- Department of Clinical Laboratory MedicineThe First Affifiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
- Department of Pathogen BiologySchool of Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Zhiyang Chen
- Department of Pathogen BiologySchool of Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Yixuan Zhou
- Department of Pathogen BiologySchool of Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Leiliang Zhang
- Department of Clinical Laboratory MedicineThe First Affifiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
- Department of Pathogen BiologySchool of Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
48
|
Ghosh A, Pandey SP, Ansari AH, Sundar J, Singh P, Khan Y, Ekka MK, Chakraborty D, Maiti S. Alternative splicing modulation mediated by G-quadruplex structures in MALAT1 lncRNA. Nucleic Acids Res 2022; 50:378-396. [PMID: 34761272 PMCID: PMC8754661 DOI: 10.1093/nar/gkab1066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
MALAT1, an abundant lncRNA specifically localized to nuclear speckles, regulates alternative-splicing (AS). The molecular basis of its role in AS remains poorly understood. Here, we report three conserved, thermodynamically stable, parallel RNA-G-quadruplexes (rG4s) present in the 3' region of MALAT1 which regulates this function. Using rG4 domain-specific RNA-pull-down followed by mass-spectrometry, RNA-immuno-precipitation, and imaging, we demonstrate the rG4 dependent localization of Nucleolin (NCL) and Nucleophosmin (NPM) to nuclear speckles. Specific G-to-A mutations that abolish rG4 structures, result in the localization loss of both the proteins from speckles. Functionally, disruption of rG4 in MALAT1 phenocopies NCL knockdown resulting in altered pre-mRNA splicing of endogenous genes. These results reveal a central role of rG4s within the 3' region of MALAT1 orchestrating AS.
Collapse
Affiliation(s)
- Arpita Ghosh
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Satya Prakash Pandey
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Asgar Hussain Ansari
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | | | - Praveen Singh
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Yasmeen Khan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Mary Krishna Ekka
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| |
Collapse
|
49
|
Wang Z, Deng J, Umer M, Anwar N, Wang Y, Dong X, Xu H, He Y, Gao C. RHPS4 shifted the conformation ensemble equilibrium of Tel24 by preferentially stabilizing the (3 + 1) hybrid-2 conformation. RSC Adv 2022; 12:26011-26015. [PMID: 36199604 PMCID: PMC9469490 DOI: 10.1039/d2ra03959a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeric G-quadruplexes have been a promising target for developing antitumor drugs with fewer side effects. The intracellular environment is usually in a state of molecular crowding. Studying the interaction mechanism among ligands and telomeric G-quadruplexes under crowded conditions is important for designing drugs that target telomeric G-quadruplexes. In the present study, the telomeric G-quadruplex Tel24 (TTAGGG)4 was found to fold into a conformational ensemble of parallel and (3 + 1) hybrid-2 conformations in solution with molecular crowding conditions created by PEG200. G-quadruplex-ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl] acridinium methosulfate (RHPS4) preferentially stabilized the (3 + 1) hybrid-2 conformation and shifted the conformational ensemble equilibrium of Tel24 towards the hybrid conformation. We also found that the (3 + 1) hybrid-2 conformation of Tel24 was more likely to form as compared to the parallel conformation in the conformational ensemble of Tel24. Overall, this study provides new insights into the conformation of telomere G-quadruplexes and their interactions with ligands in a physiological environment. Tel24 G-quadruplex can form a conformational ensemble consisting of parallel and (3 + 1) hybrid-2 conformations. RHPS4 preferentially stabilized the hybrid-2 conformation and shifted the conformational ensemble equilibrium.![]()
Collapse
Affiliation(s)
- Zhangqian Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jieya Deng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muhammad Umer
- Institute for Forest Resources and Environment of Guizhou and Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, 550025, China
| | - Naureen Anwar
- Department of Zoology, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Yidang Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - XingXing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Xu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Gao
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
50
|
Xu J, Huang H, Zhou X. G-Quadruplexes in Neurobiology and Virology: Functional Roles and Potential Therapeutic Approaches. JACS AU 2021; 1:2146-2161. [PMID: 34977886 PMCID: PMC8715485 DOI: 10.1021/jacsau.1c00451] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 05/11/2023]
Abstract
A G-quadruplex (G4) is a four-stranded nucleic acid secondary structure maintained by Hoogsteen hydrogen bonds established between four guanines. Experimental studies and bioinformatics predictions support the hypothesis that these structures are involved in different cellular functions associated with both DNA and RNA processes. An increasing number of diseases have been shown to be associated with abnormal G4 regulation. Here, we describe the existence of G4 and then discuss G4-related pathogenic mechanisms in neurodegenerative diseases and the viral life cycle. Furthermore, we focus on the role of G4s in the design of antiviral therapy and neuropharmacology, including G4 ligands, G4-based aptamers, G4-related proteins, and CRISPR-based sequence editing, along with a discussion of limitations and insights into the prospects of this unusual nucleic acid secondary structure in therapeutics. Finally, we highlight progress and challenges in this field and the potential G4-related research fields.
Collapse
Affiliation(s)
- Jinglei Xu
- The
Institute of Advanced Studies, Key Laboratory of Biomedical Polymers-Ministry
of Education, Wuhan University, Wuhan 430072, China
| | - Haiyan Huang
- Key
Laboratory of Biomedical Polymers-Ministry of Education, College of
Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Xiang Zhou
- The
Institute of Advanced Studies, Key Laboratory of Biomedical Polymers-Ministry
of Education, Wuhan University, Wuhan 430072, China
- Key
Laboratory of Biomedical Polymers-Ministry of Education, College of
Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
- Email to X.Z.:
| |
Collapse
|