1
|
Weng W, Zhang P, Pan Z. Potent Inhibition and Rapid Photoactivation of Endogenous Bruton's Tyrosine Kinase Activity in Native Cells via Opto-Covalent Modulators. J Am Chem Soc 2024; 146:28717-28727. [PMID: 39388725 DOI: 10.1021/jacs.4c06459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Naturally, kinases exert their activities in a highly regulated fashion. A number of ingenious approaches have been developed to artificially control kinase activity by external stimuli, such as the incorporation of unnatural amino acids or the fusion of additional protein domains; however, methods that directly modulate endogenous kinases in native cells are lacking. Herein, we present a facile and potent method that takes advantage of recent developments in targeted covalent inhibitors and rapid light-mediated uncaging chemistry. Using an important drug target, Bruton's tyrosine kinase (BTK), as an example, these opto-covalent modulators successfully blocked the activity of endogenous BTK in native cells after simple incubation and washout steps. However, upon a few minutes of light irradiation, BTK activity was cleanly restored, and could be blocked again by conventional inhibitors. Promisingly, this photoactivation strategy easily worked in human peripheral blood mononuclear cells (hPBMCs).
Collapse
Affiliation(s)
- Weizhi Weng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Ping Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
2
|
Choi JH, Kim S, Kang OY, Choi SY, Hyun JY, Lee HS, Shin I. Selective fluorescent labeling of cellular proteins and its biological applications. Chem Soc Rev 2024; 53:9446-9489. [PMID: 39109465 DOI: 10.1039/d4cs00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Proteins, which are ubiquitous in cells and critical to almost all cellular functions, are indispensable for life. Fluorescence imaging of proteins is key to understanding their functions within their native milieu, as it provides insights into protein localization, dynamics, and trafficking in living systems. Consequently, the selective labeling of target proteins with fluorophores has emerged as a highly active research area, encompassing bioorganic chemistry, chemical biology, and cell biology. Various methods for selectively labeling proteins with fluorophores in cells and tissues have been established and are continually being developed to visualize and characterize proteins. This review highlights research findings reported since 2018, with a focus on the selective labeling of cellular proteins with small organic fluorophores and their biological applications in studying protein-associated biological events. We also discuss the strengths and weaknesses of each labeling approach for their utility in living systems.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Sooin Kim
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - On-Yu Kang
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Seong Yun Choi
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
3
|
Chen X, Guo Y, Wang R. Detecting 2'-5'-adenosine linked nucleic acids via acylation of secondary hydroxy functionality. Bioorg Med Chem Lett 2024; 109:129847. [PMID: 38857849 DOI: 10.1016/j.bmcl.2024.129847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
2'-5'-Adenosine linked nucleic acids are crucial components in living cells that play significant roles, including participating in antiviral defense mechanisms by facilitating the breakdown of viral genetic material. In this report, we present a chemical derivatization method employing 5-fluoro-2-pyridinoyl-imidazole as the acylation agent, a strategy that can be effectively combined with advanced analytical tools, including Nuclear Magnetic Resonance spectroscopy and Liquid Chromatography-Mass Spectrometry, to enhance the characterization and detection capabilities. This marks the first instance of a simple method designed to detect 2'-5'-adenosine linked nucleic acids. The new method is characterized by its time-saving nature, simplicity, and relative accuracy compared to previous methods.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuyang Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
4
|
Lin Z, Liu B, Lu M, Wang Y, Ren X, Liu Z, Luo C, Shi W, Zou X, Song X, Tang F, Huang H, Huang W. Controlled Reversible N-Terminal Modification of Peptides and Proteins. J Am Chem Soc 2024; 146:23752-23763. [PMID: 39143892 DOI: 10.1021/jacs.4c04894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A reversible modification strategy enables a switchable cage/decage process of proteins with an array of applications for protein function research. However, general N-terminal selective reversible modification strategies which present site selectivity are specifically limited. Herein, we report a general reversible modification strategy compatible with 20 canonical amino acids at the N-terminal site by the palladium-catalyzed cinnamylation of native peptides and proteins under biologically relevant conditions. This approach broadens the substrate adaptability of N-terminal modification of proteins and shows a potential impact on the more challenging protein substrates such as antibodies. In the presence of 1,3-dimethylbarbituric acid, palladium-catalyzed deconjugation released native peptides and proteins efficiently. Harnessing the reversible nature of this protocol, practical applications were demonstrated by precise function modulation of antibodies and traceless enrichment of the protein-of-interest for proteomics analysis. This novel on/off strategy working on the N-terminus will provide new opportunities in chemical biology and medicinal research.
Collapse
Affiliation(s)
- Zeng Lin
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Bo Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Mengru Lu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yongqin Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xuelian Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhaoxi Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Caili Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Wei Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Xiangman Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Xiaohan Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - He Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Comeo E, Goulding J, Lin CY, Groenen M, Woolard J, Kindon ND, Harwood CR, Platt S, Briddon SJ, Kilpatrick LE, Scammells PJ, Hill SJ, Kellam B. Ligand-Directed Labeling of the Adenosine A 1 Receptor in Living Cells. J Med Chem 2024; 67:12099-12117. [PMID: 38994645 DOI: 10.1021/acs.jmedchem.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The study of protein function and dynamics in their native cellular environment is essential for progressing fundamental science. To overcome the requirement of genetic modification of the protein or the limitations of dissociable fluorescent ligands, ligand-directed (LD) chemistry has most recently emerged as a complementary, bioorthogonal approach for labeling native proteins. Here, we describe the rational design, development, and application of the first ligand-directed chemistry approach for labeling the A1AR in living cells. We pharmacologically demonstrate covalent labeling of A1AR expressed in living cells while the orthosteric binding site remains available. The probes were imaged using confocal microscopy and fluorescence correlation spectroscopy to study A1AR localization and dynamics in living cells. Additionally, the probes allowed visualization of the specific localization of A1ARs endogenously expressed in dorsal root ganglion (DRG) neurons. LD probes developed here hold promise for illuminating ligand-binding, receptor signaling, and trafficking of the A1AR in more physiologically relevant environments.
Collapse
Affiliation(s)
- Eleonora Comeo
- Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Joëlle Goulding
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Chia-Yang Lin
- Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Marleen Groenen
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Nicholas D Kindon
- Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Clare R Harwood
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Simon Platt
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Laura E Kilpatrick
- Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| | - Barrie Kellam
- Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K
| |
Collapse
|
6
|
Beerkens BL, Andrianopoulou V, Wang X, Liu R, van Westen GJP, Jespers W, IJzerman AP, Heitman LH, van der Es D. N-Acyl- N-Alkyl Sulfonamide Probes for Ligand-Directed Covalent Labeling of GPCRs: The Adenosine A 2B Receptor as Case Study. ACS Chem Biol 2024; 19:1554-1562. [PMID: 38920052 PMCID: PMC11267576 DOI: 10.1021/acschembio.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Small molecular tool compounds play an essential role in the study of G protein-coupled receptors (GPCRs). However, tool compounds most often occupy the orthosteric binding site, hampering the study of GPCRs upon ligand binding. To overcome this problem, ligand-directed labeling techniques have been developed that leave a reporter group covalently bound to the GPCR, while allowing subsequent orthosteric ligands to bind. In this work, we applied such a labeling strategy to the adenosine A2B receptor (A2BAR). We have synthetically implemented the recently reported N-acyl-N-alkyl sulfonamide (NASA) warhead into a previously developed ligand and show that the binding of the A2BAR is not restricted by NASA incorporation. Furthermore, we have investigated ligand-directed labeling of the A2BAR using SDS-PAGE, flow cytometric, and mass spectrometry techniques. We have found one of the synthesized probes to specifically label the A2BAR, although detection was hindered by nonspecific protein labeling most likely due to the intrinsic reactivity of the NASA warhead. Altogether, this work aids the future development of ligand-directed probes for the detection of GPCRs.
Collapse
Affiliation(s)
- Bert L.
H. Beerkens
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
- Oncode
Institute, Einsteinweg
55, 2333 CC Leiden, The Netherlands
| | - Vasiliki Andrianopoulou
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Xuesong Wang
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Rongfang Liu
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Gerard J. P. van Westen
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Willem Jespers
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Laura H. Heitman
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
- Oncode
Institute, Einsteinweg
55, 2333 CC Leiden, The Netherlands
| | - Daan van der Es
- Division
of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
7
|
Kloet MS, van der Heden van Noort GJ. Capturing Legionella pneumophila effector enzymes using a ubiquitin derived photo-activatable probe. Front Mol Biosci 2024; 11:1422034. [PMID: 39044841 PMCID: PMC11263097 DOI: 10.3389/fmolb.2024.1422034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Upon infection of host cells the Legionella pneumophila bacterium releases a multitude of effector enzymes into the host's cytoplasm that manipulate cellular host pathways, including the host-ubiquitination pathways. The effectors belonging to the SidE-family are involved in non-canonical phosphoribosyl serine ubiquitination (PR-ubiquitination) of host substrate proteins. This results in the recruitment of ER-remodeling proteins and the formation of a Legionella-containing vacuole which is crucial in the onset of legionnaires disease. PR-ubiquitination is a dynamic process reversed by other Legionella effectors called Dups. During PR-Ubiquitin phosphodiester hydrolysis Dups form a covalent intermediate with the phosphoribosyl ubiquitylated protein using its active site His67 residue. We envisioned that covalent probes to target Legionella effectors could be of value to study these effectors and contribute to deciphering the complex biology of Legionella infection. Hence we effectively installed a photo-activatable pyridinium warhead on the 5'-OH of triazole-linked ribosylated ubiquitin allowing crosslinking of the probe to the catalytic histidine residues in Legionella SidE or Dup enzymes. In vitro tests on recombinantly expressed DupA and SdeAPDE revealed that the probe was able to capture the enzymes covalently upon photo-activation.
Collapse
|
8
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
10
|
Nong K, Zhao YL, Yi S, Zhang X, Wei S, Yao ZJ. 3-Acyl-4-Pyranone as a Lysine Residue-Selective Bioconjugation Reagent for Peptide and Protein Modification. Bioconjug Chem 2024; 35:286-299. [PMID: 38451202 DOI: 10.1021/acs.bioconjchem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Chemoselective protein modification plays extremely important roles in various biological, medical, and pharmaceutical investigations. Mimicking the mechanism of the chemoselective reaction between natural azaphilones and primary amines, this work successfully simplified the azaphilone scaffold into much simpler 3-acyl-4-pyranones. Examinations confirmed that these slim-size mimics perfectly kept the unique reactivity for selective conjugation with the primary amines including lysine residues of peptides and proteins. The newly developed pyranone tool presents remarkably increased aqueous solubility and compatible second-order rate constant by comparison with the original azaphilone. Additional advantages also include the ease of biorthogonal combinative use with a copper-catalyzed azide-alkyne Click reaction, which was conveniently applied to decorate lysozyme with neutral-, positive- and negative-charged functionalities in parallel. Moderate-degree modification of lysozyme with positively charged quaternary ammoniums was revealed to increase the enzymatic activities.
Collapse
Affiliation(s)
- Keyi Nong
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yi-Lu Zhao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Shandong Yi
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xuchun Zhang
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Siyuan Wei
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| |
Collapse
|
11
|
Keijzer JF, Albada B. DNA nanocrane-based catalysts for region-specific protein modification. Org Biomol Chem 2024; 22:1447-1452. [PMID: 38270061 DOI: 10.1039/d3ob02025h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
This paper describes the development and performance of catalytic DNA-based nanocranes for the controlled modification of wild-type proteins. We show that the position of the catalyst offers control over the region of modification, and that reversible interactions between the catalytic structure and thrombin enable trigger-responsive modification, even in cell lysate.
Collapse
Affiliation(s)
- Jordi F Keijzer
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
13
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
14
|
Prasch H, Wolfsgruber A, Thonhofer M, Culum A, Mandl C, Weber P, Zündel M, Nasseri SA, Gonzalez Santana A, Tegl G, Nidetzky B, Gruber K, Stütz AE, Withers SG, Wrodnigg TM. Ligand-Directed Chemistry on Glycoside Hydrolases - A Proof of Concept Study. Chembiochem 2023; 24:e202300480. [PMID: 37715738 DOI: 10.1002/cbic.202300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/18/2023]
Abstract
Selective covalent labelling of enzymes using small molecule probes has advanced the scopes of protein profiling. The covalent bond formation to a specific target is the key step of activity-based protein profiling (ABPP), a method which has become an indispensable tool for measuring enzyme activity in complex matrices. With respect to carbohydrate processing enzymes, strategies for ABPP so far involve labelling the active site of the enzyme, which results in permanent loss of activity. Here, we report in a proof of concept study the use of ligand-directed chemistry (LDC) for labelling glycoside hydrolases near - but not in - the active site. During the labelling process, the competitive inhibitor is cleaved from the probe, departs the active site and the enzyme maintains its catalytic activity. To this end, we designed a building block synthetic concept for small molecule probes containing iminosugar-based reversible inhibitors for labelling of two model β-glucosidases. The results indicate that the LDC approach can be adaptable for covalent proximity labelling of glycoside hydrolases.
Collapse
Affiliation(s)
- Herwig Prasch
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Andreas Wolfsgruber
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Martin Thonhofer
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - André Culum
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Christoph Mandl
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Patrick Weber
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Melanie Zündel
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Seyed A Nasseri
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Andres Gonzalez Santana
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Gregor Tegl
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, Petersgasse 10-12/I, 8010, Graz, Austria
| | - Bernd Nidetzky
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, Petersgasse 10-12/I, 8010, Graz, Austria
| | - Karl Gruber
- University of Graz, Institute of Molecular Bioscience, Humboldtstraße 50/III, 8010, Graz, Austria
| | - Arnold E Stütz
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Stephen G Withers
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Tanja M Wrodnigg
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| |
Collapse
|
15
|
Fujimura A, Ishida H, Nozaki T, Terada S, Azumaya Y, Ishiguro T, Kamimura YR, Kujirai T, Kurumizaka H, Kono H, Yamatsugu K, Kawashima SA, Kanai M. Designer Adaptor Proteins for Functional Conversion of Peptides to Small-Molecule Ligands toward In-Cell Catalytic Protein Modification. ACS CENTRAL SCIENCE 2023; 9:2115-2128. [PMID: 38033808 PMCID: PMC10683481 DOI: 10.1021/acscentsci.3c00930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Peptides are privileged ligands for diverse biomacromolecules, including proteins; however, their utility is often limited due to low membrane permeability and in-cell instability. Here, we report peptide ligand-inserted eDHFR (PLIED) fusion protein as a universal adaptor for targeting proteins of interest (POI) with cell-permeable and stable synthetic functional small molecules (SFSM). PLIED binds to POI through the peptide moiety, properly orienting its eDHFR moiety, which then recruits trimethoprim (TMP)-conjugated SFSM to POI. Using a lysine-acylating BAHA catalyst as SFSM, we demonstrate that POI (MDM2 and chromatin histone) are post-translationally and synthetically acetylated at specific lysine residues. The residue-selectivity is predictable in an atomic resolution from molecular dynamics simulations of the POI/PLIED/TMP-BAHA (MTX was used as a TMP model) ternary complex. This designer adaptor approach universally enables functional conversion of impermeable peptide ligands to permeable small-molecule ligands, thus expanding the in-cell toolbox of chemical biology.
Collapse
Affiliation(s)
- Akiko Fujimura
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Hisashi Ishida
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tamiko Nozaki
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Shuhei Terada
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Yuto Azumaya
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Tadashi Ishiguro
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Yugo R. Kamimura
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Tomoya Kujirai
- Institute
for Quantitative Biosciences, The University
of Tokyo, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Institute
for Quantitative Biosciences, The University
of Tokyo, Tokyo 113-0032, Japan
| | - Hidetoshi Kono
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kenzo Yamatsugu
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Shigehiro A. Kawashima
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Horie S, Mishiro K, Nishino M, Domae I, Wakasugi M, Matsunaga T, Kunishima M. Epitope-Based Specific Antibody Modifications. Bioconjug Chem 2023; 34:2022-2033. [PMID: 37861691 DOI: 10.1021/acs.bioconjchem.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Modified antibodies have essential roles in analytic, diagnostic, and therapeutic uses, and thus, these antibodies are required to have optimal physical and biological properties. Consequently, the development of methods for site-selective antibody modification is crucial. Herein, we used epitope-based affinity labeling to introduce a Fab region-selective antibody modification method. Although labeling that exploits the high affinity between an antibody and its epitope may appear straightforward, it remains challenging probably because of the loss of target affinity caused by modification around the epitope-binding site. By thoroughly screening the modifying agent structure, reaction conditions, and purification methods, we developed an efficient method for the selective modification of the Fab region of the antibody while maintaining the high affinity for the epitope.
Collapse
Affiliation(s)
- Saki Horie
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mio Nishino
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Inori Domae
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mitsuo Wakasugi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tsukasa Matsunaga
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| |
Collapse
|
17
|
Zhang F, Chen F, Zhong M, Shen R, Zhao Z, Wei H, Zhang B, Fang J. Imaging of Carbonic Anhydrase Level in Epilepsy with an Environment-Sensitive Fluorescent Probe. Anal Chem 2023; 95:14833-14841. [PMID: 37747928 DOI: 10.1021/acs.analchem.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Carbonic anhydrases (CAs) participate in various physiological and pathological activities by catalyzing the interconversion between carbon dioxide and bicarbonate ions. Under normal circumstances, they guarantee that the relevant biological reactions in our body occur within an appropriate time scale. Abnormal expression or activity alteration of CAs is closely related to the pathogenesis of diverse diseases. This work reports an inhibitor-directed fluorescent probe FMRs-CA for the detection of CAs. Excellent selectivity, favorable biocompatibility, and desirable blood-brain barrier (BBB) penetration endow the probe with the ability to image the fluctuation of CAs in cells and mice. We achieved in situ visualization of the increased CAs in hypoxic cells with this probe. Additionally, probe FMRs-CA was mainly enriched within the liver and gradually metabolized by the liver. With the help of FMRs-CA, the increase of CAs in epileptic mouse brains was revealed first from the perspective of imaging, providing the mechanism connection between abnormal CA expressions and epilepsy.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haopai Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
18
|
Yan J, Liu H, Wu Y, Niu B, Deng X, Zhang L, Dang Q, Wang Y, Lu X, Zhang B, Sun W. Recent progress of self-immobilizing and self-precipitating molecular fluorescent probes for higher-spatial-resolution imaging. Biomaterials 2023; 301:122281. [PMID: 37643487 DOI: 10.1016/j.biomaterials.2023.122281] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Flourished in the past two decades, fluorescent probe technology provides researchers with accurate and efficient tools for in situ imaging of biomarkers in living cells and tissues and may play a significant role in clinical diagnosis and treatment such as biomarker detection, fluorescence imaging-guided surgery, and photothermal/photodynamic therapy. In situ imaging of biomarkers depends on the spatial resolution of molecular probes. Nevertheless, the majority of currently available molecular fluorescent probes suffer from the drawback of diffusing from the target region. This leads to a rapid attenuation of the fluorescent signal over time and a reduction in spatial resolution. Consequently, the diffused fluorescent signal cannot accurately reflect the in situ information of the target. Self-immobilizing and self-precipitating molecular fluorescent probes can be used to overcome this problem. These probes ensure that the fluorescent signal remains at the location where the signal is generated for a long time. In this review, we introduce the development history of the two types of probes and classify them in detail according to different design strategies. In addition, we compare their advantages and disadvantages, summarize some representative studies conducted in recent years, and propose prospects for this field.
Collapse
Affiliation(s)
- Jiawei Yan
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Huanying Liu
- School of Mechanical and Power Engineering, Dalian Ocean University, Dalian, 116023, China
| | - Yingxu Wu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Ben Niu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiaojing Deng
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Linhao Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Qi Dang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Yubo Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiao Lu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
19
|
Winer L, Motiei L, Margulies D. Fluorescent Investigation of Proteins Using DNA-Synthetic Ligand Conjugates. Bioconjug Chem 2023; 34:1509-1522. [PMID: 37556353 PMCID: PMC10515487 DOI: 10.1021/acs.bioconjchem.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Indexed: 08/11/2023]
Abstract
The unfathomable role that fluorescence detection plays in the life sciences has prompted the development of countless fluorescent labels, sensors, and analytical techniques that can be used to detect and image proteins or investigate their properties. Motivated by the demand for simple-to-produce, modular, and versatile fluorescent tools to study proteins, many research groups have harnessed the advantages of oligodeoxynucleotides (ODNs) for scaffolding such probes. Tight control over the valency and position of protein binders and fluorescent dyes decorating the polynucleotide chain and the ability to predict molecular architectures through self-assembly, inherent solubility, and stability are, in a nutshell, the important properties of DNA probes. This paper reviews the progress in developing DNA-based, fluorescent sensors or labels that navigate toward their protein targets through small-molecule (SM) or peptide ligands. By describing the design, operating principles, and applications of such systems, we aim to highlight the versatility and modularity of this approach and the ability to use ODN-SM or ODN-peptide conjugates for various applications such as protein modification, labeling, and imaging, as well as for biomarker detection, protein surface characterization, and the investigation of multivalency.
Collapse
Affiliation(s)
- Lulu Winer
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot, 76100, Israel
| | - Leila Motiei
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot, 76100, Israel
| | - David Margulies
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot, 76100, Israel
| |
Collapse
|
20
|
Zhang S, Liu P, Li L, Liu Z, Qian X, Jiang X, Sun W, Wang L, Akkaya EU. Upconverting Nanoparticle-Based Photoactive Probes for Highly Efficient Labeling and Isolation of Target Proteins. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40280-40291. [PMID: 37585283 DOI: 10.1021/acsami.3c08397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Photoaffinity labeling (PAL) has blossomed into a powerful and versatile tool for capture and identification of biomolecular targets. However, low labeling efficiency for specific targets such as lectins, the tedious process for protein purification, inevitable cellular photodamage, and less tissue penetration of UV light are significant challenges. Herein, we reported a near-infrared (NIR) light-driven photoaffinity labeling approach using upconverting nanoparticle (UCNP)-based photoactive probes, which were constructed by assembling photoactive groups and ligands onto NaYF4:Yb,Tm nanoparticles. The novel probes were easily prepared and functionalized, and the labeled proteins can be isolated and purified through simple centrifugation and washing. The advantages of this approach were demonstrated by labeling and isolation of peanut agglutinin (PNA), asialoglycoprotein receptor (ASGPR), and human carbonic anhydrase II (hCAII) from mixed proteins or cell lysates with good selectivity and efficiency, especially for PNA and ASGPR, two lectins that showed low binding affinity to their ligands. More importantly, successful labeling of PNA through pork tissues and ASGPR in mice strongly proved the good tissue penetrating capacity of NIR light and the application potential of UCNP-based photoactive probes for protein labeling in vivo. Biosafety of this approach was experimentally validated by enzyme, cell, and animal work, and we demonstrated that NIR light caused minimal photodamage to enzyme activity compared to UV light, and the UCNP-based photoactive probe presents good biosafety both in vitro and in vivo. We believe that this novel PAL approach will provide a promising tool for study of ligand-protein interactions and identification of biomolecular targets.
Collapse
Affiliation(s)
- Shengli Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Peng Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Li Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Ziang Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xiao Qian
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xueying Jiang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Engin U Akkaya
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| |
Collapse
|
21
|
Wang Y, Czabala P, Raj M. Bioinspired one-pot furan-thiol-amine multicomponent reaction for making heterocycles and its applications. Nat Commun 2023; 14:4086. [PMID: 37429878 DOI: 10.1038/s41467-023-39708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
One-pot multicomponent coupling of different units in a chemoselective manner and their late-stage diversification has wide applicability in varying chemistry fields. Here, we report a simple multicomponent reaction inspired by enzymes that combines thiol and amine nucleophiles in one pot via a furan-based electrophile to generate stable pyrrole heterocycles independent of the diverse functionalities on furans, thiols and amines under physiological conditions. The resulting pyrrole provides a reactive handle to introduce diverse payloads. We demonstrate the application of Furan-Thiol-Amine (FuTine) reaction for the selective and irreversible labeling of peptides, synthesis of macrocyclic and stapled peptides, selective modification of twelve different proteins with varying payloads, homogeneous engineering of proteins, homogeneous stapling of proteins, dual modification of proteins with different fluorophores using the same chemistry and labeling of lysine and cysteine in a complex human proteome.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Chemistry, Emory University, 30322, Atlanta, GA, USA
| | - Patrick Czabala
- Department of Chemistry, Emory University, 30322, Atlanta, GA, USA
| | - Monika Raj
- Department of Chemistry, Emory University, 30322, Atlanta, GA, USA.
| |
Collapse
|
22
|
Lucero B, Francisco KR, Liu LJ, Caffrey CR, Ballatore C. Protein-protein interactions: developing small-molecule inhibitors/stabilizers through covalent strategies. Trends Pharmacol Sci 2023; 44:474-488. [PMID: 37263826 PMCID: PMC11003449 DOI: 10.1016/j.tips.2023.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
The development of small-molecule inhibitors or stabilizers of selected protein-protein interactions (PPIs) of interest holds considerable promise for the development of research tools as well as candidate therapeutics. In this context, the covalent modification of selected residues within the target protein has emerged as a promising mechanism of action to obtain small-molecule modulators of PPIs with appropriate selectivity and duration of action. Different covalent labeling strategies are now available that can potentially allow for a rational, ground-up discovery and optimization of ligands as PPI inhibitors or stabilizers. This review article provides a synopsis of recent developments and applications of such tactics, with a particular focus on site-directed fragment tethering and proximity-enabled approaches.
Collapse
Affiliation(s)
- Bobby Lucero
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Karol R Francisco
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lawrence J Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Kurbanov M, Kirsch ZJ, Krishna J, Dutta R, Vachet RW, Thayumanavan S. Multisite Labeling of Proteins Using the Ligand-Directed Reactivity of Triggerable Michael Acceptors. Bioconjug Chem 2023; 34:1130-1138. [PMID: 37220065 PMCID: PMC10363337 DOI: 10.1021/acs.bioconjchem.3c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Targeted modification of endogenous proteins without genetic manipulation of protein expression machinery has a range of applications from chemical biology to drug discovery. Despite being demonstrated to be effective in various applications, target-specific protein labeling using ligand-directed strategies is limited by stringent amino acid selectivity. Here, we present highly reactive ligand-directed triggerable Michael acceptors (LD-TMAcs) that feature rapid protein labeling. Unlike previous approaches, the unique reactivity of LD-TMAcs enables multiple modifications on a single target protein, effectively mapping the ligand binding site. This capability is attributed to the tunable reactivity of TMAcs that enable the labeling of several amino acid functionalities via a binding-induced increase in local concentration while remaining fully dormant in the absence of protein binding. We demonstrate the target selectivity of these molecules in cell lysates using carbonic anhydrase as the model protein. Furthermore, we demonstrate the utility of this method by selectively labeling membrane-bound carbonic anhydrase XII in live cells. We envision that the unique features of LD-TMAcs will find use in target identification, investigation of binding/allosteric sites, and studying membrane proteins.
Collapse
Affiliation(s)
- Myrat Kurbanov
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Zachary J Kirsch
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
24
|
Wang S, Yu H, Li L, Zhang M, Fu Y, Lin Z, Li J, Zhong F, Liu H, Wu Y. Fluorescent Turn-On Probes for Visualizing GPx4 Levels in Live Cells and Predicting Drug Sensitivity. Anal Chem 2023. [PMID: 37256969 DOI: 10.1021/acs.analchem.3c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Glutathione peroxidase 4 (GPx4) is the membrane peroxidase in mammals that is essential for protecting cells against oxidative damage and critical for ferroptosis. However, no live cell probe is currently available to specifically label GPx4. Herein, we report both inhibitory and noninhibitory fluorescent turn-on probes for specific labeling of GPx4 in live cells. With these probes, the GPx4 expression levels and degradation kinetics in live cells could be visualized, and their real-time responses to the cellular selenium availability were revealed. These probes could also potentially serve as staining reagents to predict the sensitivity of GPx4-related ferroptosis drugs. In view of these features, these GPx4-selective probes will offer opportunities for a deeper understanding of GPx4 function in natural habitats and hold great promise for biomedical applications.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huaibin Yu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Meizhou Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yu Fu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zi'an Lin
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinsheng Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
25
|
Ono S, Koga M, Arimura Y, Hatakeyama T, Kobayashi M, Sagara JI, Nakai T, Horino Y, Kuroda H, Oyama H, Arima K. Site-Selective Incorporation of a Functional Group into Lys175 in the Vicinity of the Active Site of Chymotrypsin by Using Peptidyl α-Aminoalkylphosphonate Diphenyl Ester-Derivatives. Molecules 2023; 28:molecules28073150. [PMID: 37049913 PMCID: PMC10096113 DOI: 10.3390/molecules28073150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
We previously reported that Lys175 in the region of the active site of chymotrypsin (Csin) could be site-selectively modified by using an N-hydroxy succinimide (NHS) ester of the peptidyl derivative containing 1-amino-2-ethylphenylphosphonate diphenyl ester [NHS-Suc-Ala-Ala-PheP(OPh)2]. In this study, the Lys175-selective modification method was expanded to incorporate functional groups into Lys 175 in Csin. Two types of peptidyl phosphonate derivatives with the dansyl group (Dan) as a functional molecule, Dan-β-Ala-[Asp(NHS) or Glu(NHS)]-Ala-Ala-(R)-PheP(OPh)2 (DanD and DanE, respectively), were synthesized, and their action was evaluated when modifying Lys175 in Csin. Ion-exchange chromatography (IEC), fluorescence spectroscopy, and LC-MS/MS were used to analyze the products from the reaction of Csin with DanD or DanE. By IEC and LC-MS/MS, the results showed that DanE reacted with Csin more effectively than DanD to produce the modified Csin (DanMCsin) bearing Dan at Lys175. DanMCsin exhibited an enzymatic activity corresponding to 1/120 of Csin against Suc-Ala-Ala-Phe-pNA. In addition, an effect of Lys175 modification on the access of the proteinaceous Bowman–Birk inhibitor to the active site of DanMCsin was investigated. In conclusion, by using a peptidyl derivative containing 1-amino-2-ethylphenylphosphonate diphenyl ester, we demonstrated that a functional group could be incorporated into Lys175 in Csin.
Collapse
Affiliation(s)
- Shin Ono
- Applied Chemistry, Kanazawa Institute of Technology, Hakusan 924-0838, Ishikawa, Japan
| | - Masato Koga
- Applied Chemistry, Kanazawa Institute of Technology, Hakusan 924-0838, Ishikawa, Japan
| | - Yuya Arimura
- Applied Chemistry, Kanazawa Institute of Technology, Hakusan 924-0838, Ishikawa, Japan
| | - Takahiro Hatakeyama
- Applied Chemistry, Kanazawa Institute of Technology, Hakusan 924-0838, Ishikawa, Japan
| | - Mai Kobayashi
- Applied Chemistry, Kanazawa Institute of Technology, Hakusan 924-0838, Ishikawa, Japan
| | - Jun-ichi Sagara
- Applied Bioengineering, Kanazawa Institute of Technology, Hakusan 924-0838, Ishikawa, Japan
| | - Takahiko Nakai
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| | - Yoshikazu Horino
- Department of Applied Chemistry and Bioscience, Chitose Institute of Science and Technology, Chitose 066-8655, Hokkaido, Japan
| | - Hirofumi Kuroda
- Department of General Education, National Institute of Technology, Ishikawa College, Tsubata 929-0392, Ishikawa, Japan
| | - Hiroshi Oyama
- Faculty of Science and Engineering, Setsunan University, Hirakata 572-8508, Osaka, Japan
| | - Kazunari Arima
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Kagoshima, Japan
| |
Collapse
|
26
|
Thimaradka V, Utsunomiya H, Tamura T, Hamachi I. Endogenous Cell-Surface Receptor Modification by Metal Chelation-Assisted Pyridinium Oxime Catalyst. Org Lett 2023; 25:2118-2122. [PMID: 36947590 DOI: 10.1021/acs.orglett.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Organocatalyst-mediated acyl transfer reactions hold promise for selective protein labeling in biological milieu. However, they often suffer from off-target reactions and high background signals because of the requirement of high concentrations of substrates. Here, we report a new catalytic protein acylation strategy promoted by the His-tag/NiNTA interaction. The recognition-assisted activation mechanism allows efficient protein labeling even with >10-fold lower substrate concentrations than conventional reactions, thereby enabling highly selective and efficient cell-surface receptor modification in live cells.
Collapse
Affiliation(s)
- Vikram Thimaradka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hayata Utsunomiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
27
|
Chauhan P, V. R, Kumar M, Molla R, V. B. U, Rai V. Dis integrate (DIN) Theory Enabling Precision Engineering of Proteins. ACS CENTRAL SCIENCE 2023; 9:137-150. [PMID: 36844488 PMCID: PMC9951294 DOI: 10.1021/acscentsci.2c01455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 06/18/2023]
Abstract
The chemical toolbox for the selective modification of proteins has witnessed immense interest in the past few years. The rapid growth of biologics and the need for precision therapeutics have fuelled this growth further. However, the broad spectrum of selectivity parameters creates a roadblock to the field's growth. Additionally, bond formation and dissociation are significantly redefined during the translation from small molecules to proteins. Understanding these principles and developing theories to deconvolute the multidimensional attributes could accelerate the area. This outlook presents a disintegrate (DIN) theory for systematically disintegrating the selectivity challenges through reversible chemical reactions. An irreversible step concludes the reaction sequence to render an integrated solution for precise protein bioconjugation. In this perspective, we highlight the key advancements, unsolved challenges, and potential opportunities.
Collapse
|
28
|
Reddi RN, Rogel A, Gabizon R, Rawale DG, Harish B, Marom S, Tivon B, Arbel YS, Gurwicz N, Oren R, David K, Liu J, Duberstein S, Itkin M, Malitsky S, Barr H, Katz BZ, Herishanu Y, Shachar I, Shulman Z, London N. Sulfamate Acetamides as Self-Immolative Electrophiles for Covalent Ligand-Directed Release Chemistry. J Am Chem Soc 2023; 145:3346-3360. [PMID: 36738297 PMCID: PMC9936582 DOI: 10.1021/jacs.2c08853] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 02/05/2023]
Abstract
Electrophiles for covalent inhibitors that are suitable for in vivo administration are rare. While acrylamides are prevalent in FDA-approved covalent drugs, chloroacetamides are considered too reactive for such purposes. We report sulfamate-based electrophiles that maintain chloroacetamide-like geometry with tunable reactivity. In the context of the BTK inhibitor ibrutinib, sulfamate analogues showed low reactivity with comparable potency in protein labeling, in vitro, and cellular kinase activity assays and were effective in a mouse model of CLL. In a second example, we converted a chloroacetamide Pin1 inhibitor to a potent and selective sulfamate acetamide with improved buffer stability. Finally, we show that sulfamate acetamides can be used for covalent ligand-directed release (CoLDR) chemistry, both for the generation of "turn-on" probes as well as for traceless ligand-directed site-specific labeling of proteins. Taken together, this chemistry represents a promising addition to the list of electrophiles suitable for in vivo covalent targeting.
Collapse
Affiliation(s)
- Rambabu N. Reddi
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Rogel
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronen Gabizon
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dattatraya Gautam Rawale
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Battu Harish
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shir Marom
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Barr Tivon
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yamit Shorer Arbel
- Sackler
Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Neta Gurwicz
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Roni Oren
- Department
of Veterinary Resources, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Keren David
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Jingjing Liu
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Shirly Duberstein
- Wohl
Institute for Drug Discovery of the Nancy and Stephen Grand Israel
National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maxim Itkin
- Life Sciences
Core Facilities, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Life Sciences
Core Facilities, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Haim Barr
- Wohl
Institute for Drug Discovery of the Nancy and Stephen Grand Israel
National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ben-Zion Katz
- Sackler
Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Department
of Hematology, Tel Aviv Sourasky Medical
Center, Tel Aviv 6423906, Israel
| | - Yair Herishanu
- Sackler
Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Department
of Hematology, Tel Aviv Sourasky Medical
Center, Tel Aviv 6423906, Israel
| | - Idit Shachar
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Ziv Shulman
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Nir London
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
29
|
Sakamoto S, Hamachi I. Ligand‐Directed Chemistry for Protein Labeling for Affinity‐Based Protein Analysis. Isr J Chem 2023. [DOI: 10.1002/ijch.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku 615-8510 Kyoto Japan
- JST-ERATO Hamachi Innovative Molecular Technology for Neuroscience 615-8530 Kyoto Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku 615-8510 Kyoto Japan
- JST-ERATO Hamachi Innovative Molecular Technology for Neuroscience 615-8530 Kyoto Japan
| |
Collapse
|
30
|
Wang Y, Li Z, Mo F, Chen-Mayfield TJ, Saini A, LaMere AM, Hu Q. Chemically engineering cells for precision medicine. Chem Soc Rev 2023; 52:1068-1102. [PMID: 36633324 DOI: 10.1039/d2cs00142j] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell-based therapy holds great potential to address unmet medical needs and revolutionize the healthcare industry, as demonstrated by several therapeutics such as CAR-T cell therapy and stem cell transplantation that have achieved great success clinically. Nevertheless, natural cells are often restricted by their unsatisfactory in vivo trafficking and lack of therapeutic payloads. Chemical engineering offers a cost-effective, easy-to-implement engineering tool that allows for strengthening the inherent favorable features of cells and confers them new functionalities. Moreover, in accordance with the trend of precision medicine, leveraging chemical engineering tools to tailor cells to accommodate patients individual needs has become important for the development of cell-based treatment modalities. This review presents a comprehensive summary of the currently available chemically engineered tools, introduces their application in advanced diagnosis and precision therapy, and discusses the current challenges and future opportunities.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Aryan Saini
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Afton Martin LaMere
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
31
|
Cacace M, Tivon Y, Deiters A. Protein labeling and crosslinking by covalent aptamers. Methods Enzymol 2022; 682:413-428. [PMID: 36948709 PMCID: PMC10725707 DOI: 10.1016/bs.mie.2022.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this chapter, a new approach to the selective modification of native proteins is discussed, using electrophilic covalent aptamers. These biochemical tools are generated through the site-specific incorporation of a label-transferring or crosslinking electrophile into a DNA aptamer. Covalent aptamers provide the ability to transfer a variety of functional handles to a protein of interest or to irreversibly crosslink to the target. Methods for the aptamer-mediated labeling and crosslinking of thrombin are described. Thrombin labeling is fast and selective, in both simple buffer and in human plasma and outcompetes nuclease-mediated degradation. This approach provides facile, sensitive detection of labeled protein by western blot, SDS-PAGE, and mass spectrometry.
Collapse
Affiliation(s)
- Mary Cacace
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yaniv Tivon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Victor-Lovelace TW, Miller LM. The development and use of metal-based probes for X-ray fluorescence microscopy. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6852953. [PMID: 36537552 DOI: 10.1093/mtomcs/mfac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
X-ray fluorescence microscopy (XFM) has become a widely used technique for imaging the concentration and distribution of metal ions in cells and tissues. Recent advances in synchrotron sources, optics, and detectors have improved the spatial resolution of the technique to <10 nm with attogram detection sensitivity. However, to make XFM most beneficial for bioimaging-especially at the nanoscale-the metal ion distribution must be visualized within the subcellular context of the cell. Over the years, a number of approaches have been taken to develop X-ray-sensitive tags that permit the visualization of specific organelles or proteins using XFM. In this review, we examine the types of X-ray fluorophore used, including nanomaterials and metal ions, and the approaches used to incorporate the metal into their target binding site via antibodies, genetically encoded metal-binding peptides, affinity labeling, or cell-specific peptides. We evaluate their advantages and disadvantages, review the scientific findings, and discuss the needs for future development.
Collapse
Affiliation(s)
| | - Lisa M Miller
- N ational Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973,USA.,Department of Chemistry, Stony Brook University, Stony Brook, NY 11794,USA
| |
Collapse
|
33
|
Catalysis medicine: Participating in the chemical networks of living organisms through catalysts. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Reddy NC, Molla R, Joshi PN, T. K. S, Basu I, Kawadkar J, Kalra N, Mishra RK, Chakrabarty S, Shukla S, Rai V. Traceless cysteine-linchpin enables precision engineering of lysine in native proteins. Nat Commun 2022; 13:6038. [PMID: 36229616 PMCID: PMC9561114 DOI: 10.1038/s41467-022-33772-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The maintenance of machinery requires its operational understanding and a toolbox for repair. The methods for the precision engineering of native proteins meet a similar requirement in biosystems. Its success hinges on the principles regulating chemical reactions with a protein. Here, we report a technology that delivers high-level control over reactivity, chemoselectivity, site-selectivity, modularity, dual-probe installation, and protein-selectivity. It utilizes cysteine-based chemoselective Linchpin-Directed site-selective Modification of lysine residue in a protein (LDMC-K). The efficiency of the end-user-friendly protocol is evident in quantitative conversions within an hour. A chemically orthogonal C-S bond-formation and bond-dissociation are essential among multiple regulatory attributes. The method offers protein selectivity by targeting a single lysine residue of a single protein in a complex biomolecular mixture. The protocol renders analytically pure single-site probe-engineered protein bioconjugate. Also, it provides access to homogeneous antibody conjugates (AFC and ADC). The LDMC-K-ADC exhibits highly selective anti-proliferative activity towards breast cancer cells.
Collapse
Affiliation(s)
- Neelesh C. Reddy
- grid.462376.20000 0004 1763 8131Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | - Rajib Molla
- grid.462376.20000 0004 1763 8131Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | - Pralhad Namdev Joshi
- grid.462376.20000 0004 1763 8131Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | - Sajeev T. K.
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | - Ipsita Basu
- grid.452759.80000 0001 2188 427XDepartment of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, 700 106 W.B. India
| | - Jyotsna Kawadkar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | | | - Ram Kumar Mishra
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | - Suman Chakrabarty
- grid.452759.80000 0001 2188 427XDepartment of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, 700 106 W.B. India
| | - Sanjeev Shukla
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | - Vishal Rai
- grid.462376.20000 0004 1763 8131Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| |
Collapse
|
35
|
Switching of Photocatalytic Tyrosine/Histidine Labeling and Application to Photocatalytic Proximity Labeling. Int J Mol Sci 2022; 23:ijms231911622. [PMID: 36232972 PMCID: PMC9569449 DOI: 10.3390/ijms231911622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Weak and transient protein interactions are involved in dynamic biological responses and are an important research subject; however, methods to elucidate such interactions are lacking. Proximity labeling is a promising technique for labeling transient ligand–binding proteins and protein–protein interaction partners of analytes via an irreversible covalent bond. Expanding chemical tools for proximity labeling is required to analyze the interactome. We developed several photocatalytic proximity-labeling reactions mediated by two different mechanisms. We found that numerous dye molecules can function as catalysts for protein labeling. We also identified catalysts that selectively modify tyrosine and histidine residues and evaluated their mechanisms. Model experiments using HaloTag were performed to demonstrate photocatalytic proximity labeling. We found that both ATTO465, which catalyzes labeling by a single electron transfer, and BODIPY, which catalyzes labeling by singlet oxygen, catalyze proximity labeling in cells.
Collapse
|
36
|
Wang Y, Zhao R, Wan C, Guo X, Yang F, Hou Z, Wang R, Li S, Feng T, Yin F, Li Z. A Peptide-Based Ligand-Directed Chemistry Enables Protein Functionalization. Org Lett 2022; 24:7205-7209. [PMID: 36169233 DOI: 10.1021/acs.orglett.2c02974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ligand-directed (LD) chemistry provides powerful tools for site-specific modification of proteins. We utilized a peptide with an appended methionine (Met) as a ligand; then, the Met thioether was modified into sulfonium which enabled a proximity induced group transfer onto protein cysteine in the vicinity upon peptide-target binding. The sulfonium warhead could be easily constructed with unprotected peptides, and the transferable group scope was conducted on model protein PDZ and its ligand peptides. In addition, a living cell labeling was successfully achieved.
Collapse
Affiliation(s)
- Yuena Wang
- Center for Disease Control and Prevention, Shenzhen, 518055, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Rongtong Zhao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiaochun Guo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fenfang Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Tiejian Feng
- Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| |
Collapse
|
37
|
Chen TH, Garnir K, Chen CY, Jian CB, Gao HD, Cheng B, Tseng MC, Moucheron C, Kirsch-De Mesmaeker A, Lee HM. A Toolkit for Engineering Proteins in Living Cells: Peptide with a Tryptophan-Selective Ru-TAP Complex to Regioselectively Photolabel Specific Proteins. J Am Chem Soc 2022; 144:18117-18125. [PMID: 36135325 DOI: 10.1021/jacs.2c08342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a chemical approach to crosslink functionally versatile bioeffectors (such as peptides) to native proteins of interest (POI) directly inside a living cell is a useful toolbox for chemical biologists. However, this goal has not been reached due to unsatisfactory chemoselectivity, regioselectivity, and protein selectivity in protein labeling within living cells. Herein, we report the proof of concept of a cytocompatible and highly selective photolabeling strategy using a tryptophan-specific Ru-TAP complex as a photocrosslinker. Aside from the high selectivity, the photolabeling is blue light-driven by a photoinduced electron transfer (PeT) and allows the bioeffector to bear an additional UV-responsive unit. The two different photosensitivities are demonstrated by blue light-photocrosslinking a UV-sensitive peptide to POI. Our visible light photolabeling can generate photocaged proteins for subsequent activity manipulation by UV light. Cytoskeletal dynamics regulation is demonstrated in living cells via the unprecedented POI photomanipulation and proves that our methodology opens a new avenue to endogenous protein modification.
Collapse
Affiliation(s)
- Tzu-Ho Chen
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kevin Garnir
- Laboratoire de Chimie Organique et Photochimie CP160/08, Université libre de Bruxelles, 50 Av. Franklin D. Roosevelt, 1050 Brussels, Belgium
| | - Chong-Yan Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Bang Jian
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Hua-De Gao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Bill Cheng
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie CP160/08, Université libre de Bruxelles, 50 Av. Franklin D. Roosevelt, 1050 Brussels, Belgium
| | - Andrée Kirsch-De Mesmaeker
- Laboratoire de Chimie Organique et Photochimie CP160/08, Université libre de Bruxelles, 50 Av. Franklin D. Roosevelt, 1050 Brussels, Belgium
| | - Hsien-Ming Lee
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
38
|
Luchinat E, Cremonini M, Banci L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. Chem Rev 2022; 122:9267-9306. [PMID: 35061391 PMCID: PMC9136931 DOI: 10.1021/acs.chemrev.1c00790] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/12/2022]
Abstract
A detailed knowledge of the complex processes that make cells and organisms alive is fundamental in order to understand diseases and to develop novel drugs and therapeutic treatments. To this aim, biological macromolecules should ideally be characterized at atomic resolution directly within the cellular environment. Among the existing structural techniques, solution NMR stands out as the only one able to investigate at high resolution the structure and dynamic behavior of macromolecules directly in living cells. With the advent of more sensitive NMR hardware and new biotechnological tools, modern in-cell NMR approaches have been established since the early 2000s. At the coming of age of in-cell NMR, we provide a detailed overview of its developments and applications in the 20 years that followed its inception. We review the existing approaches for cell sample preparation and isotopic labeling, the application of in-cell NMR to important biological questions, and the development of NMR bioreactor devices, which greatly increase the lifetime of the cells allowing real-time monitoring of intracellular metabolites and proteins. Finally, we share our thoughts on the future perspectives of the in-cell NMR methodology.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum−Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
39
|
Yu H, Feng J, Zhong F, Wu Y. Chemical Modification for the "off-/on" Regulation of Enzyme Activity. Macromol Rapid Commun 2022; 43:e2200195. [PMID: 35482602 DOI: 10.1002/marc.202200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Indexed: 11/07/2022]
Abstract
Enzymes with excellent catalytic performance play important roles in living organisms. Advances in strategies for enzyme chemical modification have enabled powerful strategies for exploring and manipulating enzyme functions and activities. Based on the development of chemical enzyme modifications, incorporating external stimuli-responsive features-for example, responsivity to light, voltage, magnetic force, pH, temperature, redox activity, and small molecules-into a target enzyme to turn "on" and "off" its activity has attracted much attention. The ability to precisely control enzyme activity using different approaches would greatly expand the chemical biology toolbox for clarification and detection of signal transduction and in vivo enzyme function and significantly promote enzyme-based disease therapy. This review summarizes the methods available for chemical enzyme modification mainly for the off-/on control of enzyme activity and particularly highlights the recent progress regarding the applications of this strategy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huaibin Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiayi Feng
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
40
|
Recent Advances in Protein Caging Tools for Protein Photoactivation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In biosciences and biotechnologies, it is recently critical to promote research regarding the regulation of the dynamic functions of proteins of interest. Light-induced control of protein activity is a strong tool for a wide variety of applications because light can be spatiotemporally irradiated in high resolutions. Therefore, synthetic, semi-synthetic, and genetic engineering techniques for photoactivation of proteins have been actively developed. In this review, the conventional approaches will be outlined. As a solution for overcoming barriers in conventional ones, our recent approaches in which proteins were chemically modified with biotinylated caging reagents are introduced to photo-activate a variety of proteins without genetic engineering and elaborate optimization. This review mainly focuses on protein caging and describes the concepts underlying the development of reported approaches that can contribute to the emergence of both novel protein photo-regulating methods and their killer applications.
Collapse
|
41
|
Mollner TA, Giltrap AM, Zeng Y, Demyanenko Y, Buchanan C, Oehlrich D, Baldwin AJ, Anthony DC, Mohammed S, Davis BG. Reductive site-selective atypical C, Z-type/N2-C2 cleavage allows C-terminal protein amidation. SCIENCE ADVANCES 2022; 8:eabl8675. [PMID: 35394836 PMCID: PMC8993120 DOI: 10.1126/sciadv.abl8675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biomolecule environments can enhance chemistries with the potential to mediate and modulate self-modification (e.g., self-cleavage). While these enhanced modes are found in certain biomolecules (e.g., RNA ribozymes), it is more rare in proteins. Targeted proteolytic cleavage is vital to physiology, biotechnology, and even emerging therapy. Yet, purely chemically induced methods for the site-selective cleavage of proteins remain scarce. Here, as a proof of principle, we designed and tested a system intended to combine protein-enhanced chemistry with tag modification to enable synthetic reductive protein chemistries promoted by diboron. This reductively driven, single-electron chemistry now enables an operationally simple, site-selective cleavage protocol for proteins directed to readily accessible dehydroalanine (Dha) residues as tags under aqueous conditions and in cell lysates. In this way, a mild, efficient, enzyme-free method now allows not only precise chemical proteolysis but also simultaneous use in the removal of affinity tags and/or protein-terminus editing to create altered N- and C-termini such as protein amidation (─CONH2).
Collapse
Affiliation(s)
- Tim A. Mollner
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | | | - Yibo Zeng
- The Rosalind Franklin Institute, Oxfordshire, UK
| | | | - Charles Buchanan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Daniel Oehlrich
- Global Medicinal Chemistry, Janssen Research & Development, Beerse, Belgium
| | - Andrew J. Baldwin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
| | | | - Shabaz Mohammed
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Benjamin G. Davis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
- Corresponding author.
| |
Collapse
|
42
|
A bifunctional vinyl-sulfonium tethered peptide induced by thio-Michael-type addition reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Kim WE, Ishikawa F, Re RN, Suzuki T, Dohmae N, Kakeya H, Tanabe G, Burkart MD. Developing crosslinkers specific for epimerization domain in NRPS initiation modules to evaluate mechanism. RSC Chem Biol 2022; 3:312-319. [PMID: 35359491 PMCID: PMC8905534 DOI: 10.1039/d2cb00005a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are complex multi-modular enzymes containing catalytic domains responsible for the loading and incorporation of amino acids into natural products. These unique molecular factories can produce peptides with nonproteinogenic d-amino acids in which the epimerization (E) domain catalyzes the conversion of l-amino acids to d-amino acids, but its mechanism remains not fully understood. Here, we describe the development of pantetheine crosslinking probes that mimic the natural substrate l-Phe of the initiation module of tyrocidine synthetase, TycA, to elucidate and study the catalytic residues of the E domain. Mechanism-based crosslinking assays and MALDI-TOF MS were used to identify both H743 and E882 as the crosslinking site residues, demonstrating their roles as catalytic bases. Mutagenesis studies further validated these results and allowed the comparison of reactivity between the catalytic residues, concluding that glutamate acts as the dominant nucleophile in the crosslinking reaction, resembling the deprotonation of the Cα-H of amino acids in the epimerization reaction. The crosslinking probes employed in these studies provide new tools for studying the molecular details of E domains, as well as the potential to study C domains. In particular, they would elucidate key information for how these domains function and interact with their substrates in nature, further enhancing the knowledge needed to assist combinatorial biosynthetic efforts of NRPS systems to produce novel compounds.
Collapse
Affiliation(s)
- Woojoo E Kim
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Rebecca N Re
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| |
Collapse
|
44
|
Farrants H, Tebo AG. Fluorescent chemigenetic actuators and indicators for use in living animals. Curr Opin Pharmacol 2022; 62:159-167. [DOI: 10.1016/j.coph.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
|
45
|
Huang Y, Yokoe H, Kaiho-Soma A, Takahashi K, Hirasawa Y, Morita H, Ohtake F, Kanoh N. Design, Synthesis, and Evaluation of Trivalent PROTACs Having a Functionalization Site with Controlled Orientation. Bioconjug Chem 2022; 33:142-151. [PMID: 34878263 DOI: 10.1021/acs.bioconjchem.1c00490] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Trivalent PROTACs having a functionalization site with controlled orientation were designed, synthesized, and evaluated. Based on the X-ray structure of BRD protein degrader MZ1 (1) in complex with human VHL and BRD4BD2, we expected that the 1,2-disubstituted ethyl group near the JQ-1 moiety in MZ1 (1) could be replaced by a planar benzene tether as a platform for further functionalization. To test this hypothesis, we first designed six divalent MZ1 derivatives, 2a-c and 3a-c, by combining three variations of substitution patterns on the benzene ring (1,2-, 1,3-, and 1,4-substitution) and two variations in the number of ethylene glycol units (2 or 1). We then tested the synthesized compounds for the BRD4 degradation activity of each. As expected, we found that 1,2D-EG2-MZ1 (2a), an MZ1 derivative with 1,2-disubstituted benzene possessing two ethylene glycol units, had an activity profile similar to that of MZ1 (1). Based on the structure of 2a, we then synthesized and evaluated four isomeric trivalent MZ1 derivatives, 15a-15d, having a tert-butyl ester unit on the benzene ring as a handle for further functionalization. Among the four isomers, 1,2,5T-EG2-MZ1 (15c) retained a level of BRD4 depletion activity similar to that of 2a without inducing a measurable Hook effect, and its BRD4 depletion kinetics was the same as that of MZ1 (1). Other isomers were also shown to retain BRD4 depletion activity. Thus, the trivalent PROTACs we synthesized here may serve as efficient platforms for further applications.
Collapse
Affiliation(s)
- Yifan Huang
- Graduate School of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Hiromasa Yokoe
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ai Kaiho-Soma
- Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kazunori Takahashi
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yusuke Hirasawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Hiroshi Morita
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Fumiaki Ohtake
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Naoki Kanoh
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
46
|
Gronenborn AM. Small, but powerful and attractive: 19F in biomolecular NMR. Structure 2022; 30:6-14. [PMID: 34995480 PMCID: PMC8797020 DOI: 10.1016/j.str.2021.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 01/09/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for probing structure, dynamics, folding, and interactions at atomic resolution. While naturally occurring magnetically active isotopes, such as 1H, 13C, or 15N, are most commonly used in biomolecular NMR, with 15N and 13C isotopic labeling routinely employed at the present time, 19F is a very attractive and sensitive alternative nucleus, which offers rich information on biomolecules in solution and in the solid state. This perspective summarizes the unique benefits of solution and solid-state 19F NMR spectroscopy for the study of biological systems. Particular focus is on the most recent studies and on future unique and important potential applications of fluorine NMR methodology.
Collapse
|
47
|
Xin X, Zhang Y, Gaetani M, Lundström SL, Zubarev RA, Zhou Y, Corkery DP, Wu YW. Ultrafast and Selective Labeling of Endogenous Proteins Using Affinity-based Benzotriazole Chemistry. Chem Sci 2022; 13:7240-7246. [PMID: 35799822 PMCID: PMC9214888 DOI: 10.1039/d1sc05974b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Chemical modification of proteins is enormously useful for characterizing protein function in complex biological systems and for drug development. Selective labeling of native or endogenous proteins is challenging owing to the existence of distinct functional groups in proteins and in living systems. Chemistry for rapid and selective labeling of proteins remains in high demand. Here we have developed novel affinity labeling probes using benzotriazole (BTA) chemistry. We showed that affinity-based BTA probes selectively and covalently label a lysine residue in the vicinity of the ligand binding site of a target protein with a reaction half-time of 28 s. The reaction rate constant is comparable to the fastest biorthogonal chemistry. This approach was used to selectively label different cytosolic and membrane proteins in vitro and in live cells. BTA chemistry could be widely useful for labeling of native/endogenous proteins, target identification and development of covalent inhibitors. Affinity-based benzotriazole (BTA) probes selectively and covalently label native proteins or endogenous proteins in cells with a fast reaction rate. It is enormously useful for characterizing protein function in biological systems and for drug development.![]()
Collapse
Affiliation(s)
- Xiaoyi Xin
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University Umeå 90187 Sweden
| | - Yu Zhang
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University Umeå 90187 Sweden
| | - Massimiliano Gaetani
- Division of Physiological Chemistry I, Chemical Proteomics Core Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm 17177 Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab) Stockholm 17177 Sweden
| | - Susanna L Lundström
- Division of Physiological Chemistry I, Chemical Proteomics Core Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm 17177 Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab) Stockholm 17177 Sweden
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Chemical Proteomics Core Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm 17177 Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab) Stockholm 17177 Sweden
| | - Yuan Zhou
- School of Medical Technology, Xuzhou Medical University Xuzhou 221004 China
| | - Dale P Corkery
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University Umeå 90187 Sweden
| | - Yao-Wen Wu
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University Umeå 90187 Sweden
| |
Collapse
|
48
|
Shin I, Li H, Lee CH. A Thiol-Activated Fluorogenic Probe for Detection of a Target Protein. Chem Commun (Camb) 2022; 58:6336-6339. [DOI: 10.1039/d2cc02029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorogenic probe for facile and efficient detection of a target protein that binds to a bioactive small molecule was developed. The probe was composed of a thiol-activated fluorogenic...
Collapse
|
49
|
Zhang Z, Nakata E, Dinh H, Saimura M, Rajendran A, Matsuda K, Morii T. Tuning the Reactivity of a Substrate for SNAP-Tag Expands Its Application for Recognition-Driven DNA-Protein Conjugation. Chemistry 2021; 27:18118-18128. [PMID: 34747070 DOI: 10.1002/chem.202103304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 11/09/2022]
Abstract
Recognition-driven modification has been emerging as a novel approach to modifying biomolecular targets of interest site-specifically and efficiently. To this end, protein modular adaptors (MAs) are the ideal reaction model for recognition-driven modification of DNA as they consist of both a sequence-specific DNA-binding domain (DBD) and a self-ligating protein-tag. Coupling DNA recognition by DBD and the chemoselective reaction of the protein tag could provide a highly efficient sequence-specific reaction. However, combining an MA consisting of a reactive protein-tag and its substrate, for example, SNAP-tag and benzyl guanine (BG), revealed rather nonselective reaction with DNA. Therefore new substrates of SNAP-tag have been designed to realize sequence-selective rapid crosslinking reactions of MAs with SNAP-tag. The reactions of substrates with SNAP-tag were verified by kinetic analyses to enable the sequence-selective crosslinking reaction of MA. The new substrate enables the distinctive orthogonality of SNAP-tag against CLIP-tag to achieve orthogonal DNA-protein crosslinking by six unique MAs.
Collapse
Affiliation(s)
- Zhengxiao Zhang
- Institute of Advanced Energy, Kyoto University Uji, Kyoto, 6110011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University Uji, Kyoto, 6110011, Japan
| | - Huyen Dinh
- Institute of Advanced Energy, Kyoto University Uji, Kyoto, 6110011, Japan
| | - Masayuki Saimura
- Institute of Advanced Energy, Kyoto University Uji, Kyoto, 6110011, Japan
| | | | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University Uji, Kyoto, 6110011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University Uji, Kyoto, 6110011, Japan
| |
Collapse
|
50
|
Keijzer JF, Albada B. DNA-assisted site-selective protein modification. Biopolymers 2021; 113:e23483. [PMID: 34878181 PMCID: PMC9285461 DOI: 10.1002/bip.23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
Abstract
Protein modification is important for various types of biomedical research, including proteomics and therapeutics. Many methodologies for protein modification exist, but not all possess the required level of efficiency and site selectivity. This review focuses on the use of DNA to achieve the desired conversions and levels of accuracy in protein modification by using DNA (i) as a template to help concentrate dilute reactants, (ii) as a guidance system to achieve selectivity by binding specific proteins, and (iii) even as catalytic entity or construct to enhance protein modification reactions.
Collapse
Affiliation(s)
- Jordi F Keijzer
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|