1
|
Rowe AA, Reyes S, Velasquez MJ, Yee T, Nettesheim ER, McDonald JG, Wert KJ. Female sex hormones exacerbate retinal neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603104. [PMID: 39071341 PMCID: PMC11275730 DOI: 10.1101/2024.07.11.603104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease and macular degeneration represent major sources of human suffering, yet the factors influencing disease severity remain poorly understood. Sex has been implicated as one potential modifying factor. Here, we show that female sex is a risk factor for worsened outcomes in a model of retinal degeneration. Further, we show that this susceptibility is caused by the presence of female-specific circulating sex hormones. The adverse effect of female sex hormones was specific to diseased retinal neurons, and depletion of these hormones ameliorated this phenotypic effect. These findings provide novel insights into the pathogenesis of neurogenerative diseases and how sex hormones can impact the severity of disease. These findings have far-reaching implications for clinical trial design and the use of hormonal therapy in females with certain neurogenerative disorders.
Collapse
Affiliation(s)
- Ashley A. Rowe
- Department of Ophthalmology, UT Southwestern Medical Center; Dallas, TX, U.S.A
| | - Sofia Reyes
- Department of Ophthalmology, UT Southwestern Medical Center; Dallas, TX, U.S.A
| | | | - Tiffany Yee
- Department of Ophthalmology, UT Southwestern Medical Center; Dallas, TX, U.S.A
| | - Emily R. Nettesheim
- Department of Ophthalmology, UT Southwestern Medical Center; Dallas, TX, U.S.A
| | - Jeffrey G. McDonald
- Center for Human Nutrition, UT Southwestern Medical Center; Dallas, TX, U.S.A
- Department of Molecular Genetics, UT Southwestern Medical Center; Dallas, TX, U.S.A
| | - Katherine J. Wert
- Department of Ophthalmology, UT Southwestern Medical Center; Dallas, TX, U.S.A
- Department of Molecular Biology, UT Southwestern Medical Center; Dallas, TX, U.S.A
- Peter J. O’Donnell, Jr. Brain Institute, UT Southwestern Medical Center; Dallas, TX, U.S.A
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center; Dallas, TX, U.S.A
| |
Collapse
|
2
|
Arabkari V, Barua D, Hossain MM, Webber M, Smith T, Gupta A, Gupta S. miRNA-378 Is Downregulated by XBP1 and Inhibits Growth and Migration of Luminal Breast Cancer Cells. Int J Mol Sci 2023; 25:186. [PMID: 38203358 PMCID: PMC10778669 DOI: 10.3390/ijms25010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
X-box binding protein 1 (XBP1) is a transcription factor that plays a crucial role in the unfolded protein response (UPR), a cellular stress response pathway involved in maintaining protein homeostasis in the endoplasmic reticulum (EnR). While the role of XBP1 in UPR is well-characterised, emerging evidence suggests its involvement in endocrine resistance in breast cancer. The transcriptional activity of spliced XBP1 (XBP1s) is a major component of its biological effects, but the targets of XBP1s in estrogen receptor (ER)-positive breast cancer are not well understood. Here, we show that the expression of miR-378 and PPARGC1B (host gene of miR-378) is downregulated during UPR. Using chemical and genetic methods, we show that XBP1s is necessary and sufficient for the downregulation of miR-378 and PPARGC1B. Our results show that overexpression of miR-378 significantly suppressed cell growth, colony formation, and migration of ER-positive breast cancer cells. Further, we found that expression of miR-378 sensitised the cells to UPR-induced cell death and anti-estrogens. The expression of miR-378 and PPARGC1B was downregulated in breast cancer, and higher expression of miR-378 is associated with better outcomes in ER-positive breast cancer. We found that miR-378 upregulates the expression of several genes that regulate type I interferon signalling. Analysis of separate cohorts of breast cancer patients showed that a gene signature derived from miR-378 upregulated genes showed a strong association with improved overall and recurrence-free survival in breast cancer. Our results suggest a growth-suppressive role for miR-378 in ER-positive breast cancer where downregulation of miR-378 by XBP1 contributes to endocrine resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
- Vahid Arabkari
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - David Barua
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
| | - Muhammad Mosaraf Hossain
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mark Webber
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
| | - Terry Smith
- Molecular Diagnostic Research Group, College of Science, University of Galway, H91TK33 Galway, Ireland;
| | - Ananya Gupta
- Discipline of Physiology, School of Medicine, University of Galway, H91TK33 Galway, Ireland;
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
| |
Collapse
|
3
|
Ingle J, Tirkey A, Pandey S, Basu S. Small-Molecule Endoplasmic Reticulum Stress Inducer Triggers Apoptosis in Cancer Cells. ChemMedChem 2023; 18:e202300433. [PMID: 37964696 DOI: 10.1002/cmdc.202300433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Endoplasmic reticulum (ER) is highly critical for the sub-cellular protein synthesis, post-translational modifications and myriads of signalling pathways to maintain cellular homeostasis. Consequently, dysregulation in the ER functions leads to the ER stress in different pathological situations including cancer. Hence, exploring small molecules to induce ER stress emerged as one of the unorthodox strategies for future cancer therapeutics. However, development of ER targeted novel small molecules remains elusive due to the dearth of ER targeting moieties. Herein we have synthesized a small library of 3-methoxy-pyrrole-enamine through a concise strategy. Screening of this library in cervical (HeLa), colon (HCT-116), breast (MCF7) and lung cancer (A549) cells identified a novel small molecule which localized into the ER of the HeLa cervical cancer cells within 3 h, induced ER stress through the increased expression of ER stress markers (CHOP, IRE1α, PERK, BiP and Cas-12) and triggered the programmed cell death (apoptosis) leading to remarkable HeLa cell killing. This novel small molecule can be explored further as a tool to understand the chemical biology of ER towards the development of ER targeted cancer therapeutics.
Collapse
Affiliation(s)
- Jaypalsing Ingle
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| | - Anjana Tirkey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| | - Shalini Pandey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
He Q, Zhao X, Wu D, Jia S, Liu C, Cheng Z, Huang F, Chen Y, Lu T, Lu S. Hydrophobic tag-based protein degradation: Development, opportunity and challenge. Eur J Med Chem 2023; 260:115741. [PMID: 37607438 DOI: 10.1016/j.ejmech.2023.115741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a promising approach for drug development, particularly for undruggable targets. TPD technology has also been instrumental in overcoming drug resistance. While some TPD molecules utilizing proteolysis-targeting chimera (PROTACs) or molecular glue strategies have been approved or evaluated in clinical trials, hydrophobic tag-based protein degradation (HyT-PD) has also gained significant attention as a tool for medicinal chemists. The increasing number of reported HyT-PD molecules possessing high efficiency in degrading protein and good pharmacokinetic (PK) properties, has further fueled interest in this approach. This review aims to present the design rationale, hydrophobic tags in use, and diverse mechanisms of action of HyT-PD. Additionally, the advantages and disadvantages of HyT-PD in protein degradation are discussed. This review may help inspire the development of more HyT-PDs with superior drug-like properties for clinical evaluation.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siming Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Canlin Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
5
|
Li X, Wang F, Huang L, Yang M, Kuang E. Downregulation of EphA2 stability by RNF5 limits its tumor-suppressive function in HER2-negative breast cancers. Cell Death Dis 2023; 14:662. [PMID: 37816703 PMCID: PMC10564927 DOI: 10.1038/s41419-023-06188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Ephrin receptor A2 (EphA2) plays dual functions in tumorigenesis through ligand-independent tumor promotion or ligand-dependent tumor suppression. However, the regulation of EphA2 tumor-suppressive function remains unclear. Here, we showed that RNF5 interacts with EphA2 and induces its ubiquitination and degradation, decreases the stability and cell surface distribution of EphA2 and alters the balance of its phosphorylation at S897 and Y772. In turn, RNF5 inhibition decreases ERK phosphorylation and increases p53 expression through an increase in the EphA2 level in HER2-negative breast cancer cells. Consequently, RNF5 inhibition increases the adhesion and decreases the migration of HER2-negative breast cancer cells, and RNF5 silencing suppresses the growth of xenograft tumors derived from ER-positive, HER2-negative breast cancer cells with increased EphA2 expression and altered phosphorylation. RNF5 expression is inversely correlated with EphA2 expression in breast cancers, and a high EphA2 level accompanied by a low RNF5 level is related to better survival in patients with ER-positive, HER2-negative breast cancers. These studies revealed that RNF5 negatively regulates EphA2 properties and suppresses its tumor-suppressive function in HER2-negative breast cancers.
Collapse
Affiliation(s)
- Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, Hubei, China
| | - Fan Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Lu Huang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Mengtian Yang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Ersheng Kuang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
6
|
Kische H, Voss C, Haring R, Ollmann TM, Pieper L, Kirschbaum C, Beesdo-Baum K. Hair androgen concentrations and depressive disorders in adolescents from the general population. Eur Child Adolesc Psychiatry 2023; 32:1375-1389. [PMID: 35112167 PMCID: PMC10326161 DOI: 10.1007/s00787-021-01929-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022]
Abstract
Although the link between androgens and depression is well established in adults, the effects of cofactors on this association are less clearly understood, particularly in youth. Epidemiological cohort study of adolescents in Dresden, Germany. Analyses comprised data of 985 individuals assessed at baseline and of 512 individuals at 1-year follow-up. We investigated multivariable regression models for cross-sectional and longitudinal associations of hair testosterone, dehydroepiandrosterone (DHEA), and their cortisol ratios with 12-month diagnoses of major depressive disorder (MDD) and MDD without any anxiety disorder assessed with standardized diagnostic interview (DIA-X-5), and with dimensional depression scores (PHQ-9, PROMIS), separately for males and females. The potential moderating effect of social support was determined. Cross-sectional analyses yielded inverse associations of testosterone and DHEA with MDD and MDD without any anxiety disorders in males. In cross-sectional and longitudinal analyses, baseline ratio cortisol/DHEA was significantly, inversely associated to PROMIS-depression in males. Only cross-sectional associations for ratio cortisol/DHEA and PROMIS-depression remained significant after Bonferroni-Holm correction. No robust associations were observed in female participants. Social support exerted no consistent moderating effect on the investigated association. The present observational cohort study showed no consistent association of hair androgen concentrations with depressive disorders in adolescents. However, findings provide some support for the association between the cortisol/DHEA ratio and depression in males. Longitudinal research designs in large samples are needed to understand the interplay between androgens, depression, and developmental and social factors in youth.
Collapse
Affiliation(s)
- Hanna Kische
- Institute of Clinical Psychology and Psychotherapy, Behavioral Epidemiology, Technische Universität Dresden, Chemnitzer Str. 46, 01187, Dresden, Germany.
| | - Catharina Voss
- Institute of Clinical Psychology and Psychotherapy, Behavioral Epidemiology, Technische Universität Dresden, Chemnitzer Str. 46, 01187, Dresden, Germany
| | - Robin Haring
- Faculty of Applied Public Health, European University of Applied Sciences, Rostock, Germany
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Theresa Magdalena Ollmann
- Institute of Clinical Psychology and Psychotherapy, Behavioral Epidemiology, Technische Universität Dresden, Chemnitzer Str. 46, 01187, Dresden, Germany
| | - Lars Pieper
- Institute of Clinical Psychology and Psychotherapy, Behavioral Epidemiology, Technische Universität Dresden, Chemnitzer Str. 46, 01187, Dresden, Germany
- Center for Clinical Epidemiology and Longitudinal Studies (CELOS), Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Clemens Kirschbaum
- Department of Biopsychology, Technische Universität Dresden, Dresden, Germany
| | - Katja Beesdo-Baum
- Institute of Clinical Psychology and Psychotherapy, Behavioral Epidemiology, Technische Universität Dresden, Chemnitzer Str. 46, 01187, Dresden, Germany
- Center for Clinical Epidemiology and Longitudinal Studies (CELOS), Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Sansbury SE, Serebrenik YV, Lapidot T, Burslem GM, Shalem O. Pooled tagging and hydrophobic targeting of endogenous proteins for unbiased mapping of unfolded protein responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548611. [PMID: 37503003 PMCID: PMC10370017 DOI: 10.1101/2023.07.13.548611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
System-level understanding of proteome organization and function requires methods for direct visualization and manipulation of proteins at scale. We developed an approach enabled by high-throughput gene tagging for the generation and analysis of complex cell pools with endogenously tagged proteins. Proteins are tagged with HaloTag to enable visualization or direct perturbation. Fluorescent labeling followed by in situ sequencing and deep learning-based image analysis identifies the localization pattern of each tag, providing a bird's-eye-view of cellular organization. Next, we use a hydrophobic HaloTag ligand to misfold tagged proteins, inducing spatially restricted proteotoxic stress that is read out by single cell RNA sequencing. By integrating optical and perturbation data, we map compartment-specific responses to protein misfolding, revealing inter-compartment organization and direct crosstalk, and assigning proteostasis functions to uncharacterized genes. Altogether, we present a powerful and efficient method for large-scale studies of proteome dynamics, function, and homeostasis.
Collapse
|
8
|
Barua D, Sultana A, Islam MN, Cox F, Gupta A, Gupta S. RRM2 and CDC6 are novel effectors of XBP1-mediated endocrine resistance and predictive markers of tamoxifen sensitivity. BMC Cancer 2023; 23:288. [PMID: 36997866 PMCID: PMC10061897 DOI: 10.1186/s12885-023-10745-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Endocrine-resistant breast cancers have elevated expression of XBP1, where it drives endocrine resistance by controlling the expression of its target genes. Despite the in-depth understanding of the biological functions of XBP1 in ER-positive breast cancer, effectors of endocrine resistance downstream of XBP1 are poorly understood. The aim of this study was to identify the XBP1-regulated genes contributing to endocrine resistance in breast cancer. METHODS XBP1 deficient sub-clones in MCF7 cells were generated using the CRISPR-Cas9 gene knockout strategy and were validated using western blot and RT-PCR. Cell viability and cell proliferation were evaluated using the MTS assay and colony formation assay, respectively. Cell death and cell cycle analysis were determined using flow cytometry. Transcriptomic data was analysed to identify XBP1-regulated targets and differential expression of target genes was evaluated using western blot and qRT-PCR. Lentivirus and retrovirus transfection were used to generate RRM2 and CDC6 overexpressing clones, respectively. The prognostic value of the XBP1-gene signature was analysed using Kaplan-Meier survival analysis. RESULTS Deletion of XBP1 compromised the upregulation of UPR-target genes during conditions of endoplasmic reticulum (EnR) stress and sensitized cells to EnR stress-induced cell death. Loss of XBP1 in MCF7 cells decreased cell growth, attenuated the induction of estrogen-responsive genes and sensitized them to anti-estrogen agents. The expression of cell cycle associated genes RRM2, CDC6, and TOP2A was significantly reduced upon XBP1 deletion/inhibition in several ER-positive breast cancer cells. Expression of RRM2, CDC6, and TOP2A was increased upon estrogen stimulation and in cells harbouring point-mutants (Y537S, D538G) of ESR1 in steroid free conditions. Ectopic expression of RRM2 and CDC6 increased cell growth and reversed the hypersensitivity of XBP1 KO cells towards tamoxifen conferring endocrine resistance. Importantly, increased expression of XBP1-gene signature was associated with poor outcome and reduced efficacy of tamoxifen treatment in ER-positive breast cancer. CONCLUSIONS Our results suggest that RRM2 and CDC6 downstream of XBP1 contribute to endocrine resistance in ER-positive breast cancer. XBP1-gene signature is associated with poor outcome and response to tamoxifen in ER-positive breast cancer.
Collapse
Affiliation(s)
- David Barua
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Afrin Sultana
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Md Nahidul Islam
- Discipline of Biochemistry, School of Medicine, University of Galway, Galway, Ireland
| | - Fergus Cox
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Ananya Gupta
- Discipline of Physiology, Human Biology Building, School of Medicine, University of Galway, Galway, Ireland
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland.
| |
Collapse
|
9
|
Targeted Protein Unfolding at the Golgi Apparatus. Methods Mol Biol 2022; 2557:645-659. [PMID: 36512243 DOI: 10.1007/978-1-0716-2639-9_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maintaining protein homeostasis (proteostasis) is vital to cellular and organismal health. How the Golgi apparatus, the central protein maturation and sorting station in the cell, manages misfolded proteins to maintain proteostasis is still poorly understood. Here we present a strategy for targeted protein unfolding at the Golgi that enables studying Golgi-related protein quality control and stress-signaling pathways. Targeted protein unfolding is induced by small molecule-based chemical biology approaches-hydrophobic tagging and the use of a destabilization domain. Imaging studies allow visualizing quality control (QC) phenotypes, such as the formation of QC carriers and Golgi-to-endoplasmic reticulum trafficking, and correlating these phenotypes with other trafficking processes.
Collapse
|
10
|
Mo J, Chen J, Shi Y, Sun J, Wu Y, Liu T, Zhang J, Zheng Y, Li Y, Chen Z. Third-Generation Covalent TMP-Tag for Fast Labeling and Multiplexed Imaging of Cellular Proteins. Angew Chem Int Ed Engl 2022; 61:e202207905. [PMID: 35816052 DOI: 10.1002/anie.202207905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 11/10/2022]
Abstract
Self-labeling protein tags can introduce advanced molecular motifs to specific cellular proteins. Here we introduce the third-generation covalent TMP-tag (TMP-tag3) and showcase its comparison with HaloTag and SNAP-tag. TMP-tag3 is based on a proximity-induced covalent Michael addition between an engineered Cys of E. coli dihydrofolate reductase (eDHFR) and optimized trimethoprim (TMP)-acrylamide conjugates with minimal linkers. Compared to previous versions, the TMP-tag3 features an enhanced permeability when conjugated to fluorogenic spirocyclic rhodamines. As a small protein, the 18-kD eDHFR is advantageous in tagging selected mitochondrial proteins which are less compatible with bulkier HaloTag fusions. The proximal N-C termini of eDHFR also enable facile insertion into various protein loops. TMP-tag3, HaloTag, and SNAP-tag are orthogonal to each other, collectively forming a toolbox for multiplexed live-cell imaging of cellular proteins under fluorescence nanoscopy.
Collapse
Affiliation(s)
- Jiaming Mo
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Yiheyuan Road No.5, Beijing, 100871, China
| | - Jingting Chen
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Yiheyuan Road No.5, Beijing, 100871, China
| | - Yabo Shi
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Yiheyuan Road No.5, Beijing, 100871, China
| | - Jingfu Sun
- PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800, Jiangsu, China
| | - Yunxiang Wu
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Yiheyuan Road No.5, Beijing, 100871, China
| | - Tianyan Liu
- Peking-Tsinghua Center for Life Science, Peking University, Beijing, Yiheyuan Road No.5, Beijing, 100871, China
| | - Junwei Zhang
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Yiheyuan Road No.5, Beijing, 100871, China
| | - Yu Zheng
- Peking-Tsinghua Center for Life Science, Peking University, Beijing, Yiheyuan Road No.5, Beijing, 100871, China.,State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Science, Peking University, Yiheyuan Road No.5, Beijing, 100871, China
| | - Yulong Li
- Peking-Tsinghua Center for Life Science, Peking University, Beijing, Yiheyuan Road No.5, Beijing, 100871, China.,State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Science, Peking University, Yiheyuan Road No.5, Beijing, 100871, China.,Chinese Institute for Brain Research, Beijing, 102206, China
| | - Zhixing Chen
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Yiheyuan Road No.5, Beijing, 100871, China.,PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800, Jiangsu, China.,Peking-Tsinghua Center for Life Science, Peking University, Beijing, Yiheyuan Road No.5, Beijing, 100871, China
| |
Collapse
|
11
|
Eesmaa A, Yu LY, Göös H, Danilova T, Nõges K, Pakarinen E, Varjosalo M, Lindahl M, Lindholm P, Saarma M. CDNF Interacts with ER Chaperones and Requires UPR Sensors to Promote Neuronal Survival. Int J Mol Sci 2022; 23:ijms23169489. [PMID: 36012764 PMCID: PMC9408947 DOI: 10.3390/ijms23169489] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is a neurotrophic factor that has beneficial effects on dopamine neurons in both in vitro and in vivo models of Parkinson's disease (PD). CDNF was recently tested in phase I-II clinical trials for the treatment of PD, but the mechanisms underlying its neuroprotective properties are still poorly understood, although studies have suggested its role in the regulation of endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR). The aim of this study was to investigate the mechanism of action of CDNF through analyzing the involvement of UPR signaling in its anti-apoptotic function. We used tunicamycin to induce ER stress in mice in vivo and used cultured primary neurons and found that CDNF expression is regulated by ER stress in vivo and that the involvement of UPR pathways is important for the neuroprotective function of CDNF. Moreover, we used AP-MS and BiFC to perform the first interactome screening for CDNF and report novel binding partners of CDNF. These findings allowed us to hypothesize that CDNF protects neurons from ER-stress-inducing agents by modulating UPR signaling towards cell survival outcomes.
Collapse
|
12
|
Mo J, Chen J, Shi Y, Sun J, Wu Y, Liu T, Zhang J, Zheng Y, Li Y, Chen Z. Third‐Generation Covalent TMP‐Tag for Fast Labeling and Multiplexed Imaging of Cellular Proteins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiaming Mo
- Peking University College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center CHINA
| | - Jingting Chen
- Peking University College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center CHINA
| | - Yabo Shi
- Peking University College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center CHINA
| | - Jingfu Sun
- PKU-Nanjing Institute of translational medicine n/a CHINA
| | - Yunxiang Wu
- Peking University College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center CHINA
| | - Tianyan Liu
- Peking University College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center CHINA
| | - Junwei Zhang
- Peking University College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center CHINA
| | - Yu Zheng
- Peking University School of life science CHINA
| | - Yulong Li
- Peking University School of life science CHINA
| | - Zhixing Chen
- Peking University College of Future Technology 5 Yiheyuan Rd. 100871 Beijing CHINA
| |
Collapse
|
13
|
Reggiori F, Molinari M. ER-phagy: mechanisms, regulation and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev 2022; 102:1393-1448. [PMID: 35188422 PMCID: PMC9126229 DOI: 10.1152/physrev.00038.2021] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ER-phagy (reticulo-phagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., auto-phagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates to the control of ER size and activity during ER stress, the re-establishment of ER homeostasis after ER stress resolution and the removal of ER parts, in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network, and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, grid.4830.fUniversity of Groningen, Netherlands
| | - Maurizio Molinari
- Protein Folding and Quality Control, grid.7722.0Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
14
|
CHEN W, YOUNIS MH, ZHAO Z, CAI W. Recent biomedical advances enabled by HaloTag technology. BIOCELL 2022; 46:1789-1801. [PMID: 35601815 PMCID: PMC9119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The knowledge of interactions among functional proteins helps researchers understand disease mechanisms and design potential strategies for treatment. As a general approach, the fluorescent and affinity tags were employed for exploring this field by labeling the Protein of Interest (POI). However, the autofluorescence and weak binding strength significantly reduce the accuracy and specificity of these tags. Conversely, HaloTag, a novel self-labeling enzyme (SLE) tag, could quickly form a covalent bond with its ligand, enabling fast and specific labeling of POI. These desirable features greatly increase the accuracy and specificity, making the HaloTag a valuable system for various applications ranging from imaging to immobilization of POI. Notably, the HaloTag technique has already been successfully employed in a series of studies with excellent efficiency. In this review, we summarize the development of HaloTag and recent advanced investigations associated with HaloTag, including in vitro imaging (e.g., POI imaging, cellular condition monitoring, microorganism imaging, system development), in vivo imaging, biomolecule immobilization (e.g., POI collection, protein/nuclear acid interaction and protein structure analysis), targeted degradation (e.g., L-AdPROM), and more. We also present a systematic discussion regarding the future direction and challenges of the HaloTag technique.
Collapse
Affiliation(s)
- Weiyu CHEN
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Muhsin H. YOUNIS
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, WI, 53705, USA
| | - Zhongkuo ZHAO
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China,Address correspondence to: Zhongkuo Zhao, ; Weibo Cai,
| | - Weibo CAI
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, WI, 53705, USA,Address correspondence to: Zhongkuo Zhao, ; Weibo Cai,
| |
Collapse
|
15
|
Kryvenko V, Vadász I. Mechanisms of Hypercapnia-Induced Endoplasmic Reticulum Dysfunction. Front Physiol 2021; 12:735580. [PMID: 34867444 PMCID: PMC8640499 DOI: 10.3389/fphys.2021.735580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/27/2021] [Indexed: 01/16/2023] Open
Abstract
Protein transcription, translation, and folding occur continuously in every living cell and are essential for physiological functions. About one-third of all proteins of the cellular proteome interacts with the endoplasmic reticulum (ER). The ER is a large, dynamic cellular organelle that orchestrates synthesis, folding, and structural maturation of proteins, regulation of lipid metabolism and additionally functions as a calcium store. Recent evidence suggests that both acute and chronic hypercapnia (elevated levels of CO2) impair ER function by different mechanisms, leading to adaptive and maladaptive regulation of protein folding and maturation. In order to cope with ER stress, cells activate unfolded protein response (UPR) pathways. Initially, during the adaptive phase of ER stress, the UPR mainly functions to restore ER protein-folding homeostasis by decreasing protein synthesis and translation and by activation of ER-associated degradation (ERAD) and autophagy. However, if the initial UPR attempts for alleviating ER stress fail, a maladaptive response is triggered. In this review, we discuss the distinct mechanisms by which elevated CO2 levels affect these molecular pathways in the setting of acute and chronic pulmonary diseases associated with hypercapnia.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
16
|
Asawa Y, Nishida K, Kawai K, Domae K, Ban HS, Kitazaki A, Asami H, Kohno JY, Okada S, Tokuma H, Sakano D, Kume S, Tanaka M, Nakamura H. Carborane as an Alternative Efficient Hydrophobic Tag for Protein Degradation. Bioconjug Chem 2021; 32:2377-2385. [PMID: 34699716 DOI: 10.1021/acs.bioconjchem.1c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carboranes 1 and 2 were designed and synthesized for hydrophobic tag (HyT)-induced degradation of HaloTag fusion proteins. The levels of the hemagglutinin (HA)-HaloTag2-green fluorescent protein (EGFP) stably expressed in Flp-In 293 cells were significantly reduced by HyT13, HyT55, and carboranes 1 and 2, with expression levels of 49, 79, 43, and 65%, respectively, indicating that carborane is an alternative novel hydrophobic tag (HyT) for protein degradation under an intracellular environment. To clarify the mechanism of HyT-induced proteolysis, bovine serum albumin (BSA) was chosen as an extracellular protein and modified with maleimide-conjugated m-carborane (MIC). The measurement of the ζ-potentials and the lysine residue modification with fluorescein isothiocyanate (FITC) of BSA-MIC conjugates suggested that the conjugation of carborane induced the exposure of lysine residues on BSA, resulting in the degradation via ubiquitin E3 ligase-related proteasome pathways in the cell.
Collapse
Affiliation(s)
- Yasunobu Asawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Kawai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kiyotaka Domae
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Akihiro Kitazaki
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Hiroya Asami
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Jun-Ya Kohno
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Satoshi Okada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiraku Tokuma
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Daisuke Sakano
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
17
|
Ramachandran S, Ma TS, Griffin J, Ng N, Foskolou IP, Hwang MS, Victori P, Cheng WC, Buffa FM, Leszczynska KB, El-Khamisy SF, Gromak N, Hammond EM. Hypoxia-induced SETX links replication stress with the unfolded protein response. Nat Commun 2021; 12:3686. [PMID: 34140498 PMCID: PMC8211819 DOI: 10.1038/s41467-021-24066-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Tumour hypoxia is associated with poor patient prognosis and therapy resistance. A unique transcriptional response is initiated by hypoxia which includes the rapid activation of numerous transcription factors in a background of reduced global transcription. Here, we show that the biological response to hypoxia includes the accumulation of R-loops and the induction of the RNA/DNA helicase SETX. In the absence of hypoxia-induced SETX, R-loop levels increase, DNA damage accumulates, and DNA replication rates decrease. Therefore, suggesting that, SETX plays a role in protecting cells from DNA damage induced during transcription in hypoxia. Importantly, we propose that the mechanism of SETX induction in hypoxia is reliant on the PERK/ATF4 arm of the unfolded protein response. These data not only highlight the unique cellular response to hypoxia, which includes both a replication stress-dependent DNA damage response and an unfolded protein response but uncover a novel link between these two distinct pathways.
Collapse
Affiliation(s)
- Shaliny Ramachandran
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Tiffany S Ma
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Jon Griffin
- Department of Molecular Biology and Biotechnology, Healthy Lifespan and Neuroscience Institute, Firth Court, University of Sheffield, Sheffield, UK
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Natalie Ng
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Iosifina P Foskolou
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Ming-Shih Hwang
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Pedro Victori
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Wei-Chen Cheng
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Francesca M Buffa
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Katarzyna B Leszczynska
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, Healthy Lifespan and Neuroscience Institute, Firth Court, University of Sheffield, Sheffield, UK
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ester M Hammond
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Ryan A, Liu J, Deiters A. Targeted Protein Degradation through Fast Optogenetic Activation and Its Application to the Control of Cell Signaling. J Am Chem Soc 2021; 143:9222-9229. [PMID: 34121391 DOI: 10.1021/jacs.1c04324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of methodologies for optically triggered protein degradation enables the study of dynamic protein functions, such as those involved in cell signaling, that are difficult to be probed with traditional genetic techniques. Here, we describe the design and implementation of a novel light-controlled peptide degron conferring N-end pathway degradation to its protein target. The degron comprises a photocaged N-terminal amino acid and a lysine-rich, 13-residue linker. By caging the N-terminal residue, we were able to optically control N-degron recognition by an E3 ligase, consequently controlling ubiquitination and proteasomal degradation of the target protein. We demonstrate broad applicability by applying this approach to a diverse set of target proteins, including EGFP, firefly luciferase, the kinase MEK1, and the phosphatase DUSP6 (also known as MKP3). The caged degron can be used with minimal protein engineering and provides virtually complete, light-triggered protein degradation on a second to minute time scale.
Collapse
Affiliation(s)
- Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jihe Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Synthesis and evaluation of bifunctional PTP4A3 phosphatase inhibitors activating the ER stress pathway. Bioorg Med Chem Lett 2021; 46:128167. [PMID: 34089839 DOI: 10.1016/j.bmcl.2021.128167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
We developed JMS-053, a potent inhibitor of the dual specificity phosphatase PTP4A3 that is potentially suitable for cancer therapy. Due to the emerging role of the unfolded protein response (UPR) in cancer pathology, we sought to identify derivatives that combine PTP4A3 inhibition with induction of endoplasmatic reticulum (ER) stress, with the goal to generate more potent anticancer agents. We have now generated bifunctional analogs that link the JMS-053 pharmacophore to an adamantyl moiety and act in concert with the phosphatase inhibitor to induce ER stress and cell death. The most potent compound in this series, 7a, demonstrated a ca. 5-fold increase in cytotoxicity in a breast cancer cell line and strong activation of UPR and ER stress response genes in spite of a ca. 13-fold decrease in PTP4A3 inhibition. These results demonstrate that the combination of phosphatase inhibition with UPR/ER-stress upregulation potentiates efficacy.
Collapse
|
20
|
SOX2OT Long Noncoding RNA Is Regulated by the UPR in Oestrogen Receptor-Positive Breast Cancer. SCI 2021. [DOI: 10.3390/sci3020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Endoplasmic reticulum (ENR) stress perturbs cell homeostasis and induces the unfolded protein response (UPR). In breast cancer, this process is activated by oestrogen deprivation and is associated with tamoxifen resistance. We present evidence that the transcription factor SOX2 and the long noncoding RNA SOX2 overlapping transcript (SOX2OT) are upregulated in oestrogen receptor-positive (ER+) breast cancer and in response to oestrogen deprivation. We examined the effect of the UPR on SOX2 and SOX2OT expression and the effect of SOX2OT on UPR pathways in breast cancer cell lines. The induction of the UPR by thapsigargin or glucose deprivation upregulates SOX2OT expression. This upregulation is also shown with the anti-oestrogen 4OH-tamoxifen and mTOR inhibitor everolimus in ER + breast cancer cells that are sensitive to oestrogen deprivation or everolimus treatment. SOX2OT overexpression decreased BiP and PERK expression. This effect of SOX2OT overexpression was confirmed on BiP and PERK pathway by q-PCR. Our results show that a long noncoding RNA regulates the UPR and evince a new function of SOX2OT as a participant of ENR stress reprogramming of breast cancer cells.
Collapse
|
21
|
Vaginal Aging-What We Know and What We Do Not Know. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094935. [PMID: 34066357 PMCID: PMC8125346 DOI: 10.3390/ijerph18094935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
The aging of the organism is a complex and multifactorial process. It can be viewed in the context of the whole organism, but also of individual tissues and organs. The problem of vaginal aging and the related genitourinary syndrome of menopause significantly reduces the quality of women’s lives. The aging process of the vagina includes estrogen deficiencies, changes in the microbiome, and changes at the genetic level associated with DNA methylation. During the menopause, the number of Lactobacillus colonies decreases, and the number of pathological bacteria colonies increases. The decrease in estrogen levels results in a decrease in vaginal epithelial permeability, perfusion, and elastin levels, resulting in vaginal dryness and atrophy. Changes at the molecular level are the least clear. It can also be assumed that, similarly to the tissues studied so far, there are changes in cytosine methylation and TET (ten-eleven translocation) expression. The interrelationships between DNA methylation, hormonal changes, and the vaginal microbiome have not yet been fully elucidated.
Collapse
|
22
|
Molinari M. ER-phagy responses in yeast, plants, and mammalian cells and their crosstalk with UPR and ERAD. Dev Cell 2021; 56:949-966. [PMID: 33765438 DOI: 10.1016/j.devcel.2021.03.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/24/2022]
Abstract
ER-phagy, literally endoplasmic reticulum (ER)-eating, defines the constitutive or regulated clearance of ER portions within metazoan endolysosomes or yeast and plant vacuoles. The advent of electron microscopy led to the first observations of ER-phagy over 60 years ago, but only recently, with the discovery of a set of regulatory proteins named ER-phagy receptors, has it been dissected mechanistically. ER-phagy receptors are activated by a variety of pleiotropic and ER-centric stimuli. They promote ER fragmentation and engage luminal, membrane-bound, and cytosolic factors, eventually driving lysosomal clearance of select ER domains along with their content. After short historical notes, this review introduces the concept of ER-phagy responses (ERPRs). ERPRs ensure lysosomal clearance of ER portions expendable during nutrient shortage, nonfunctional, present in excess, or containing misfolded proteins. They cooperate with unfolded protein responses (UPRs) and with ER-associated degradation (ERAD) in determining ER size, function, and homeostasis.
Collapse
Affiliation(s)
- Maurizio Molinari
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland; School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
23
|
Furukawa M, Izumo N, Manabe T, Kurono H, Hayamizu K, Nakano M, Watanabe Y. Therapeutic effects of sertraline on improvement of Ovariectomy-induced decreased spontaneous activity in mice. Drug Discov Ther 2021; 15:28-34. [PMID: 33627575 DOI: 10.5582/ddt.2020.03117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have already reported that ovariectomized (OVX) rats reduced the spontaneous activity during the dark period due to the decease of serotonin release in the amygdala. In this study, we examined the potential of sertraline, a selective serotonin reuptake inhibitor, on the recovery of less spontaneous activity seen in mice with OVX-induced despair-like behaviors. Female 9-week old ICR mice were underwent either OVX or sham surgery. Sertraline (10 mg/kg/day, s.c.) or saline were started to administer to each group for 8 weeks (6 times/week) from the 8th week after OVX. Each spontaneous activity of mouse was evaluated during the dark period (19:00-07:00) using an infrared sensor. Moreover, mRNA expression levels of tryptophan hydroxylase (TPH) and X-box binding protein 1 (XBP1) were measured in the hippocampus and prefrontal cortex using by a real-time PCR method. We found out that the OVX-induced despair-like behaviors were improved by the continuous administration of sertraline. After treatment of OVX, our real-time PCR data showed that sertraline significantly suppressed the upregulation of XBP1 expression levels in both hippocampus and prefrontal cortex, although this suppression of the downregulation of TPH expression levels was seen in only hippocampus. These results suggest that sertraline improves the decrease in spontaneous activity induced by OVX assessed by the hippocampus suppressing decreased serotonin synthesis in the serotonergic neuron.
Collapse
Affiliation(s)
- Megumi Furukawa
- Center for pharmaceutical education, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Nobuo Izumo
- Laboratory of Food Chemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Takayuki Manabe
- Laboratory for Neuroanatomy and Neuropharmacology, Department of Nursing, Faculty of Nursing, Chukyogakuin University, Mizunami, Gifu, Japan
| | - Haruna Kurono
- Laboratory for Neuroanatomy and Neuropharmacology, Department of Nursing, Faculty of Nursing, Chukyogakuin University, Mizunami, Gifu, Japan
| | - Kohsuke Hayamizu
- Laboratory of Food Chemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Makoto Nakano
- Laboratory of Food Chemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yasuo Watanabe
- General Health Medical Center, Yokohama University of Pharmacy, Yokohama, Japan
| |
Collapse
|
24
|
Arystarkhova E, Ozelius LJ, Brashear A, Sweadner KJ. Misfolding, altered membrane distributions, and the unfolded protein response contribute to pathogenicity differences in Na,K-ATPase ATP1A3 mutations. J Biol Chem 2021; 296:100019. [PMID: 33144327 PMCID: PMC7949067 DOI: 10.1074/jbc.ra120.015271] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Missense mutations in ATP1A3, the α3 isoform of Na,K-ATPase, cause neurological phenotypes that differ greatly in symptoms and severity. A mechanistic basis for differences is lacking, but reduction of activity alone cannot explain them. Isogenic cell lines with endogenous α1 and inducible exogenous α3 were constructed to compare mutation properties. Na,K-ATPase is made in the endoplasmic reticulum (ER), but the glycan-free catalytic α subunit complexes with glycosylated β subunit in the ER to proceed through Golgi and post-Golgi trafficking. We previously observed classic evidence of protein misfolding in mutations with severe phenotypes: differences in ER retention of endogenous β1 subunit, impaired trafficking of α3, and cytopathology, suggesting that they misfold during biosynthesis. Here we tested two mutations associated with different phenotypes: D923N, which has a median age of onset of hypotonia or dystonia at 3 years, and L924P, with severe infantile epilepsy and profound impairment. Misfolding during biosynthesis in the ER activates the unfolded protein response, a multiarmed program that enhances protein folding capacity, and if that fails, triggers apoptosis. L924P showed more nascent protein retention in ER than D923N; more ER-associated degradation of α3 (ERAD); larger differences in Na,K-ATPase subunit distributions among subcellular fractions; and greater inactivation of eIF2α, a major defensive step of the unfolded protein response. In L924P there was also altered subcellular distribution of endogenous α1 subunit, analogous to a dominant negative effect. Both mutations showed pro-apoptotic sensitization by reduced phosphorylation of BAD. Encouragingly, however, 4-phenylbutyrate, a pharmacological corrector, reduced L924P ER retention, increased α3 expression, and restored morphology.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Laboratory of Membrane Biology, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allison Brashear
- Department of Medicine, University of California at Davis Medical School, Sacramento, California, USA
| | - Kathleen J Sweadner
- Laboratory of Membrane Biology, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
25
|
Luh LM, Scheib U, Juenemann K, Wortmann L, Brands M, Cromm PM. Prey for the Proteasome: Targeted Protein Degradation-A Medicinal Chemist's Perspective. Angew Chem Int Ed Engl 2020; 59:15448-15466. [PMID: 32428344 PMCID: PMC7496094 DOI: 10.1002/anie.202004310] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Targeted protein degradation (TPD), the ability to control a proteins fate by triggering its degradation in a highly selective and effective manner, has created tremendous excitement in chemical biology and drug discovery within the past decades. The TPD field is spearheaded by small molecule induced protein degradation with molecular glues and proteolysis targeting chimeras (PROTACs) paving the way to expand the druggable space and to create a new paradigm in drug discovery. However, besides the therapeutic angle of TPD a plethora of novel techniques to modulate and control protein levels have been developed. This enables chemical biologists to better understand protein function and to discover and verify new therapeutic targets. This Review gives a comprehensive overview of chemical biology techniques inducing TPD. It explains the strengths and weaknesses of these methods in the context of drug discovery and discusses their future potential from a medicinal chemist's perspective.
Collapse
Affiliation(s)
- Laura M. Luh
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Ulrike Scheib
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Katrin Juenemann
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Lars Wortmann
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Michael Brands
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Philipp M. Cromm
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| |
Collapse
|
26
|
Luh LM, Scheib U, Juenemann K, Wortmann L, Brands M, Cromm PM. Beute für das Proteasom: Gezielter Proteinabbau aus medizinalchemischer Perspektive. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Laura M. Luh
- Research and Development Pharmaceuticals Bayer AG 13353 Berlin Germany
| | - Ulrike Scheib
- Research and Development Pharmaceuticals Bayer AG 13353 Berlin Germany
| | - Katrin Juenemann
- Research and Development Pharmaceuticals Bayer AG 13353 Berlin Germany
| | - Lars Wortmann
- Research and Development Pharmaceuticals Bayer AG 13353 Berlin Germany
| | - Michael Brands
- Research and Development Pharmaceuticals Bayer AG 13353 Berlin Germany
| | - Philipp M. Cromm
- Research and Development Pharmaceuticals Bayer AG 13353 Berlin Germany
| |
Collapse
|
27
|
Wu T, Yoon H, Xiong Y, Dixon-Clarke SE, Nowak RP, Fischer ES. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat Struct Mol Biol 2020; 27:605-614. [PMID: 32541897 PMCID: PMC7923177 DOI: 10.1038/s41594-020-0438-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Controlled perturbation of protein activity is essential to study protein function in cells and living organisms. Small molecules that hijack the cellular protein ubiquitination machinery to selectively degrade proteins of interest, so-called degraders, have recently emerged as alternatives to selective chemical inhibitors, both as therapeutic modalities and as powerful research tools. These systems offer unprecedented temporal and spatial control over protein function. Here, we review recent developments in this field, with a particular focus on the use of degraders as research tools to interrogate complex biological problems.
Collapse
Affiliation(s)
- Tao Wu
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hojong Yoon
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yuan Xiong
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah E Dixon-Clarke
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Barua D, Gupta A, Gupta S. Targeting the IRE1-XBP1 axis to overcome endocrine resistance in breast cancer: Opportunities and challenges. Cancer Lett 2020; 486:29-37. [PMID: 32446861 DOI: 10.1016/j.canlet.2020.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 05/18/2020] [Indexed: 12/30/2022]
Abstract
Estrogen receptor 1 (ESR1, which encodes estrogen receptor-alpha) is a key driver gene for the initiation and progression of hormone receptor-positive breast cancer. Estrogen receptor-alpha (ER) is expressed in up to 70% of cases, and patients are routinely treated with endocrine therapies. However, the development of resistance over time is common and occurs in one-third of ER-positive breast tumors, leading to disease progression and death. X-box binding protein 1 (XBP1), a key component of the unfolded protein response (UPR) and ER signaling pathway, generates a positive feedback regulatory loop that leads to increased expression of XBP1 and ER in luminal breast cancer. In this review, we highlight new insights into the mechanisms of crosstalk between XBP1 and ER signaling and its clinical implications. Next, we describe the key signaling nodes that play an important role in XBP1-mediated endocrine resistance in breast cancer. Further, we discuss XBP1 gene mutations in breast cancer and the role of these mutations in the emergence of endocrine resistance and response to treatment. Finally, we discuss the current state and future directions for targeting XBP1 in combination with standard endocrine therapy to improve clinical outcomes in endocrine-resistant breast cancer patients.
Collapse
Affiliation(s)
- David Barua
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, Galway, Ireland
| | - Ananya Gupta
- Discipline of Physiology, Human Biology Building, School of Medicine, National University of Ireland-Galway, Galway, Ireland
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, Galway, Ireland.
| |
Collapse
|
29
|
Guan S, Zhang Q, Bao J, Hu R, Czech T, Tang J. Recognition Sites for Cancer-targeting Drug Delivery Systems. Curr Drug Metab 2020; 20:815-834. [PMID: 31580248 DOI: 10.2174/1389200220666191003161114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Target-homing drug delivery systems are now gaining significant attention for use as novel therapeutic approaches in antitumor targeting for cancer therapy. Numerous targeted drug delivery systems have been designed to improve the targeting effects because these systems can display a range of favorable properties, thus, providing suitable characteristics for clinical applicability of anticancer drugs, such as increasing the solubility, and improving the drug distribution at target sites. The majority of these targeting systems are designed with respect to differences between cancerous and normal tissues, for instance, the low pH of tumor tissues or overexpressed receptors on tumor cell membranes. Due to the growing number of targeting possibilities, it is important to know the tumor-specific recognition strategies for designing novel, targeted, drug delivery systems. Herein, we identify and summarize literature pertaining to various recognition sites for optimizing the design of targeted drug delivery systems to augment current chemotherapeutic approaches. OBJECTIVE This review focuses on the identification of the recognition sites for developing targeted drug delivery systems for use in cancer therapeutics. METHODS We have reviewed and compiled cancer-specific recognition sites and their abnormal characteristics within tumor tissues (low pH, high glutathione, targetable receptors, etc.), tumor cells (receptor overexpression or tumor cell membrane changes) and tumor cell organelles (nuclear and endoplasmic reticular dysregulation) utilizing existing scientific literature. Moreover, we have highlighted the design of some targeted drug delivery systems that can be used as homing tools for these recognition sites. RESULTS AND CONCLUSION Targeted drug delivery systems are a promising therapeutic approach for tumor chemotherapy. Additional research focused on finding novel recognition sites, and subsequent development of targeting moieties for use with drug delivery systems will aid in the evaluation and clinical application of new and improved chemotherapeutics.
Collapse
Affiliation(s)
- Siyu Guan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rongfeng Hu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Anhui "115" Xin'an Medicine Research & Development Innovation Team, Hefei 230038, China
| | - Tori Czech
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Jihui Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
30
|
SOX2OT Long Noncoding RNA Is Regulated by the UPR in Oestrogen Receptor-Positive Breast Cancer. SCI 2020. [DOI: 10.3390/sci2020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Endoplasmic reticulum (ER) stress perturbs cell homeostasis and induces the unfolded protein response (UPR). In breast cancer, this process is activated by oestrogen deprivation and is associated with tamoxifen resistance. We present evidence that the transcription factor SOX2 and the long noncoding RNA SOX2 overlapping transcript (SOX2OT) are up-regulated in oestrogen receptor-positive (ER+) breast cancer and in response to oestrogen deprivation. We examined the effect of the UPR on SOX2 and SOX2OT expression, and the effect of SOX2OT on UPR pathways in breast cancer cell lines. The induction of the UPR by thapsigargin or glucose deprivation up-regulates SOX2OT expression. This up-regulation is also shown with the anti-oestrogen 4OH-tamoxifen and mTOR inhibitor everolimus in ER + breast cancer cells that are sensitive to oestrogen deprivation or everolimus treatment. SOX2OT overexpression decreased BiP and PERK expression. This effect of SOX2OT overexpression was confirmed on BiP and PERK pathway by q-PCR. Our results show that a long noncoding RNA regulates the UPR and evince a new function of SOX2OT as a participant of ER stress reprogramming of breast cancer cells.
Collapse
|
31
|
Burslem GM, Crews CM. Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Cell 2020; 181:102-114. [PMID: 31955850 PMCID: PMC7319047 DOI: 10.1016/j.cell.2019.11.031] [Citation(s) in RCA: 561] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022]
Abstract
New biological tools provide new techniques to probe fundamental biological processes. Here we describe the burgeoning field of proteolysis-targeting chimeras (PROTACs), which are capable of modulating protein concentrations at a post-translational level by co-opting the ubiquitin-proteasome system. We describe the PROTAC technology and its application to drug discovery and provide examples where PROTACs have enabled novel biological insights. Furthermore, we provide a workflow for PROTAC development and use and discuss the benefits and issues associated with PROTACs. Finally, we compare PROTAC-mediated protein-level modulation with other technologies, such as RNAi and genome editing.
Collapse
Affiliation(s)
- George M Burslem
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; Departments of Chemistry and Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
32
|
Mao Y, Wang C, Tian X, Huang Y, Zhang Y, Wu H, Yang S, Xu K, Liu Y, Zhang W, Gu X, Ma Z. Endoplasmic Reticulum Stress Contributes to Nociception via Neuroinflammation in a Murine Bone Cancer Pain Model. Anesthesiology 2020; 132:357-372. [PMID: 31939851 DOI: 10.1097/aln.0000000000003078] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prolonged endoplasmic reticulum stress has been identified in various diseases. Inflammatory mediators, which have been shown to induce endoplasmic reticulum stress in several studies, have been suggested to serve as the important modulators in pain development. In this study, the authors hypothesized that the endoplasmic reticulum stress triggered by inflammatory mediators contributed to pain development. METHODS The authors used a male mouse model of bone cancer pain. The control mice were intrathecally injected with tumor necrosis factor-α (TNF-α) and lipopolysaccharide, the bone cancer pain mice were intrathecally injected with the endoplasmic reticulum stress inhibitors 4-PBA and GSK2606414. The nociceptive behaviors, endoplasmic reticulum stress markers, and inflammatory mediators were assessed. RESULTS Increased expression of the p-RNA-dependent protein kinase-like endoplasmic reticulum kinase and p-eukaryotic initiation factor 2α were found in the spinal neurons during bone cancer pain, along with upregulation of inflammatory mediators (TNF-α, interleukin 1β, and interleukin 6). Intrathecal administration of TNF-α or lipopolysaccharide increased the expression of endoplasmic reticulum stress markers in control mice. Inhibition of endoplasmic reticulum stress by intrathecal administration of 4-PBA (baseline vs. 3 h: 0.34 ± 0.16 g vs. 1.65 ± 0.40 g in paw withdrawal mechanical threshold, 8.00 ± 1.20 times per 2 min vs. 0.88 ± 0.64 times per 2 min in number of spontaneous flinches, P < 0.001, n = 8) or GSK2606414 (baseline vs. 3 h: 0.37 ± 0.08 g vs. 1.38 ± 0.11 g in paw withdrawal mechanical threshold, 8.00 ± 0.93 times per 2 min vs. 3.25 ± 1.04 times per 2 min in number of spontaneous flinches, P < 0.001, n = 8) showed time- and dose-dependent antinociception. Meanwhile, decreased expression of inflammatory mediators (TNF-α, interleukin 1β, and interleukin 6), as well as decreased activation of astrocytes in the spinal cord, were found after 4-PBA or GSK2606414 treatment. CONCLUSIONS Inhibition of inflammatory mediator-triggered endoplasmic reticulum stress in spinal neurons attenuates bone cancer pain via modulation of neuroinflammation, which suggests new approaches to pain relief.
Collapse
Affiliation(s)
- Yanting Mao
- From the Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jin Y, Saatcioglu F. Targeting the Unfolded Protein Response in Hormone-Regulated Cancers. Trends Cancer 2020; 6:160-171. [PMID: 32061305 DOI: 10.1016/j.trecan.2019.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Cancer cells exploit many of the cellular adaptive responses to support their survival needs. One of these is the unfolded protein response (UPR), a highly conserved signaling pathway that is mounted in response to endoplasmic reticulum (ER) stress. Recent work showed that steroid hormones, in particular estrogens and androgens, regulate the canonical UPR pathways in breast cancer (BCa) and prostate cancer (PCa). In addition, UPR has pleiotropic effects in advanced disease and development of therapy resistance. These findings implicate the UPR pathway as a novel target in hormonally regulated cancers in the clinic. Here, we review the potential therapeutic value of recently developed small molecule inhibitors of UPR in hormone regulated cancers.
Collapse
Affiliation(s)
- Yang Jin
- Department of Biosciences, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
34
|
Ghosh C, Nandi A, Basu S. Lipid Nanoparticle-Mediated Induction of Endoplasmic Reticulum Stress in Cancer Cells. ACS APPLIED BIO MATERIALS 2019; 2:3992-4001. [DOI: 10.1021/acsabm.9b00532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chandramouli Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Aditi Nandi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Sudipta Basu
- Discipline of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
35
|
Hellerschmied D, Serebrenik YV, Shao L, Burslem GM, Crews CM. Protein folding state-dependent sorting at the Golgi apparatus. Mol Biol Cell 2019; 30:2296-2308. [PMID: 31166830 PMCID: PMC6743468 DOI: 10.1091/mbc.e19-01-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, organelle-specific protein quality control (PQC) is critical for maintaining cellular homeostasis. Despite the Golgi apparatus being the major protein processing and sorting site within the secretory pathway, how it contributes to PQC has remained largely unknown. Using different chemical biology-based protein unfolding systems, we reveal the segregation of unfolded proteins from folded proteins in the Golgi. Quality control (QC) substrates are subsequently exported in distinct carriers, which likely contain unfolded proteins as well as highly oligomerized cargo that mimic protein aggregates. At an additional sorting step, oligomerized proteins are committed to lysosomal degradation, while unfolded proteins localize to the endoplasmic reticulum (ER) and associate with chaperones. These results highlight the existence of checkpoints at which QC substrates are selected for Golgi export and lysosomal degradation. Our data also suggest that the steady-state ER localization of misfolded proteins, observed for several disease-causing mutants, may have different origins.
Collapse
Affiliation(s)
| | | | - Lin Shao
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520
| | | | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology
- Department of Chemistry, Yale University, New Haven, CT 06511
- Department of Pharmacology, Yale University, New Haven, CT 06511
| |
Collapse
|
36
|
Quantification of very low-abundant proteins in bacteria using the HaloTag and epi-fluorescence microscopy. Sci Rep 2019; 9:7902. [PMID: 31133640 PMCID: PMC6536506 DOI: 10.1038/s41598-019-44278-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
Cell biology is increasingly dependent on quantitative methods resulting in the need for microscopic labelling technologies that are highly sensitive and specific. Whilst the use of fluorescent proteins has led to major advances, they also suffer from their relatively low brightness and photo-stability, making the detection of very low abundance proteins using fluorescent protein-based methods challenging. Here, we characterize the use of the self-labelling protein tag called HaloTag, in conjunction with an organic fluorescent dye, to label and accurately count endogenous proteins present in very low numbers (<7) in individual Escherichia coli cells. This procedure can be used to detect single molecules in fixed cells with conventional epifluorescence illumination and a standard microscope. We show that the detection efficiency of proteins labelled with the HaloTag is ≥80%, which is on par or better than previous techniques. Therefore, this method offers a simple and attractive alternative to current procedures to detect low abundance molecules.
Collapse
|
37
|
Affiliation(s)
- Jie Wang
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
38
|
Ghosh C, Nandi A, Basu S. Supramolecular self-assembly of triazine-based small molecules: targeting the endoplasmic reticulum in cancer cells. NANOSCALE 2019; 11:3326-3335. [PMID: 30724283 DOI: 10.1039/c8nr08682f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The endoplasmic reticulum (ER) is one of the most important organelles controlling myriads of cellular functions including protein folding/misfolding/unfolding, calcium ion homeostasis and lipid biosynthesis. Subsequently, due to its functional dysregulation in cancer cells, it has emerged as an interesting target for anti-cancer therapy. However, specific targeting of the ER in cancer cells remains a major challenge due to the lack of ER-selective chemical tools. Furthermore, for performing multiple cellular functions the ER is dependent on the nucleus through complicated cross-talk. Herein, we have engineered a supramolecular self-assembled hexameric rosette structure from two small molecules: tri-substituted triazine and 5-fluorouracil (5-FU). This rosette structure consists of an ER-targeting moiety with a fluorescence tag, an ER-stress inducer and a nuclear DNA damaging drug simultaneously, which further self-assembled into an ER-targeting spherical nano-scale particle (ER-NP). These ER-NPs internalized into HeLa cervical cancer cells by macropinocytosis and specifically localized into the ER to induce ER stress and DNA damage leading to cell death through apoptosis. Interestingly, ER-NPs initiated autophagy, inhibited by a combination of ER-NPs and chloroquine (CQ) to augment cancer cell death. This work has the potential to exploit the concept of supramolecular self-assembly into developing novel nano-scale materials for specific sub-cellular targeting of multiple organelles for future anti-cancer therapy.
Collapse
Affiliation(s)
- Chandramouli Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | | | | |
Collapse
|
39
|
Wong MY, DiChiara AS, Suen PH, Chen K, Doan ND, Shoulders MD. Adapting Secretory Proteostasis and Function Through the Unfolded Protein Response. Curr Top Microbiol Immunol 2018; 414:1-25. [PMID: 28929194 DOI: 10.1007/82_2017_56] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cells address challenges to protein folding in the secretory pathway by engaging endoplasmic reticulum (ER)-localized protective mechanisms that are collectively termed the unfolded protein response (UPR). By the action of the transmembrane signal transducers IRE1, PERK, and ATF6, the UPR induces networks of genes whose products alleviate the burden of protein misfolding. The UPR also plays instructive roles in cell differentiation and development, aids in the response to pathogens, and coordinates the output of professional secretory cells. These functions add to and move beyond the UPR's classical role in addressing proteotoxic stress. Thus, the UPR is not just a reaction to protein misfolding, but also a fundamental driving force in physiology and pathology. Recent efforts have yielded a suite of chemical genetic methods and small molecule modulators that now provide researchers with both stress-dependent and -independent control of UPR activity. Such tools provide new opportunities to perturb the UPR and thereby study mechanisms for maintaining proteostasis in the secretory pathway. Numerous observations now hint at the therapeutic potential of UPR modulation for diseases related to the misfolding and aggregation of ER client proteins. Growing evidence also indicates the promise of targeting ER proteostasis nodes downstream of the UPR. Here, we review selected advances in these areas, providing a resource to inform ongoing studies of secretory proteostasis and function as they relate to the UPR.
Collapse
Affiliation(s)
- Madeline Y Wong
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Andrew S DiChiara
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Patreece H Suen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Ngoc-Duc Doan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA.
| |
Collapse
|
40
|
Sehl ME, Ganz PA. Potential Mechanisms of Age Acceleration Caused by Estrogen Deprivation: Do Endocrine Therapies Carry the Same Risks? JNCI Cancer Spectr 2018; 2:pky035. [PMID: 31360862 PMCID: PMC6649786 DOI: 10.1093/jncics/pky035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Longer duration of endocrine therapy decreases breast cancer recurrence and mortality, but these benefits need to be weighed against potential risks to overall health. Notable side effects of endocrine therapy include cataracts, uterine cancer, thromboembolic events, osteoporosis and fracture risk, chronic musculoskeletal complaints, as well as vaginal dryness and discharge, and vasomotor symptoms. Estrogen deprivation in healthy women younger than 50 years undergoing bilateral oophorectomy has been shown to accelerate the development of diseases related to aging, including coronary artery disease, cardiac arrhythmias, stroke, dementia, and osteoporosis, raising concern that even less dramatic modulation of estrogen homeostasis may adversely affect health outcomes. Diminished available estrogen at the cellular and molecular level may facilitate mechanisms that underlie the aging process, often termed the hallmarks of aging. In this review, we describe estrogen's role in normal physiology across tissues, review the effects of estrogen deprivation on health outcomes in the setting of both surgical and natural menopause, and examine the hallmarks of aging with attention to the effects of estrogen and estrogen blockade on each molecular mechanism underlying the aging process.
Collapse
Affiliation(s)
- Mary E Sehl
- Medicine, Hematology-Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.,Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Patricia A Ganz
- Medicine, Hematology-Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.,Health Policy and Management, School of Public Health, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
41
|
Bergmann TJ, Molinari M. Three branches to rule them all? UPR signalling in response to chemically versus misfolded proteins-induced ER stress. Biol Cell 2018; 110:197-204. [PMID: 29979817 DOI: 10.1111/boc.201800029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022]
Abstract
Study of the unfolded protein responses (UPR) is mainly addressed by challenging eukaryotic cells with chemical compounds that impair calcium, redox or glycan homeostasis. These dramatically alter the endoplasmic reticulum (ER) environment and function, but also trigger pleiotropic effects that may result in multi-organellar failure and cell death. Recent works showed that UPR induced by the accumulation of unfolded polypeptides in the ER lumen drastically differs from chemically induced UPR. Unfolded proteins are tolerated by cells, which activate a finely tuned UPR without entering apoptotic programs. How cells adapt the UPR to the burden of misfolded proteins, what structural features of the accumulating proteins determine UPR intensity and how these mechanisms translate into disease are crucial questions to be address in the future.
Collapse
Affiliation(s)
- Timothy J Bergmann
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Maurizio Molinari
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland.,École Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| |
Collapse
|
42
|
Kapanidis AN, Lepore A, El Karoui M. Rediscovering Bacteria through Single-Molecule Imaging in Living Cells. Biophys J 2018; 115:190-202. [PMID: 29680157 PMCID: PMC6050715 DOI: 10.1016/j.bpj.2018.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/26/2018] [Indexed: 12/23/2022] Open
Abstract
Bacteria are microorganisms central to health and disease, serving as important model systems for our understanding of molecular mechanisms and for developing new methodologies and vehicles for biotechnology. In the past few years, our understanding of bacterial cell functions has been enhanced substantially by powerful single-molecule imaging techniques. Using single fluorescent molecules as a means of breaking the optical microscopy limit, we can now reach resolutions of ∼20 nm inside single living cells, a spatial domain previously accessible only by electron microscopy. One can follow a single bacterial protein complex as it performs its functions and directly observe intricate cellular structures as they move and reorganize during the cell cycle. This toolbox enables the use of in vivo quantitative biology by counting molecules, characterizing their intracellular location and mobility, and identifying functionally distinct molecular distributions. Crucially, this can all be achieved while imaging large populations of cells, thus offering detailed views of the heterogeneity in bacterial communities. Here, we examine how this new scientific domain was born and discuss examples of applications to bacterial cellular mechanisms as well as emerging trends and applications.
Collapse
Affiliation(s)
- Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom.
| | - Alessia Lepore
- Institute of Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Meriem El Karoui
- Institute of Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
43
|
Serebrenik YV, Hellerschmied D, Toure M, López-Giráldez F, Brookner D, Crews CM. Targeted protein unfolding uncovers a Golgi-specific transcriptional stress response. Mol Biol Cell 2018; 29:1284-1298. [PMID: 29851555 PMCID: PMC5994893 DOI: 10.1091/mbc.e17-11-0693] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells, organelle-specific stress-response mechanisms are vital for maintaining cellular homeostasis. The Golgi apparatus, an essential organelle of the secretory system, is the major site of protein modification and sorting within a cell and functions as a platform for spatially regulated signaling. Golgi homeostasis mechanisms that regulate organelle structure and ensure precise processing and localization of protein substrates remain poorly understood. Using a chemical biology strategy to induce protein unfolding, we uncover a Golgi-specific transcriptional response. An RNA-sequencing profile of this stress response compared with the current state-of-the-art Golgi stressors, nigericin and xyloside, demonstrates the enhanced precision of Golgi targeting achieved with our system. The data set further reveals previously uncharacterized genes that we find to be essential for Golgi structural integrity. These findings highlight the Golgi's ability to sense misfolded proteins and establish new aspects of Golgi autoregulation.
Collapse
Affiliation(s)
- Yevgeniy V. Serebrenik
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Doris Hellerschmied
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Momar Toure
- Department of Chemistry, Yale University, New Haven, CT 06511
| | | | - Dennis Brookner
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Department of Chemistry, Yale University, New Haven, CT 06511
- Department of Pharmacology, Yale University, New Haven, CT 06511
| |
Collapse
|
44
|
Li Z, Rouse R. Co-sequencing and novel delayed anti-correlation identify function for pancreatic enriched microRNA biomarkers in a rat model of acute pancreatic injury. BMC Genomics 2018; 19:297. [PMID: 29699496 PMCID: PMC5922017 DOI: 10.1186/s12864-018-4657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
Background Co-sequencing of messenger ribonucleic acid (mRNA) and micro ribonucleic acid (miRNA) across a time series (1, 3, 6, 24, and 48 h post injury) was used to identify potential miRNA-gene interactions during pancreatic injury, associate serum and tissue levels of candidate miRNA biomarkers of pancreatic injury, and functionally link these candidate miRNA biomarkers to observed histopathology. RNAs were derived from pancreatic tissues obtained in experiments characterizing the serum levels of candidate miRNA biomarkers in response to acute pancreatic injury in rats. Results No correlation was discovered between tissue and serum levels of the miRNAs. A combination of differential gene expression, novel delayed anti-correlation analysis and experimental database interrogation was used to identify messenger RNAs and miRNAs that experienced significant expression change across the time series, that were negatively correlated, that were complementary in sequence, and that had experimentally supported relationships. This approach yielded a complex signaling network for future investigation and a link for the specific candidate miRNA biomarkers, miR-216a-5p and miR-217-5p, to cellular processes that were in fact the prominent histopathology observations in the same experimental samples. RNA quality bias by treatment was observed in the study samples and a statistical correction was applied. The relevance and impact of that correction on significant results is discussed. Conclusion The described approach allowed extraction of miRNA function from genomic data and defined a mechanistic anchor for these miRNAs as biomarkers. Functional and mechanistic conclusions are supported by histopathology findings. Electronic supplementary material The online version of this article (10.1186/s12864-018-4657-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhihua Li
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Rodney Rouse
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
45
|
Bergmann TJ, Fregno I, Fumagalli F, Rinaldi A, Bertoni F, Boersema PJ, Picotti P, Molinari M. Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem 2018; 293:5600-5612. [PMID: 29453283 DOI: 10.1074/jbc.ra117.001484] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
The stress sensors ATF6, IRE1, and PERK monitor deviations from homeostatic conditions in the endoplasmic reticulum (ER), a protein biogenesis compartment of eukaryotic cells. Their activation elicits unfolded protein responses (UPR) to re-establish proteostasis. UPR have been extensively investigated in cells exposed to chemicals that activate ER stress sensors by perturbing calcium, N-glycans, or redox homeostasis. Cell responses to variations in luminal load with unfolded proteins are, in contrast, poorly characterized. Here, we compared gene and protein expression profiles in HEK293 cells challenged with ER stress-inducing drugs or expressing model polypeptides. Drug titration to limit up-regulation of the endogenous ER stress reporters heat shock protein family A (Hsp70) member 5 (BiP/HSPA5) and homocysteine-inducible ER protein with ubiquitin-like domain 1 (HERP/HERPUD1) to levels comparable with luminal accumulation of unfolded proteins substantially reduced the amplitude of both transcriptional and translational responses. However, these drug-induced changes remained pleiotropic and failed to recapitulate responses to ER load with unfolded proteins. These required unfolded protein association with BiP and induced a much smaller subset of genes participating in a chaperone complex that binds unfolded peptide chains. In conclusion, UPR resulting from ER load with unfolded proteins proceed via a well-defined and fine-tuned pathway, whereas even mild chemical stresses caused by compounds often used to stimulate UPR induce cellular responses largely unrelated to the UPR or ER-mediated protein secretion.
Collapse
Affiliation(s)
- Timothy J Bergmann
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.,the Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ilaria Fregno
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.,the Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Fiorenza Fumagalli
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.,the Graduate School for Cellular and Biomedical Sciences, University of Bern, 3001 Bern, Switzerland
| | - Andrea Rinaldi
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Istituto Oncologico di Ricerca, 6500 Bellinzona, Switzerland, and
| | - Francesco Bertoni
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Istituto Oncologico di Ricerca, 6500 Bellinzona, Switzerland, and
| | - Paul J Boersema
- the Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Picotti
- the Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Maurizio Molinari
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland, .,the Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.,the École Polytechnique Fédérale de Lausanne, School of Life Sciences, 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Vincenz-Donnelly L, Holthusen H, Körner R, Hansen EC, Presto J, Johansson J, Sawarkar R, Hartl FU, Hipp MS. High capacity of the endoplasmic reticulum to prevent secretion and aggregation of amyloidogenic proteins. EMBO J 2018; 37:337-350. [PMID: 29247078 PMCID: PMC5793802 DOI: 10.15252/embj.201695841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023] Open
Abstract
Protein aggregation is associated with neurodegeneration and various other pathologies. How specific cellular environments modulate the aggregation of disease proteins is not well understood. Here, we investigated how the endoplasmic reticulum (ER) quality control system handles β-sheet proteins that were designed de novo to form amyloid-like fibrils. While these proteins undergo toxic aggregation in the cytosol, we find that targeting them to the ER (ER-β) strongly reduces their toxicity. ER-β is retained within the ER in a soluble, polymeric state, despite reaching very high concentrations exceeding those of ER-resident molecular chaperones. ER-β is not removed by ER-associated degradation (ERAD) but interferes with ERAD of other proteins. These findings demonstrate a remarkable capacity of the ER to prevent the formation of insoluble β-aggregates and the secretion of potentially toxic protein species. Our results also suggest a generic mechanism by which proteins with exposed β-sheet structure in the ER interfere with proteostasis.
Collapse
Affiliation(s)
- Lisa Vincenz-Donnelly
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hauke Holthusen
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Roman Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Erik C Hansen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jenny Presto
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Centre for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Centre for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
47
|
Affiliation(s)
- George M. Burslem
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
48
|
Abstract
Traditional pharmaceutical drug discovery is almost exclusively focused on directly controlling protein activity to cure diseases. Modulators of protein activity, especially inhibitors, are developed and applied at high concentration to achieve maximal effects. Thereby, reduced bioavailability and off-target effects can hamper compound efficacy. Nucleic acid-based strategies that control protein function by affecting expression have emerged as an alternative. However, metabolic stability and broad bioavailability represent development hurdles that remain to be overcome for these approaches. More recently, utilizing the cell's own protein destruction machinery for selective degradation of essential drivers of human disorders has opened up a new and exciting area of drug discovery. Small-molecule-induced proteolysis of selected substrates offers the potential of reaching beyond the limitations of the current pharmaceutical paradigm to expand the druggable target space.
Collapse
Affiliation(s)
- Philipp M Cromm
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | - Craig M Crews
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Pharmacology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
49
|
Gao N, Chen YX, Zhao YF, Li YM. Chemical Methods to Knock Down the Amyloid Proteins. Molecules 2017; 22:E916. [PMID: 28587164 PMCID: PMC6152772 DOI: 10.3390/molecules22060916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/20/2017] [Accepted: 05/20/2017] [Indexed: 11/16/2022] Open
Abstract
Amyloid proteins are closely related with amyloid diseases and do tremendous harm to human health. However, there is still a lack of effective strategies to treat these amyloid diseases, so it is important to develop novel methods. Accelerating the clearance of amyloid proteins is a favorable method for amyloid disease treatment. Recently, chemical methods for protein reduction have been developed and have attracted much attention. In this review, we focus on the latest progress of chemical methods that knock down amyloid proteins, including the proteolysis-targeting chimera (PROTAC) strategy, the "recognition-cleavage" strategy, the chaperone-mediated autophagy (CMA) strategy, the selectively light-activatable organic and inorganic molecules strategy and other chemical strategies.
Collapse
Affiliation(s)
- Na Gao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
- Beijing Institute for Brain Disorders, Beijing 100069, China.
| |
Collapse
|
50
|
Collins I, Wang H, Caldwell JJ, Chopra R. Chemical approaches to targeted protein degradation through modulation of the ubiquitin-proteasome pathway. Biochem J 2017; 474:1127-1147. [PMID: 28298557 PMCID: PMC5350610 DOI: 10.1042/bcj20160762] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/11/2022]
Abstract
Manipulation of the ubiquitin-proteasome system to achieve targeted degradation of proteins within cells using chemical tools and drugs has the potential to transform pharmacological and therapeutic approaches in cancer and other diseases. An increased understanding of the molecular mechanism of thalidomide and its analogues following their clinical use has unlocked small-molecule modulation of the substrate specificity of the E3 ligase cereblon (CRBN), which in turn has resulted in the advancement of new immunomodulatory drugs (IMiDs) into the clinic. The degradation of multiple context-specific proteins by these pleiotropic small molecules provides a means to uncover new cell biology and to generate future drug molecules against currently undruggable targets. In parallel, the development of larger bifunctional molecules that bring together highly specific protein targets in complexes with CRBN, von Hippel-Lindau, or other E3 ligases to promote ubiquitin-dependent degradation has progressed to generate selective chemical compounds with potent effects in cells and in vivo models, providing valuable tools for biological target validation and with future potential for therapeutic use. In this review, we survey recent breakthroughs achieved in these two complementary methods and the discovery of new modes of direct and indirect engagement of target proteins with the proteasome. We discuss the experimental characterisation that validates the use of molecules that promote protein degradation as chemical tools, the preclinical and clinical examples disclosed to date, and the future prospects for this exciting area of chemical biology.
Collapse
Affiliation(s)
- Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, U.K
| | - Hannah Wang
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, U.K
| | - John J Caldwell
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, U.K
| | - Raj Chopra
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, U.K.
| |
Collapse
|