1
|
Kusewitt DF, Sharma G, Woods CD, Rosas E, Hathaway HJ, Prossnitz ER. GPER expression prevents estrogen-induced urinary retention in obese mice. J Steroid Biochem Mol Biol 2024; 244:106607. [PMID: 39197539 PMCID: PMC11444091 DOI: 10.1016/j.jsbmb.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Long-term administration of exogenous estrogen is known to cause urinary retention and marked, often fatal, bladder distention in both male and female mice. Estrogen-treated mice have increased bladder pressure and decreased urine flow, suggesting that urinary retention in estrogen-treated mice is due to infravesicular obstruction to urine outflow. Thus, the condition is commonly referred to as bladder outlet obstruction (BOO). Obesity can also lead to urinary retention. As the effects of estrogen are mediated by multiple receptors, including estrogen receptors ERα and ERβ and the G protein-coupled estrogen receptor (GPER), we sought to determine whether GPER plays a role in estrogen-induced BOO, particularly in the context of obesity. Wild type and GPER knockout (KO) mice fed a high-fat diet were ovariectomized or left ovary-intact (sham surgery) and supplemented with slow-release estrogen or vehicle-only pellets. Supplementing both GPER KO and wild type obese mice with estrogen for 8 weeks resulted in weight loss, splenic enlargement, and thymic atrophy, as expected. However, estrogen-treated obese GPER KO mice developed abdominal distension, debilitation, and ulceration of the skin surrounding the urogenital opening. At necropsy, these mice had prominently distended bladders and hydronephrosis. In contrast, estrogen-treated obese wild type mice only rarely displayed these signs. Our results suggest that, under conditions of obesity, estrogen induces BOO as a result of ERα-driven pathways and that GPER expression is protective against BOO.
Collapse
Affiliation(s)
- Donna F Kusewitt
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| | - Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Christine D Woods
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Emmanuel Rosas
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA; Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| |
Collapse
|
2
|
Zhu Z, Nie X, Deng L, Ding J, Chen J, Zhu J, Yin X, Guo B, Zhang F. Regulation of cervical cancer via G15-mediated inhibition of G protein-coupled estrogen receptor. Anticancer Drugs 2024; 35:817-829. [PMID: 39018257 DOI: 10.1097/cad.0000000000001640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Cervical cancer is among the most common gynecological malignancies. G protein-coupled estrogen receptor (GPER) is involved in the development of various tumors; however, its role in cervical cancer remains unclear. We investigated whether G15, an inhibitor of GPER, can regulate its expression and affect cervical cancer progression. We examined the biological behaviors of G15-treated SiHa and HeLa cells using Cell Counting Kit-8, monoclonal proliferation, plate scratching, and Transwell invasion experiments. Western blotting was used to detect the expression of GPER, E-cadherin, N-cadherin, vimentin, Bcl-2, Bax, phosphatidylinositol-3-kinase (PI3K)/AKT, and programmed death ligand 1 (PD-L1). The expression of GPER, E-cadherin, vimentin, and PD-L1 in cervical cancer and adjacent tissues was detected using immunohistochemistry. The correlation between GPER expression and clinicopathological characteristics was analyzed. The expression of GPER in cervical cancer tissues was significantly higher than that in paracancerous tissues, and it was detected in the membrane and cytoplasm of SiHa and HeLa cells. The proliferation, migration, and invasion abilities of SiHa and HeLa cells were reduced after G15 treatment. The G15-treated groups exhibited higher expression of E-cadherin and Bax and lower expression of N-cadherin, vimentin, Bcl-2, GPER, p-PI3K, p-AKT, and PD-L1 than the control group. The expression of E-cadherin was lower and that of vimentin was higher in cancer tissues than in paracancerous tissues; PD-L1 was highly expressed in tumor and stromal cells in cancer tissues but not in paracancerous tissues. G15 functions by regulating the GPER/PI3K/AKT/PD-L1 signaling pathway and may serve as a new immunotherapy for treating patients with cervical cancer.
Collapse
Affiliation(s)
- Ziyan Zhu
- Graduate School, Hebei North University, Departments of
| | - Xinyi Nie
- Graduate School, Hebei North University, Departments of
| | - Lexiu Deng
- Graduate School, Hebei North University, Departments of
| | - Jia Ding
- Graduate School, Hebei North University, Departments of
| | | | - Jingyi Zhu
- Graduate School, Hebei North University, Departments of
| | - Xiaoxia Yin
- Pathology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Bowei Guo
- Pathology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Fan Zhang
- Pathology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
3
|
Son SE, Im DS. Activation of G Protein-Coupled Estrogen Receptor 1 (GPER) Attenuates Obesity-Induced Asthma by Switching M1 Macrophages to M2 Macrophages. Int J Mol Sci 2024; 25:9532. [PMID: 39273478 PMCID: PMC11395149 DOI: 10.3390/ijms25179532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The prevalence of obesity-induced asthma increases in women after menopause. We hypothesized that the increase in obese asthma in middle-aged women results from estrogen loss. In particular, we focused on the acute action of estrogen through the G protein-coupled estrogen receptor 1 (GPER), previously known as GPR30. We investigated whether GPER activation ameliorates obesity-induced asthma with a high-fat diet (HFD) using G-1, the GPER agonist, and G-36, the GPER antagonist. Administration of G-1 (0.5 mg/kg) suppressed HFD-induced airway hypersensitivity (AHR), and increased immune cell infiltration, whereas G-36 co-treatment blocked it. Histological analysis showed that G-1 treatment inhibited HFD-induced inflammation, fibrosis, and mucus hypersecretion in a GPER-dependent manner. G-1 inhibited the HFD-induced rise in the mRNA levels of pro-inflammatory cytokines in the gonadal white adipose tissue and lungs, whereas G-36 co-treatment reversed this effect. G-1 increased anti-inflammatory M2 macrophages and inhibited the HFD-induced rise in pro-inflammatory M1 macrophages in the lungs. In addition, G-1 treatment reversed the HFD-induced increase in leptin expression and decrease in adiponectin expression in the lungs and gonadal white adipose tissue. The results suggest that activation of GPER could be a therapeutic option for obesity-induced asthma.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Batallán Burrowes AA, Moisan É, Garrone A, Buynack LM, Chapman CA. 17β-Estradiol reduces inhibitory synaptic currents in entorhinal cortex neurons through G protein-coupled estrogen receptor-1 activation of extracellular signal-regulated kinase. Hippocampus 2024; 34:454-463. [PMID: 39150316 DOI: 10.1002/hipo.23621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 08/17/2024]
Abstract
Estrogens are believed to modulate cognitive functions in part through the modulation of synaptic transmission in the cortex and hippocampus. Administration of 17β-estradiol (E2) can rapidly enhance excitatory synaptic transmission in the hippocampus and facilitate excitatory synaptic transmission in rat lateral entorhinal cortex via activation of the G protein-coupled estrogen receptor-1 (GPER1). To assess the mechanisms through which GPER1 activation facilitates synaptic transmission, we assessed the effects of acute 10 nM E2 administration on pharmacologically isolated evoked excitatory and inhibitory synaptic currents in layer II/III entorhinal neurons. Female Long-Evans rats were ovariectomized between postnatal day (PD) 63 and 74 and implanted with a subdermal E2 capsule to maintain continuous low levels of E2. Electrophysiological recordings were obtained between 7 and 20 days after ovariectomy. Application of E2 for 20 min did not significantly affect AMPA or NMDA receptor-mediated excitatory synaptic currents. However, GABA receptor-mediated inhibitory synaptic currents (IPSCs) were markedly reduced by E2 and returned towards baseline levels during the 20-min washout period. The inhibition of GABA-mediated IPSCs was blocked in the presence of the GPER1 receptor antagonist G15. GPER1 can modulate protein kinase A (PKA), but blocking PKA with intracellular KT5720 did not prevent the E2-induced reduction in IPSCs. GPER1 can also stimulate extracellular signal-regulated kinase (ERK), a negative modulator of GABAA receptors, and blocking activation of ERK with PD90859 prevented the E2-induced reduction of IPSCs. E2 can therefore result in a rapid GPER1 and ERK signaling-mediated reduction in GABA-mediated IPSCs. This provides a novel mechanism through which E2 can rapidly modulate synaptic excitability in entorhinal layer II/III neurons and may also contribute to E2 and ERK-dependent alterations in synaptic transmission in other brain areas.
Collapse
Affiliation(s)
- Ariel A Batallán Burrowes
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - Élyse Moisan
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - Aurelie Garrone
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - Lauren M Buynack
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
5
|
Çakır U, Balogh P, Ferenczik A, Brodszky V, Krenács T, Kárpáti S, Sárdy M, Holló P, Fábián M. G protein-coupled estrogen receptor 1 and collagen XVII endodomain expression in human cutaneous melanomas: can they serve as prognostic factors? Pathol Oncol Res 2024; 30:1611809. [PMID: 39252786 PMCID: PMC11381273 DOI: 10.3389/pore.2024.1611809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Melanoma incidence is increasing globally. Although novel therapies have improved the survival of primary melanoma patients over the past decade, the overall survival rate for metastatic melanoma remains low. In addition to traditional prognostic factors such as Breslow thickness, ulceration, and mitotic rate, novel genetic and molecular markers have been investigated. In our study, we analyzed the expression of G-protein coupled estrogen receptor 1 (GPER1) and the endodomain of collagen XVII (COL17) in relation to clinicopathological factors in primary cutaneous melanomas with known lymph node status in both sexes, using immunohistochemistry. We found, that GPER1 expression correlated with favorable clinicopathological factors, including lower Breslow thickness, lower mitotic rate and absence of ulceration. In contrast, COL17 expression was associated with poor prognostic features, such as higher tumor thickness, higher mitotic rate, presence of ulceration and presence of regression. Melanomas positive for both GPER1 and COL17 had significantly lower mean Breslow thickness and mitotic rate compared to cases positive for COL17 only. Our data indicate that GPER1 and COL17 proteins may be of potential prognostic value in primary cutaneous melanomas.
Collapse
Affiliation(s)
- Uğur Çakır
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Petra Balogh
- Queen Elizabeth Hospital, Cellular Pathology Department, University Hospitals Birmingham, Birmingham, United Kingdom
| | - Anikó Ferenczik
- Doctoral School of Economics, Business and Informatics, Corvinus University of Budapest, Budapest, Hungary
- Department of Health Policy, Institute of Social and Political Sciences, Corvinus University of Budapest, Budapest, Hungary
| | - Valentin Brodszky
- Department of Health Policy, Institute of Social and Political Sciences, Corvinus University of Budapest, Budapest, Hungary
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Miklós Sárdy
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Melinda Fábián
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Zhang H, Yan J, Xie D, Zhu X, Nie G, Zhang H, Li X. Selenium restored mitophagic flux to alleviate cadmium-induced hepatotoxicity by inhibiting excessive GPER1-mediated mitophagy activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134855. [PMID: 38880044 DOI: 10.1016/j.jhazmat.2024.134855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Cadmium (Cd) is a common environmental pollutant, while selenium (Se) can ameliorate heavy metal toxicity. Consequently, this study aimed to investigate the protective effects of Se against Cd-induced hepatocyte injury and its underlying mechanisms. To achieve this, we utilized the Dongdagou-Xinglong cohort, BRL3A cell models, and a rat model exposed to Cd and/or Se. The results showed that Se counteracted liver function injury and the decrease in GPER1 levels caused by environmental Cd exposure, and various methods confirmed that Se could protect against Cd-induced hepatotoxicity both in vivo and in vitro. Mechanistically, Cd caused excessive mitophagy activation, evidenced by the colocalization of LC3B, PINK1, Parkin, P62, and TOMM20. Transfection of BRL3A cells with mt-keima adenovirus indicated that Cd inhibited autophagosome-lysosome fusion, thereby impeding mitophagic flux. Importantly, G1, a specific agonist of GPER1, mitigated Cd-induced mitophagy overactivation and hepatocyte toxicity, whereas G15 exacerbates these effects. Notably, Se supplementation attenuated Cd-induced GPER1 protein reduction and excessive mitophagy activation while facilitating autophagosome-lysosome fusion, thereby restoring mitophagic flux. In conclusion, this study proposed a novel mechanism whereby Se alleviated GPER1-mediated mitophagy and promoted autophagosome-lysosome fusion, thus restoring Cd-induced mitophagic flux damage, and preventing hepatocyte injury.
Collapse
Affiliation(s)
- Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; Medical School Cancer Center of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xingwang Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Haijun Zhang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; Medical School Cancer Center of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; General Surgery Clinical Medical Research Center of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China.
| |
Collapse
|
7
|
Surapinit A, Chaidee A, Pinlaor S, Kongsintaweesuk S, Charoenram N, Mahaamnad N, Sakonsinsiri C, Hongsrichan N. Atrazine promotes cholangiocarcinoma cell proliferation and migration via GPER-mediated PI3K/Akt/NF-κB pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105988. [PMID: 39084791 DOI: 10.1016/j.pestbp.2024.105988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
Atrazine (ATZ), an herbicide widely distributed on a global scale, possess a potential risk for the development of various cancers upon environmental exposure. However, the effect and molecular mechanism of ATZ in cholangiocarcinoma (CCA), is still unclear. This study aimed to investigate the effect of ATZ on the proliferation and migration of CCA cell in vitro. Immortalized human cholangiocytes (MMNK-1) and three CCA cell lines (KKU-055, KKU-100 and KKU-213B) were treated with 0.01 to 100 μM of ATZ and 17β-estradiol (E2). The results showed that, similar to E2, low doses (0.01 to 1 μM) of ATZ promoted the proliferation of all CCA and MMNK-1 cells. ATZ exposure increased non-genomic G protein-coupled estrogen receptor (GPER) expression in the cell membrane and cytoplasm of KKU-213B and KKU-055 cells via G2/M cell cycle accumulation. This, in turn, promoted the proliferation and migration of CCA cells. ATZ exposure induced the upregulation of GPER and increased expression levels of PI3K, p-PI3K, Akt, p-Akt, NF-κB and PCNA. In contrast, following ATZ treatment, the GPER antagonist G15 significantly downregulated the GPER/PI3K/Akt/NF-κB pathway. These results suggest that ATZ promotes CCA cell proliferation and migration through the GPER/PI3K/Akt/NF-κB pathway. This information can enhance public health awareness regarding ATZ contamination to prevent the relative risk of CCA.
Collapse
Affiliation(s)
- Achirawit Surapinit
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apisit Chaidee
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suppakrit Kongsintaweesuk
- Medical Sciences Program, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Naruechar Charoenram
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narumon Mahaamnad
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nuttanan Hongsrichan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
8
|
Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology 2024; 166:107070. [PMID: 38733757 DOI: 10.1016/j.psyneuen.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERβ, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.
Collapse
Affiliation(s)
- Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
9
|
Abbas MA, Al-Kabariti AY, Sutton C. Comprehensive understanding of the role of GPER in estrogen receptor-alpha negative breast cancer. J Steroid Biochem Mol Biol 2024; 241:106523. [PMID: 38636681 DOI: 10.1016/j.jsbmb.2024.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/01/2023] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
G protein-coupled estrogen receptor (GPER) plays a prominent role in facilitating the rapid, non-genomic signaling of estrogens in breast cancer cells. Herein, a comprehensive overview of the role of GPER in ER-ɑ-negative breast cancer is provided. Activation of GPER affected proliferation, metastasis and epithelial mesenchymal transition in ER-ɑ negative breast cancer cells. Clinical studies have demonstrated that GPER positivity was strongly correlated with larger tumor size and advanced clinical stage, suggesting that GPER/ERK signaling may play a role in promoting tumor progression. Strong evidence existed that environmental contaminants like bisphenol A have a carcinogenic potential mediated by GPER activation. The complexity of the cross talk between GPER and other receptors including ER-β, ER-α36, Estrogen-related receptor α (ERRα) and androgen receptor has been discussed. The potential utility of small molecules and phytoestrogens targeting GPER, adds valuable insights into its therapeutic potential. This review holds promises in advancing our understanding of GPER role in ER-ɑ-negative breast cancer. Overall, the consequences of GPER activation are still an area of active research and the implication are not entirely clear.
Collapse
Affiliation(s)
- Manal A Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan; Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Aya Y Al-Kabariti
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Chris Sutton
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
10
|
Zhang M, Mao C, Dai Y, Xu X, Wang X. Qixian granule inhibits ferroptosis in vascular endothelial cells by modulating TRPML1 in the lysosome to prevent postmenopausal atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118076. [PMID: 38521431 DOI: 10.1016/j.jep.2024.118076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE QiXian Granule (QXG) is an integrated traditional Chinese medicine formula used to treat postmenopausal atherosclerotic (AS) cardiovascular diseases. The previous studies have found that QXG inhibited isoproterenol (ISO)-induced myocardial remodeling. And its active ingredient, Icraiin, can inhibit ferroptosis by promoting oxidized low-density lipoprotein (xo-LDL)-induced vascular endothelial cell injury and autophagy in atherosclerotic mice. Another active ingredient, Salvianolic Acid B, can suppress ferroptosis and apoptosis during myocardial ischemia/reperfusion injury by reducing ubiquitin-proteasome degradation of Glutathione Peroxidase 4 (GPX4) and down-regulating the reactive oxygen species (ROS)- c-Jun N-terminal kinases (JNK)/mitogen-activated protein kinase (MAPK) pathway. AIM OF THE STUDY The objective of this research was to assess the possible impact of QXG on atherosclerosis in postmenopausal individuals and investigate its underlying mechanisms. MATERIALS AND METHODS Female ApoE-/- mice underwent ovariectomy and were subjected to a high-fat diet (HFD) to establish a postmenopausal atherosclerosis model. The therapeutic effects of QXG were observed in vivo and in vitro through intraperitoneal injection of erastin, G-protein Coupled Estrogen Receptor (GPER) inhibitor (G15), and silent Mucolipin Transient Receptor Potential Channel 1 (TRPML1) adenovirus injection via tail vein. UPLC-MS and molecular docking techniques identified and evaluated major QXG components, contributing to the investigation of QXG's anti-postmenopausal atherosclerotic effects. RESULTS QXG increased serum Estradiol levels, decreased follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, which indicated QXG had estrogen-like effects in Ovx/ApoE-/- mice. Furthermore, QXG demonstrated the potential to impede the progression of AS in Ovx/ApoE-/- mice, as evidenced by reductions in serum triglycerides (TG), total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) levels. Additionally, QXG inhibited ferroptosis in Ovx/ApoE-/- mice. Notably, UPLC-MS analysis identified a total of 106 active components in QXG. The results of molecular docking analysis demonstrated that Epmedin B, Astragaloside II, and Orientin exhibit strong binding affinity towards TRPML1. QXG alleviates the progression of atherosclerosis by activating TRPML1 through the GPER pathway or directly activating TRPML1, thereby inhibiting GPX4 and ferritin heavy chain (FTH1)-mediated iron pendant disease. In vitro, QXG-treated serum suppressed proliferation, migration, and ox-LDL-induced MMP and ROS elevation in HAECs. CONCLUSION QXG inhibited GPX4 and FTH1-mediated ferroptosis in vascular endothelial cells through up-regulating GPER/TRPML1 signaling, providing a potential therapeutic option for postmenopausal females seeking a safe and effective medication to prevent atherosclerosis. The study highlights QXG's estrogenic properties and its promising role in combating postmenopausal atherosclerosis.
Collapse
Affiliation(s)
- Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Yang Dai
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xiaojin Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xindong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
11
|
Liu X, Cheng Z, Shang X, Zhang H, Liu X, Pan W, Fu J, Xue Q, Zhang A. New Mechanism for the Apoptosis of Human Neuroblastoma Cells by the Interaction between Fluorene-9-Bisphenol and the G Protein-Coupled Estrogen Receptor 1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10494-10503. [PMID: 38833413 DOI: 10.1021/acs.est.4c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fluorene-9-bisphenol (BHPF) is an emerging contaminant. Presently, there is no report on its interaction with G protein-coupled estrogen receptor 1 (GPER). By using an integrated toxicity research scenario that combined theoretical study with experimental methods, BHPF was found to inhibit the GPER-mediated effect via direct receptor binding. Molecular dynamics simulations found that Trp2726.48 and Glu2756.51 be the key amino acids of BHPF binding with GPER. Moreover, the calculation indicated that BHPF was a suspected GPER inhibitor, which neither can activate GPER nor is able to form water channels of GPER. The role of two residues was successfully verified by following gene knockout and site-directed mutagenesis assays. Further in vitro assays showed that BHPF could attenuate the increase in intracellular concentration of free Ca2+ induced by G1-activated GPER. Besides, BHPF showed an enhanced cytotoxicity compared with G15, indicating that BHPF might be a more potent GPER inhibitor than G15. In addition, a statistically significant effect on the mRNA level of GPER was observed for BHPF. In brief, the present study proposes that BHPF be a GPER inhibitor, and its GPER molecular recognition mechanism has been revealed, which is of great significance for the health risk and assessment of BHPF.
Collapse
Affiliation(s)
- Xiuchang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhi Cheng
- College of Life Sciences and Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xueliang Shang
- School of Psychology and Mental Health, North China University of Science and Technology, Tang'shan 063210, P. R. China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Institute of Environmental and Health, Jianghan University, Wuhan 430056, P. R. China
| |
Collapse
|
12
|
Hanafi D, Onyenwoke RU, Kimbro KS. The G-Protein-Coupled Estrogen Receptor Selective Agonist G-1 Attenuates Cell Viability and Migration in High-Grade Serous Ovarian Cancer Cell Lines. Int J Mol Sci 2024; 25:6499. [PMID: 38928205 PMCID: PMC11203932 DOI: 10.3390/ijms25126499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The G-protein-coupled estrogen receptor (GPER; G-protein-coupled estrogen receptor 30, also known as GPR30) is a novel estrogen receptor and has emerged as a promising target for ovarian cancer. GPER, a seven-transmembrane receptor, suppresses cellular viability and migration in studied ovarian cancer cells. However, its impact on the fallopian tube, which is the potential origin of high-grade serous (HGSC) ovarian cancer, has not been addressed. This study was conducted to evaluate the relationship of GPER, ovarian cancer subtypes, i.e., high-grade serous cell lines (OV90 and OVCAR420), as well as the cell type that is the potential origin of HGSC ovarian cancer (i.e., the fallopian tube cell line FT190). The selective ligand assessed here is the agonist G-1, which was utilized in an in vitro study to characterize its effects on cellular viability and migration. As a result, this study has addressed the effect of a specific GPER agonist on cell viability, providing a better understanding of the effects of this compound on our diverse group of studied cell lines. Strikingly, attenuated cell proliferation and migration behaviors were observed in the presence of G-1. Thus, our in vitro study reveals the impact of the origin of HGSC ovarian cancers and highlights the GPER agonist G-1 as a potential therapy for ovarian cancer.
Collapse
Affiliation(s)
- Donia Hanafi
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA;
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA;
| | - Rob U. Onyenwoke
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA;
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - K. Sean Kimbro
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA;
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA;
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine (MSM), Atlanta, GA 30310, USA
| |
Collapse
|
13
|
Wang J, Wang S, Fang Z, Zhao J, Zhang G, Guo Y, Wang Q, Jiang Z, Zhong H, Hou W. Estrogen receptor GPR30 in the anterior cingulate cortex mediates exacerbated neuropathic pain in ovariectomized mice. Brain Res 2024; 1829:148798. [PMID: 38403038 DOI: 10.1016/j.brainres.2024.148798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Menopausal women experience neuropathic pain 63% more frequently than men do, which may attribute to the estrogen withdrawal. However, the underlying mechanisms remain unclear. Here, the role of estrogen receptors (ERs) in ovariectomized (OVX) female mice following chronic constriction injury (CCI) was investigated. With 17β-estradiol (E2) supplemented, aggravated mechanical allodynia in OVX mice could be significantly alleviated, particularly after intra-anterior cingulate cortex (ACC) E2 delivery. Pharmacological interventions further demonstrated that the agonist of G-protein-coupled estrogen receptor 30 (GPR30), rather than ERα or ERβ in the ACC, exhibited the similar analgesic effect as E2, whereas antagonist of GPR30 exacerbated allodynia. Furthermore, OVX surgery reduced GPR30 expression in the ACC, which could be restored with estrogen supplementation. Selective downregulation of GPR30 in the ACC of naïve female mice induces mechanical allodynia, whereas GPR30 overexpression in the ACC remarkedly alleviated OVX-exacerbated allodynia. Collectively, estrogen withdrawal could downregulate the ACC GPR30 expression, resulting in exacerbated neuropathic pain. Our findings highlight the importance of GPR30 in the ACC in aggravated neuropathic pain during menopause, and offer a potential therapeutic candidate for neuropathic pain management in menopausal women.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shiquan Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zongping Fang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianshuai Zhao
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guoqing Zhang
- Department of Cardiovasology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yaru Guo
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qun Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhenhua Jiang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Nursing, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Haixing Zhong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Wugang Hou
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
14
|
Bendis PC, Zimmerman S, Onisiforou A, Zanos P, Georgiou P. The impact of estradiol on serotonin, glutamate, and dopamine systems. Front Neurosci 2024; 18:1348551. [PMID: 38586193 PMCID: PMC10998471 DOI: 10.3389/fnins.2024.1348551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
Estradiol, the most potent and prevalent member of the estrogen class of steroid hormones and is expressed in both sexes. Functioning as a neuroactive steroid, it plays a crucial role in modulating neurotransmitter systems affecting neuronal circuits and brain functions including learning and memory, reward and sexual behaviors. These neurotransmitter systems encompass the serotonergic, dopaminergic, and glutamatergic signaling pathways. Consequently, this review examines the pivotal role of estradiol and its receptors in the regulation of these neurotransmitter systems in the brain. Through a comprehensive analysis of current literature, we investigate the multifaceted effects of estradiol on key neurotransmitter signaling systems, namely serotonin, dopamine, and glutamate. Findings from rodent models illuminate the impact of hormone manipulations, such as gonadectomy, on the regulation of neuronal brain circuits, providing valuable insights into the connection between hormonal fluctuations and neurotransmitter regulation. Estradiol exerts its effects by binding to three estrogen receptors: estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G protein-coupled receptor (GPER). Thus, this review explores the promising outcomes observed with estradiol and estrogen receptor agonists administration in both gonadectomized and/or genetically knockout rodents, suggesting potential therapeutic avenues. Despite limited human studies on this topic, the findings underscore the significance of translational research in bridging the gap between preclinical findings and clinical applications. This approach offers valuable insights into the complex relationship between estradiol and neurotransmitter systems. The integration of evidence from neurotransmitter systems and receptor-specific effects not only enhances our understanding of the neurobiological basis of physiological brain functioning but also provides a comprehensive framework for the understanding of possible pathophysiological mechanisms resulting to disease states. By unraveling the complexities of estradiol's impact on neurotransmitter regulation, this review contributes to advancing the field and lays the groundwork for future research aimed at refining understanding of the relationship between estradiol and neuronal circuits as well as their involvement in brain disorders.
Collapse
Affiliation(s)
- Peyton Christine Bendis
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Sydney Zimmerman
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
- Laboratory of Epigenetics and Gene Regulation, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
15
|
Liu Z, Li S, Chen S, Sheng J, Li Z, Lv T, Yu W, Fan Y, Wang J, Liu W, Hu S, Jin J. YAP-mediated GPER signaling impedes proliferation and survival of prostate epithelium in benign prostatic hyperplasia. iScience 2024; 27:109125. [PMID: 38420594 PMCID: PMC10901089 DOI: 10.1016/j.isci.2024.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) occurs when there is an imbalance between the proliferation and death of prostate cells, which is regulated tightly by estrogen signaling. However, the role of G protein-coupled estrogen receptor (GPER) in prostate cell survival remains ambiguous. In this study, we observed that prostates with epithelial hyperplasia showed increased yes-associated protein 1 (YAP) expression and decreased levels of estrogen and GPER. Blocking YAP through genetic or drug interventions led to reduced proliferation and increased apoptosis in the prostate epithelial cells. Interestingly, GPER agonists produced similar effects. GPER activation enhanced the phosphorylation and degradation of YAP, which was crucial for suppressing cell proliferation and survival. The Gαs/cAMP/PKA/LATS pathway, downstream of GPER, transmitted signals that facilitated YAP inhibition. This study investigated the interaction between GPER and YAP in the prostate epithelial cells and its contribution to BPH development. It lays the groundwork for future research on developing BPH treatments.
Collapse
Affiliation(s)
- Zhifu Liu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Senmao Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shengbin Chen
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jindong Sheng
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Gynaecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zheng Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Tianjing Lv
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jinlong Wang
- Department of Urology, Tibet Autonomous Region People's Hospital, Lhasa 850000, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen 518036, China
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jie Jin
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
16
|
Zhang D, Chen H, Wang J, Ji J, Imam M, Zhang Z, Yan S. Current progress and prospects for G protein-coupled estrogen receptor in triple-negative breast cancer. Front Cell Dev Biol 2024; 12:1338448. [PMID: 38476263 PMCID: PMC10928007 DOI: 10.3389/fcell.2024.1338448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a biologically and clinically heterogeneous disease. The G protein-coupled estrogen receptor (GPER) plays a crucial role in mediating the effect of estrogen and estrogen-like compounds in TNBC cells. Compared with other subtypes, GPER has a higher expression in TNBC. The GPER mechanisms have been thoroughly characterized and analyzed in estrogen receptor α (ERα) positive breast cancer, but not in TNBC. Our previous work revealed that a higher expression of GPER mRNA indicates a better prognosis for ERα-positive breast cancer; however, its effects in TNBC differ. Whether GPER could serve as a predictive prognostic marker or therapeutic target for TNBC remains unclear. In this review, we provide a detailed introduction to the subcellular localization of GPER, the different effects of various ligands, and the interactions between GPER and closely associated factors in TNBC. We focused on the internal molecular mechanisms specific to TNBC and thoroughly explored the role of GPER in promoting tumor development. We also discussed the interaction of GPER with specific cytokines and chemokines, and the relationship between GPER and immune evasion. Additionally, we discussed the feasibility of using GPER as a therapeutic target in the context of existing studies. This comprehensive review highlights the effects of GPER on TNBC, providing a framework and directions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Zapater C, Moreira C, Knigge T, Monsinjon T, Gómez A, Pinto PIS. Evolutionary history and functional characterization of duplicated G protein-coupled estrogen receptors in European sea bass. J Steroid Biochem Mol Biol 2024; 236:106423. [PMID: 37939740 DOI: 10.1016/j.jsbmb.2023.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Across vertebrates, the numerous estrogenic functions are mainly mediated by nuclear and membrane receptors, including the G protein-coupled estrogen receptor (GPER) that has been mostly associated with rapid non-genomic responses. Although Gper-mediated signalling has been characterized in only few fish species, Gpers in fish appear to present more mechanistic functionalities as those of mammals due to additional gene duplicates. In this study, we ran a thorough investigation of the fish Gper evolutionary history in light of available genomes, we carried out the functional characterization of the two gper gene duplicates of European sea bass (Dicentrarchus labrax) using luciferase reporter gene transactivation assays, validated it with natural and synthetic estrogen agonists/antagonists and applied it to other chemicals of aquaculture and ecotoxicological interest. Phylogenetic and synteny analyses of fish gper1 and gper1-like genes suggest their duplication may have not resulted from the teleost-specific whole genome duplication. We confirmed that both sbsGper isoforms activate the cAMP signalling pathway and respond differentially to distinct estrogenic compounds. Therefore, as observed for nuclear estrogen receptors, both sbsGpers duplicates retain estrogenic activity although they differ in their specificity and potency (Gper1 being more potent and more specific than Gper1-like), suggesting a more conserved role for Gper1 than for Gper1-like. In addition, Gpers were able to respond to estrogenic environmental pollutants known to interfere with estrogen signalling, such as the phytoestrogen genistein and the anti-depressant fluoxetine, a point that can be taken into account in aquatic environment pollution screenings and chemical risk assessment, complementing previous assays for sea bass nuclear estrogen receptors.
Collapse
Affiliation(s)
- Cinta Zapater
- Instituto de Acuicultura Torre de la Sal, CSIC, 12595 Torre de la Sal, Castellón, Spain.
| | - Catarina Moreira
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Thomas Knigge
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Tiphaine Monsinjon
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Ana Gómez
- Instituto de Acuicultura Torre de la Sal, CSIC, 12595 Torre de la Sal, Castellón, Spain.
| | - Patrícia I S Pinto
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
18
|
Haider MZ, Sahebkar A, Eid AH. Selective Activation of G Protein-coupled Estrogen Receptor 1 Attenuates Atherosclerosis. Curr Med Chem 2024; 31:4312-4319. [PMID: 37138482 DOI: 10.2174/0929867330666230501231528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 05/05/2023]
Abstract
Atherosclerosis remains a leading contributor to cardiovascular disease-associated morbidity and mortality. Interestingly, atherosclerosis-associated mortality rate is higher in men than women. This suggested a protective role for estrogen in the cardiovasculature. These effects of estrogen were initially thought to be mediated by the classic estrogen receptors, ER alpha, and beta. However, genetic knockdown of these receptors did not abolish estrogen's vasculoprotective effects suggesting that the other membranous Gprotein coupled estrogen receptor, GPER1, maybe the actual mediator. Indeed, in addition to its role in vasotone regulation, this GPER1 appears to play important roles in regulating vascular smooth cell phenotype, a critical player in the onset of atherosclerosis. Moreover, GPER1-selective agonists appear to reduce LDL levels by promoting the expression of LDL receptors as well as potentiating LDL re-uptake in liver cells. Further evidence also show that GPER1 can downregulate Proprotein Convertase Subtilisin/ Kexin type 9, leading to suppression of LDL receptor breakdown. Here, we review how selective activation of GPER1 might prevent or suppress atherosclerosis, with less side effects than those of the non-selective estrogen.
Collapse
Affiliation(s)
- Mohammad Zulqurnain Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Amirhossein Sahebkar
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
19
|
Arisawa K, Matsuoka A, Ozawa N, Ishikawa T, Ichi I, Fujiwara Y. GPER/PKA-Dependent Enhancement of Hormone-Sensitive Lipase Phosphorylation in 3T3-L1 Adipocytes by Piceatannol. Nutrients 2023; 16:38. [PMID: 38201867 PMCID: PMC10781143 DOI: 10.3390/nu16010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
We previously reported that piceatannol (PIC) had an anti-obesity effect only in ovariectomized (OVX) postmenopausal obesity mice. PIC was found to induce the phosphorylation of hormone-sensitive lipase (pHSL) in OVX mice. To elucidate the mechanism by which PIC activates HSL, we investigated the effect of PIC using 3T3-L1 adipocytes. PIC induced HSL phosphorylation at Ser563 in 3T3-L1 cells, as in vivo experiments showed. pHSL (Ser563) is believed to be activated through the β-adrenergic receptor (β-AR) and protein kinase A (PKA) pathways; however, the addition of a selective inhibitor of β-AR did not inhibit the effect of PIC. The addition of a PKA inhibitor with PIC blocked pHSL (Ser563), suggesting that the effects are mediated by PKA in a different pathway than β-AR. The addition of G15, a selective inhibitor of the G protein-coupled estrogen receptor (GPER), reduced the activation of HSL by PIC. Furthermore, PIC inhibited insulin signaling and did not induce pHSL (Ser565), which represents its inactive form. These results suggest that PIC acts as a phytoestrogen and phosphorylates HSL through a novel pathway that activates GPER and its downstream PKA, which may be one of the inhibitory actions of PIC on fat accumulation in estrogen deficiency.
Collapse
Affiliation(s)
- Kotoko Arisawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan;
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan; (A.M.); (N.O.)
| | - Ayumi Matsuoka
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan; (A.M.); (N.O.)
| | - Natsuki Ozawa
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan; (A.M.); (N.O.)
| | - Tomoko Ishikawa
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan; (T.I.); (I.I.)
- Department of Human Nutrition, Seitoku University, Chiba 271-8555, Japan
| | - Ikuyo Ichi
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan; (T.I.); (I.I.)
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
| | - Yoko Fujiwara
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan; (A.M.); (N.O.)
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan; (T.I.); (I.I.)
| |
Collapse
|
20
|
Youngblood H, Schoenlein PV, Pasquale LR, Stamer WD, Liu Y. Estrogen dysregulation, intraocular pressure, and glaucoma risk. Exp Eye Res 2023; 237:109725. [PMID: 37956940 PMCID: PMC10842791 DOI: 10.1016/j.exer.2023.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Characterized by optic nerve atrophy due to retinal ganglion cell (RGC) death, glaucoma is the leading cause of irreversible blindness worldwide. Of the major risk factors for glaucoma (age, ocular hypertension, and genetics), only elevated intraocular pressure (IOP) is modifiable, which is largely regulated by aqueous humor outflow through the trabecular meshwork. Glucocorticoids such as dexamethasone have long been known to elevate IOP and lead to glaucoma. However, several recent studies have reported that steroid hormone estrogen levels inversely correlate with glaucoma risk, and that variants in estrogen signaling genes have been associated with glaucoma. As a result, estrogen dysregulation may contribute to glaucoma pathogenesis, and estrogen signaling may protect against glaucoma. The mechanism for estrogen-related protection against glaucoma is not completely understood but likely involves both regulation of IOP homeostasis and neuroprotection of RGCs. Based upon its known activities, estrogen signaling may promote IOP homeostasis by affecting extracellular matrix turnover, focal adhesion assembly, actin stress fiber formation, mechanosensation, and nitric oxide production. In addition, estrogen receptors in the RGCs may mediate neuroprotective functions. As a result, the estrogen signaling pathway may offer a therapeutic target for both IOP control and neuroprotection. This review examines the evidence for a relationship between estrogen and IOP and explores the possible mechanisms by which estrogen maintains IOP homeostasis.
Collapse
Affiliation(s)
- Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Patricia V Schoenlein
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; Department of Radiology and Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Surgery, Augusta University, Augusta, GA, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Daniel Stamer
- Department of Ophthalmology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA.
| |
Collapse
|
21
|
Feldman RD, Sanjanwala R, Padwal R, Leung AA. Revising the Roles of Aldosterone in Vascular Physiology and Pathophysiology: From Electocortin to Baxdrostat. Can J Cardiol 2023; 39:1808-1815. [PMID: 37734710 DOI: 10.1016/j.cjca.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Aldosterone was initially identified as a hormone primarily related to regulation of fluid and electrolyte homeostasis. However, over the past 20 years there has been an increasing appreciation of its role in regulation of vascular function and pathophysiology in the setting of hypertension, atherosclerosis, and heart failure. This review highlights recent advances in our understanding the biology of aldosterone as it relates to the pathophysiology and the management of vascular disease-especially related to hypertension. The review focuses on 3 key areas: 1) advances in our understanding of the cellular mechanisms by which aldosterone mediates its cellular effects, 2) identification of the hidden epidemic of aldosteronism as a mediator of hypertension, and 3) appreciating new therapeutic advances in the clinical pharmacology of aldosterone inhibition in cardiovascular and renal disease.
Collapse
Affiliation(s)
- Ross D Feldman
- Robarts Research Institute, Western University, London, Ontario, Canada.
| | - Rohan Sanjanwala
- Department of Internal Medicine, Max Rady School of Medicine, Winnipeg, Manitoba, Canada
| | - Raj Padwal
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander A Leung
- Division of Endocrinology and Metabolism, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Ahmadian Elmi M, Motamed N, Picard D. Proteomic Analyses of the G Protein-Coupled Estrogen Receptor GPER1 Reveal Constitutive Links to Endoplasmic Reticulum, Glycosylation, Trafficking, and Calcium Signaling. Cells 2023; 12:2571. [PMID: 37947649 PMCID: PMC10650109 DOI: 10.3390/cells12212571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The G protein-coupled estrogen receptor 1 (GPER1) has been proposed to mediate rapid responses to the steroid hormone estrogen. However, despite a strong interest in its potential role in cancer, whether it is indeed activated by estrogen and how this works remain controversial. To provide new tools to address these questions, we set out to determine the interactome of exogenously expressed GPER1. The combination of two orthogonal methods, namely APEX2-mediated proximity labeling and immunoprecipitation followed by mass spectrometry, gave us high-confidence results for 73 novel potential GPER1 interactors. We found that this GPER1 interactome is not affected by estrogen, a result that mirrors the constitutive activity of GPER1 in a functional assay with a Rac1 sensor. We specifically validated several hits highlighted by a gene ontology analysis. We demonstrate that CLPTM1 interacts with GPER1 and that PRKCSH and GANAB, the regulatory and catalytic subunits of α-glucosidase II, respectively, associate with CLPTM1 and potentially indirectly with GPER1. An imbalance in CLPTM1 levels induces nuclear association of GPER1, as does the overexpression of PRKCSH. Moreover, we show that the Ca2+ sensor STIM1 interacts with GPER1 and that upon STIM1 overexpression and depletion of Ca2+ stores, GPER1 becomes more nuclear. Thus, these new GPER1 interactors establish interesting connections with membrane protein maturation, trafficking, and calcium signaling.
Collapse
Affiliation(s)
- Maryam Ahmadian Elmi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Genève, Switzerland
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Genève, Switzerland
| |
Collapse
|
23
|
Morelos-Garnica LA, Guzmán-Velázquez S, Padilla-Martínez II, García-Sánchez JR, Bello M, Bakalara N, Méndez-Luna D, Correa-Basurto J. In silico design and cell-based evaluation of two dual anti breast cancer compounds targeting Bcl-2 and GPER. Sci Rep 2023; 13:17933. [PMID: 37863936 PMCID: PMC10589355 DOI: 10.1038/s41598-023-43860-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
According to WHO statistics, breast cancer (BC) disease represents about 2.3 million diagnosed and 685,000 deaths globally. Regarding histological classification of BC, the Estrogen (ER) and Progesterone (PR) receptors negative-expression cancer, named Triple-Negative BC (TNBC), represents the most aggressive type of this disease, making it a challenge for drug discovery. In this context, our research group, applying a well-established Virtual Screening (VS) protocol, in addition to docking and molecular dynamics simulations studies, yielded two ligands identified as 6 and 37 which were chemically synthesized and evaluated on MCF-7 and MDA-MB-231 cancer cell lines. Strikingly, 37 assayed on MDA-MB-231 (a TNBC cell model) depicted an outstanding value of 18.66 μM much lower than 65.67 μM yielded by Gossypol Bcl-2 inhibitor whose main disadvantage is to produce multiple toxic effects. Highlighted above, enforce the premise of the computational tools to find new therapeutic options against the most aggressive forms of breast cancer, as the results herein showed.
Collapse
Affiliation(s)
- Loreley-A Morelos-Garnica
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Sonia Guzmán-Velázquez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, C.P. 07738, Mexico City, México
| | - Itzia-I Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Alcaldía Gustavo A. Madero, C.P. 07340, Mexico City, México
| | - José-R García-Sánchez
- Laboratorio de Oncología Molecular y Estrés Oxidativo, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Norbert Bakalara
- Centre National de la Recherche Scientifique, École Nationale Supérieure de Technologie des Biomolécules de Bordeaux INP, Univeristé de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - David Méndez-Luna
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México.
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, C.P. 07738, Mexico City, México.
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México.
| |
Collapse
|
24
|
Hall KA, Filardo EJ. The G Protein-Coupled Estrogen Receptor (GPER): A Critical Therapeutic Target for Cancer. Cells 2023; 12:2460. [PMID: 37887304 PMCID: PMC10605794 DOI: 10.3390/cells12202460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Estrogens have been implicated in the pathogenesis of various cancers, with increasing concern regarding the overall rising incidence of disease and exposure to environmental estrogens. Estrogens, both endogenous and environmental, manifest their actions through intracellular and plasma membrane receptors, named ERα, ERβ, and GPER. Collectively, they act to promote a broad transcriptional response that is mediated through multiple regulatory enhancers, including estrogen response elements (EREs), serum response elements (SREs), and cyclic AMP response elements (CREs). Yet, the design and rational assignment of antiestrogen therapy for breast cancer has strictly relied upon an endogenous estrogen-ER binary rubric that does not account for environmental estrogens or GPER. New endocrine therapies have focused on the development of drugs that degrade ER via ER complex destabilization or direct enzymatic ubiquitination. However, these new approaches do not broadly treat all cancer-involved receptors, including GPER. The latter is concerning since GPER is directly associated with tumor size, distant metastases, cancer stem cell activity, and endocrine resistance, indicating the importance of targeting this receptor to achieve a more complete therapeutic response. This review focuses on the critical importance and value of GPER-targeted therapeutics as part of a more holistic approach to the treatment of estrogen-driven malignancies.
Collapse
|
25
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
26
|
Gallo Cantafio ME, Torcasio R, Scionti F, Mesuraca M, Ronchetti D, Pistoni M, Bellizzi D, Passarino G, Morelli E, Neri A, Viglietto G, Amodio N. GPER1 Activation Exerts Anti-Tumor Activity in Multiple Myeloma. Cells 2023; 12:2226. [PMID: 37759449 PMCID: PMC10526814 DOI: 10.3390/cells12182226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1) activation is emerging as a promising therapeutic strategy against several cancer types. While GPER targeting has been widely studied in the context of solid tumors, its effect on hematological malignancies remains to be fully understood. Here, we show that GPER1 mRNA is down-regulated in plasma cells from overt multiple myeloma (MM) and plasma cell leukemia patients as compared to normal donors or pre-malignant conditions (monoclonal gammopathy of undetermined significance and smoldering MM); moreover, lower GPER1 expression associates with worse overall survival of MM patients. Using the clinically applicable GPER1-selective agonist G-1, we demonstrate that the pharmacological activation of GPER1 triggered in vitro anti-MM activity through apoptosis induction, also overcoming the protective effects exerted by bone marrow stromal cells. Noteworthy, G-1 treatment reduced in vivo MM growth in two distinct xenograft models, even bearing bortezomib-resistant MM cells. Mechanistically, G-1 upregulated the miR-29b oncosuppressive network, blunting an established miR-29b-Sp1 feedback loop operative in MM cells. Overall, this study highlights the druggability of GPER1 in MM, providing the first preclinical framework for further development of GPER1 agonists to treat this malignancy.
Collapse
Affiliation(s)
- Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Francesca Scionti
- Department of Medical and Surgical Science, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Maria Mesuraca
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
| | - Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy;
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.B.); (G.P.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.B.); (G.P.)
| | - Eugenio Morelli
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
| |
Collapse
|
27
|
Lam SSN, Shi Z, Ip CKM, Wong CKC, Wong AST. Environmental-relevant bisphenol A exposure promotes ovarian cancer stemness by regulating microRNA biogenesis. J Cell Mol Med 2023; 27:2792-2803. [PMID: 37610061 PMCID: PMC10494296 DOI: 10.1111/jcmm.17920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental xenobiotic impacting millions of people worldwide. BPA has long been proposed to promote ovarian carcinogenesis, but the detrimental mechanistic target remains unclear. Cancer stem cells (CSCs) are considered as the trigger of tumour initiation and progression. Here, we show for the first time that nanomolar (environmentally relevant) concentration of BPA can markedly increase the formation and expansion of ovarian CSCs concomitant. This effect is observed in both oestrogen receptor (ER)-positive and ER-defective ovarian cancer cells, suggesting that is independent of the classical ERs. Rather, the signal is mediated through alternative ER G-protein-coupled receptor 30 (GPR30), but not oestrogen-related receptor α and γ. Moreover, we report a novel role of BPA in the regulation of Exportin-5 that led to dysregulation of microRNA biogenesis through miR-21. The use of GPR30 siRNA or antagonist to inhibit GPR30 expression or activity, respectively, resulted in significant inhibition of ovarian CSCs. Similarly, the CSCs phenotype can be reversed by expression of Exportin-5 siRNA. These results identify for the first time non-classical ER and microRNA dysregulation as novel mediators of low, physiological levels of BPA function in CSCs that may underlie its significant tumour-promoting properties in ovarian cancer.
Collapse
Affiliation(s)
- Sophia S. N. Lam
- School of Biological SciencesUniversity of Hong KongHong KongChina
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedHong Kong Science and Technology ParksHong KongChina
| | - Zeyu Shi
- School of Biological SciencesUniversity of Hong KongHong KongChina
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedHong Kong Science and Technology ParksHong KongChina
| | - Carman K. M. Ip
- Cellular Screening CenterUniversity of ChicagoChicagoIllinoisUSA
| | | | - Alice S. T. Wong
- School of Biological SciencesUniversity of Hong KongHong KongChina
| |
Collapse
|
28
|
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol 2023:10.1038/s41574-023-00822-7. [PMID: 37193881 DOI: 10.1038/s41574-023-00822-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
- Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
29
|
Lu D, Wang X, Feng C, Liu D, Liu Y, Liu Y, Li J, Zhang J, Li N, Deng Y, Wang K, Ren R, Pang G. Study of the Sensing Kinetics of G Protein-Coupled Estrogen Receptor Sensors for Common Estrogens and Estrogen Analogs. Molecules 2023; 28:molecules28083286. [PMID: 37110520 PMCID: PMC10143753 DOI: 10.3390/molecules28083286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Endogenous and exogenous estrogens are widely present in food and food packaging, and high levels of natural estrogens and the misuse or illegal use of synthetic estrogens can lead to endocrine disorders and even cancer in humans. Therefore, it is consequently important to accurately evaluate the presence of food-functional ingredients or toxins with estrogen-like effects. In this study, an electrochemical sensor based on G protein-coupled estrogen receptors (GPERs) was fabricated by self-assembly, modified by double-layered gold nanoparticles, and used to measure the sensing kinetics for five GPER ligands. The interconnected allosteric constants (Ka) of the sensor for 17β-estradiol, resveratrol, G-1, G-15, and bisphenol A were 8.90 × 10-17, 8.35 × 10-16, 8.00 × 10-15, 5.01 × 10-15, and 6.65 × 10-16 mol/L, respectively. The sensitivity of the sensor for the five ligands followed the order of 17β-estradiol > bisphenol A > resveratrol > G-15 > G-1. The receptor sensor also demonstrated higher sensor sensitivity for natural estrogens than exogenous estrogens. The results of molecular simulation docking showed that the residues Arg, Glu, His, and Asn of GPER mainly formed hydrogen bonds with -OH, C-O-C, or -NH-. In this study, simulating the intracellular receptor signaling cascade with an electrochemical signal amplification system enabled us to directly measure GPER-ligand interactions and explore the kinetics after the self-assembly of GPERs on a biosensor. This study also provides a novel platform for the accurate functional evaluation of food-functional components and toxins.
Collapse
Affiliation(s)
- Dingqiang Lu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China
| | - Xinqian Wang
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Chunlei Feng
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Danyang Liu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yixuan Liu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yujiao Liu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jie Li
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jiayao Zhang
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Na Li
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yujing Deng
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ke Wang
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ruijuan Ren
- Tianjin Institute for Food Safety Inspection Technology, Tianjin 300134, China
| | - Guangchang Pang
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China
| |
Collapse
|
30
|
Guha P, Sen K, Chowdhury P, Mukherjee D. Estrogen receptors as potential therapeutic target in endometrial cancer. J Recept Signal Transduct Res 2023; 43:19-26. [PMID: 36883690 DOI: 10.1080/10799893.2023.2187643] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Endometrial cancer (EC) is one of the most common gynecological carcinomas in both developed and developing countries. Majority of the gynecological malignancies are hormonally driven where estrogen signaling acts as an oncogenic signal. Estrogen's effects are mediated via classical nuclear estrogen receptors; estrogen receptor alpha and beta (ERα and ERβ) and a trans-membrane G protein-coupled estrogen receptor (GPR30 and GPER). ERs and GPER through ligand binding triggers multiple downstream signaling pathways causing cell cycle regulation, cell differentiation, migration, and apoptosis in various tissues including endometrium. Although the molecular aspect of estrogen function in ER-mediated signaling is now partly understood, the same is not true for GPER-mediated signaling in endometrial malignancies. Understanding the physiological roles of ERα and GPER in EC biology therefore leads to the identification of some novel therapeutic targets. Here we review the effect of estrogen signaling through ERα-and GPER in EC, major types, and some affordable treatment approaches for endometrial tumor patients which has interesting implications in understanding uterine cancer progression.
Collapse
Affiliation(s)
- Payel Guha
- Department of Zoology, University of Kalyani, Kalyani, India.,Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, India
| | - Koushik Sen
- Department of Zoology, University of Kalyani, Kalyani, India.,Department of Zoology, Jhargram Raj College, Jhargram, India
| | | | - Dilip Mukherjee
- Department of Zoology, University of Kalyani, Kalyani, India
| |
Collapse
|
31
|
The role of estrogen receptor manipulation during traumatic stress on changes in emotional memory induced by traumatic stress. Psychopharmacology (Berl) 2023; 240:1049-1061. [PMID: 36879072 DOI: 10.1007/s00213-023-06342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
RATIONALE Traumatic stress leads to persistent fear, which is a core feature of post-traumatic stress disorder (PTSD). Women are more likely than men to develop PTSD after trauma exposure, which suggests women are differentially sensitive to traumatic stress. However, it is unclear how this differential sensitivity manifests. Cyclical changes in vascular estrogen release could be a contributing factor where levels of vascular estrogens (and activation of estrogen receptors) at the time of traumatic stress alter the impact of traumatic stress. METHODS To examine this, we manipulated estrogen receptors at the time of stress and observed the effect this had on fear and extinction memory (within the single prolonged stress (SPS) paradigm) in female rats. In all experiments, freezing and darting were used to measure fear and extinction memory. RESULTS In Experiment 1, SPS enhanced freezing during extinction testing, and this effect was blocked by nuclear estrogen receptor antagonism prior to SPS. In Experiment 2, SPS decreased conditioned freezing during the acquisition and testing of extinction. Administration of 17β-estradiol altered freezing in control and SPS animals during the acquisition of extinction, but this treatment had no effect on freezing during the testing of extinction memory. In all experiments, darting was only observed to footshock onset during fear conditioning. CONCLUSION The results suggest multiple behaviors (or different behavioral paradigms) are needed to characterize the nature of traumatic stress effects on emotional memory in female rats and that nuclear estrogen receptor antagonism prior to SPS blocks SPS effects on emotional memory in female rats.
Collapse
|
32
|
Zhang X, Qian H, Chen Y, Wu Y, Sun Y, He Y, Chen S, Shi G, Liu Y. Autoantibodies targeting to GPER1 promote monocyte cytokines production and inflammation in systemic lupus erythematosus. Signal Transduct Target Ther 2023; 8:93. [PMID: 36864043 PMCID: PMC9981603 DOI: 10.1038/s41392-022-01294-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 03/04/2023] Open
Affiliation(s)
- Xinwei Zhang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.,Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, China.,Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361000, China
| | - Hongyan Qian
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.,Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, China.,Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361000, China
| | - Yangchun Chen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.,Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, China.,Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361000, China
| | - Yuanhui Wu
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.,Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, China.,Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361000, China
| | - Yuechi Sun
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.,Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, China.,Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361000, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.,Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, China.,Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361000, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.,Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, China.,Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361000, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China. .,Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, China. .,Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361000, China.
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China. .,Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, China. .,Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361000, China.
| |
Collapse
|
33
|
Le G, Baumann CW, Warren GL, Lowe DA. In vivo potentiation of muscle torque is enhanced in female mice through estradiol-estrogen receptor signaling. J Appl Physiol (1985) 2023; 134:722-730. [PMID: 36735234 PMCID: PMC10027088 DOI: 10.1152/japplphysiol.00731.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
Estradiol affects several properties of skeletal muscle in females including strength. Here, we developed an approach to measure in vivo posttetanic twitch potentiation (PTP) of the anterior crural muscles of anesthetized mice and tested the hypothesis that 17β-estradiol (E2) enhances PTP through estrogen receptor (ER) signaling. Peak torques of potentiated twitches were ∼40%-60% greater than those of unpotentiated twitches and such PTP was greater in ovary-intact mice, or ovariectomized (Ovx) mice treated with E2, compared with Ovx mice (P ≤ 0.047). PTP did not differ between mice with and without ERα ablated in skeletal muscle fibers (P = 0.347). Treatment of ovary-intact and Ovx mice with ERβ antagonist and agonist (PHTPP and DPN, respectively) did not affect PTP (P ≥ 0.258). Treatment with G1, an agonist of the G protein-coupled estrogen receptor (GPER), significantly increased PTP in Ovx mice from 41 ± 10% to 66 ± 21% (means ± SD; P = 0.034). Collectively, these data indicate that E2 signals through GPER, and not ERα or ERβ, in skeletal muscles of female mice to augment an in vivo parameter of strength, namely, PTP.NEW & NOTEWORTHY A novel in vivo approach was developed to measure potentiation of skeletal muscle torque in female mice and highlight another parameter of strength that is impacted by estradiol. The enhancement of PTP by estradiol is mediated distinctively through the G-protein estrogen receptor, GPER.
Collapse
Affiliation(s)
- Gengyun Le
- Division of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Cory W Baumann
- Division of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia, United States
| | - Dawn A Lowe
- Division of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| |
Collapse
|
34
|
G-protein coupled estrogen receptor (GPER1) activation promotes synaptic insertion of AMPA receptors and induction of chemical LTP at hippocampal temporoammonic-CA1 synapses. Mol Brain 2023; 16:16. [PMID: 36709268 PMCID: PMC9883958 DOI: 10.1186/s13041-023-01003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
It is well documented that 17β estradiol (E2) regulates excitatory synaptic transmission at hippocampal Shaffer-collateral (SC)-CA1 synapses, via activation of the classical estrogen receptors (ERα and ERβ). Hippocampal CA1 pyramidal neurons are also innervated by the temporoammonic (TA) pathway, and excitatory TA-CA1 synapses are reported to be regulated by E2. Recent studies suggest a role for the novel G-protein coupled estrogen receptor (GPER1) at SC-CA1 synapses, however, the role of GPER1 in mediating the effects of E2 at juvenile TA-CA1 synapses is unclear. Here we demonstrate that the GPER1 agonist, G1 induces a persistent, concentration-dependent (1-10 nM) increase in excitatory synaptic transmission at TA-CA1 synapses and this effect is blocked by selective GPER1 antagonists. The ability of GPER1 to induce this novel form of chemical long-term potentiation (cLTP) was prevented following blockade of N-methyl-D-aspartate (NMDA) receptors, and it was not accompanied by any change in paired pulse facilitation ratio (PPR). GPER1-induced cLTP involved activation of ERK but was independent of phosphoinositide 3-kinase (PI3K) signalling. Prior treatment with philanthotoxin prevented the effects of G1, indicating that synaptic insertion of GluA2-lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors underlies GPER1-induced cLTP. Furthermore, activity-dependent LTP occluded G1-induced cLTP and vice versa, indicating that these processes have overlapping expression mechanisms. Activity-dependent LTP was blocked by the GPER1 antagonist, G15, suggesting that GPER1 plays a role in NMDA-dependent LTP at juvenile TA-CA1 synapses. These findings add a new dimension to our understanding of GPER1 in modulating neuronal plasticity with relevance to age-related neurodegenerative conditions.
Collapse
|
35
|
Arterburn JB, Prossnitz ER. G Protein-Coupled Estrogen Receptor GPER: Molecular Pharmacology and Therapeutic Applications. Annu Rev Pharmacol Toxicol 2023; 63:295-320. [PMID: 36662583 PMCID: PMC10153636 DOI: 10.1146/annurev-pharmtox-031122-121944] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The actions of estrogens and related estrogenic molecules are complex and multifaceted in both sexes. A wide array of natural, synthetic, and therapeutic molecules target pathways that produce and respond to estrogens. Multiple receptors promulgate these responses, including the classical estrogen receptors of the nuclear hormone receptor family (estrogen receptors α and β), which function largely as ligand-activated transcription factors, and the 7-transmembrane G protein-coupled estrogen receptor, GPER, which activates a diverse array of signaling pathways. The pharmacology and functional roles of GPER in physiology and disease reveal important roles in responses to both natural and synthetic estrogenic compounds in numerous physiological systems. These functions have implications in the treatment of myriad disease states, including cancer, cardiovascular diseases, and metabolic disorders. This review focuses on the complex pharmacology of GPER and summarizes major physiological functions of GPER and the therapeutic implications and ongoing applications of GPER-targeted compounds.
Collapse
Affiliation(s)
- Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
| | - Eric R Prossnitz
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
36
|
Abstract
Depression and anxiety disorders carry a tremendous worldwide burden and emerge as a significant cause of disability among western societies. Both disorders are known to disproportionally affect women, as they are twice more likely to be diagnosed and moreover, they are also prone to suffer from female-specific mood disorders. Importantly, the prevalence of these affective disorders has notably risen after the COVID pandemic, especially in women. In this chapter, we describe factors that are possibly contributing to the expression of such sex differences in depression and anxiety. For this, we overview the effect of transcriptomic and genetic factors, the immune system, neuroendocrine aspects, and cognition. Furthermore, we also provide evidence of sex differences in antidepressant response and their causes. Finally, we emphasize the importance to consider sex as a biological variable in preclinical and clinical research, which may facilitate the discovery and development of new and more efficacious antidepressant and anxiolytic pharmacotherapies for both women and men.
Collapse
Affiliation(s)
- Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
37
|
Baldwin SN, Forrester EA, Homer NZM, Andrew R, Barrese V, Stott JB, Isakson BE, Albert AP, Greenwood IA. Marked oestrous cycle-dependent regulation of rat arterial K V 7.4 channels driven by GPER1. Br J Pharmacol 2023; 180:174-193. [PMID: 36085551 PMCID: PMC10091994 DOI: 10.1111/bph.15947] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Kcnq-encoded KV 7 channels (termed KV 7.1-5) regulate vascular smooth muscle cell (VSMC) contractility at rest and as targets of receptor-mediated responses. However, the current data are mostly derived from males. Considering the known effects of sex, the oestrous cycle and sex hormones on vascular reactivity, here we have characterised the molecular and functional properties of KV 7 channels from renal and mesenteric arteries from female Wistar rats separated into di-oestrus and met-oestrus (F-D/M) and pro-oestrus and oestrus (F-P/E). EXPERIMENTAL APPROACH RT-qPCR, immunocytochemistry, proximity ligation assay and wire myography were performed in renal and mesenteric arteries. Circulating sex hormone concentrations were determined by liquid chromatography-tandem mass spectrometry. Whole-cell electrophysiology was undertaken on cells expressing KV 7.4 channels in association with G-protein-coupled oestrogen receptor 1 (GPER1). KEY RESULTS The KV 7.2-5 activators S-1 and ML213 and the pan-KV 7 inhibitor linopirdine were more effective in arteries from F-D/M compared with F-P/E animals. In VSMCs isolated from F-P/E rats, exploratory evidence indicates reduced membrane abundance of KV 7.4 but not KV 7.1, KV 7.5 and Kcne4 when compared with cells from F-D/M. Plasma oestradiol was higher in F-P/E compared with F-D/M, and progesterone showed the converse pattern. Oestradiol/GPER1 agonist G-1 diminished KV 7.4 encoded currents and ML213 relaxations and reduced the membrane abundance of KV 7.4 and interaction between KV 7.4 and heat shock protein 90 (HSP90), in arteries from F-D/M but not F-P/E. CONCLUSIONS AND IMPLICATIONS GPER1 signalling decreased KV 7.4 membrane abundance in conjunction with diminished interaction with HSP90, giving rise to a 'pro-contractile state'.
Collapse
Affiliation(s)
- Samuel N. Baldwin
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Elizabeth A. Forrester
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Natalie Z. M. Homer
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Ruth Andrew
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
- BHF Centre for Cardiovascular Science, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Sciences and DentistryUniversity of Naples Federico IINaplesItaly
| | - Jennifer B. Stott
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Brant E. Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research CentreUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Anthony P. Albert
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Iain A. Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| |
Collapse
|
38
|
Luo W, Yan Y, Cao Y, Zhang Y, Zhang Z. The effects of GPER on age-associated memory impairment induced by decreased estrogen levels. Front Mol Biosci 2023; 10:1097018. [PMID: 37021109 PMCID: PMC10069632 DOI: 10.3389/fmolb.2023.1097018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
Estrogen, as a pleiotropic endocrine hormone, not only regulates the physiological functions of peripheral tissues but also exerts vital neuroregulatory effects in the central nervous system (CNS), such as the development of neurons and the formation of neural network connections, wherein rapid estrogen-mediated reactions positively stimulate spinogenesis and regulate synaptic plasticity and synaptic transmission to facilitate cognitive and memory performance. These fast non-genomic effects can be initiated by membrane-bound estrogen receptors (ERs), three best known of which are ERα, ERβ, and G protein-coupled estrogen receptor (GPER). To date, the effects of ERα and ERβ have been well studied in age-associated memory impairment, whereas there is still a lack of attention to the role of GPER in age-associated memory impairment, and there are still disputes about whether GPER indeed functions as an ER to enhance learning and memory. In this review, we provide a systematic overview of the role of GPER in age-associated memory impairment based on its expression, distribution, and signaling pathways, which might bring some inspiration for translational drugs targeting GPER for age-related diseases and update knowledge on the role of estrogen and its receptor system in the brain.
Collapse
Affiliation(s)
- Wenyu Luo
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yudie Yan
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunpeng Cao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Zhen Zhang, ; Yunpeng Cao, ; Yanbo Zhang,
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Zhen Zhang, ; Yunpeng Cao, ; Yanbo Zhang,
| | - Zhen Zhang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Zhen Zhang, ; Yunpeng Cao, ; Yanbo Zhang,
| |
Collapse
|
39
|
Bühler M, Fahrländer J, Sauter A, Becker M, Wistorf E, Steinfath M, Stolz A. GPER1 links estrogens to centrosome amplification and chromosomal instability in human colon cells. Life Sci Alliance 2022; 6:6/1/e202201499. [PMID: 36384894 PMCID: PMC9670797 DOI: 10.26508/lsa.202201499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
The role of the alternate G protein-coupled estrogen receptor 1 (GPER1) in colorectal cancer (CRC) development and progression is unclear, not least because of conflicting clinical and experimental evidence for pro- and anti-tumorigenic activities. Here, we show that low concentrations of the estrogenic GPER1 ligands, 17β-estradiol, bisphenol A, and diethylstilbestrol cause the generation of lagging chromosomes in normal colon and CRC cell lines, which manifest in whole chromosomal instability and aneuploidy. Mechanistically, (xeno)estrogens triggered centrosome amplification by inducing centriole overduplication that leads to transient multipolar mitotic spindles, chromosome alignment defects, and mitotic laggards. Remarkably, we could demonstrate a significant role of estrogen-activated GPER1 in centrosome amplification and increased karyotype variability. Indeed, both gene-specific knockdown and inhibition of GPER1 effectively restored normal centrosome numbers and karyotype stability in cells exposed to 17β-estradiol, bisphenol A, or diethylstilbestrol. Thus, our results reveal a novel link between estrogen-activated GPER1 and the induction of key CRC-prone lesions, supporting a pivotal role of the alternate estrogen receptor in colon neoplastic transformation and tumor progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ailine Stolz
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| |
Collapse
|
40
|
Segovia-Mendoza M, Mirzaei E, Prado-Garcia H, Miranda LD, Figueroa A, Lemini C. The Interplay of GPER1 with 17β-Aminoestrogens in the Regulation of the Proliferation of Cervical and Breast Cancer Cells: A Pharmacological Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12361. [PMID: 36231664 PMCID: PMC9566056 DOI: 10.3390/ijerph191912361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The G-protein-coupled receptor for estrogen (GPER1) is a transmembrane receptor involved in the progression and development of various neoplasms whose ligand is estradiol (E2). 17β-aminoestrogens (17β-AEs) compounds, analogs to E2, are possible candidates for use in hormone replacement therapy (HRT), but our knowledge of their pharmacological profile is limited. Thus, we explored the molecular recognition of GPER1 with different synthetic 17β-AEs: prolame, butolame, and pentolame. We compared the structure and ligand recognition sites previously reported for a specific agonist (G1), antagonists (G15 and G36), and the natural ligand (E2). Then, the biological effects of 17β-AEs were analyzed through cell viability and cell-cycle assays in two types of female cancer. In addition, the effect of 17β-AEs on the phosphorylation of the oncoprotein c-fos was evaluated, because this molecule is modulated by GPER1. Molecular docking analysis showed that 17β-AEs interacted with GPER1, suggesting that prolame joins GPER1 in a hydrophobic cavity, similarly to G1, G15, and E2. Prolame induced cell proliferation in breast (MCF-7) and cervical cancer (SIHA) cells; meanwhile, butolame and pentolame did not affect cell proliferation. Neither 17β-AEs nor E2 changed the activation of c-fos in MCF-7 cells. Meanwhile, in SIHA cells, E2 and 17β-AEs reduced c-fos phosphorylation. Thus, our data suggest that butolame and pentolame, but not prolame, could be used for HRT without presenting a potential risk of inducing breast- or cervical-cancer-cell proliferation. The novelty of this work lies in its study of compound analogs to E2 that may represent important therapeutic strategies for women in menopause, with non-significant effects on the cell viability of cancer cells. The research focused on the interactions of GPER1, a molecule recently associated with promoting and maintaining various neoplasms.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Elahe Mirzaei
- Instituto Nacional de Medicina Genómica, Col. Arenal Tepepan, Ciudad de México 14610, Mexico
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Calzada de Tlalpan 4502, Col. Sección XVI, Ciudad de México 14080, Mexico
| | - Luis D. Miranda
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Alejandra Figueroa
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
41
|
Morelli E, Hunter ZR, Fulciniti M, Gullà A, Perrotta ID, Zuccalà V, Federico C, Juli G, Manzoni M, Ronchetti D, Romeo E, Gallo Cantafio ME, Soncini D, Maltese L, Rossi M, Roccaro AM, Cea M, Tassone P, Neri A, Treon SC, Munshi NC, Viglietto G, Amodio N. Therapeutic activation of G protein-coupled estrogen receptor 1 in Waldenström Macroglobulinemia. Exp Hematol Oncol 2022; 11:54. [PMID: 36096954 PMCID: PMC9469525 DOI: 10.1186/s40164-022-00305-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Activating G protein-coupled estrogen receptor 1 (GPER1) is an attractive therapeutic strategy for treating a variety of human diseases including cancer. Here, we show that GPER1 is significantly upregulated in tumor cells from different cohorts of Waldenström Macroglobulinemia (WM) patients compared to normal B cells. Using the clinically applicable GPER1-selective small-molecule agonist G-1 (also named Tespria), we found that pharmacological activation of GPER1 leads to G2/M cell cycle arrest and apoptosis both in vitro and in vivo in animal models, even in the context of the protective bone marrow milieu. Activation of GPER1 triggered the TP53 pathway, which remains actionable during WM progression. Thus, this study identifies a novel therapeutic target in WM and paves the way for the clinical development of the GPER1 agonist G-1.
Collapse
Affiliation(s)
- Eugenio Morelli
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA
| | - Zachary R Hunter
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA
| | - Annamaria Gullà
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA
| | - Ida Daniela Perrotta
- Laboratory of Transmission Electron Microscopy, Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, University of Calabria, Cosenza, Italy
| | - Valeria Zuccalà
- Pathology Unit, "Pugliese-Ciaccio" Hospital, 88100, Catanzaro, Italy
| | - Cinzia Federico
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy.,Clinical Research Development and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Martina Manzoni
- Department of Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122, Milan, Italy
| | - Domenica Ronchetti
- Department of Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122, Milan, Italy
| | - Enrica Romeo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | | | - Debora Soncini
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenza Maltese
- Pathology Unit, "Pugliese-Ciaccio" Hospital, 88100, Catanzaro, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Aldo M Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Michele Cea
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Steven C Treon
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA
| | - Nikhil C Munshi
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA.,VA Boston Healthcare System, Boston, MA, 02132, USA
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy.
| |
Collapse
|
42
|
Kubota S, Yamamoto Y, Kimura K. A Chinese Medicine, Tokishakuyakusan, Increases Bovine Oviductal Tonus <i>via</i> G Protein-Coupled Estrogen Receptor 1. Biol Pharm Bull 2022; 45:1133-1141. [DOI: 10.1248/bpb.b22-00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sayaka Kubota
- Department of Animal Production Science, Graduate School of Environmental and Life Science, Okayama University
| | - Yuki Yamamoto
- Department of Animal Production Science, Graduate School of Environmental and Life Science, Okayama University
| | - Koji Kimura
- Department of Animal Production Science, Graduate School of Environmental and Life Science, Okayama University
| |
Collapse
|
43
|
Qu Y, Li N, Xu M, Zhang D, Xie J, Wang J. Estrogen Up-Regulates Iron Transporters and Iron Storage Protein Through Hypoxia Inducible Factor 1 Alpha Activation Mediated by Estrogen Receptor β and G Protein Estrogen Receptor in BV2 Microglia Cells. Neurochem Res 2022; 47:3659-3669. [PMID: 35829942 DOI: 10.1007/s11064-022-03658-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Estrogen is a steroid hormone produced mainly by the ovaries. It has been found that estrogen could regulate iron metabolism in neurons and astrocytes in different ways. The role of estrogen on iron metabolism in microglia is currently unknown. In this study, we investigated the effect and mechanism of 17β-estrogen (E2) on iron transport proteins. We found that following E2 treatment for 24h in BV2 microglial cell lines, the iron importer divalent metal transporter 1 (DMT1) and iron exporter ferroportin 1 (FPN1) were up-regulated , iron storage protein ferritin (FT) was increased. The protein levels of iron regulatory proteins (IRPs) and hepcidin remained unchanged, but hypoxia inducible factor 1 alpha (HIF-1α) was up-regulated. Two kinds of estrogen receptor β (ERβ) antagonist G15 and G protein estrogen receptor (GPER) antagonist PHTPPcould block the effects of E2 in BV2 microglial cell lines. These results suggest that estrogen could increase the protein expressions of DMT1, FPN1, FT-L and FT-H in BV2 microglia cells, which were not related to the regulation of IRP1 and hepcidin, but to the upregulation of HIF-1α. In addition, estrogen might regulate the expressions of iron-related proteins through both ER β and GPER in BV2 microglia cells.
Collapse
Affiliation(s)
- Yan Qu
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Na Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Manman Xu
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Danyang Zhang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
44
|
Modulatory Effects of Estradiol and Its Mixtures with Ligands of GPER and PPAR on MAPK and PI3K/Akt Signaling Pathways and Tumorigenic Factors in Mouse Testis Explants and Mouse Tumor Leydig Cells. Biomedicines 2022; 10:biomedicines10061390. [PMID: 35740412 PMCID: PMC9219706 DOI: 10.3390/biomedicines10061390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
The present study was designed to evaluate how estradiol alone or in combination with G protein-coupled estrogen receptor (GPER) agonists and GPER and peroxisome proliferator-activated receptor (PPAR) antagonists alter the expression of tumor growth factor β (TGF-β), cyclooxygenase-2 (COX-2), hypoxia inducible factor 1-alpha (HIF-1α), and vascular endothelial growth factor (VEGF) in mouse testis explants and MA-10 mouse tumor Leydig cells. In order to define the hormone-associated signaling pathway, the expression of MAPK and PI3K/Akt was also examined. Tissue explants and cells were treated with estradiol as well as GPER agonist (ICI 182,780), GPER antagonist (G-15), PPARα antagonist (GW6471), and PPARγ antagonist (T00709072) in various combinations. First, we showed that in testis explants GPER and PPARα expressions were activated by the GPER agonist and estradiol (either alone or in mixtures), whereas PPARγ expression was activated only by GPER agonist. Second, increased TGF-β expression and decreased COX-2 expression were found in all experimental groups of testicular explants and MA-10 cells, except for up-regulated COX-2 expression in estradiol-treated cells, compared to respective controls. Third, estradiol treatment led to elevated expression of HIF-1α and VEGF, while their lower levels versus control were noted in the remaining groups of explants. Finally, we demonstrated the up-regulation of MAPK and PI3Kp85/Akt expressions in estradiol-treated groups of both ex vivo and in vitro models, whereas estradiol in mixtures with compounds of agonistic or antagonistic properties either up-regulated or down-regulated signaling kinase expression levels. Our results suggest that a balanced estrogen level and its action together with proper GPER and PPAR signaling play a key role in the maintenance of testis homeostasis. Moreover, changes in TGF-β and COX-2 expressions (that disrupted estrogen pathway) as well as disturbed GPER-PPAR signaling observed after estradiol treatment may be involved in testicular tumorigenesis.
Collapse
|
45
|
Zhao Y, Liu H, Fan M, Miao Y, Zhao X, Wei Q, Ma B. G protein-coupled receptor 30 mediates cell proliferation of goat mammary epithelial cells via MEK/ERK&PI3K/AKT signaling pathway. Cell Cycle 2022; 21:2027-2037. [PMID: 35659445 DOI: 10.1080/15384101.2022.2083708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The mammary gland of mammals possesses the specific function of synthesizing, secreting, and delivering milk. Notably, mammary epithelial cells are considered to be central to control the expansion and remodeling of mammary gland into a milk-secretory organ. And the biological function of mammary gland is mainly regulated by the endocrine system, especially for estrogen. G protein-coupled receptor 30 (GPR30), an estrogen membrane receptor, mediates estrogen-induced functions of physiology and pathophysiology. However, the relationship between estrogen/GPR30 signaling and proliferation of goat mammary epithelial cells (gMECs) is still unclear. Herein, estrogen promoted cell proliferation than control, as evidence by upregulation of cell numbers, BrdU-positive cell counts, and cell viability. Of note, these activities were all obviously reduced by treatment with GPR30 antagonist G15, yet GPR30 agonist G1 increased cell proliferation than control. Further, GPR30 silencing inhibited cell proliferation than negative control. This inhibition was accompanied by a G2/M phase arrest and downregulation of cell cycle regulators. Meanwhile, estrogen increased the phosphorylation of ERK1/2 and AKT. Further, the protein level of p-ERK1/2 and p-AKT was enhanced by GPR30 agonist G1 but inhibited by GPR30 antagonist G15 and GPR30 silencing. Importantly, MEK inhibitor and PI3K inhibitor decreased the expression of cell cycle regulators, and repressed estrogen-induced and G1-driven promotion of cell proliferation, suggesting that estrogen regulated cell proliferation of gMECs through mechanisms involving cell cycle, dependent of GPR30 and MEK/ERK and PI3K/AKT signaling pathway. This may provide a strong theoretical basis for researching estrogen sustained-release drugs promoting breast development and improving lactation performance.Abbreviations: gMECs, goat mammary epithelial cells; E2, 17β-estradiol; GPR30, G protein-coupled receptor 30; shRNA, small hairpin RNA; CDK, cyclin-dependent kinase; PI3K, phosphatidylinositol 3-kinase; AKT, proteinkinase B; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase kinase; ERK1/2, extracellular signal-regulated kinase 1/2.
Collapse
Affiliation(s)
- Ying Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haokun Liu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingzhen Fan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuyang Miao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qing Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
46
|
Delcour C, Khawaja N, Gonzalez-Duque S, Lebon S, Talbi A, Drira L, Chevenne D, Ajlouni K, de Roux N. Estrogen Receptor α Inactivation in 2 Sisters: Different Phenotypic Severities for the Same Pathogenic Variant. J Clin Endocrinol Metab 2022; 107:e2553-e2562. [PMID: 35134944 DOI: 10.1210/clinem/dgac065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Estrogens play an essential role in reproduction. Their action is mediated by nuclear α and β receptors (ER) and by membrane receptors. Only 3 females and 2 males, from 3 families, with a loss of ERα function have been reported to date. OBJECTIVE We describe here a new family, in which 2 sisters display endocrine and ovarian defects of different severities despite carrying the same homozygous rare variant of ESR1. METHODS A 36-year-old woman from a consanguineous Jordanian family presented with primary amenorrhea and no breast development, with high plasma levels of 17β-estradiol (E2), follicle-stimulating hormone and luteinizing hormone, and enlarged multifollicular ovaries, strongly suggesting estrogen resistance. Her 18-year-old sister did not enter puberty and had moderately high levels of E2, high plasma gonadotropin levels, and normal ovaries. RESULTS Genetic analysis identified a homozygous variant of ESR1 leading to the replacement of a highly conserved glutamic acid with a valine (ERα-E385V). The transient expression of ERα-E385V in HEK293A and MDA-MB231 cells revealed highly impaired ERE-dependent transcriptional activation by E2. The analysis of the KISS1 promoter activity revealed that the E385V substitution induced a ligand independent activation of ERα. Immunofluorescence analysis showed that less ERα-E385V than ERα-WT was translocated into the nucleus in the presence of E2. CONCLUSION These 2 new cases are remarkable given the difference in the severity of their ovarian and hormonal phenotypes. This phenotypic discrepancy may be due to a mechanism partially compensating for the ERα loss of function.
Collapse
Affiliation(s)
- Clémence Delcour
- Université de Paris, INSERM UMR 1141 NeuroDiderot, 75019 Paris, France
| | - Nahla Khawaja
- National Center for Diabetes, Endocrinology and Genetics, Amman 11942, Jordan
| | - Sergio Gonzalez-Duque
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Sophie Lebon
- Université de Paris, INSERM UMR 1141 NeuroDiderot, 75019 Paris, France
| | - Abir Talbi
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Leila Drira
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Didier Chevenne
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Kamel Ajlouni
- National Center for Diabetes, Endocrinology and Genetics, Amman 11942, Jordan
| | - Nicolas de Roux
- Université de Paris, INSERM UMR 1141 NeuroDiderot, 75019 Paris, France
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| |
Collapse
|
47
|
Bubb M, Beyer ASL, Dasgupta P, Kaemmerer D, Sänger J, Evert K, Wirtz RM, Schulz S, Lupp A. Assessment of G Protein-Coupled Oestrogen Receptor Expression in Normal and Neoplastic Human Tissues Using a Novel Rabbit Monoclonal Antibody. Int J Mol Sci 2022; 23:ijms23095191. [PMID: 35563581 PMCID: PMC9099907 DOI: 10.3390/ijms23095191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
In addition to the classical oestrogen receptors, ERα and ERβ, a G protein-coupled oestrogen receptor (GPER) has been identified that primarily mediates the rapid, non-genomic signalling of oestrogens. Data on GPER expression at the protein level are contradictory; therefore, the present study was conducted to re-evaluate GPER expression by immunohistochemistry to obtain broad GPER expression profiles in human non-neoplastic and neoplastic tissues, especially those not investigated in this respect so far. We developed and thoroughly characterised a novel rabbit monoclonal anti-human GPER antibody, 20H15L21, using Western blot analyses and immunocytochemistry. The antibody was then applied to a large series of formalin-fixed, paraffin-embedded human tissue samples. In normal tissue, GPER was identified in distinct cell populations of the cortex and the anterior pituitary; islets and pancreatic ducts; fundic glands of the stomach; the epithelium of the duodenum and gallbladder; hepatocytes; proximal tubules of the kidney; the adrenal medulla; and syncytiotrophoblasts and decidua cells of the placenta. GPER was also expressed in hepatocellular, pancreatic, renal, and endometrial cancers, pancreatic neuroendocrine tumours, and pheochromocytomas. The novel antibody 20H15L21 will serve as a valuable tool for basic research and the identification of GPER-expressing tumours during histopathological examinations.
Collapse
Affiliation(s)
- Maria Bubb
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Anna-Sophia Lieselott Beyer
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Pooja Dasgupta
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, 99438 Bad Berka, Germany;
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, 99438 Bad Berka, Germany;
| | - Katja Evert
- Department of Pathology, University of Regensburg, 93053 Regensburg, Germany;
- Institute of Pathology, University Medicine of Greifswald, 17475 Greifswald, Germany
| | - Ralph M. Wirtz
- STRATIFYER Molecular Pathology GmbH, 50935 Cologne, Germany;
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
- Correspondence: ; Tel.: +49-3641-9325678; Fax: +49-3641-9325652
| |
Collapse
|
48
|
Herber CB, Yuan C, Chang A, Wang JC, Cohen I, Leitman DC. 2',3',4'-Trihydroxychalcone changes estrogen receptor α regulation of genes and breast cancer cell proliferation by a reprogramming mechanism. Mol Med 2022; 28:44. [PMID: 35468719 PMCID: PMC9036729 DOI: 10.1186/s10020-022-00470-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/06/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Menopausal hormone therapy (MHT) is recommended for only five years to treat vasomotor symptoms and vulvovaginal atrophy because of safety concerns with long-term treatment. We investigated the ability of 2',3',4'-trihydroxychalcone (2',3',4'-THC) to modulate estrogen receptor (ER)-mediated responses in order to find drug candidates that could potentially prevent the adverse effects of long-term MHT treatment. METHODS Transfection assays, real time-polymerase chain reaction, and microarrays were used to evaluate the effects of 2',3',4'-THC on gene regulation. Radioligand binding studies were used to determine if 2',3',4'-THC binds to ERα. Cell proliferation was examined in MCF-7 breast cancer cells by using growth curves and flow cytometry. Western blots were used to determine if 2',3',4'-THC alters the E2 activation of the MAPK pathway and degradation of ERα. Chromatin immunoprecipitation was used to measure ERα binding to genes. RESULTS The 2',3',4'-THC/E2 combination produced a synergistic activation with ERα on reporter and endogenous genes in human U2OS osteosarcoma cells. Microarrays identified 824 genes that we termed reprogrammed genes because they were not regulated in U2OS-ERα cells unless they were treated with 2',3',4'-THC and E2 at the same time. 2',3',4'-THC blocked the proliferation of MCF-7 cells by preventing the E2-induced activation of MAPK and c-MYC transcription. The antiproliferative mechanism of 2',3',4'-THC differs from selective estrogen receptor modulators (SERMs) because 2',3',4'-THC did not bind to the E2 binding site in ERα like SERMs. CONCLUSION Our study suggests that 2',3',4'-THC may represent a new class of ERα modulators that do not act as a direct agonists or antagonists. We consider 2',3',4'-THC to be a reprogramming compound, since it alters the activity of ERα on gene regulation and cell proliferation without competing with E2 for binding to ERα. The addition of a reprogramming drug to estrogens in MHT may offer a new strategy to overcome the adverse proliferative effects of estrogen in MHT by reprogramming ERα as opposed to an antagonist mechanism that involves blocking the binding of estrogen to ERα.
Collapse
Affiliation(s)
- Candice B Herber
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
- DENALI Therapeutics, 161 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Chaoshen Yuan
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
- Iaterion, University of California, QB3, 1700 4th Street Byers Hall, Suite 214, San Francisco, CA, 94158, USA
| | - Anthony Chang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
- Biomedical Sciences Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jen-Chywan Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
| | - Isaac Cohen
- Iaterion, University of California, QB3, 1700 4th Street Byers Hall, Suite 214, San Francisco, CA, 94158, USA
| | - Dale C Leitman
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA.
- Iaterion, University of California, QB3, 1700 4th Street Byers Hall, Suite 214, San Francisco, CA, 94158, USA.
| |
Collapse
|
49
|
DeLeon C, Pemberton K, Green M, Kalajdzic V, Rosato M, Xu F, Arnatt C. Novel GPER Agonist, CITFA, Increases Neurite Growth in Rat Embryonic (E18) Hippocampal Neurons. ACS Chem Neurosci 2022; 13:1119-1128. [PMID: 35353510 DOI: 10.1021/acschemneuro.1c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Numerous studies have reported neuroprotective and procognitive effects of estrogens. The estrogen 17β-estradiol (E2) activates both the classical nuclear estrogen receptors ERα and ERβ as well as the G protein-coupled estrogen receptor (GPER). The differential effects of targeting the classical estrogen receptors over GPER are not well-understood. A limited number of selective GPER compounds have been described. In this study, 10 novel compounds were synthesized and exhibited half-maximal effective concentration values greater than the known GPER agonist G-1 in calcium mobilization assays performed in nonadherent HL-60 cells. Of these compounds, 2-cyclohexyl-4-isopropyl-N-((5-(tetrahydro-2H-pyran-2-yl)furan-2-yl)methyl)aniline, referred to as CITFA, significantly increased axonal and dendritic growth in neurons extracted from embryonic day 18 (E18) fetal rat hippocampal neurons. Confirmation of the results was performed by treating E18 hippocampal neurons with known GPER-selective antagonist G-36 and challenging with either E2, G-1, or CITFA. Results from these studies revealed an indistinguishable difference in neurite outgrowth between the treatment and control groups, exhibiting that neurite outgrowth in response to G-1 and CITFA originates from GPER activation and can be abolished with pretreatment of an antagonist. Subsequent docking studies using a homology model of GPER showed unique docking poses between G-1 and CIFTA. While docking poses differed between the ligands, CIFTA exhibited more favorable distance, bond angle, and strain for hydrogen-bonding and hydrophobic interactions.
Collapse
Affiliation(s)
- Chelsea DeLeon
- The Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Kyle Pemberton
- The Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri 63103, United States
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Michael Green
- The Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Vanja Kalajdzic
- The Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Martina Rosato
- The Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri 63103, United States
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Fenglian Xu
- The Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri 63103, United States
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104, United States
- The Department of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Christopher Arnatt
- The Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104, United States
- The Department of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
50
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|