1
|
Li Y, Liu M, Yang C, Fu H, Wang J. Engineering microbial metabolic homeostasis for chemicals production. Crit Rev Biotechnol 2025; 45:373-392. [PMID: 39004513 DOI: 10.1080/07388551.2024.2371465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024]
Abstract
Microbial-based bio-refining promotes the development of a biotechnology revolution to encounter and tackle the enormous challenges in petroleum-based chemical production by biomanufacturing, biocomputing, and biosensing. Nevertheless, microbial metabolic homeostasis is often incompatible with the efficient synthesis of bioproducts mainly due to: inefficient metabolic flow, robust central metabolism, sophisticated metabolic network, and inevitable environmental perturbation. Therefore, this review systematically summarizes how to optimize microbial metabolic homeostasis by strengthening metabolic flux for improving biotransformation turnover, redirecting metabolic direction for rewiring bypass pathway, and reprogramming metabolic network for boosting substrate utilization. Future directions are also proposed for providing constructive guidance on the development of industrial biotechnology.
Collapse
Affiliation(s)
- Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingxiong Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Changyang Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Tanaka K, Yukawa T, Bamba T, Wakiya M, Kumokita R, Jin YS, Kondo A, Hasunuma T. Engineering Saccharomyces cerevisiae for growth on xylose using an oxidative pathway. Appl Microbiol Biotechnol 2025; 109:30. [PMID: 39873813 PMCID: PMC11775059 DOI: 10.1007/s00253-025-13417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
The fermentative production of valuable chemicals from lignocellulosic feedstocks has attracted considerable attention. Although Saccharomyces cerevisiae is a promising microbial host, it lacks the ability to efficiently metabolize xylose, a major component of lignocellulosic feedstocks. The xylose oxidative pathway offers advantages such as simplified metabolic regulation and fewer enzymatic steps. Specifically, the pathway involves the conversion of xylose into 2-keto-3-deoxy-xylonate, which can be channeled into two distinct pathways, the Dahms pathway and the Weimberg pathway. However, the growth of yeast on xylose as the sole carbon source through the xylose oxidative pathway has not been achieved, limiting its utilization. We successfully engineered S. cerevisiae to metabolize xylose as its sole carbon source via the xylose oxidative pathways, achieved by enhancing enzyme activities through iron metabolism engineering and rational enzyme selection. We found that increasing the supply of the iron-sulfur cluster to activate the bottleneck enzyme XylD by BOL2 disruption and tTYW1 overexpression facilitated the growth of xylose and the production of ethylene glycol at 1.5 g/L via the Dahms pathway. Furthermore, phylogenetic analysis of xylonate dehydratases led to the identification of a highly active homologous enzyme. A strain possessing the Dahms pathway with this highly active enzyme exhibited reduced xylonate accumulation. Furthermore, the introduction of enzymes based on phylogenetic tree analysis allowed for the utilization of xylose as the sole carbon source through the Weimberg pathway. This study highlights the potential of iron metabolism engineering and phylogenetic enzyme selection for the development of non-native metabolic pathways in yeast. KEY POINTS: • A 1.5 g/L ethylene glycol was produced via the Dahms pathway in S. cerevisiae. • Enzyme activation enabled growth on xylose via both the Dahms and Weimberg pathways. • Tested enzymes in this study may expand the application of xylose oxidative pathway.
Collapse
Affiliation(s)
- Kenya Tanaka
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Takahiro Yukawa
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Miho Wakiya
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ryota Kumokita
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yong-Su Jin
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Research Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Research Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
3
|
Zhao J, Wang J, Wang J, Nie M, Mao Y, Chen Z, Ma Z, Zhang K. Evolving Nonphosphorylative Metabolism for Improving Production of 2-Oxoglutarate Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27326-27333. [PMID: 39601787 DOI: 10.1021/acs.jafc.4c08879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The bioconversion of lignocellulosic biomass into value-added products provides an alternative solution to environmental and economic challenges. Nonphosphorylative metabolism can convert pentoses and d-galacturonate into 2-oxoglutarate (2-KG) in a few steps, facilitating the production of 2-KG derivatives. However, the efficiency of the Weimberg pathway from Caulobacter crescentus, a type of nonphosphorylative metabolism, is constrained by the low activity of CcXylX, 2-keto-3-deoxy-d-xylonate dehydratase. To overcome this limitation, we engineered CcXylX through directed evolution. A resulting CcXylX mutant exhibited a 3-fold higher kcat value and notably enhanced the production of 2-KG derivatives from d-xylose, a major component of lignocellulosic hydrolysates, including a 32% increase in l-glutamate titer (8.3 g/L) and a 79% increase in l-proline titer (4.3 g/L) compared with the wild-type CcXylX. This research holds promise for advancing lignocellulosic biotechnology and provides insights into economically viable production of other 2-KG derivatives besides l-glutamate and l-proline.
Collapse
Affiliation(s)
- Jing Zhao
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Jilong Wang
- Beijing Lifewe Biotechnology Institute Co., Ltd., Beijing 102200, P. R. China
| | - Jingyu Wang
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Mengzhen Nie
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Yaping Mao
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Zeyao Chen
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Zhiping Ma
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Kechun Zhang
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| |
Collapse
|
4
|
Liu Y, Zhang C, Zeng AP. Advances in biosynthesis and downstream processing of diols. Biotechnol Adv 2024; 77:108455. [PMID: 39306147 DOI: 10.1016/j.biotechadv.2024.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Diols are important platform chemicals with a wide range of applications in the fields of chemical and pharmaceutical industries, food, feed and cosmetics. In particular, 1,3-propanediol (PDO), 1,4-butanediol (1,4-BDO) and 1,3-butanediol (1,3-BDO) are appealing monomers for producing industrially important polymers and plastics. Therefore, the commercialization of bio-based diols is highly important for supporting the growth of biomanufacturing for the fiber industry. This review focuses primarily on the microbial production of PDO, 1,4-BDO and 1,3-BDO with respect to different microbial strains and biological routes. In addition, metabolic platforms which are designed to produce various diols using generic bioconversion strategies are reviewed for the first time. Finally, we also summarize and discuss recent developments in the downstream processing of PDO according to their advantages and drawbacks, which is taken as an example to present the prospects and challenges for industrial separation and purification of diols from microbial fermentation broth.
Collapse
Affiliation(s)
- Yongfei Liu
- Center for Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China; School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China; Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Hangzhou 310030, Zhejiang, China; Research Center for Industries of the Future, Westlake University, No. 600 Dunyu Road, 310030, Zhejiang Province, China
| | - Chijian Zhang
- Guangdong C1 Life Biotech Co., Ltd., Guangzhou 510630, Guangdong, China.; Hua An Tang Biotech Group Co. Ltd., GuangZhou 510630, Guangdong, China
| | - An-Ping Zeng
- Center for Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China; School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China; Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Hangzhou 310030, Zhejiang, China; Research Center for Industries of the Future, Westlake University, No. 600 Dunyu Road, 310030, Zhejiang Province, China.
| |
Collapse
|
5
|
Zhang L, Wang J, Gu S, Liu X, Hou M, Zhang J, Yang G, Zhao D, Dong R, Gao H. Biosynthesis of D-1,2,4-butanetriol promoted by a glucose-xylose dual metabolic channel system in engineered Escherichia coli. N Biotechnol 2024; 83:26-35. [PMID: 38936658 DOI: 10.1016/j.nbt.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
D-1,2,4-butanetriol (BT) is a widely used fine chemical that can be manufactured by engineered Escherichia coli expressing heterologous pathways and using xylose as a substrate. The current study developed a glucose-xylose dual metabolic channel system in an engineered E. coli and Combinatorially optimized it using multiple strategies to promote BT production. The carbon catabolite repression effects were alleviated by deleting the gene ptsG that encodes the major glucose transporter IICBGlc and mutating the gene crp that encodes the catabolite repressor protein, thereby allowing C-fluxes of both glucose and xylose into their respective metabolic channels separately and simultaneously, which increased BT production by 33% compared with that of the original MJ133K-1 strain. Then, the branch metabolic pathways of intermediates in the BT channel were investigated, the transaminase HisC, the ketoreductases DlD, OLD, and IlvC, and the aldolase MhpE and YfaU were identified as the enzymes for the branched metabolism of 2-keto-3-deoxy-xylonate, deletion of the gene hisC increased BT titer by 21.7%. Furthermore, the relationship between BT synthesis and the intracellular NADPH level was examined, and deletion of the gene pntAB that encodes a transhydrogenase resulted in an 18.1% increase in BT production. The combination of the above approaches to optimize the metabolic network increased BT production by 47.5%, resulting in 2.67 g/L BT in 24 deep-well plates. This study provides insights into the BT biosynthesis pathway and demonstrates effective strategies to increase BT production, which will promote the industrialization of the biosynthesis of BT.
Collapse
Affiliation(s)
- Lu Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jinbao Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Songhe Gu
- School of Life Science, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xuedan Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Miao Hou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Yang
- School of Life Science, Qufu Normal University, Qufu 273165, Shandong, China
| | - Dongxu Zhao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Runan Dong
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Haijun Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
6
|
Liang B, Yang J, Meng CF, Zhang YR, Wang L, Zhang L, Liu J, Li ZC, Cosnier S, Liu AH, Yang JM. Efficient conversion of hemicellulose into high-value product and electric power by enzyme-engineered bacterial consortia. Nat Commun 2024; 15:8764. [PMID: 39384563 PMCID: PMC11464693 DOI: 10.1038/s41467-024-53129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
As an abundant agricultural and forestry biomass resource, hemicelluloses are hard to be effectively degraded and utilized by microorganisms due to the constraints of membrane and metabolic regulations. Herein, we report a synthetic extracellular metabolic pathway with hemicellulose-degrading-enzymes controllably displayed on Escherichia coli surface as engineered bacterial consortia members for efficient utilization of xylan, the most abundant component in hemicellulose. Further, we develop a hemicellulose/O2 microbial fuel cell (MFC) configuring of enzyme-engineered bacterial consortia based bioanode and bacterial-displayed laccase based biocathode. The optimized MFC exhibited an open-circuit voltage of 0.71 V and a maximum power density (Pmax) of 174.33 ± 4.56 µW cm-2. Meanwhile, 46.6% (w/w) α-ketoglutarate was produced in this hemicellulose fed-MFC. Besides, the MFC retained over 95% of the Pmax during 6 days' operation. Therefore, this work establishes an effective and sustainable one-pot process for catalyzing renewable biomass into high-value products and electricity in an environmentally-friendly way.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chen-Fei Meng
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ya-Ru Zhang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Lu Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jia Liu
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhen-Chao Li
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Serge Cosnier
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland.
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland.
- DCM UMR 5250, Université Grenoble-Alpes, F-38000 Grenoble, France; Departement de Chimie ́Moleculaire, UMR CNRS, DCM UMR 5250, F-38000, Grenoble, France.
| | - Ai-Hua Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China.
| | - Jian-Ming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Ren Y, Vettenranta E, Penttinen L, Blomster Andberg M, Koivula A, Rouvinen J, Hakulinen N. Unveiling the importance of the C-terminus in the sugar acid dehydratase of the IlvD/EDD superfamily. Appl Microbiol Biotechnol 2024; 108:436. [PMID: 39126499 DOI: 10.1007/s00253-024-13270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Microbial non-phosphorylative oxidative pathways present promising potential in the biosynthesis of platform chemicals from the hemicellulosic fraction of lignocellulose. An L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii catalyzes the rate-limiting step in the non-phosphorylative oxidative pathways, that is, converts sugar acid to 2-dehydro-3-deoxy sugar acid. We have shown earlier that the enzyme forms a dimer of dimers, in which the C-terminal histidine residue from one monomer participates in the formation of the active site of an adjacent monomer. The histidine appears to be conserved across the sequences of sugar acid dehydratases. To study the role of the C-terminus, five variants (H579A, H579F, H579L, H579Q, and H579W) were produced. All variants showed decreased activity for the tested sugar acid substrates, except the variant H579L on D-fuconate, which showed about 20% increase in activity. The reaction kinetic data showed that the substrate preference was slightly modified in H579L compared to the wild-type enzyme, demonstrating that the alternation of the substrate preference of sugar acid dehydratases is possible. In addition, a crystal structure of H579L was determined at 2.4 Å with a product analog 2-oxobutyrate. This is the first enzyme-ligand complex structure from an IlvD/EDD superfamily enzyme. The binding of 2-oxobutyrate suggests how the substrate would bind into the active site in the orientation, which could lead to the dehydration reaction. KEY POINTS: • Mutation of the last histidine at the C-terminus changed the catalytic activity of L-arabinonate dehydratase from R. leguminosarum bv. trifolii against various C5/C6 sugar acids. • The variant H579L of L-arabinonate dehydratase showed an alteration of substrate preferences compared with the wild type. • The first enzyme-ligand complex crystal structure of an IlvD/EDD superfamily enzyme was solved.
Collapse
Affiliation(s)
- Yaxin Ren
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO BOX 111, 80101, Joensuu, Finland
| | - Elias Vettenranta
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO BOX 111, 80101, Joensuu, Finland
| | - Leena Penttinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO BOX 111, 80101, Joensuu, Finland
| | | | - Anu Koivula
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Juha Rouvinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO BOX 111, 80101, Joensuu, Finland
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO BOX 111, 80101, Joensuu, Finland.
| |
Collapse
|
8
|
Nerke P, Korb J, Haala F, Hubmann G, Lütz S. Metabolic bottlenecks of Pseudomonas taiwanensis VLB120 during growth on d-xylose via the Weimberg pathway. Metab Eng Commun 2024; 18:e00241. [PMID: 39021639 PMCID: PMC11252243 DOI: 10.1016/j.mec.2024.e00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
The microbial production of value-added chemicals from renewable feedstocks is an important step towards a sustainable, bio-based economy. Therefore, microbes need to efficiently utilize lignocellulosic biomass and its dominant constituents, such as d-xylose. Pseudomonas taiwanensis VLB120 assimilates d-xylose via the five-step Weimberg pathway. However, the knowledge about the metabolic constraints of the Weimberg pathway, i.e., its regulation, dynamics, and metabolite fluxes, is limited, which hampers the optimization and implementation of this pathway for bioprocesses. We characterized the Weimberg pathway activity of P. taiwanensis VLB120 in terms of biomass growth and the dynamics of pathway intermediates. In batch cultivations, we found excessive accumulation of the intermediates d-xylonolactone and d-xylonate, indicating bottlenecks in d-xylonolactone hydrolysis and d-xylonate uptake. Moreover, the intermediate accumulation was highly dependent on the concentration of d-xylose and the extracellular pH. To encounter the apparent bottlenecks, we identified and overexpressed two genes coding for putative endogenous xylonolactonases PVLB_05820 and PVLB_12345. Compared to the control strain, the overexpression of PVLB_12345 resulted in an increased growth rate and biomass generation of up to 30 % and 100 %, respectively. Next, d-xylonate accumulation was decreased by overexpressing two newly identified d-xylonate transporter genes, PVLB_18545 and gntP (PVLB_13665). Finally, we combined xylonolactonase overexpression with enhanced uptake of d-xylonate by knocking out the gntP repressor gene gntR (PVLB_13655) and increased the growth rate and biomass yield by 50 % and 24 % in stirred-tank bioreactors, respectively. Our study contributes to the fundamental knowledge of the Weimberg pathway in pseudomonads and demonstrates how to encounter the metabolic bottlenecks of the Weimberg pathway to advance strain developments and cell factory design for bioprocesses on renewable feedstocks.
Collapse
Affiliation(s)
- Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Jonas Korb
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Frederick Haala
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Georg Hubmann
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| |
Collapse
|
9
|
Kumar P, Park H, Yuk Y, Kim H, Jang J, Pagolu R, Park S, Yeo C, Choi KY. Developed and emerging 1,4-butanediol commercial production strategies: forecasting the current status and future possibility. Crit Rev Biotechnol 2024; 44:530-546. [PMID: 37286203 DOI: 10.1080/07388551.2023.2176740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 06/09/2023]
Abstract
1,4-Butanediol (1,4-BDO) is a valuable industrial chemical that is primarily produced via several energy-intensive petrochemical processes based on fossil-based raw materials, leading to issues related to: non-renewability, environmental contamination, and high production costs. 1,4-BDO is used in many chemical reactions to develop a variety of useful, valuable products, such as: polyurethane, Spandex intermediates, and polyvinyl pyrrolidone (PVP), a water-soluble polymer with numerous personal care and pharmaceutical uses. In recent years, to satisfy the growing need for 1,4-BDO, there has been a major shift in focus to sustainable bioproduction via microorganisms using: recombinant strains, metabolic engineering, synthetic biology, enzyme engineering, bioinformatics, and artificial intelligence-guided algorithms. This article discusses the current status of the development of: various chemical and biological production techniques for 1,4-BDO, advances in biological pathways for 1,4-BDO biosynthesis, prospects for future production strategies, and the difficulties associated with environmentally friendly and bio-based commercial production strategies.
Collapse
Affiliation(s)
- Pradeep Kumar
- Institute of Environmental Engineering, Ajou University, Suwon, South Korea
| | - HyunA Park
- Department of Environmental Engineering, Ajou University, Suwon, South Korea
| | - Yong Yuk
- Institute of Environmental Engineering, Ajou University, Suwon, South Korea
| | - Hayan Kim
- Department of Life Science, Ajou University, Suwon, South Korea
| | - Jihwan Jang
- Institute of Environmental Engineering, Ajou University, Suwon, South Korea
| | - Raviteja Pagolu
- Institute of Environmental Engineering, Ajou University, Suwon, South Korea
| | - SeoA Park
- Department of Environmental Engineering, Ajou University, Suwon, South Korea
| | - Chanseo Yeo
- Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea
| | - Kwon-Young Choi
- Institute of Environmental Engineering, Ajou University, Suwon, South Korea
- Department of Environmental Engineering, Ajou University, Suwon, South Korea
- Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, South Korea
| |
Collapse
|
10
|
Li J, Xia Y, Wei B, Shen W, Yang H, Chen X. Metabolic engineering of Candida tropicalis for efficient 1,2,4-butanetriol production. Biochem Biophys Res Commun 2024; 710:149876. [PMID: 38579537 DOI: 10.1016/j.bbrc.2024.149876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
1,2,4-Butanetriol serves as a precursor in the manufacture of diverse pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. The study involved further modifications to an engineered Candida tropicalis strain, aimed at improving the production efficiency of 1,2,4-butanetriol. Faced with the issue of xylonate accumulation due to the low activity of heterologous xylonate dehydratase, we modulated iron metabolism at the transcriptional level to boost intracellular iron ion availability, thus enhancing the enzyme activity by 2.2-fold. Addressing the NADPH shortfall encountered during 1,2,4-butanetriol biosynthesis, we overexpressed pivotal genes in the NADPH regeneration pathway, achieving a 1,2,4-butanetriol yield of 3.2 g/L. The introduction of calcium carbonate to maintain pH balance led to an increased yield of 4 g/L, marking a 111% improvement over the baseline strain. Finally, the use of corncob hydrolysate as a substrate culminated in 1,2,4-butanetriol production of 3.42 g/L, thereby identifying a novel host for the conversion of corncob hydrolysate to 1,2,4-butanetriol.
Collapse
Affiliation(s)
- Jingyun Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Bo Wei
- Key Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wei Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Haiquan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Ni P, Gao C, Wu J, Song W, Li X, Wei W, Chen X, Liu L. Production of 1,4-Butanediol from Succinic Acid Using Escherichia Coli Whole-Cell Catalysis. Chembiochem 2024:e202400142. [PMID: 38742957 DOI: 10.1002/cbic.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The widespread attention towards 1,4-butanediol (BDO) as a key chemical raw material stems from its potential in producing biodegradable plastics. However, the efficiency of its biosynthesis via current bioprocesses is limited. In this study, a dual-pathway approach for 1,4-BDO production from succinic acid was developed. Specifically, a double-enzyme catalytic pathway involving carboxylic acid reductase and ethanol dehydrogenase was proposed. Optimization of the expression levels of the pathway enzymes led to a significant 318 % increase in 1,4-BDO titer. Additionally, the rate-limiting enzyme MmCAR was engineered to enhance the kcat/KM values by 50 % and increase 1,4-BDO titer by 46.7 %. To address cofactor supply limitations, an NADPH and ATP cycling system was established, resulting in a 48.9 % increase in 1,4-BDO production. Ultimately, after 48 hours, 1,4-BDO titers reached 201 mg/L and 1555 mg/L in shake flask and 5 L fermenter, respectively. This work represents a significant advancement in 1,4-BDO synthesis from succinic acid, with potential applications in the organic chemical and food industries.
Collapse
Affiliation(s)
- Ping Ni
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomin Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| |
Collapse
|
12
|
Meliawati M, Volke DC, Nikel PI, Schmid J. Engineering the carbon and redox metabolism of Paenibacillus polymyxa for efficient isobutanol production. Microb Biotechnol 2024; 17:e14438. [PMID: 38529712 PMCID: PMC10964175 DOI: 10.1111/1751-7915.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Paenibacillus polymyxa is a non-pathogenic, Gram-positive bacterium endowed with a rich and versatile metabolism. However interesting, this bacterium has been seldom used for bioproduction thus far. In this study, we engineered P. polymyxa for isobutanol production, a relevant bulk chemical and next-generation biofuel. A CRISPR-Cas9-based genome editing tool facilitated the chromosomal integration of a synthetic operon to establish isobutanol production. The 2,3-butanediol biosynthesis pathway, leading to the main fermentation product of P. polymyxa, was eliminated. A mutant strain harbouring the synthetic isobutanol operon (kdcA from Lactococcus lactis, and the native ilvC, ilvD and adh genes) produced 1 g L-1 isobutanol under microaerobic conditions. Improving NADPH regeneration by overexpression of the malic enzyme subsequently increased the product titre by 50%. Network-wide proteomics provided insights into responses of P. polymyxa to isobutanol and revealed a significant metabolic shift caused by alcohol production. Glucose-6-phosphate 1-dehydrogenase, the key enzyme in the pentose phosphate pathway, was identified as a bottleneck that hindered efficient NADPH regeneration through this pathway. Furthermore, we conducted culture optimization towards cultivating P. polymyxa in a synthetic minimal medium. We identified biotin (B7), pantothenate (B5) and folate (B9) to be mutual essential vitamins for P. polymyxa. Our rational metabolic engineering of P. polymyxa for the production of a heterologous chemical sheds light on the metabolism of this bacterium towards further biotechnological exploitation.
Collapse
Affiliation(s)
- Meliawati Meliawati
- Institute of Molecular Microbiology and BiotechnologyUniversity of MünsterMünsterGermany
| | - Daniel C. Volke
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Jochen Schmid
- Institute of Molecular Microbiology and BiotechnologyUniversity of MünsterMünsterGermany
| |
Collapse
|
13
|
Nie M, Wang J, Chen Z, Cao C, Zhang K. Systematic engineering enables efficient biosynthesis of L-phenylalanine in E. coli from inexpensive aromatic precursors. Microb Cell Fact 2024; 23:12. [PMID: 38183119 PMCID: PMC10768146 DOI: 10.1186/s12934-023-02282-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND L-phenylalanine is an essential amino acid with various promising applications. The microbial pathway for L-phenylalanine synthesis from glucose in wild strains involves lengthy steps and stringent feedback regulation that limits the production yield. It is attractive to find other candidates, which could be used to establish a succinct and cost-effective pathway for L-phenylalanine production. Here, we developed an artificial bioconversion process to synthesize L-phenylalanine from inexpensive aromatic precursors (benzaldehyde or benzyl alcohol). In particular, this work opens the possibility of L-phenylalanine production from benzyl alcohol in a cofactor self-sufficient system without any addition of reductant. RESULTS The engineered L-phenylalanine biosynthesis pathway comprises two modules: in the first module, aromatic precursors and glycine were converted into phenylpyruvate, the key precursor for L-phenylalanine. The highly active enzyme combination was natural threonine aldolase LtaEP.p and threonine dehydratase A8HB.t, which could produce phenylpyruvate in a titer of 4.3 g/L. Overexpression of gene ridA could further increase phenylpyruvate production by 16.3%, reaching up to 5 g/L. The second module catalyzed phenylpyruvate to L-phenylalanine, and the conversion rate of phenylpyruvate was up to 93% by co-expressing PheDH and FDHV120S. Then, the engineered E. coli containing these two modules could produce L-phenylalanine from benzaldehyde with a conversion rate of 69%. Finally, we expanded the aromatic precursors to produce L-phenylalanine from benzyl alcohol, and firstly constructed the cofactor self-sufficient biosynthetic pathway to synthesize L-phenylalanine without any additional reductant such as formate. CONCLUSION Systematical bioconversion processes have been designed and constructed, which could provide a potential bio-based strategy for the production of high-value L-phenylalanine from low-cost starting materials aromatic precursors.
Collapse
Affiliation(s)
- Mengzhen Nie
- Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Jingyu Wang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Zeyao Chen
- Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Chenkai Cao
- Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Kechun Zhang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China.
| |
Collapse
|
14
|
Shen X, Xu H, Wang T, Zhang R, Sun X, Yuan Q, Wang J. Rational protein engineering of a ketoacids decarboxylase for efficient production of 1,2,4-butanetriol from arabinose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:172. [PMID: 37957743 PMCID: PMC10644656 DOI: 10.1186/s13068-023-02414-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Lignocellulose, the most abundant non-edible feedstock on Earth, holds substantial potential for eco-friendly chemicals, fuels, and pharmaceuticals production. Glucose, xylose, and arabinose are primary components in lignocellulose, and their efficient conversion into high-value products is vital for economic viability. While glucose and xylose have been explored for such purpose, arabinose has been relatively overlooked. RESULTS This study demonstrates a microbial platform for producing 1,2,4-butanetriol (BTO) from arabinose, a versatile compound with diverse applications in military, polymer, rubber and pharmaceutical industries. The screening of the key pathway enzyme, keto acids decarboxylase, facilitated the production of 276.7 mg/L of BTO from arabinose in Escherichia coli. Through protein engineering of the rate-limiting enzyme KivD, which involved reducing the size of the binding pocket to accommodate a smaller substrate, its activity improved threefold, resulting in an increase in the BTO titer to 475.1 mg/L. Additionally, modular optimization was employed to adjust the expression levels of pathway genes, further enhancing BTO production to 705.1 mg/L. CONCLUSION The present study showcases a promising microbial platform for sustainable BTO production from arabinose. These works widen the spectrum of potential lignocellulosic products and lays the foundation for comprehensive utilization of lignocellulosic components.
Collapse
Affiliation(s)
- Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Hongchao Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Tong Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Ruihua Zhang
- College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
15
|
Nie M, Wang J, Zhang K. A novel strategy for L-arginine production in engineered Escherichia coli. Microb Cell Fact 2023; 22:138. [PMID: 37495979 PMCID: PMC10373293 DOI: 10.1186/s12934-023-02145-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND L-arginine is an important amino acid with applications in diverse industrial and pharmaceutical fields. N-acetylglutamate, synthesized from L-glutamate and acetyl-CoA, is a precursor of the L-arginine biosynthetic branch in microorganisms. The enzyme that produces N-acetylglutamate, N-acetylglutamate synthase, is allosterically inhibited by L-arginine. L-glutamate, as a central metabolite, provides carbon backbone for diverse biological compounds besides L-arginine. When glucose is the sole carbon source, the theoretical maximum carbon yield towards L-arginine is 96.7%, but the experimental highest yield was 51%. The gap of L-arginine yield indicates the regulation complexity of carbon flux and energy during the L-arginine biosynthesis. Besides endogenous biosynthesis, N-acetylglutamate, the key precursor of L-arginine, can be obtained by chemical acylation of L-glutamate with a high yield of 98%. To achieve high-yield production of L-arginine, we demonstrated a novel approach by directly feeding precursor N-acetylglutamate to engineered Escherichia coli. RESULTS We reported a new approach for the high yield of L-arginine production in E. coli. Gene argA encoding N-acetylglutamate synthase was deleted to disable endogenous biosynthesis of N-acetylglutamate. The feasibility of external N-acetylglutamate towards L-arginine was verified via growth assay in argA- strain. To improve L-arginine production, astA encoding arginine N-succinyltransferase, speF encoding ornithine decarboxylase, speB encoding agmatinase, and argR encoding an arginine responsive repressor protein were disrupted. Based on overexpression of argDGI, argCBH operons, encoding enzymes of the L-arginine biosynthetic pathway, ~ 4 g/L L-arginine was produced in shake flask fermentation, resulting in a yield of 0.99 mol L-arginine/mol N-acetylglutamate. This strain was further engineered for the co-production of L-arginine and pyruvate by removing genes adhE, ldhA, poxB, pflB, and aceE, encoding enzymes involved in the conversion and degradation of pyruvate. The resulting strain was shown to produce 4 g/L L-arginine and 11.3 g/L pyruvate in shake flask fermentation. CONCLUSIONS Here, we developed a novel approach to avoid the strict regulation of L-arginine on ArgA and overcome the metabolism complexity in the L-arginine biosynthesis pathway. We achieve a high yield of L-arginine production from N-acetylglutamate in E. coli. Co-production pyruvate and L-arginine was used as an example to increase the utilization of input carbon sources.
Collapse
Affiliation(s)
- Mengzhen Nie
- Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Jingyu Wang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Kechun Zhang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China.
| |
Collapse
|
16
|
Zhou S, Zhang Y, Wei Z, Park S. Recent advances in metabolic engineering of microorganisms for the production of monomeric C3 and C4 chemical compounds. BIORESOURCE TECHNOLOGY 2023; 377:128973. [PMID: 36972803 DOI: 10.1016/j.biortech.2023.128973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Bio-based C3 and C4 bi-functional chemicals are useful monomers in biopolymer production. This review describes recent progresses in the biosynthesis of four such monomers as a hydroxy-carboxylic acid (3-hydroxypropionic acid), a dicarboxylic acid (succinic acid), and two diols (1,3-propanediol and 1,4-butanediol). The use of cheap carbon sources and the development of strains and processes for better product titer, rate and yield are presented. Challenges and future perspectives for (more) economical commercial production of these chemicals are also briefly discussed.
Collapse
Affiliation(s)
- Shengfang Zhou
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yingli Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhiwen Wei
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
17
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
18
|
Bayaraa T, Lonhienne T, Sutiono S, Melse O, Brück TB, Marcellin E, Bernhardt PV, Boden M, Harmer JR, Sieber V, Guddat LW, Schenk G. Structural and Functional Insight into the Mechanism of the Fe-S Cluster-Dependent Dehydratase from Paralcaligenes ureilyticus. Chemistry 2023; 29:e202203140. [PMID: 36385513 PMCID: PMC10107998 DOI: 10.1002/chem.202203140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Enzyme-catalyzed reaction cascades play an increasingly important role for the sustainable manufacture of diverse chemicals from renewable feedstocks. For instance, dehydratases from the ilvD/EDD superfamily have been embedded into a cascade to convert glucose via pyruvate to isobutanol, a platform chemical for the production of aviation fuels and other valuable materials. These dehydratases depend on the presence of both a Fe-S cluster and a divalent metal ion for their function. However, they also represent the rate-limiting step in the cascade. Here, catalytic parameters and the crystal structure of the dehydratase from Paralcaligenes ureilyticus (PuDHT, both in presence of Mg2+ and Mn2+ ) were investigated. Rate measurements demonstrate that the presence of stoichiometric concentrations Mn2+ promotes higher activity than Mg2+ , but at high concentrations the former inhibits the activity of PuDHT. Molecular dynamics simulations identify the position of a second binding site for the divalent metal ion. Only binding of Mn2+ (not Mg2+ ) to this site affects the ligand environment of the catalytically essential divalent metal binding site, thus providing insight into an inhibitory mechanism of Mn2+ at higher concentrations. Furthermore, in silico docking identified residues that play a role in determining substrate binding and selectivity. The combined data inform engineering approaches to design an optimal dehydratase for the cascade.
Collapse
Affiliation(s)
- Tenuun Bayaraa
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia
| | - Samuel Sutiono
- Chair of Chemistry of Biogenic resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315, Straubing, Germany
| | - Okke Melse
- Chair of Chemistry of Biogenic resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315, Straubing, Germany
| | - Thomas B Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, Brisbane, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia
| | - Mikael Boden
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland, 4072, Brisbane, Australia
| | - Volker Sieber
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia.,Chair of Chemistry of Biogenic resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315, Straubing, Germany
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, Brisbane, Australia.,Sustainable Minerals Institute, The University of Queensland, 4072, Brisbane, Australia
| |
Collapse
|
19
|
Yukawa T, Bamba T, Matsuda M, Yoshida T, Inokuma K, Kim J, Won Lee J, Jin YS, Kondo A, Hasunuma T. Enhanced production of 3,4-dihydroxybutyrate from xylose by engineered yeast via xylonate re-assimilation under alkaline condition. Biotechnol Bioeng 2023; 120:511-523. [PMID: 36321324 DOI: 10.1002/bit.28278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
To realize lignocellulose-based bioeconomy, efficient conversion of xylose into valuable chemicals by microbes is necessary. Xylose oxidative pathways that oxidize xylose into xylonate can be more advantageous than conventional xylose assimilation pathways because of fewer reaction steps without loss of carbon and ATP. Moreover, commodity chemicals like 3,4-dihydroxybutyrate and 3-hydroxybutyrolactone can be produced from the intermediates of xylose oxidative pathway. However, successful implementations of xylose oxidative pathway in yeast have been hindered because of the secretion and accumulation of xylonate which is a key intermediate of the pathway, leading to low yield of target product. Here, high-yield production of 3,4-dihydroxybutyrate from xylose by engineered yeast was achieved through genetic and environmental perturbations. Specifically, 3,4-dihydroxybutyrate biosynthetic pathway was established in yeast through deletion of ADH6 and overexpression of yneI. Also, inspired by the mismatch of pH between host strain and key enzyme of XylD, alkaline fermentations (pH ≥ 7.0) were performed to minimize xylonate accumulation. Under the alkaline conditions, xylonate was re-assimilated by engineered yeast and combined product yields of 3,4-dihydroxybutyrate and 3-hydroxybutyrolactone resulted in 0.791 mol/mol-xylose, which is highest compared with previous study. These results shed light on the utility of the xylose oxidative pathway in yeast.
Collapse
Affiliation(s)
- Takahiro Yukawa
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takahiro Bamba
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Takanobu Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Jungyeon Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Engineering Biology Research Center, Kobe University, Kobe, Japan.,RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Engineering Biology Research Center, Kobe University, Kobe, Japan.,RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| |
Collapse
|
20
|
Liu D, Zhang Y, Li J, Sun W, Yao Y, Tian C. The Weimberg pathway: an alternative for Myceliophthora thermophila to utilize D-xylose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:13. [PMID: 36691040 PMCID: PMC9869559 DOI: 10.1186/s13068-023-02266-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND With D-xylose being the second most abundant sugar in nature, its conversion into products could significantly improve biomass-based process economy. There are two well-studied phosphorylative pathways for D-xylose metabolism. One is isomerase pathway mainly found in bacteria, and the other one is oxo-reductive pathway that always exists in fungi. Except for these two pathways, there are also non-phosphorylative pathways named xylose oxidative pathways and they have several advantages over traditional phosphorylative pathways. In Myceliophthora thermophila, D-xylose can be metabolized through oxo-reductive pathway after plant biomass degradation. The survey of non-phosphorylative pathways in this filamentous fungus will offer a potential way for carbon-efficient production of fuels and chemicals using D-xylose. RESULTS In this study, an alternative for utilization of D-xylose, the non-phosphorylative Weimberg pathway was established in M. thermophila. Growth on D-xylose of strains whose D-xylose reductase gene was disrupted, was restored after overexpression of the entire Weimberg pathway. During the construction, a native D-xylose dehydrogenase with highest activity in M. thermophila was discovered. Here, M. thermophila was also engineered to produce 1,2,4-butanetriol using D-xylose through non-phosphorylative pathway. Afterwards, transcriptome analysis revealed that the D-xylose dehydrogenase gene was obviously upregulated after deletion of D-xylose reductase gene when cultured in a D-xylose medium. Besides, genes involved in growth were enriched in strains containing the Weimberg pathway. CONCLUSIONS The Weimberg pathway was established in M. thermophila to support its growth with D-xylose being the sole carbon source. Besides, M. thermophila was engineered to produce 1,2,4-butanetriol using D-xylose through non-phosphorylative pathway. To our knowledge, this is the first report of non-phosphorylative pathway recombinant in filamentous fungi, which shows great potential to convert D-xylose to valuable chemicals.
Collapse
Affiliation(s)
- Defei Liu
- grid.9227.e0000000119573309Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Yongli Zhang
- grid.9227.e0000000119573309Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jingen Li
- grid.9227.e0000000119573309Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Wenliang Sun
- grid.9227.e0000000119573309Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Yonghong Yao
- grid.9227.e0000000119573309Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Chaoguang Tian
- grid.9227.e0000000119573309Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| |
Collapse
|
21
|
Ren Y, Eronen V, Blomster Andberg M, Koivula A, Hakulinen N. Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:147. [PMID: 36578086 PMCID: PMC9795676 DOI: 10.1186/s13068-022-02252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as D-xylose and L-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed.
Collapse
Affiliation(s)
- Yaxin Ren
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | - Veikko Eronen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | | | - Anu Koivula
- grid.6324.30000 0004 0400 1852VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Nina Hakulinen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| |
Collapse
|
22
|
Cen X, Dong Y, Liu D, Chen Z. New pathways and metabolic engineering strategies for microbial synthesis of diols. Curr Opin Biotechnol 2022; 78:102845. [PMID: 36403537 DOI: 10.1016/j.copbio.2022.102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application.
Collapse
Affiliation(s)
- Xuecong Cen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Dong
- College of Arts & Sciences, University of Pennsylvania, Philadelphia 19104, USA
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Huang S, Xue Y, Zhou C, Ma Y. An efficient CRISPR/Cas9-based genome editing system for alkaliphilic Bacillus sp. N16-5 and application in engineering xylose utilization for D-lactic acid production. Microb Biotechnol 2022; 15:2730-2743. [PMID: 36309986 PMCID: PMC9618316 DOI: 10.1111/1751-7915.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Alkaliphiles are considered more suitable chassis than traditional neutrophiles due to their excellent resistance to microbial contamination. Alkaliphilic Bacillus sp. N16-5, an industrially interesting strain with great potential for the production of lactic acid and alkaline polysaccharide hydrolases, can only be engineered genetically by the laborious and time-consuming homologous recombination. In this study, we reported the successful development of a CRISPR/Cas9-based genome editing system with high efficiency for single-gene deletion, large gene fragment deletion and exogenous DNA chromosomal insertion. Moreover, based on a catalytically dead variant of Cas9 (dCas9), we also developed a CRISPRi system to efficiently regulate gene expression. Finally, this efficient genome editing system was successfully applied to engineer the xylose metabolic pathway for the efficient bioproduction of D-lactic acid. Compared with the wild-type Bacillus sp. N16-5, the final engineered strain with XylR deletion and AraE overexpression achieved 34.3% and 27.7% increases in xylose consumption and D-lactic acid production respectively. To our knowledge, this is the first report on the development and application of CRISPR/Cas9-based genome editing system in alkaliphilic Bacillus, and this study will significantly facilitate functional genomic studies and genome manipulation in alkaliphilic Bacillus, laying a foundation for the development of more robust microbial chassis.
Collapse
Affiliation(s)
- Shiyong Huang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
24
|
Han X, Liu J, Tian S, Tao F, Xu P. Microbial cell factories for bio-based biodegradable plastics production. iScience 2022; 25:105462. [DOI: 10.1016/j.isci.2022.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Cen X, Liu Y, Zhu F, Liu D, Chen Z. Metabolic engineering of Escherichia coli for high production of 1,5-pentanediol via a cadaverine-derived pathway. Metab Eng 2022; 74:168-177. [DOI: 10.1016/j.ymben.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
|
26
|
Metabolic Engineering and Regulation of Diol Biosynthesis from Renewable Biomass in Escherichia coli. Biomolecules 2022; 12:biom12050715. [PMID: 35625642 PMCID: PMC9138338 DOI: 10.3390/biom12050715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
As bulk chemicals, diols have wide applications in many fields, such as clothing, biofuels, food, surfactant and cosmetics. The traditional chemical synthesis of diols consumes numerous non-renewable energy resources and leads to environmental pollution. Green biosynthesis has emerged as an alternative method to produce diols. Escherichia coli as an ideal microbial factory has been engineered to biosynthesize diols from carbon sources. Here, we comprehensively summarized the biosynthetic pathways of diols from renewable biomass in E. coli and discussed the metabolic-engineering strategies that could enhance the production of diols, including the optimization of biosynthetic pathways, improvement of cofactor supplementation, and reprogramming of the metabolic network. We then investigated the dynamic regulation by multiple control modules to balance the growth and production, so as to direct carbon sources for diol production. Finally, we proposed the challenges in the diol-biosynthesis process and suggested some potential methods to improve the diol-producing ability of the host.
Collapse
|
27
|
Guo H, Liu H, Jin Y, Zhang R, Yu Y, Deng L, Wang F. Advances in research on the bio-production of 1,4-butanediol by the engineered microbes. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Wang Y, Huang J, Liang X, Wei M, Liang F, Feng D, Xu C, Xian M, Zou H. Production and waste treatment of polyesters: application of bioresources and biotechniques. Crit Rev Biotechnol 2022; 43:503-520. [PMID: 35430940 DOI: 10.1080/07388551.2022.2039590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical resources and techniques have long been used in the history of bulk polyester production and still dominate today's chemical industry. The sustainable development of the polyester industry demands more renewable resources and environmentally benign polyester products. Accordingly, the rapid development of biotechnology has enabled the production of an extensive range of aliphatic and aromatic polyesters from renewable bio-feedstocks. This review addresses the production of representative commercial polyesters (polyhydroxyalkanoates, polylactic acid, poly ε-caprolactone, polybutylene succinate, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polyethylene furandicarboxylate, polypropylene furandicarboxylate, and polybutylene furandicarboxylate) or their monomers (lactic acid, succinic acid, 1,4-butanediol, ethylene glycol, terephthalic acid, 1,3-propanediol, and 2,5-furandicarboxylic acid) from renewable bioresources. In addition, this review summarizes advanced biotechniques in the treatment of polyester wastes, representing the near-term trends and future opportunities for waste-to-value recycling and the remediation of polyester wastes under sustainable models. For future prospects, it is essential to further expand: non-food bioresources, optimize bioprocesses and biotechniques in the preparation of bioderived or biodegradable polyesters with promising: material performance, biodegradability, and low production cost.
Collapse
Affiliation(s)
- Yaqun Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jingling Huang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiuhong Liang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Manman Wei
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Fengbing Liang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Dexin Feng
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chao Xu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huibin Zou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
29
|
Mao X, Zhang B, Zhao C, Lin J, Wei D. Overexpression of mGDH in Gluconobacter oxydans to improve D-xylonic acid production from corn stover hydrolysate. Microb Cell Fact 2022; 21:35. [PMID: 35264166 PMCID: PMC8905809 DOI: 10.1186/s12934-022-01763-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background d-Xylonic acid is a versatile platform chemical with broad potential applications as a water reducer and disperser for cement and as a precursor for 1,4-butanediol and 1,2,4-tributantriol. Microbial production of d-xylonic acid with bacteria such as Gluconobacter oxydans from inexpensive lignocellulosic feedstock is generally regarded as one of the most promising and cost-effective methods for industrial production. However, high substrate concentrations and hydrolysate inhibitors reduce xylonic acid productivity. Results The d-xylonic acid productivity of G. oxydans DSM2003 was improved by overexpressing the mGDH gene, which encodes membrane-bound glucose dehydrogenase. Using the mutated plasmids based on pBBR1MCS-5 in our previous work, the recombinant strain G. oxydans/pBBR-R3510-mGDH was obtained with a significant improvement in d-xylonic acid production and a strengthened tolerance to hydrolysate inhibitors. The fed-batch biotransformation of d-xylose by this recombinant strain reached a high titer (588.7 g/L), yield (99.4%), and volumetric productivity (8.66 g/L/h). Moreover, up to 246.4 g/L d-xylonic acid was produced directly from corn stover hydrolysate without detoxification at a yield of 98.9% and volumetric productivity of 11.2 g/L/h. In addition, G. oxydans/pBBR-R3510-mGDH exhibited a strong tolerance to typical inhibitors, i.e., formic acid, furfural, and 5-hydroxymethylfurfural. Conclusion Through overexpressing mgdh in G. oxydans, we obtained the recombinant strain G. oxydans/pBBR-R3510-mGDH, and it was capable of efficiently producing xylonic acid from corn stover hydrolysate under high inhibitor concentrations. The high d-xylonic acid productivity of G. oxydans/pBBR-R3510-mGDH made it an attractive choice for biotechnological production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01763-y.
Collapse
Affiliation(s)
- Xinlei Mao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Baoqi Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chenxiu Zhao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
30
|
Paul Alphy M, Hakkim Hazeena S, Binoop M, Madhavan A, Arun KB, Vivek N, Sindhu R, Kumar Awasthi M, Binod P. Synthesis of C2-C4 diols from bioresources: Pathways and metabolic intervention strategies. BIORESOURCE TECHNOLOGY 2022; 346:126410. [PMID: 34838635 DOI: 10.1016/j.biortech.2021.126410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Diols are important platform chemicals with extensive industrial applications in biopolymer synthesis, cosmetics, and fuels. The increased dependence on non-renewable sources to meet the energy requirement of the population raised issues regarding fossil fuel depletion and environmental impacts. The utilization of biological methods for the synthesis of diols by utilizing renewable resources such as glycerol and agro-residual wastes gained attention worldwide because of its advantages. Among these, biotransformation of 1,3-propanediol (1,3-PDO) and 2,3-butanediol (2,3-BDO) were extensively studied and at present, these diols are produced commercially in large scale with high yield. Many important isomers of C2-C4 diols lack natural synthetic pathways and development of chassis strains for the synthesis can be accomplished by adopting synthetic biology approaches. This current review depicts an overall idea about the pathways involved in C2-C4 diol production, metabolic intervention strategies and technologies in recent years.
Collapse
Affiliation(s)
- Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohan Binoop
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - K B Arun
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
31
|
An N, Chen X, Sheng H, Wang J, Sun X, Yan Y, Shen X, Yuan Q. Rewiring the microbial metabolic network for efficient utilization of mixed carbon sources. J Ind Microbiol Biotechnol 2021; 48:6313286. [PMID: 34215883 PMCID: PMC8788776 DOI: 10.1093/jimb/kuab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/26/2021] [Indexed: 11/14/2022]
Abstract
Carbon sources represent the most dominant cost factor in the industrial biomanufacturing of products. Thus, it has attracted much attention to seek cheap and renewable feedstocks, such as lignocellulose, crude glycerol, methanol, and carbon dioxide, for biosynthesis of value-added compounds. Co-utilization of these carbon sources by microorganisms not only can reduce the production cost but also serves as a promising approach to improve the carbon yield. However, co-utilization of mixed carbon sources usually suffers from a low utilization rate. In the past few years, the development of metabolic engineering strategies to enhance carbon source co-utilization efficiency by inactivation of carbon catabolite repression has made significant progress. In this article, we provide informative and comprehensive insights into the co-utilization of two or more carbon sources including glucose, xylose, arabinose, glycerol, and C1 compounds, and we put our focus on parallel utilization, synergetic utilization, and complementary utilization of different carbon sources. Our goal is not only to summarize strategies of co-utilization of carbon sources, but also to discuss how to improve the carbon yield and the titer of target products.
Collapse
Affiliation(s)
- Ning An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huakang Sheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
32
|
Lu KW, Wang CT, Chang H, Wang RS, Shen CR. Overcoming glutamate auxotrophy in Escherichia coli itaconate overproducer by the Weimberg pathway. Metab Eng Commun 2021; 13:e00190. [PMID: 34934621 DOI: 10.1016/j.mec.2021.e00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022] Open
Abstract
Biosynthesis of itaconic acid occurs through decarboxylation of the TCA cycle intermediate cis-aconitate. Engineering of efficient itaconate producers often requires elimination of the highly active isocitrate dehydrogenase to conserve cis-aconitate, leading to 2-ketoglutarate auxotrophy in the producing strains. Supplementation of glutamate or complex protein hydrolysate then becomes necessary, often in large quantities, to support the high cell density desired during itaconate fermentation and adds to the production cost. Here, we present an alternative approach to overcome the glutamate auxotrophy in itaconate producers by synthetically introducing the Weimberg pathway from Burkholderia xenovorans for 2-ketoglutarate biosynthesis. Because of its independence from natural carbohydrate assimilation pathways in Escherichia coli, the Weimberg pathway is able to provide 2-ketoglutarate using xylose without compromising the carbon flux toward itaconate. With xylose concentration carefully tuned to minimize excess 2-ketoglutarate flux in the stationary phase, the final strain accumulated 20 g/L of itaconate in minimal medium from 18 g/L of xylose and 45 g/L of glycerol. Necessity of the recombinant Weimberg pathway for growth also allowed us to maintain multi-copy plasmids carrying in operon the itaconate-producing genes without addition of antibiotics. Use of the Weimberg pathway for growth restoration is applicable to other production systems with disrupted 2-ketoglutarate synthesis.
Collapse
Affiliation(s)
- Ken W Lu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Chris T Wang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Hengray Chang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Ryan S Wang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Claire R Shen
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
33
|
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E. Microbial production of advanced biofuels. Nat Rev Microbiol 2021; 19:701-715. [PMID: 34172951 DOI: 10.1038/s41579-021-00577-w] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Concerns over climate change have necessitated a rethinking of our transportation infrastructure. One possible alternative to carbon-polluting fossil fuels is biofuels produced by engineered microorganisms that use a renewable carbon source. Two biofuels, ethanol and biodiesel, have made inroads in displacing petroleum-based fuels, but their uptake has been limited by the amounts that can be used in conventional engines and by their cost. Advanced biofuels that mimic petroleum-based fuels are not limited by the amounts that can be used in existing transportation infrastructure but have had limited uptake due to costs. In this Review, we discuss engineering metabolic pathways to produce advanced biofuels, challenges with substrate and product toxicity with regard to host microorganisms and methods to engineer tolerance, and the use of functional genomics and machine learning approaches to produce advanced biofuels and prospects for reducing their costs.
Collapse
Affiliation(s)
- Jay Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA. .,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Center for Biosustainability, Danish Technical University, Lyngby, Denmark. .,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Hector Garcia Martin
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,DOE Agile BioFoundry, Emeryville, CA, USA.,BCAM,Basque Center for Applied Mathematics, Bilbao, Spain.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Sundstrom
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA
| |
Collapse
|
34
|
Kim J, Hwang S, Lee SM. Metabolic engineering for the utilization of carbohydrate portions of lignocellulosic biomass. Metab Eng 2021; 71:2-12. [PMID: 34626808 DOI: 10.1016/j.ymben.2021.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 10/03/2021] [Indexed: 01/01/2023]
Abstract
The petrochemical industry has grown to meet the need for massive production of energy and commodities along with an explosive population growth; however, serious side effects such as greenhouse gas emissions and global warming have negatively impacted the environment. Lignocellulosic biomass with myriad quantities on Earth is an attractive resource for the production of carbon-neutral fuels and chemicals through environmentally friendly processes of microbial fermentation. This review discusses metabolic engineering efforts to achieve economically feasible industrial production of fuels and chemicals from microbial cell factories using the carbohydrate portion of lignocellulosic biomass as substrates. The combined knowledge of systems biology and metabolic engineering has been applied to construct robust platform microorganisms with maximum conversion of monomeric sugars, such as glucose and xylose, derived from lignocellulosic biomass. By comprehensively revisiting carbon conversion pathways, we provide a rationale for engineering strategies, as well as their features, feasibility, and recent representative studies. In addition, we briefly discuss how tools in systems biology can be applied in the field of metabolic engineering to accelerate the development of microbial cell factories that convert lignocellulosic biomass into carbon-neutral fuels and chemicals with economic feasibility.
Collapse
Affiliation(s)
- Jiwon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sungmin Hwang
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Clean Energy and Chemical Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea; Green School (Graduate School of Energy and Environment), Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
35
|
Cheng J, Li J, Zheng L. Achievements and Perspectives in 1,4-Butanediol Production from Engineered Microorganisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10480-10485. [PMID: 34478293 DOI: 10.1021/acs.jafc.1c03769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
1,4-Butanediol (1,4-BDO), a significant commodity chemical, is currently manufactured exclusively from a host of energy-intensive processes, accompanied by severe environmental issues, such as the greenhouse effect and air pollution. As a result of the ever-increasing global market demands and increasing applications of 1,4-BDO, attention has turned to the sustainable bioproduction of 1,4-BDO, and several bio-based approaches for 1,4-BDO production have been successfully established in engineered Escherichia coli, including de novo biosynthesis and biocatalysis. Recent achievements in enhancing the accumulation of 1,4-BDO have been achieved by metabolic engineering strategies, such as improving precursor supply, enhancing activities of critical enzymes, and fewer byproduct synthesis. Here, we summarize the primary advances of the biological pathway for 1,4-BDO synthesis and put forward the future development prospect of bio-based 1,4-BDO production.
Collapse
Affiliation(s)
- Jie Cheng
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science,Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Juan Li
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science,Xiamen University, Xiamen, Fujian 361102, People's Republic of China
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong 510520, People's Republic of China
| | - Linggang Zheng
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science,Xiamen University, Xiamen, Fujian 361102, People's Republic of China
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, People's Republic of China
| |
Collapse
|
36
|
Vapor-phase dehydration of 1,4-butanediol to 1,3-butadiene over Y2Zr2O7 catalyst. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Gangadharan S, Raman K. The art of molecular computing: Whence and whither. Bioessays 2021; 43:e2100051. [PMID: 34101866 DOI: 10.1002/bies.202100051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022]
Abstract
An astonishingly diverse biomolecular circuitry orchestrates the functioning machinery underlying every living cell. These biomolecules and their circuits have been engineered not only for various industrial applications but also to perform other atypical functions that they were not evolved for-including computation. Various kinds of computational challenges, such as solving NP-complete problems with many variables, logical computation, neural network operations, and cryptography, have all been attempted through this unconventional computing paradigm. In this review, we highlight key experiments across three different ''eras'' of molecular computation, beginning with molecular solutions, transitioning to logic circuits and ultimately, more complex molecular networks. We also discuss a variety of applications of molecular computation, from solving NP-hard problems to self-assembled nanostructures for delivering molecules, and provide a glimpse into the exciting potential that molecular computing holds for the future. Also see the video abstract here: https://youtu.be/9Mw0K0vCSQw.
Collapse
Affiliation(s)
- Sahana Gangadharan
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Karthik Raman
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India.,Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
38
|
Yoo JI, Sohn YJ, Son J, Jo SY, Pyo J, Park SK, Choi JI, Joo JC, Kim HT, Park SJ. Recent advances in the microbial production of C4 alcohols by metabolically engineered microorganisms. Biotechnol J 2021; 17:e2000451. [PMID: 33984183 DOI: 10.1002/biot.202000451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The heavy global dependence on petroleum-based industries has led to serious environmental problems, including climate change and global warming. As a result, there have been calls for a paradigm shift towards the use of biorefineries, which employ natural and engineered microorganisms that can utilize various carbon sources from renewable resources as host strains for the carbon-neutral production of target products. PURPOSE AND SCOPE C4 alcohols are versatile chemicals that can be used directly as biofuels and bulk chemicals and in the production of value-added materials such as plastics, cosmetics, and pharmaceuticals. C4 alcohols can be effectively produced by microorganisms using DCEO biotechnology (tools to design, construct, evaluate, and optimize) and metabolic engineering strategies. SUMMARY OF NEW SYNTHESIS AND CONCLUSIONS In this review, we summarize the production strategies and various synthetic tools available for the production of C4 alcohols and discuss the potential development of microbial cell factories, including the optimization of fermentation processes, that offer cost competitiveness and potential industrial commercialization.
Collapse
Affiliation(s)
- Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jiwon Pyo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Su Kyeong Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Engineering, Interdisciplinary Program of Bioenergy and Biomaterials, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyenggi-do, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Wu Y, Jameel A, Xing XH, Zhang C. Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends Biotechnol 2021; 40:38-59. [PMID: 33958227 DOI: 10.1016/j.tibtech.2021.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Adaptive laboratory evolution (ALE) has served as a historic microbial engineering method that mimics natural selection to obtain desired microbes. The past decade has witnessed improvements in all aspects of ALE workflow, in terms of growth coupling, genotypic diversification, phenotypic selection, and genotype-phenotype mapping. The developing growth-coupling strategies facilitate ALE to a wider range of appealing traits. In vivo mutagenesis methods and multiplexed automated culture platforms open new gates to streamline its execution. Meanwhile, the application of multi-omics analyses and multiplexed genetic engineering promote efficient knowledge mining. This article provides a comprehensive and updated review of these advances, highlights newest significant applications, and discusses future improvements, aiming to provide a practical guide for implementation of novel, effective, and efficient ALE experiments.
Collapse
Affiliation(s)
- Yinan Wu
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Aysha Jameel
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
40
|
Bañares AB, Nisola GM, Valdehuesa KNG, Lee WK, Chung WJ. Engineering of xylose metabolism in Escherichia coli for the production of valuable compounds. Crit Rev Biotechnol 2021; 41:649-668. [PMID: 33563072 DOI: 10.1080/07388551.2021.1873243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The lignocellulosic sugar d-xylose has recently gained prominence as an inexpensive alternative substrate for the production of value-added compounds using genetically modified organisms. Among the prokaryotes, Escherichia coli has become the de facto host for the development of engineered microbial cell factories. The favored status of E. coli resulted from a century of scientific explorations leading to a deep understanding of its systems. However, there are limited literature reviews that discuss engineered E. coli as a platform for the conversion of d-xylose to any target compounds. Additionally, available critical review articles tend to focus on products rather than the host itself. This review aims to provide relevant and current information about significant advances in the metabolic engineering of d-xylose metabolism in E. coli. This focusses on unconventional and synthetic d-xylose metabolic pathways as several review articles have already discussed the engineering of native d-xylose metabolism. This paper, in particular, is essential to those who are working on engineering of d-xylose metabolism using E. coli as the host.
Collapse
Affiliation(s)
- Angelo B Bañares
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Yongin, Gyeonggi, South Korea
| | - Grace M Nisola
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Yongin, Gyeonggi, South Korea
| | - Kris N G Valdehuesa
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Yongin, Gyeonggi, South Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi, South Korea
| | - Wook-Jin Chung
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Yongin, Gyeonggi, South Korea
| |
Collapse
|
41
|
Zhang Y, Yu J, Wu Y, Li M, Zhao Y, Zhu H, Chen C, Wang M, Chen B, Tan T. Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Metab Eng 2020; 62:62-71. [DOI: 10.1016/j.ymben.2020.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 11/21/2022]
|
44
|
Yukawa T, Bamba T, Guirimand G, Matsuda M, Hasunuma T, Kondo A. Optimization of 1,2,4-butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance. Biotechnol Bioeng 2020; 118:175-185. [PMID: 32902873 DOI: 10.1002/bit.27560] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023]
Abstract
1,2,4-Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2-ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2-keto-3-deoxy-xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2-ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism.
Collapse
Affiliation(s)
- Takahiro Yukawa
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takahiro Bamba
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Gregory Guirimand
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, Tours, France.,LE STUDIUM, Loire Valley Institute for Advanced Studies, Orléans, France
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Engineering Biology Research Center, Kobe University, Kobe, Japan.,Biomass Engineering Program, RIKEN, Yokohama, Kanagawa, Japan
| |
Collapse
|
45
|
Liu Y, Su A, Li J, Ledesma-Amaro R, Xu P, Du G, Liu L. Towards next-generation model microorganism chassis for biomanufacturing. Appl Microbiol Biotechnol 2020; 104:9095-9108. [DOI: 10.1007/s00253-020-10902-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
|
46
|
Sutiono S, Siebers B, Sieber V. Characterization of highly active 2-keto-3-deoxy-L-arabinonate and 2-keto-3-deoxy-D-xylonate dehydratases in terms of the biotransformation of hemicellulose sugars to chemicals. Appl Microbiol Biotechnol 2020; 104:7023-7035. [PMID: 32566996 PMCID: PMC7374468 DOI: 10.1007/s00253-020-10742-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/02/2023]
Abstract
2-keto-3-L-arabinonate dehydratase (L-KdpD) and 2-keto-3-D-xylonate dehydratase (D-KdpD) are the third enzymes in the Weimberg pathway catalyzing the dehydration of respective 2-keto-3-deoxy sugar acids (KDP) to α-ketoglutaric semialdehyde (KGSA). The Weimberg pathway has been explored recently with respect to the synthesis of chemicals from L-arabinose and D-xylose. However, only limited work has been done toward characterizing these two enzymes. In this work, several new L-KdpDs and D-KdpDs were cloned and heterologously expressed in Escherichia coli. Following kinetic characterizations and kinetic stability studies, the L-KdpD from Cupriavidus necator (CnL-KdpD) and D-KdpD from Pseudomonas putida (PpD-KdpD) appeared to be the most promising variants from each enzyme class. Magnesium had no effect on CnL-KdpD, whereas increased activity and stability were observed for PpD-KdpD in the presence of Mg2+. Furthermore, CnL-KdpD was not inhibited in the presence of L-arabinose and L-arabinonate, whereas PpD-KdpD was inhibited with D-xylonate (I50 of 75 mM), but not with D-xylose. Both enzymes were shown to be highly active in the one-step conversions of L-KDP and D-KDP. CnL-KdpD converted > 95% of 500 mM L-KDP to KGSA in the first 2 h while PpD-KdpD converted > 90% of 500 mM D-KDP after 4 h. Both enzymes in combination were able to convert 83% of a racemic mixture of D,L-KDP (500 mM) after 4 h, with both enzymes being specific toward the respective stereoisomer. Key points • L-KdpDs and D-KdpDs are specific toward L- and D-KDP, respectively. • Mg2+affected activity and stabilities of D-KdpDs, but not of L-KdpDs. • CnL-KdpD and PpD-KdpD converted 0.5 M of each KDP isomer reaching 95 and 90% yield. • Both enzymes in combination converted 0.5 M racemic D,L-KDP reaching 83% yield.
Collapse
Affiliation(s)
- Samuel Sutiono
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45117, Essen, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany.
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany.
- Straubing Branch BioCat, Fraunhofer IGB, Schulgasse 11a, 94315, Straubing, Germany.
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia, 4072, Australia.
| |
Collapse
|
47
|
Bacterial synthesis of C3-C5 diols via extending amino acid catabolism. Proc Natl Acad Sci U S A 2020; 117:19159-19167. [PMID: 32719126 DOI: 10.1073/pnas.2003032117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Amino acids are naturally occurring and structurally diverse metabolites in biological system, whose potentials for chemical expansion, however, have not been fully explored. Here, we devise a metabolic platform capable of producing industrially important C3-C5 diols from amino acids. The presented platform combines the natural catabolism of charged amino acids with a catalytically efficient and thermodynamically favorable diol formation pathway, created by expanding the substrate scope of the carboxylic acid reductase toward noncognate ω-hydroxylic acids. Using the established platform as gateways, seven different diol-convertible amino acids are converted to diols including 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol. Particularly, we afford to optimize the production of 1,4-butanediol and demonstrate the de novo production of 1,5-pentanediol from glucose, with titers reaching 1.41 and 0.97 g l-1, respectively. Our work presents a metabolic platform that enriches the pathway repertoire for nonnatural diols with feedstock flexibility to both sugar and protein hydrolysates.
Collapse
|
48
|
Ghadiri SK, Alidadi H, Tavakkoli Nezhad N, Javid A, Roudbari A, Talebi SS, Mohammadi AA, Shams M, Rezania S. Valorization of biomass into amine- functionalized bio graphene for efficient ciprofloxacin adsorption in water-modeling and optimization study. PLoS One 2020; 15:e0231045. [PMID: 32287274 PMCID: PMC7156080 DOI: 10.1371/journal.pone.0231045] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/13/2020] [Indexed: 12/07/2022] Open
Abstract
A green synthesis approach was conducted to prepare amine-functionalized bio-graphene (AFBG) as an efficient and low cost adsorbent that can be obtained from agricultural wastes. In this study, bio-graphene was successfully used to remove Ciprofloxacin (CIP) from synthetic solutions. The efficacy of adsorbent as a function of operating variables (i.e. pH, time, AFBG dose and CIP concentration) was described by a polynomial model. A optimal99.3% experimental removal was achieved by adjusting the mixing time, AFBG dose, pH and CIP concentration to 58.16, 0.99, 7.47, and 52.9, respectively. Kinetic model revealed that CIP diffusion into the internal layers of AFBG controls the rate of the process. Furthermore, the sorption process was in monolayer with a maximum monolayer capacity of 172.6 mg/g. Adsorption also found to be favored under higher CIP concentrations. The thermodynamic parameters (ΔG°<0, ΔH°>0, and ΔS°>0) demonstrated that the process is endothermic and spontaneous in nature. The regeneration study showed that the AFBG could simply regenerated without significant lost in adsorption capacity.
Collapse
Affiliation(s)
- Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Alidadi
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Tavakkoli Nezhad
- Department of Environmental Health Engineering, Student Research Committee, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Allahbakhsh Javid
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Aliakbar Roudbari
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
- * E-mail: (AAM); (MS); (SR)
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- * E-mail: (AAM); (MS); (SR)
| | - Shahabaldin Rezania
- Department of Environment & Energy, Sejong University, Seoul, South Korea
- * E-mail: (AAM); (MS); (SR)
| |
Collapse
|
49
|
A combined experimental and modelling approach for the Weimberg pathway optimisation. Nat Commun 2020; 11:1098. [PMID: 32107375 PMCID: PMC7046635 DOI: 10.1038/s41467-020-14830-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
The oxidative Weimberg pathway for the five-step pentose degradation to α-ketoglutarate is a key route for sustainable bioconversion of lignocellulosic biomass to added-value products and biofuels. The oxidative pathway from Caulobacter crescentus has been employed in in-vivo metabolic engineering with intact cells and in in-vitro enzyme cascades. The performance of such engineering approaches is often hampered by systems complexity, caused by non-linear kinetics and allosteric regulatory mechanisms. Here we report an iterative approach to construct and validate a quantitative model for the Weimberg pathway. Two sensitive points in pathway performance have been identified as follows: (1) product inhibition of the dehydrogenases (particularly in the absence of an efficient NAD+ recycling mechanism) and (2) balancing the activities of the dehydratases. The resulting model is utilized to design enzyme cascades for optimized conversion and to analyse pathway performance in C. cresensus cell-free extracts.
Collapse
|
50
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|