1
|
Bhowmick S, Viveros RP, Latoscha A, Commichau FM, Wrede C, Al-Bassam MM, Tschowri N. Cell shape and division septa positioning in filamentous Streptomyces require a functional cell wall glycopolymer ligase CglA. mBio 2024; 15:e0149224. [PMID: 39248520 PMCID: PMC11481543 DOI: 10.1128/mbio.01492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
The cell wall of monoderm bacteria consists of peptidoglycan and glycopolymers in roughly equal proportions and is crucial for cellular integrity, cell shape, and bacterial vitality. Despite the immense value of Streptomyces in biotechnology and medicine as antibiotic producers, we know very little about their cell wall biogenesis, composition, and functions. Here, we have identified the LCP-LytR_C domain protein CglA (Vnz_13690) as a key glycopolymer ligase, which specifically localizes in zones of cell wall biosynthesis in S. venezuelae. Reduced amount of glycopolymers in the cglA mutant results in enlarged vegetative hyphae and failures in FtsZ-rings formation and positioning. Consequently, division septa are misplaced leading to the formation of aberrant cell compartments, misshaped spores, and reduced cell vitality. In addition, we report our discovery that c-di-AMP signaling and decoration of the cell wall with glycopolymers are physiologically linked in Streptomyces since the deletion of cglA restores growth of the S. venezuelae disA mutant at high salt. Altogether, we have identified and characterized CglA as a novel component of cell wall biogenesis in Streptomyces, which is required for cell shape maintenance and cellular vitality in filamentous, multicellular bacteria.IMPORTANCEStreptomyces are our key producers of antibitiotics and other bioactive molecules and are, therefore, of high value for medicine and biotechnology. They proliferate by apical extension and branching of hyphae and undergo complex cell differentiation from filaments to spores during their life cycle. For both, growth and sporulation, coordinated cell wall biogenesis is crucial. However, our knowledge about cell wall biosynthesis, functions, and architecture in Streptomyces and in other Actinomycetota is still very limited. Here, we identify CglA as the key enzyme needed for the attachment of glycopolymers to the cell wall of S. venezuelae. We demonstrate that defects in the cell wall glycopolymer content result in loss of cell shape in these filamentous bacteria and show that division-competent FtsZ-rings cannot assemble properly and fail to be positioned correctly. As a consequence, cell septa placement is disturbed leading to the formation of misshaped spores with reduced viability.
Collapse
Affiliation(s)
- Sukanya Bhowmick
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Ruth P. Viveros
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Andreas Latoscha
- Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fabian M. Commichau
- Institute of Biology, FG Molecular Microbiology 190 h, Universität Hohenheim, Stuttgart, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | | | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
2
|
Roney IJ, Rudner DZ. Bacillus subtilis uses the SigM signaling pathway to prioritize the use of its lipid carrier for cell wall synthesis. PLoS Biol 2024; 22:e3002589. [PMID: 38683856 PMCID: PMC11081497 DOI: 10.1371/journal.pbio.3002589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/09/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Peptidoglycan (PG) and most surface glycopolymers and their modifications are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP). These lipid-linked precursors are then flipped across the membrane and polymerized or directly transferred to surface polymers, lipids, or proteins. Despite its essential role in envelope biogenesis, UndP is maintained at low levels in the cytoplasmic membrane. The mechanisms by which bacteria distribute this limited resource among competing pathways is currently unknown. Here, we report that the Bacillus subtilis transcription factor SigM and its membrane-anchored anti-sigma factor respond to UndP levels and prioritize its use for the synthesis of the only essential surface polymer, the cell wall. Antibiotics that target virtually every step in PG synthesis activate SigM-directed gene expression, confounding identification of the signal and the logic of this stress-response pathway. Through systematic analyses, we discovered 2 distinct responses to these antibiotics. Drugs that trap UndP, UndP-linked intermediates, or precursors trigger SigM release from the membrane in <2 min, rapidly activating transcription. By contrasts, antibiotics that inhibited cell wall synthesis without directly affecting UndP induce SigM more slowly. We show that activation in the latter case can be explained by the accumulation of UndP-linked wall teichoic acid precursors that cannot be transferred to the PG due to the block in its synthesis. Furthermore, we report that reduction in UndP synthesis rapidly induces SigM, while increasing UndP production can dampen the SigM response. Finally, we show that SigM becomes essential for viability when the availability of UndP is restricted. Altogether, our data support a model in which the SigM pathway functions to homeostatically control UndP usage. When UndP levels are sufficiently high, the anti-sigma factor complex holds SigM inactive. When levels of UndP are reduced, SigM activates genes that increase flux through the PG synthesis pathway, boost UndP recycling, and liberate the lipid carrier from nonessential surface polymer pathways. Analogous homeostatic pathways that prioritize UndP usage are likely to be common in bacteria.
Collapse
Affiliation(s)
- Ian J. Roney
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Nakamoto R, Bamyaci S, Blomqvist K, Normark S, Henriques-Normark B, Sham LT. The divisome but not the elongasome organizes capsule synthesis in Streptococcus pneumoniae. Nat Commun 2023; 14:3170. [PMID: 37264013 DOI: 10.1038/s41467-023-38904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
The bacterial cell envelope consists of multiple layers, including the peptidoglycan cell wall, one or two membranes, and often an external layer composed of capsular polysaccharides (CPS) or other components. How the synthesis of all these layers is precisely coordinated remains unclear. Here, we identify a mechanism that coordinates the synthesis of CPS and peptidoglycan in Streptococcus pneumoniae. We show that CPS synthesis initiates from the division septum and propagates along the long axis of the cell, organized by the tyrosine kinase system CpsCD. CpsC and the rest of the CPS synthesis complex are recruited to the septum by proteins associated with the divisome (a complex involved in septal peptidoglycan synthesis) but not the elongasome (involved in peripheral peptidoglycan synthesis). Assembly of the CPS complex starts with CpsCD, then CpsA and CpsH, the glycosyltransferases, and finally CpsJ. Remarkably, targeting CpsC to the cell pole is sufficient to reposition CPS synthesis, leading to diplococci that lack CPS at the septum. We propose that septal CPS synthesis is important for chain formation and complement evasion, thereby promoting bacterial survival inside the host.
Collapse
Affiliation(s)
- Rei Nakamoto
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Sarp Bamyaci
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Karin Blomqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
4
|
Koyano Y, Okajima K, Mihara M, Yamamoto H. Visualization of Wall Teichoic Acid Decoration in Bacillus subtilis. J Bacteriol 2023; 205:e0006623. [PMID: 37010431 PMCID: PMC10127673 DOI: 10.1128/jb.00066-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Teichoic acids are important for the maintenance of cell shape and growth in Gram-positive bacteria. Bacillus subtilis produces major and minor forms of wall teichoic acid (WTA) and lipoteichoic acid during vegetative growth. We found that newly synthesized WTA attachment to peptidoglycan occurs in a patch-like manner on the sidewall with the fluorescent labeling compound of the concanavalin A lectin. Similarly, WTA biosynthesis enzymes fused to the epitope tags were localized in similar patch-like patterns on the cylindrical part of the cell, and WTA transporter TagH was frequently colocalized with WTA polymerase TagF, WTA ligase TagT, and actin homolog MreB, respectively. Moreover, we found that the nascent cell wall patches, decorated with the newly glucosylated WTA, were colocalized with TagH and WTA ligase TagV. In the cylindrical part, the newly glucosylated WTA patchily inserted into the bottom of the cell wall layer and finally reached the outermost layer of the cell wall after approximately half an hour. Incorporation of newly glucosylated WTA was arrested with the addition of vancomycin but restored with the removal of the antibiotic. These results are consistent with the prevailing model that WTA precursors are attached to newly synthesized peptidoglycan. IMPORTANCE In Gram-positive bacteria, the cell wall is composed of mesh-like peptidoglycan and covalently linked wall teichoic acid (WTA). It is unclear where WTA decorates peptidoglycan to create a cell wall architecture. Here, we demonstrate that nascent WTA decoration occurred in a patch-like manner at the peptidoglycan synthesis sites on the cytoplasmic membrane. The incorporated cell wall with newly glucosylated WTA in the cell wall layer then reached the outermost layer of the cell wall after approximately half an hour. Incorporation of newly glucosylated WTA was arrested with the addition of vancomycin but restored with the removal of the antibiotic. These results are consistent with the prevailing model that WTA precursors are attached to newly synthesized peptidoglycan.
Collapse
Affiliation(s)
- Yutaka Koyano
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Kiyoshirou Okajima
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Mako Mihara
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Hiroki Yamamoto
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| |
Collapse
|
5
|
Malet-Villemagne J, Yucheng L, Evanno L, Denis-Quanquin S, Hugonnet JE, Arthur M, Janoir C, Candela T. Polysaccharide II Surface Anchoring, the Achilles' Heel of Clostridioides difficile. Microbiol Spectr 2023; 11:e0422722. [PMID: 36815772 PMCID: PMC10100865 DOI: 10.1128/spectrum.04227-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Cell wall glycopolymers (CWPGs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. These polymers, pillars for proteins and S-layer, are essential for the bacterial surface setup, could be essential for growth, and, in pathogens, participate most often in virulence. CWGPs are covalently anchored to peptidoglycan by proteins that belong to the LytR-CpsA-PSr (LCP) family. This anchoring, important for growth, was reported as essential for some bacteria such as Bacillus subtilis, but the reason why CWGP anchoring is essential remains unknown. We studied LcpA and LcpB of Clostridioides difficile and showed that they have a redundant activity. To delete both lcp genes, we set up the first conditional-lethal mutant method in C. difficile and showed that polysaccharide II (PSII) anchoring at the bacterial surface is essential for C. difficile survival. In the conditional-lethal mutant, C. difficile morphology was impaired, suggesting that peptidoglycan synthesis was affected. Because Lcp proteins are transferring CWPGs from the C55-undecaprenyl phosphate (also needed in the peptidoglycan synthesis process), we assumed that there was competition between PSII and peptidoglycan synthesis pathways. We confirmed that UDP-MurNAc-pentapeptide precursor was accumulated, showing that peptidoglycan synthesis was blocked. Our results provide an explanation for the essentiality of PSII anchoring in C. difficile and suggest that the essentiality of the anchoring of CWPGs in other bacteria can also be explained by the blocking of peptidoglycan synthesis. To conclude, our results suggest that Lcps are potential new targets to combat C. difficile infection. IMPORTANCE Cell wall glycopolymers (CWGPs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. CWGP anchoring to peptidoglycan is important for growth and virulence. We set up the first conditional-lethal mutant method in Clostridioides difficile to study LcpA and LcpB involved in the anchoring of CWPGs to peptidoglycan. This study offers new tools to reveal the role of essential genes in C. difficile. LcpA and LcpB activity was shown to be essential, suggesting that they are potential new targets to combat C. difficile infection. In this study, we also showed that there is competition between the polysaccharide II synthesis pathway and peptidoglycan synthesis that probably exists in other Gram-positive bacteria. A better understanding of these mechanisms allows us to define the Lcp proteins as a therapeutic target for potential design of novel antibiotics against pathogenic Gram-positive bacteria.
Collapse
Affiliation(s)
| | - Liang Yucheng
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Laurent Evanno
- Biomolécules: Conception, Isolement et Synthèse (BioCIS), Université Paris-Saclay, CNRS, Orsay, France
| | | | - Jean-Emmanuel Hugonnet
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Michel Arthur
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Claire Janoir
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
6
|
Tomatsidou A, Krunic M, Missiakas D. Contribution of TagA-Like Glycosyltransferases to the Assembly of the Secondary Cell Wall Polysaccharide in Bacillus anthracis. J Bacteriol 2022; 204:e0025322. [PMID: 35997505 PMCID: PMC9487633 DOI: 10.1128/jb.00253-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis elaborates a secondary cell wall polysaccharide (SCWP) made of 6 to 12 trisaccharide units. Pyruvyl and acetyl substitutions of the distal unit are prerequisites for the noncovalent retention of 22 secreted Bacillus S-layer (Bsl)-associated proteins bearing an S-layer homology (SLH) domain. Surface display of Bsl proteins contributes to cell separation as well as virulence. Earlier work suggested that TagO initiates the synthesis of SCWP while GneY and GneZ, two UDP-GlcNAc 2-epimerases, synthesize ManNAc that is later incorporated in the repeat unit (→4)-ManNAc-(β1→4)-GlcNAc-(β1→6)-GlcNAc-(α1→). In organisms that synthesize wall teichoic acid, TagA catalysts have been shown to form the glycosidic bond ManNAc-(β1→4)-GlcNAc. Here, we show that genes bas2675 and bas5272, predicted to encode glycosyltransferases of the WecB/TagA/CpsF family (PFAM03808; CAZy GT26), are required for B. anthracis SCWP synthesis and S-layer assembly. Similar to tagO or gneY gneZ mutants, B. anthracis strains depleted of tagA1 (bas5272) cannot maintain cell shape, support vegetative growth, or synthesize SCWP. Expression of tagA2 (bas2675), or Staphylococcus aureus tagA on a plasmid, rescues the nonviable tagA1 mutant. We propose that TagA1 and TagA2 fulfill overlapping and key glycosyltransferase functions for the synthesis of repeat units of the SCWP of B. anthracis. IMPORTANCE Glycosyltransferases (GTs) catalyze the transfer of sugar moieties from activated donor molecules to acceptor molecules to form glycosidic bonds using a retaining or inverting mechanism. Based on the structural relatedness of their catalytic and carbohydrate-binding modules, GTs have been grouped into 115 families in the Carbohydrate-Active EnZyme (CAZy) database. For complex products, the functional assignment of GTs remains highly challenging without the knowledge of the chemical structure of the assembled polymer. Here, we propose that two uncharacterized GTs of B. anthracis belonging to the WecB/TagA/CpsF family incorporate ManNAc in repeat units of the secondary cell wall polymer of bacilli species.
Collapse
Affiliation(s)
- Anastasia Tomatsidou
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
| | - Maria Krunic
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
| |
Collapse
|
7
|
Guérin H, Kulakauskas S, Chapot-Chartier MP. Structural variations and roles of rhamnose-rich cell wall polysaccharides in Gram-positive bacteria. J Biol Chem 2022; 298:102488. [PMID: 36113580 PMCID: PMC9574508 DOI: 10.1016/j.jbc.2022.102488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Rhamnose-rich cell wall polysaccharides (Rha-CWPSs) have emerged as crucial cell wall components of numerous Gram-positive, ovoid-shaped bacteria—including streptococci, enterococci, and lactococci—of which many are of clinical or biotechnological importance. Rha-CWPS are composed of a conserved polyrhamnose backbone with side-chain substituents of variable size and structure. Because these substituents contain phosphate groups, Rha-CWPS can also be classified as polyanionic glycopolymers, similar to wall teichoic acids, of which they appear to be functional homologs. Recent advances have highlighted the critical role of these side-chain substituents in bacterial cell growth and division, as well as in specific interactions between bacteria and infecting bacteriophages or eukaryotic hosts. Here, we review the current state of knowledge on the structure and biosynthesis of Rha-CWPS in several ovoid-shaped bacterial species. We emphasize the role played by multicomponent transmembrane glycosylation systems in the addition of side-chain substituents of various sizes as extracytoplasmic modifications of the polyrhamnose backbone. We provide an overview of the contribution of Rha-CWPS to cell wall architecture and biogenesis and discuss current hypotheses regarding their importance in the cell division process. Finally, we sum up the critical roles that Rha-CWPS can play as bacteriophage receptors or in escaping host defenses, roles that are mediated mainly through their side-chain substituents. From an applied perspective, increased knowledge of Rha-CWPS can lead to advancements in strategies for preventing phage infection of lactococci and streptococci in food fermentation and for combating pathogenic streptococci and enterococci.
Collapse
Affiliation(s)
- Hugo Guérin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | |
Collapse
|
8
|
Flores-Kim J, Dobihal GS, Bernhardt TG, Rudner DZ. WhyD tailors surface polymers to prevent premature bacteriolysis and direct cell elongation in Streptococcus pneumoniae. eLife 2022; 11:e76392. [PMID: 35593695 PMCID: PMC9208761 DOI: 10.7554/elife.76392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Penicillin and related antibiotics disrupt cell wall synthesis in bacteria causing the downstream misactivation of cell wall hydrolases called autolysins to induce cell lysis. Despite the clinical importance of this phenomenon, little is known about the factors that control autolysins and how penicillins subvert this regulation to kill cells. In the pathogen Streptococcus pneumoniae (Sp), LytA is the major autolysin responsible for penicillin-induced bacteriolysis. We recently discovered that penicillin treatment of Sp causes a dramatic shift in surface polymer biogenesis in which cell wall-anchored teichoic acids (WTAs) increase in abundance at the expense of lipid-linked teichoic acids (LTAs). Because LytA binds to both species of teichoic acids, this change recruits the enzyme to its substrate where it cleaves the cell wall and elicits lysis. In this report, we identify WhyD (SPD_0880) as a new factor that controls the level of WTAs in Sp cells to prevent LytA misactivation and lysis during exponential growth . We show that WhyD is a WTA hydrolase that restricts the WTA content of the wall to areas adjacent to active peptidoglycan (PG) synthesis. Our results support a model in which the WTA tailoring activity of WhyD during exponential growth directs PG remodeling activity required for proper cell elongation in addition to preventing autolysis by LytA.
Collapse
Affiliation(s)
- Josué Flores-Kim
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- UMass Chan Medical SchoolWorcesterUnited States
| | | | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| | - David Z Rudner
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
9
|
Wakinaka T, Matsutani M, Watanabe J, Mogi Y, Tokuoka M, Ohnishi A. Ribitol-Containing Wall Teichoic Acid of Tetragenococcus halophilus Is Targeted by Bacteriophage phiWJ7 as a Binding Receptor. Microbiol Spectr 2022; 10:e0033622. [PMID: 35311554 PMCID: PMC9045211 DOI: 10.1128/spectrum.00336-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Tetragenococcus halophilus, a halophilic lactic acid bacterium, is used in the fermentation process of soy sauce manufacturing. For many years, bacteriophage infections of T. halophilus have been a major industrial problem that causes fermentation failure. However, studies focusing on the mechanisms of tetragenococcal host-phage interactions are not sufficient. In this study, we generated two phage-insensitive derivatives from the parental strain T. halophilus WJ7, which is susceptible to the virulent phage phiWJ7. Whole-genome sequencing of the derivatives revealed that insertion sequences were transposed into a gene encoding poly(ribitol phosphate) polymerase (TarL) in both derivatives. TarL is responsible for the biosynthesis of ribitol-containing wall teichoic acid, and WJ7 was confirmed to contain ribitol in extracted wall teichoic acid, but the derivative was not. Cell walls of WJ7 irreversibly adsorbed phiWJ7, but those of the phage-insensitive derivatives did not. Additionally, 25 phiWJ7-insensitive derivatives were obtained, and they showed mutations not only in tarL but also in tarI and tarJ, which are responsible for the synthesis of CDP-ribitol. These results indicate that phiWJ7 targets the ribitol-containing wall teichoic acid of host cells as a binding receptor. IMPORTANCE Information about the mechanisms of host-phage interactions is required for the development of efficient strategies against bacteriophage infections. Here, we identified the ribitol-containing wall teichoic acid as a host receptor indispensable for bacteriophage infection. The complete genome sequence of tetragenococcal phage phiWJ7 belonging to the family Rountreeviridae is also provided here. This study could become the foundation for a better understanding of host-phage interactions of tetragenococci.
Collapse
Affiliation(s)
| | | | - Jun Watanabe
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
- Institute of Fermentation Sciences, Fukushima University, Fukushima, Japan
| | - Yoshinobu Mogi
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
| | - Masafumi Tokuoka
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Akihiro Ohnishi
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
10
|
Öhlmann S, Krieger AK, Gisch N, Meurer M, de Buhr N, von Köckritz-Blickwede M, Schütze N, Baums CG. d-Alanylation of Lipoteichoic Acids in Streptococcus suis Reduces Association With Leukocytes in Porcine Blood. Front Microbiol 2022; 13:822369. [PMID: 35509315 PMCID: PMC9058155 DOI: 10.3389/fmicb.2022.822369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis (S. suis) is a common swine pathogen but also poses a threat to human health in causing meningitis and severe cases of streptococcal toxic shock-like syndrome (STSLS). Therefore, it is crucial to understand how S. suis interacts with the host immune system during bacteremia. As S. suis has the ability to introduce d-alanine into its lipoteichoic acids (LTAs), we investigated the working hypothesis that cell wall modification by LTA d-alanylation influences the interaction of S. suis with porcine blood immune cells. We created an isogenic mutant of S. suis strain 10 by in-frame deletion of the d-alanine d-alanyl carrier ligase (DltA). d-alanylation of LTAs was associated with reduced phagocytosis of S. suis by porcine granulocytes, reduced deposition of complement factor C3 on the bacterial surface, increased hydrophobicity of streptococci, and increased resistance to cationic antimicrobial peptides (CAMPs). At the same time, survival of S. suis was not significantly increased by LTA d-alanylation in whole blood of conventional piglets with specific IgG. However, we found a distinct cytokine pattern as IL-1β but not tumor necrosis factor (TNF)-α levels were significantly reduced in blood infected with the ΔdltA mutant. In contrast to TNF-α, activation and secretion of IL-1β are inflammasome-dependent, suggesting a possible influence of LTA d-alanylation on inflammasome regulation. Especially in the absence of specific antibodies, the association of S. suis with porcine monocytes was reduced by d-alanylation of its LTAs. This dltA-dependent phenotype was also observed with a non-encapsulated dltA double mutant indicating that it is independent of capsular polysaccharides. High antibody levels caused high levels of S. suis—monocyte—association followed by inflammatory cell death and strong production of both IL-1β and TNF-α, while the influence of LTA d-alanylation of the streptococci became less visible. In summary, the results of this study expand previous findings on d-alanylation of LTAs in S. suis and suggest that this pathogen specifically modulates association with blood leukocytes through this modification of its surface.
Collapse
Affiliation(s)
- Sophie Öhlmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Ann-Kathrin Krieger
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Marita Meurer
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole Schütze
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
- *Correspondence: Christoph Georg Baums,
| |
Collapse
|
11
|
PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides. Nat Commun 2022; 13:590. [PMID: 35105886 PMCID: PMC8807736 DOI: 10.1038/s41467-022-28257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
The cell wall of the human bacterial pathogen Group A Streptococcus (GAS) consists of peptidoglycan decorated with the Lancefield group A carbohydrate (GAC). GAC is a promising target for the development of GAS vaccines. In this study, employing chemical, compositional, and NMR methods, we show that GAC is attached to peptidoglycan via glucosamine 1-phosphate. This structural feature makes the GAC-peptidoglycan linkage highly sensitive to cleavage by nitrous acid and resistant to mild acid conditions. Using this characteristic of the GAS cell wall, we identify PplD as a protein required for deacetylation of linkage N-acetylglucosamine (GlcNAc). X-ray structural analysis indicates that PplD performs catalysis via a modified acid/base mechanism. Genetic surveys in silico together with functional analysis indicate that PplD homologs deacetylate the polysaccharide linkage in many streptococcal species. We further demonstrate that introduction of positive charges to the cell wall by GlcNAc deacetylation protects GAS against host cationic antimicrobial proteins.
Collapse
|
12
|
Yu Y, Zong M, Lao L, Wen J, Pan D, Wu Z. Adhesion properties of the cell surface proteins in Lactobacillus strains under the GIT environment. Food Funct 2022; 13:3098-3109. [DOI: 10.1039/d1fo04328e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactic acid bacteria (LAB) play an essential role in the epithelial barrier and the gut immune system. It can antagonize pathogens by producing antimicrobial substances like bacteriocins, and compete with...
Collapse
|
13
|
Pan T, Guan J, Li Y, Sun B. LcpB Is a Pyrophosphatase Responsible for Wall Teichoic Acid Synthesis and Virulence in Staphylococcus aureus Clinical Isolate ST59. Front Microbiol 2021; 12:788500. [PMID: 34975809 PMCID: PMC8716876 DOI: 10.3389/fmicb.2021.788500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes severe pandemics primarily consisting of skin and soft tissue infections. However, the underlying pathomechanisms of the bacterium are yet to fully understood. The present study identifies LcpB protein, which belongs to the LytR-A-Psr (LCP) family, is crucial for cell wall synthesis and virulence in S. aureus. The findings revealed that LcpB is a pyrophosphatase responsible for wall teichoic acid synthesis. The results also showed that LcpB regulates enzyme activity through specific key arginine sites in its LCP domain. Furthermore, knockout of lcpB in the CA-MRSA isolate ST59 resulted in enhanced hemolytic activity, enlarged of abscesses, and increased leukocyte infiltration. Meanwhile, we also found that LcpB regulates virulence in agr-independent manner and the key sites for pyrophosphatase of LcpB play critical roles in regulating the virulence. In addition, the results showed that the role of LcpB was different between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). This study therefore highlights the dual role of LcpB in cell wall synthesis and regulation of virulence. These insights on the underlying molecular mechanisms can thus guide the development of novel anti-infective strategies.
Collapse
Affiliation(s)
- Ting Pan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Guan
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
14
|
The bacterial tyrosine kinase system CpsBCD governs the length of capsule polymers. Proc Natl Acad Sci U S A 2021; 118:2103377118. [PMID: 34732571 DOI: 10.1073/pnas.2103377118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Many pathogenic bacteria are encased in a layer of capsular polysaccharide (CPS). This layer is important for virulence by masking surface antigens, preventing opsonophagocytosis, and avoiding mucus entrapment. The bacterial tyrosine kinase (BY-kinase) regulates capsule synthesis and helps bacterial pathogens to survive different host niches. BY-kinases autophosphorylate at the C-terminal tyrosine residues upon external stimuli, but the role of phosphorylation is still unclear. Here, we report that the BY-kinase CpsCD is required for growth in Streptococcus pneumoniae Cells lacking a functional cpsC or cpsD accumulated low molecular weight CPS and lysed because of the lethal sequestration of the lipid carrier undecaprenyl phosphate, resulting in inhibition of peptidoglycan (PG) synthesis. CpsC interacts with CpsD and the polymerase CpsH. CpsD phosphorylation reduces the length of CPS polymers presumably by controlling the activity of CpsC. Finally, pulse-chase experiments reveal the spatiotemporal coordination between CPS and PG synthesis. This coordination is dependent on CpsC and CpsD. Together, our study provides evidence that BY-kinases regulate capsule polymer length by fine-tuning CpsC activity through autophosphorylation.
Collapse
|
15
|
High-Throughput Mutagenesis and Cross-Complementation Experiments Reveal Substrate Preference and Critical Residues of the Capsule Transporters in Streptococcus pneumoniae. mBio 2021; 12:e0261521. [PMID: 34724815 PMCID: PMC8561386 DOI: 10.1128/mbio.02615-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MOP (Multidrug/Oligosaccharidyl-lipid/Polysaccharide) family transporters are found in almost all life forms. They are responsible for transporting lipid-linked precursors across the cell membrane to support the synthesis of various glycoconjugates. While significant progress has been made in elucidating their transport mechanism, how these transporters select their substrates remains unclear. Here, we systematically tested the MOP transporters in the Streptococcus pneumoniae capsule pathway for their ability to translocate noncognate capsule precursors. Sequence similarity cannot predict whether these transporters are interchangeable. We showed that subtle changes in the central aqueous cavity of the transporter are sufficient to accommodate a different cargo. These changes can occur naturally, suggesting a potential mechanism of expanding substrate selectivity. A directed evolution experiment was performed to identify gain-of-function variants that translocate a noncognate cargo. Coupled with a high-throughput mutagenesis and sequencing (Mut-seq) experiment, residues that are functionally important for the capsule transporter were revealed. Lastly, we showed that the expression of a flippase that can transport unfinished precursors resulted in an increased susceptibility to bacitracin and mild cell shape defects, which may be a driving force to maintain transporter specificity. IMPORTANCE All licensed pneumococcal vaccines target the capsular polysaccharide (CPS). This layer is highly variable and is important for virulence in many bacterial pathogens. Most of the CPSs are produced by the Wzx/Wzy mechanism. In this pathway, CPS repeating units are synthesized in the cytoplasm, which must be flipped across the cytoplasmic membrane before polymerization. This step is mediated by the widely conserved MOP (Multidrug/Oligosaccharidyl-lipid/Polysaccharide) family transporters. Here, we systematically evaluated the interchangeability of these transporters and identified the residues important for substrate specificity and function. Understanding how CPS is synthesized will inform glycoengineering, vaccine development, and antimicrobial discovery.
Collapse
|
16
|
Sun Y, Liu M, Niu M, Zhao X. Phenotypic Switching of Staphylococcus aureus Mu50 Into a Large Colony Variant Enhances Heritable Resistance Against β-Lactam Antibiotics. Front Microbiol 2021; 12:709841. [PMID: 34690952 PMCID: PMC8530407 DOI: 10.3389/fmicb.2021.709841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
Phenotypic heterogeneity within a bacterial population may confer new functionality and allow microorganisms to adapt to fluctuating environments. Previous work has suggested that Staphylococcus aureus could form small colony variants to avoid elimination by therapeutic antibiotics and host immunity systems. Here we show that a reversible non-pigment large colony morphology (Mu50∆lcpA-LC) was observed in S. aureus Mu50 after knocking out lcpA, coding for the LytR-CpsA-Psr family A protein. Mu50∆lcpA-LC increased resistance to β-lactam antibiotics, in addition, the enlarged cell size, enhanced spreading ability on solid medium, and reduced biofilm formation, suggesting better abilities for bacterial expansion. Moreover, the expression of spa encoding protein A was significantly increased in Mu50∆lcpA-LC. This study shows that besides the small colony variants, S. aureus could fight against antibiotics and host immunity through phenotype switching into a large colony variant.
Collapse
Affiliation(s)
- Yajun Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Miaomiao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mingze Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Regulated cleavage of glycan strands by the murein hydrolase SagB in S. aureus involves a direct interaction with LyrA (SpdC). J Bacteriol 2021; 203:JB.00014-21. [PMID: 33593946 PMCID: PMC8092163 DOI: 10.1128/jb.00014-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
LyrA (SpdC), a homologue of eukaryotic CAAX proteases that act on prenylated substrates, has been implicated in the assembly of several pathways of the envelope of Staphylococcus aureus. We described earlier the Lysostaphin resistance (Lyr) and Staphylococcal protein A display (Spd) phenotypes associated with loss of the lyrA (spdC) gene. However, a direct contribution to the assembly of pentaglycine crossbridges, the target of lysostaphin cleavage in S. aureus peptidoglycan, or of Staphylococcal protein A attachment to peptidoglycan could not be attributed directly to LyrA (SpdC). These two processes are catalyzed by the Fem factors and Sortase A, respectively. To gain insight into the function of LyrA (SpdC), here we use affinity chromatography and LC-MS/MS analysis and report that LyrA interacts with SagB. SagB cleaves glycan strands of peptidoglycan to achieve physiological length. Similar to sagB peptidoglycan, lyrA peptidoglycan contains extended glycan strands. Purified lyrA peptidoglycan can still be cleaved to physiological length by SagB in vitro LyrA does not modify or cleave peptidoglycan, it also does not modify or stabilize SagB. The membrane bound domain of LyrA is sufficient to support SagB activity but predicted 'CAAX enzyme' catalytic residues in this domain are dispensable. We speculate that LyrA exerts its effect on bacterial prenyl substrates, specifically undecaprenol-bound peptidoglycan substrates of SagB, to help control glycan length. Such an activity also explains the Lyr and Spd phenotypes observed earlier.IMPORTANCE Peptidoglycan is assembled on the trans side of the plasma membrane from lipid II precursors into glycan chains that are crosslinked at stem peptides. In S. aureus, SagB, a membrane-associated N-acetylglucosaminidase, cleaves polymerized glycan chains to their physiological length. Deletion of sagB is associated with longer glycan strands in peptidoglycan, altered protein trafficking and secretion in the envelope, and aberrant excretion of cytosolic proteins. It is not clear whether SagB, with its single transmembrane segment, serves as the molecular ruler of glycan chains or whether other factors modulate its activity. Here, we show that LyrA (SpdC), a protein of the CAAX type II prenyl endopeptidase family, modulates SagB activity via interaction though its transmembrane domain.
Collapse
|
18
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
19
|
LytR-CpsA-Psr Glycopolymer Transferases: Essential Bricks in Gram-Positive Bacterial Cell Wall Assembly. Int J Mol Sci 2021; 22:ijms22020908. [PMID: 33477538 PMCID: PMC7831098 DOI: 10.3390/ijms22020908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/28/2022] Open
Abstract
The cell walls of Gram-positive bacteria contain a variety of glycopolymers (CWGPs), a significant proportion of which are covalently linked to the peptidoglycan (PGN) scaffolding structure. Prominent CWGPs include wall teichoic acids of Staphylococcus aureus, streptococcal capsules, mycobacterial arabinogalactan, and rhamnose-containing polysaccharides of lactic acid bacteria. CWGPs serve important roles in bacterial cellular functions, morphology, and virulence. Despite evident differences in composition, structure and underlaying biosynthesis pathways, the final ligation step of CWGPs to the PGN backbone involves a conserved class of enzymes-the LytR-CpsA-Psr (LCP) transferases. Typically, the enzymes are present in multiple copies displaying partly functional redundancy and/or preference for a distinct CWGP type. LCP enzymes require a lipid-phosphate-linked glycan precursor substrate and catalyse, with a certain degree of promiscuity, CWGP transfer to PGN of different maturation stages, according to in vitro evidence. The prototype attachment mode is that to the C6-OH of N-acetylmuramic acid residues via installation of a phosphodiester bond. In some cases, attachment proceeds to N-acetylglucosamine residues of PGN-in the case of the Streptococcus agalactiae capsule, even without involvement of a phosphate bond. A novel aspect of LCP enzymes concerns a predicted role in protein glycosylation in Actinomyces oris. Available crystal structures provide further insight into the catalytic mechanism of this biologically important class of enzymes, which are gaining attention as new targets for antibacterial drug discovery to counteract the emergence of multidrug resistant bacteria.
Collapse
|
20
|
Schaefer K, Owens TW, Page JE, Santiago M, Kahne D, Walker S. Structure and reconstitution of a hydrolase complex that may release peptidoglycan from the membrane after polymerization. Nat Microbiol 2021; 6:34-43. [PMID: 33168989 PMCID: PMC7755832 DOI: 10.1038/s41564-020-00808-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Bacteria are encapsulated by a peptidoglycan cell wall that is essential for their survival1. During cell wall assembly, a lipid-linked disaccharide-peptide precursor called lipid II is polymerized and cross-linked to produce mature peptidoglycan. As lipid II is polymerized, nascent polymers remain membrane-anchored at one end, and the other end becomes cross-linked to the matrix2-4. How bacteria release newly synthesized peptidoglycan strands from the membrane to complete the synthesis of mature peptidoglycan is a long-standing question. Here, we show that a Staphylococcus aureus cell wall hydrolase and a membrane protein that contains eight transmembrane helices form a complex that may function as a peptidoglycan release factor. The complex cleaves nascent peptidoglycan internally to produce free oligomers as well as lipid-linked oligomers that can undergo further elongation. The polytopic membrane protein, which is similar to a eukaryotic CAAX protease, controls the length of these products. A structure of the complex at a resolution of 2.6 Å shows that the membrane protein scaffolds the hydrolase to orient its active site for cleaving the glycan strand. We propose that this complex functions to detach newly synthesized peptidoglycan polymer from the cell membrane to complete integration into the cell wall matrix.
Collapse
Affiliation(s)
- Kaitlin Schaefer
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Tristan W Owens
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Julia E Page
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Marina Santiago
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Su T, Nakamoto R, Chun YY, Chua WZ, Chen JH, Zik JJ, Sham LT. Decoding capsule synthesis in Streptococcus pneumoniae. FEMS Microbiol Rev 2020; 45:6041728. [PMID: 33338218 DOI: 10.1093/femsre/fuaa067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae synthesizes more than one hundred types of capsular polysaccharides (CPS). While the diversity of the enzymes and transporters involved is enormous, it is not limitless. In this review, we summarized the recent progress on elucidating the structure-function relationships of CPS, the mechanisms by which they are synthesized, how their synthesis is regulated, the host immune response against them, and the development of novel pneumococcal vaccines. Based on the genetic and structural information available, we generated provisional models of the CPS repeating units that remain unsolved. In addition, to facilitate cross-species comparisons and assignment of glycosyltransferases, we illustrated the biosynthetic pathways of the known CPS in a standardized format. Studying the intricate steps of pneumococcal CPS assembly promises to provide novel insights for drug and vaccine development as well as improve our understanding of related pathways in other species.
Collapse
Affiliation(s)
- Tong Su
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Rei Nakamoto
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Ye Yu Chun
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Wan Zhen Chua
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Jia Hui Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Justin J Zik
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| |
Collapse
|
22
|
Wu X, Han J, Gong G, Koffas MAG, Zha J. Wall teichoic acids: physiology and applications. FEMS Microbiol Rev 2020; 45:6019871. [DOI: 10.1093/femsre/fuaa064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Wall teichoic acids (WTAs) are charged glycopolymers containing phosphodiester-linked polyol units and represent one of the major components of Gram-positive cell envelope. WTAs have important physiological functions in cell division, gene transfer, surface adhesion, drug resistance and biofilm formation, and are critical virulence factors and vital determinants in mediating cell interaction with and tolerance to environmental factors. Here, we first briefly introduce WTA structure, biosynthesis and its regulation, and then summarize in detail four major physiological roles played by WTAs, i.e. WTA-mediated resistance to antimicrobials, virulence to mammalian cells, interaction with bacteriolytic enzymes and regulation of cell metabolism. We also review the applications of WTAs in these fields that are closely related to the human society, including antibacterial drug discovery targeting WTA biosynthesis, development of vaccines and antibodies regarding WTA-mediated pathogenicity, specific and sensitive detection of pathogens in food using WTAs as a surface epitope and regulation of WTA-related pathways for efficient microbial production of useful compounds. We also point out major problems remaining in these fields, and discuss some possible directions in the future exploration of WTA physiology and applications.
Collapse
Affiliation(s)
- Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jing Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
23
|
Wall Teichoic Acid in Staphylococcus aureus Host Interaction. Trends Microbiol 2020; 28:985-998. [DOI: 10.1016/j.tim.2020.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
|
24
|
Brown AR, Gordon RA, Hyland SN, Siegrist MS, Grimes CL. Chemical Biology Tools for Examining the Bacterial Cell Wall. Cell Chem Biol 2020; 27:1052-1062. [PMID: 32822617 DOI: 10.1016/j.chembiol.2020.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/29/2020] [Indexed: 01/22/2023]
Abstract
Bacteria surround themselves with cell walls to maintain cell rigidity and protect against environmental insults. Here we review chemical and biochemical techniques employed to study bacterial cell wall biogenesis. Recent advances including the ability to isolate critical intermediates, metabolic approaches for probe incorporation, and isotopic labeling techniques have provided critical insight into the biochemistry of cell walls. Fundamental manuscripts that have used these techniques to discover cell wall-interacting proteins, flippases, and cell wall stoichiometry are discussed in detail. The review highlights that these powerful methods and techniques have exciting potential to identify and characterize new targets for antibiotic development.
Collapse
Affiliation(s)
- Ashley R Brown
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Rebecca A Gordon
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst 01003-9298, USA
| | - Stephen N Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst 01003-9298, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
25
|
Whitfield C, Wear SS, Sande C. Assembly of Bacterial Capsular Polysaccharides and Exopolysaccharides. Annu Rev Microbiol 2020; 74:521-543. [PMID: 32680453 DOI: 10.1146/annurev-micro-011420-075607] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polysaccharides are dominant features of most bacterial surfaces and are displayed in different formats. Many bacteria produce abundant long-chain capsular polysaccharides, which can maintain a strong association and form a capsule structure enveloping the cell and/or take the form of exopolysaccharides that are mostly secreted into the immediate environment. These polymers afford the producing bacteria protection from a wide range of physical, chemical, and biological stresses, support biofilms, and play critical roles in interactions between bacteria and their immediate environments. Their biological and physical properties also drive a variety of industrial and biomedical applications. Despite the immense variation in capsular polysaccharide and exopolysaccharide structures, patterns are evident in strategies used for their assembly and export. This review describes recent advances in understanding those strategies, based on a wealth of biochemical investigations of select prototypes, supported by complementary insight from expanding structural biology initiatives. This provides a framework to identify and distinguish new systems emanating from genomic studies.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | - Samantha S Wear
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| | - Caitlin Sande
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
26
|
Li F, Zhai D, Wu Z, Zhao Y, Qiao D, Zhao X. Impairment of the Cell Wall Ligase, LytR-CpsA-Psr Protein (LcpC), in Methicillin Resistant Staphylococcus aureus Reduces Its Resistance to Antibiotics and Infection in a Mouse Model of Sepsis. Front Microbiol 2020; 11:557. [PMID: 32425893 PMCID: PMC7212477 DOI: 10.3389/fmicb.2020.00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/16/2020] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is a major opportunistic pathogen, infecting animals, and human beings. The bacterial cell wall plays a crucial role in antimicrobial resistance and its infection to host cells. Peptidoglycans (PGs) are a major component of the cell wall in S. aureus, which is heavily decorated with wall teichoic acids (WTAs) and capsular polysaccharides (CPs). The ligation of WTAs and CPs to PGs is catalyzed by LytR-CpsA-Psr (LCP) family proteins, including LcpA, LcpB, and LcpC. However, the involvement of LcpC in antimicrobial resistance of S. aureus and its infection to host cells remains unknown. By creating the LcpC-knockout strains, we showed that the deficiency in LcpC decreased the antimicrobial resistance to β-lactams and glycopeptides and impeded the binding to various epithelial cells. These changes were accompanied by the morphological changes in bacterial cell wall. More importantly, the knockout of LcpC significantly reduced the pathogenicity of methicillin-resistant S. aureus (MRSA) in mice. Our results suggest that LcpC might be an appealing target for developing a therapeutic approach against MRSA infections.
Collapse
Affiliation(s)
- Fan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dongsheng Zhai
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhaowei Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dandan Qiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Li FKK, Rosell FI, Gale RT, Simorre JP, Brown ED, Strynadka NCJ. Crystallographic analysis of Staphylococcus aureus LcpA, the primary wall teichoic acid ligase. J Biol Chem 2020; 295:2629-2639. [PMID: 31969390 PMCID: PMC7049971 DOI: 10.1074/jbc.ra119.011469] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Gram-positive bacteria, including major clinical pathogens such as Staphylococcus aureus, are becoming increasingly drug-resistant. Their cell walls are composed of a thick layer of peptidoglycan (PG) modified by the attachment of wall teichoic acid (WTA), an anionic glycopolymer that is linked to pathogenicity and regulation of cell division and PG synthesis. The transfer of WTA from lipid carriers to PG, catalyzed by the LytR-CpsA-Psr (LCP) enzyme family, offers a unique extracellular target for the development of new anti-infective agents. Inhibitors of LCP enzymes have the potential to manage a wide range of bacterial infections because the target enzymes are implicated in the assembly of many other bacterial cell wall polymers, including capsular polysaccharide of streptococcal species and arabinogalactan of mycobacterial species. In this study, we present the first crystal structure of S. aureus LcpA with bound substrate at 1.9 Å resolution and those of Bacillus subtilis LCP enzymes, TagT, TagU, and TagV, in the apo form at 1.6-2.8 Å resolution. The structures of these WTA transferases provide new insight into the binding of lipid-linked WTA and enable assignment of the catalytic roles of conserved active-site residues. Furthermore, we identified potential subsites for binding the saccharide core of PG using computational docking experiments, and multiangle light-scattering experiments disclosed novel oligomeric states of the LCP enzymes. The crystal structures and modeled substrate-bound complexes of the LCP enzymes reported here provide insights into key features linked to substrate binding and catalysis and may aid the structure-guided design of specific LCP inhibitors.
Collapse
Affiliation(s)
- Franco K K Li
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Federico I Rosell
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert T Gale
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jean-Pierre Simorre
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
28
|
Do T, Page JE, Walker S. Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes. J Biol Chem 2020; 295:3347-3361. [PMID: 31974163 DOI: 10.1074/jbc.rev119.010155] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria account for 1000-fold more biomass than humans. They vary widely in shape and size. The morphological diversity of bacteria is due largely to the different peptidoglycan-based cell wall structures that encase bacterial cells. Although the basic structure of peptidoglycan is highly conserved, consisting of long glycan strands that are cross-linked by short peptide chains, the mature cell wall is chemically diverse. Peptidoglycan hydrolases and cell wall-tailoring enzymes that regulate glycan strand length, the degree of cross-linking, and the addition of other modifications to peptidoglycan are central in determining the final architecture of the bacterial cell wall. Historically, it has been difficult to biochemically characterize these enzymes that act on peptidoglycan because suitable peptidoglycan substrates were inaccessible. In this review, we discuss fundamental aspects of bacterial cell wall synthesis, describe the regulation and diverse biochemical and functional activities of peptidoglycan hydrolases, and highlight recently developed methods to make and label defined peptidoglycan substrates. We also review how access to these substrates has now enabled biochemical studies that deepen our understanding of how bacterial cell wall enzymes cooperate to build a mature cell wall. Such improved understanding is critical to the development of new antibiotics that disrupt cell wall biogenesis, a process essential to the survival of bacteria.
Collapse
Affiliation(s)
- Truc Do
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Julia E Page
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
29
|
Do T, Schaefer K, Santiago AG, Coe KA, Fernandes PB, Kahne D, Pinho MG, Walker S. Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nat Microbiol 2020; 5:291-303. [PMID: 31932712 PMCID: PMC7046134 DOI: 10.1038/s41564-019-0632-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
Bacteria are protected by a polymer of peptidoglycan that serves as an exoskeleton1. In Staphylococcus aureus, the peptidoglycan assembly enzymes relocate during the cell cycle from the periphery, where they are active during growth, to the division site where they build the partition between daughter cells2-4. But how peptidoglycan synthesis is regulated throughout the cell cycle is poorly understood5,6. Here, we used a transposon screen to identify a membrane protein complex that spatially regulates S. aureus peptidoglycan synthesis. This complex consists of an amidase that removes stem peptides from uncrosslinked peptidoglycan and a partner protein that controls its activity. Amidases typically hydrolyse crosslinked peptidoglycan between daughter cells so that they can separate7. However, this amidase controls cell growth. In its absence, peptidoglycan synthesis becomes spatially dysregulated, which causes cells to grow so large that cell division is defective. We show that the cell growth and division defects due to loss of this amidase can be mitigated by attenuating the polymerase activity of the major S. aureus peptidoglycan synthase. Our findings lead to a model wherein the amidase complex regulates the density of peptidoglycan assembly sites to control peptidoglycan synthase activity at a given subcellular location. Removal of stem peptides from peptidoglycan at the cell periphery promotes peptidoglycan synthase relocation to midcell during cell division. This mechanism ensures that cell expansion is properly coordinated with cell division.
Collapse
Affiliation(s)
- Truc Do
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Kaitlin Schaefer
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Kathryn A Coe
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Pedro B Fernandes
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Mariana G Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Schuster CF, Wiedemann DM, Kirsebom FCM, Santiago M, Walker S, Gründling A. High-throughput transposon sequencing highlights the cell wall as an important barrier for osmotic stress in methicillin resistant Staphylococcus aureus and underlines a tailored response to different osmotic stressors. Mol Microbiol 2019; 113:699-717. [PMID: 31770461 PMCID: PMC7176532 DOI: 10.1111/mmi.14433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen that can cause soft tissue infections but is also a frequent cause of foodborne illnesses. One contributing factor for this food association is its high salt tolerance allowing this organism to survive commonly used food preservation methods. How this resistance is mediated is poorly understood, particularly during long-term exposure. In this study, we used transposon sequencing (TN-seq) to understand how the responses to osmotic stressors differ. Our results revealed distinctly different long-term responses to NaCl, KCl and sucrose stresses. In addition, we identified the DUF2538 domain containing gene SAUSA300_0957 (gene 957) as essential under salt stress. Interestingly, a 957 mutant was less susceptible to oxacillin and showed increased peptidoglycan crosslinking. The salt sensitivity phenotype could be suppressed by amino acid substitutions in the transglycosylase domain of the penicillin-binding protein Pbp2, and these changes restored the peptidoglycan crosslinking to WT levels. These results indicate that increased crosslinking of the peptidoglycan polymer can be detrimental and highlight a critical role of the bacterial cell wall for osmotic stress resistance. This study will serve as a starting point for future research on osmotic stress response and help develop better strategies to tackle foodborne staphylococcal infections.
Collapse
Affiliation(s)
- Christopher F Schuster
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David M Wiedemann
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Freja C M Kirsebom
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Angelika Gründling
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
31
|
Beavers WN, Monteith AJ, Amarnath V, Mernaugh RL, Roberts LJ, Chazin WJ, Davies SS, Skaar EP. Arachidonic Acid Kills Staphylococcus aureus through a Lipid Peroxidation Mechanism. mBio 2019; 10:e01333-19. [PMID: 31575763 PMCID: PMC6775451 DOI: 10.1128/mbio.01333-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023] Open
Abstract
Staphylococcus aureus infects every niche of the human host. In response to microbial infection, vertebrates have an arsenal of antimicrobial compounds that inhibit bacterial growth or kill bacterial cells. One class of antimicrobial compounds consists of polyunsaturated fatty acids, which are highly abundant in eukaryotes and encountered by S. aureus at the host-pathogen interface. Arachidonic acid (AA) is one of the most abundant polyunsaturated fatty acids in vertebrates and is released in large amounts during the oxidative burst. Most of the released AA is converted to bioactive signaling molecules, but, independently of its role in inflammatory signaling, AA is toxic to S. aureus Here, we report that AA kills S. aureus through a lipid peroxidation mechanism whereby AA is oxidized to reactive electrophiles that modify S. aureus macromolecules, eliciting toxicity. This process is rescued by cotreatment with antioxidants as well as in a S. aureus strain genetically inactivated for lcpA (USA300 ΔlcpA mutant) that produces lower levels of reactive oxygen species. However, resistance to AA stress in the USA300 ΔlcpA mutant comes at a cost, making the mutant more susceptible to β-lactam antibiotics and attenuated for pathogenesis in a murine infection model compared to the parental methicillin-resistant S. aureus (MRSA) strain, indicating that resistance to AA toxicity increases susceptibility to other stressors encountered during infection. This report defines the mechanism by which AA is toxic to S. aureus and identifies lipid peroxidation as a pathway that can be modulated for the development of future therapeutics to treat S. aureus infections.IMPORTANCE Despite the ability of the human immune system to generate a plethora of molecules to control Staphylococcus aureus infections, S. aureus is among the pathogens with the greatest impact on human health. One class of host molecules toxic to S. aureus consists of polyunsaturated fatty acids. Here, we investigated the antibacterial properties of arachidonic acid, one of the most abundant polyunsaturated fatty acids in humans, and discovered that the mechanism of toxicity against S. aureus proceeds through lipid peroxidation. A better understanding of the molecular mechanisms by which the immune system kills S. aureus, and by which S. aureus avoids host killing, will enable the optimal design of therapeutics that complement the ability of the vertebrate immune response to eliminate S. aureus infections.
Collapse
Affiliation(s)
- William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew J Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Venkataraman Amarnath
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond L Mernaugh
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - L Jackson Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
32
|
Patras KA, Derieux J, Al-Bassam MM, Adiletta N, Vrbanac A, Lapek JD, Zengler K, Gonzalez DJ, Nizet V. Group B Streptococcus Biofilm Regulatory Protein A Contributes to Bacterial Physiology and Innate Immune Resistance. J Infect Dis 2019; 218:1641-1652. [PMID: 29868829 DOI: 10.1093/infdis/jiy341] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/02/2018] [Indexed: 12/18/2022] Open
Abstract
Background Streptococcus agalactiae (group B Streptococcus [GBS]) asymptomatically colonizes approximately 20% of adults; however, GBS causes severe disease in susceptible populations, including newborns, pregnant women, and elderly individuals. In shifting between commensal and pathogenic states, GBS reveals multiple mechanisms of virulence factor control. Here we describe a GBS protein that we named "biofilm regulatory protein A" (BrpA) on the basis of its homology with BrpA from Streptococcus mutans. Methods We coupled phenotypic assays, RNA sequencing, human neutrophil and whole-blood killing assays, and murine infection models to investigate the contribution of BrpA to GBS physiology and virulence. Results Sequence analysis identified BrpA as a LytR-CpsA-Psr enzyme. Targeted mutagenesis yielded a GBS mutant (ΔbrpA) with normal ultrastructural morphology but a 6-fold increase in chain length, a biofilm defect, and decreased acid tolerance. GBS ΔbrpA stimulated increased neutrophil reactive oxygen species and proved more susceptible to human and murine blood and neutrophil killing. Notably, the wild-type parent outcompeted ΔbrpA GBS in murine sepsis and vaginal colonization models. RNA sequencing of ΔbrpA uncovered multiple differences from the wild-type parent, including pathways of cell wall synthesis and cellular metabolism. Conclusions We propose that BrpA is an important virulence regulator and potential target for design of novel antibacterial therapeutics against GBS.
Collapse
Affiliation(s)
- Kathryn A Patras
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - Jaclyn Derieux
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - Mahmoud M Al-Bassam
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - Nichole Adiletta
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - Alison Vrbanac
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - John D Lapek
- Department of Pharmacology, School of Medicine, University of California-San Diego, La Jolla.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla
| | - Karsten Zengler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - David J Gonzalez
- Department of Pharmacology, School of Medicine, University of California-San Diego, La Jolla.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla
| |
Collapse
|
33
|
Ingmer H, Gerlach D, Wolz C. Temperate Phages of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0058-2018. [PMID: 31562736 PMCID: PMC10921950 DOI: 10.1128/microbiolspec.gpp3-0058-2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
Most Staphylococcus aureus isolates carry multiple bacteriophages in their genome, which provide the pathogen with traits important for niche adaptation. Such temperate S. aureus phages often encode a variety of accessory factors that influence virulence, immune evasion and host preference of the bacterial lysogen. Moreover, transducing phages are primary vehicles for horizontal gene transfer. Wall teichoic acid (WTA) acts as a common phage receptor for staphylococcal phages and structural variations of WTA govern phage-host specificity thereby shaping gene transfer across clonal lineages and even species. Thus, bacteriophages are central for the success of S. aureus as a human pathogen.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Structure and mechanism of TagA, a novel membrane-associated glycosyltransferase that produces wall teichoic acids in pathogenic bacteria. PLoS Pathog 2019; 15:e1007723. [PMID: 31002736 PMCID: PMC6493773 DOI: 10.1371/journal.ppat.1007723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/01/2019] [Accepted: 03/21/2019] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus and other bacterial pathogens affix wall teichoic acids (WTAs) to their surface. These highly abundant anionic glycopolymers have critical functions in bacterial physiology and their susceptibility to β-lactam antibiotics. The membrane-associated TagA glycosyltransferase (GT) catalyzes the first-committed step in WTA biosynthesis and is a founding member of the WecB/TagA/CpsF GT family, more than 6,000 enzymes that synthesize a range of extracellular polysaccharides through a poorly understood mechanism. Crystal structures of TagA from T. italicus in its apo- and UDP-bound states reveal a novel GT fold, and coupled with biochemical and cellular data define the mechanism of catalysis. We propose that enzyme activity is regulated by interactions with the bilayer, which trigger a structural change that facilitates proper active site formation and recognition of the enzyme's lipid-linked substrate. These findings inform upon the molecular basis of WecB/TagA/CpsF activity and could guide the development of new anti-microbial drugs.
Collapse
|
35
|
Flores-Kim J, Dobihal GS, Fenton A, Rudner DZ, Bernhardt TG. A switch in surface polymer biogenesis triggers growth-phase-dependent and antibiotic-induced bacteriolysis. eLife 2019; 8:44912. [PMID: 30964003 PMCID: PMC6456293 DOI: 10.7554/elife.44912] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/11/2019] [Indexed: 01/21/2023] Open
Abstract
Penicillin and related antibiotics disrupt cell wall synthesis to induce bacteriolysis. Lysis in response to these drugs requires the activity of cell wall hydrolases called autolysins, but how penicillins misactivate these deadly enzymes has long remained unclear. Here, we show that alterations in surface polymers called teichoic acids (TAs) play a key role in penicillin-induced lysis of the Gram-positive pathogen Streptococcus pneumoniae (Sp). We find that during exponential growth, Sp cells primarily produce lipid-anchored TAs called lipoteichoic acids (LTAs) that bind and sequester the major autolysin LytA. However, penicillin-treatment or prolonged stationary phase growth triggers the degradation of a key LTA synthase, causing a switch to the production of wall-anchored TAs (WTAs). This change allows LytA to associate with and degrade its cell wall substrate, thus promoting osmotic lysis. Similar changes in surface polymer assembly may underlie the mechanism of antibiotic- and/or growth phase-induced lysis for other important Gram-positive pathogens.
Collapse
Affiliation(s)
- Josué Flores-Kim
- Department of Microbiology, Harvard Medical School, Boston, United States
| | | | - Andrew Fenton
- Department of Microbiology, Harvard Medical School, Boston, United States.,The Florey Institute, Molecular Biology Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
36
|
Coordination of capsule assembly and cell wall biosynthesis in Staphylococcus aureus. Nat Commun 2019; 10:1404. [PMID: 30926919 PMCID: PMC6441080 DOI: 10.1038/s41467-019-09356-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 02/28/2019] [Indexed: 11/08/2022] Open
Abstract
The Gram-positive cell wall consists of peptidoglycan functionalized with anionic glycopolymers, such as wall teichoic acid and capsular polysaccharide (CP). How the different cell wall polymers are assembled in a coordinated fashion is not fully understood. Here, we reconstitute Staphylococcus aureus CP biosynthesis and elucidate its interplay with the cell wall biosynthetic machinery. We show that the CapAB tyrosine kinase complex controls multiple enzymatic checkpoints through reversible phosphorylation to modulate the consumption of essential precursors that are also used in peptidoglycan biosynthesis. In addition, the CapA1 activator protein interacts with and cleaves lipid-linked CP precursors, releasing the essential lipid carrier undecaprenyl-phosphate. We further provide biochemical evidence that the subsequent attachment of CP is achieved by LcpC, a member of the LytR-CpsA-Psr protein family, using the peptidoglycan precursor native lipid II as acceptor substrate. The Ser/Thr kinase PknB, which can sense cellular lipid II levels, negatively controls CP synthesis. Our work sheds light on the integration of CP biosynthesis into the multi-component Gram-positive cell wall.
Collapse
|
37
|
Alves-Barroco C, Roma-Rodrigues C, Balasubramanian N, Guimarães MA, Ferreira-Carvalho BT, Muthukumaran J, Nunes D, Fortunato E, Martins R, Santos-Silva T, Figueiredo AMS, Fernandes AR, Santos-Sanches I. Biofilm development and computational screening for new putative inhibitors of a homolog of the regulatory protein BrpA in Streptococcus dysgalactiae subsp. dysgalactiae. Int J Med Microbiol 2019; 309:169-181. [PMID: 30799091 DOI: 10.1016/j.ijmm.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 01/15/2023] Open
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD), a Lancefield group C streptococci (GCS), is a frequent cause of bovine mastitis. This highly prevalent disease is the costliest in dairy industry. Adherence and biofilm production are important factors in streptoccocal pathogenesis. We have previously described the adhesion and internalization of SDSD isolates in human cells and now we describe the biofilm production capability of this bacterium. In this work we integrated microbiology, imaging and computational methods to evaluate the biofilm production capability of SDSD isolates; to assess the presence of biofilm regulatory protein BrpA homolog in the biofilm producers; and to predict a structural model of BrpA-like protein and its binding to putative inhibitors. Our results show that SDSD isolates form biofilms on abiotic surface such as glass (hydrophilic) and polystyrene (hydrophobic), with the strongest biofilm formation observed in glass. This ability was mainly associated with a proteinaceous extracellular matrix, confirmed by the dispersion of the biofilms after proteinase K and trypsin treatment. The biofilm formation in SDSD isolates was also confirmed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Under SEM observation, VSD16 isolate formed cell aggregates during biofilm growth while VSD9 and VSD10 formed smooth and filmy layers. We show that brpA-like gene is present and expressed in SDSD biofilm-producing isolates and its expression levels correlated with the biofilm production capability, being more expressed in the late exponential phase of planktonic growth compared to biofilm growth. Fisetin, a known biofilm inhibitor and a putative BrpA binding molecule, dramatically inhibited biofilm formation by the SDSD isolates but did not affect planktonic growth, at the tested concentrations. Homology modeling was used to predict the 3D structure of BrpA-like protein. Using high throughput virtual screening and molecular docking, we selected five ligand molecules with strong binding affinity to the hydrophobic cleft of the protein, making them potential inhibitor candidates of the SDSD BrpA-like protein. These results warrant further investigations for developing novel strategies for SDSD anti-biofilm therapy.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Natesan Balasubramanian
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal; Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | | | | | - Jayaraman Muthukumaran
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Daniela Nunes
- i3N/CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Elvira Fortunato
- i3N/CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Rodrigo Martins
- i3N/CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| | - Agnes M S Figueiredo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| | - Ilda Santos-Sanches
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
38
|
Structure and Mechanism of LcpA, a Phosphotransferase That Mediates Glycosylation of a Gram-Positive Bacterial Cell Wall-Anchored Protein. mBio 2019; 10:mBio.01580-18. [PMID: 30782654 PMCID: PMC6381275 DOI: 10.1128/mbio.01580-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In Gram-positive bacteria, the conserved LCP family enzymes studied to date are known to attach glycopolymers, including wall teichoic acid, to the cell envelope. It is unknown if these enzymes catalyze glycosylation of surface proteins. We show here in the actinobacterium Actinomyces oris by X-ray crystallography and biochemical analyses that A. oris LcpA is an LCP homolog, possessing pyrophosphatase and phosphotransferase activities known to belong to LCP enzymes that require conserved catalytic Arg residues, while harboring a unique disulfide bond critical for protein stability. Importantly, LcpA mediates glycosylation of the surface protein GspA via phosphotransferase activity. Our studies provide the first experimental evidence of an archetypal LCP enzyme that promotes glycosylation of a cell wall-anchored protein in Gram-positive bacteria. The widely conserved LytR-CpsA-Psr (LCP) family of enzymes in Gram-positive bacteria is known to attach glycopolymers, including wall teichoic acid, to the cell envelope. However, it is undetermined if these enzymes are capable of catalyzing glycan attachment to surface proteins. In the actinobacterium Actinomyces oris, an LCP homolog here named LcpA is genetically linked to GspA, a glycoprotein that is covalently attached to the bacterial peptidoglycan by the housekeeping sortase SrtA. Here we show by X-ray crystallography that LcpA adopts an α-β-α structural fold, akin to the conserved LCP domain, which harbors characteristic catalytic arginine residues. Consistently, alanine substitution for these residues, R149 and R266, abrogates GspA glycosylation, leading to accumulation of an intermediate form termed GspALMM, which is also observed in the lcpA mutant. Unlike other LCP proteins characterized to date, LcpA contains a stabilizing disulfide bond, mutations of which severely affect LcpA stability. In line with the established role of disulfide bond formation in oxidative protein folding in A. oris, deletion of vkor, coding for the thiol-disulfide oxidoreductase VKOR, also significantly reduces LcpA stability. Biochemical studies demonstrated that the recombinant LcpA enzyme possesses pyrophosphatase activity, enabling hydrolysis of diphosphate bonds. Furthermore, this recombinant enzyme, which weakly interacts with GspA in solution, catalyzes phosphotransfer to GspALMM. Altogether, the findings support that A. oris LcpA is an archetypal LCP enzyme that glycosylates a cell wall-anchored protein, a process that may be conserved in Actinobacteria, given the conservation of LcpA and GspA in these high-GC-content organisms.
Collapse
|
39
|
Pathway-Directed Screen for Inhibitors of the Bacterial Cell Elongation Machinery. Antimicrob Agents Chemother 2018; 63:AAC.01530-18. [PMID: 30323039 DOI: 10.1128/aac.01530-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
New antibiotics are needed to combat the growing problem of resistant bacterial infections. An attractive avenue toward the discovery of such next-generation therapies is to identify novel inhibitors of clinically validated targets, like cell wall biogenesis. We have therefore developed a pathway-directed whole-cell screen for small molecules that block the activity of the Rod system of Escherichia coli This conserved multiprotein complex is required for cell elongation and the morphogenesis of rod-shaped bacteria. It is composed of cell wall synthases and membrane proteins of unknown function that are organized by filaments of the actin-like MreB protein. Our screen takes advantage of the conditional essentiality of the Rod system and the ability of the beta-lactam mecillinam (also known as amdinocillin) to cause a toxic malfunctioning of the machinery. Rod system inhibitors can therefore be identified as molecules that promote growth in the presence of mecillinam under conditions permissive for the growth of Rod- cells. A screen of ∼690,000 compounds identified 1,300 compounds that were active against E. coli Pathway-directed screening of a majority of this subset of compounds for Rod inhibitors successfully identified eight analogs of the MreB antagonist A22. Further characterization of the A22 analogs identified showed that their antibiotic activity under conditions where the Rod system is essential was strongly correlated with their ability to suppress mecillinam toxicity. This result combined with those from additional biological studies reinforce the notion that A22-like molecules are relatively specific for MreB and suggest that the lipoprotein transport factor LolA is unlikely to be a physiologically relevant target as previously proposed.
Collapse
|
40
|
Romaniuk JAH, Cegelski L. Peptidoglycan and Teichoic Acid Levels and Alterations in Staphylococcus aureus by Cell-Wall and Whole-Cell Nuclear Magnetic Resonance. Biochemistry 2018; 57:3966-3975. [PMID: 29806458 PMCID: PMC6309457 DOI: 10.1021/acs.biochem.8b00495] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gram-positive bacteria surround themselves with a multilayered macromolecular cell wall that is essential to cell survival and serves as a major target for antibiotics. The cell wall of Staphylococcus aureus is composed of two major structural components, peptidoglycan (PG) and wall teichoic acid (WTA), together creating a heterogeneous and insoluble matrix that poses a challenge to quantitative compositional analysis. Here, we present 13C cross polarization magic angle spinning solid-state nuclear magnetic resonance (NMR) spectra of intact cell walls, purified PG, and purified WTA. The spectra reveal the clear molecular differences in the two polymers and enable quantification of PG and WTA in isolated cell walls, an attractive alternative to estimating teichoic acid content from a phosphate analysis of completely pyrolyzed cell walls. Furthermore, we discovered that unique PG and WTA spectral signatures could be identified in whole-cell NMR spectra and used to compare PG and WTA levels among intact bacterial cell samples. The distinguishing whole-cell 13C NMR contributions associated with PG include the GlcNAc-MurNAc sugar carbons and glycyl α-carbons. WTA contributes carbons from the phosphoribitol backbone. Distinguishing 15N spectral signatures include glycyl amide nitrogens in PG and the esterified d-alanyl amine nitrogens in WTA. 13C NMR analysis was performed with samples at natural abundance and included 10 whole-cell sample comparisons. Changes consistent with altered PG and WTA content were detected in whole-cell spectra of bacteria harvested at different growth times and in cells treated with tunicamycin. This use of whole-cell NMR provides quantitative parameters of composition in the context of whole-cell activity.
Collapse
Affiliation(s)
| | - Lynette Cegelski
- Stanford University, Department of Chemistry, 380 Roth Way, Stanford CA 94305
| |
Collapse
|
41
|
Hager FF, López-Guzmán A, Krauter S, Blaukopf M, Polter M, Brockhausen I, Kosma P, Schäffer C. Functional Characterization of Enzymatic Steps Involved in Pyruvylation of Bacterial Secondary Cell Wall Polymer Fragments. Front Microbiol 2018; 9:1356. [PMID: 29997588 PMCID: PMC6030368 DOI: 10.3389/fmicb.2018.01356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Various mechanisms of protein cell surface display have evolved during bacterial evolution. Several Gram-positive bacteria employ S-layer homology (SLH) domain-mediated sorting of cell-surface proteins and concomitantly engage a pyruvylated secondary cell-wall polymer as a cell-wall ligand. Specifically, pyruvate ketal linked to β-D-ManNAc is regarded as an indispensable epitope in this cell-surface display mechanism. That secondary cell wall polymer (SCWP) pyruvylation and SLH domain-containing proteins are functionally coupled is supported by the presence of an ortholog of the predicted pyruvyltransferase CsaB in bacterial genomes, such as those of Bacillus anthracis and Paenibacillus alvei. The P. alvei SCWP, consisting of pyruvylated disaccharide repeats [→4)-β-D-GlcNAc-(1→3)-4,6-Pyr-β-D-ManNAc-(1→] serves as a model to investigate the widely unexplored pyruvylation reaction. Here, we reconstituted the underlying enzymatic pathway in vitro in combination with synthesized compounds, used mass spectrometry, and nuclear magnetic resonance spectroscopy for product characterization, and found that CsaB-catalyzed pyruvylation of β-D-ManNAc occurs at the stage of the lipid-linked repeat. We produced the P. alvei TagA (PAV_RS07420) and CsaB (PAV_RS07425) enzymes as recombinant, tagged proteins, and using a synthetic 11-phenoxyundecyl-diphosphoryl-α-GlcNAc acceptor, we uncovered that TagA is an inverting UDP-α-D-ManNAc:GlcNAc-lipid carrier transferase, and that CsaB is a pyruvyltransferase, with synthetic UDP-α-D-ManNAc and phosphoenolpyruvate serving as donor substrates. Next, to substitute for the UDP-α-D-ManNAc substrate, the recombinant UDP-GlcNAc-2-epimerase MnaA (PAV_RS07610) of P. alvei was included in this in vitro reconstitution system. When all three enzymes, their substrates and the lipid-linked GlcNAc primer were combined in a one-pot reaction, a lipid-linked SCWP repeat precursor analog was obtained. This work highlights the biochemical basis of SCWP biosynthesis and bacterial pyruvyl transfer.
Collapse
Affiliation(s)
- Fiona F Hager
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
| | - Arturo López-Guzmán
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
| | - Simon Krauter
- Division of Organic Chemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Markus Blaukopf
- Division of Organic Chemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Mathias Polter
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Paul Kosma
- Division of Organic Chemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christina Schäffer
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
42
|
Ye W, Zhang J, Shu Z, Yin Y, Zhang X, Wu K. Pneumococcal LytR Protein Is Required for the Surface Attachment of Both Capsular Polysaccharide and Teichoic Acids: Essential for Pneumococcal Virulence. Front Microbiol 2018; 9:1199. [PMID: 29951042 PMCID: PMC6008509 DOI: 10.3389/fmicb.2018.01199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
The LytR-Cps-Psr family proteins are commonly present in Gram-positive bacteria, which have been shown to implicate in anchoring cell wall-related glycopolymers to the peptidoglycan. Here, we report the cellular function of SPD_1741 (LytR) in Streptococcus pneumoniae and its role in virulence of pneumococci. Pneumococcal ΔlytR mutants have been successfully constructed by replacing the lytR gene with erm cassette. The role of LytR in pneumococcal growth was determined by growth experiments, and surface accessibility of the LytR protein was analyzed using flow cytometry. Transmission electron microscopy (TEM) and immunoblotting were used to reveal the changes in capsular polysaccharide (CPS). Dot blot and ELISA were used to quantify the amount of teichoic acids (TAs). The contribution of LytR on bacterial virulence was assessed using in vitro phagocytosis assays and infection experiments. Compared to the wild-type strain, the ΔlytR mutant showed a defect in growth which merely grew to a maximal OD620 of 0.2 in the liquid medium. The growth of the ΔlytR mutant could be restored by addition of recombinant ΔTM-LytR protein in culture medium in a dose-dependent manner. TEM results showed that the D39ΔlytR mutant was impaired in the surface attachment of CPS. Deletion of lytR gene also impaired the retention of TAs on the surface of pneumococci. The reduction of CPS and TAs on the pneumocccal cells were confirmed using Dot blot and ELISA assays. Compared to wild-type D39, the ΔlytR mutant was more susceptible to the phagocytosis. Animal studies showed that the ability to colonize the nasophaynx and virulence of pneumococci were affected by impairment of the lytR gene. Collectively, these results suggest that pneumococcal LytR is involved in anchoring both the CPS and TAs to cell wall, which is important for virulence of pneumococci.
Collapse
Affiliation(s)
- Weijie Ye
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jinghui Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zhaoche Shu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Kaifeng Wu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
43
|
Caveney NA, Li FK, Strynadka NC. Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways. Curr Opin Struct Biol 2018; 53:45-58. [PMID: 29885610 DOI: 10.1016/j.sbi.2018.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 01/08/2023]
Abstract
The bacterial cell wall is a complex polymeric structure with essential roles in defence, survival and pathogenesis. Common to both Gram-positive and Gram-negative bacteria is the mesh-like peptidoglycan sacculus that surrounds the outer leaflet of the cytoplasmic membrane. Recent crystallographic studies of enzymes that comprise the peptidoglycan biosynthetic pathway have led to significant new understanding of all stages. These include initial multi-step cytosolic formation of sugar-pentapeptide precursors, transfer of the precursors to activated polyprenyl lipids at the membrane inner leaflet and flippase mediated relocalization of the resulting lipid II precursors to the outer leaflet where glycopolymerization and subsequent peptide crosslinking are finalized. Additional, species-specific enzymes allow customized peptidoglycan modifications and biosynthetic regulation that are important to bacterial virulence and survival. These studies have reinforced the unique and specific catalytic mechanisms at play in cell wall biogenesis and expanded the atomic foundation to develop novel, structure guided, antibacterial agents.
Collapse
Affiliation(s)
- Nathanael A Caveney
- University of British Columbia, Biochemistry and Molecular Biology and the Center for Blood Research, Rm 4350 Life Sciences Center, 2350 Health Sciences Mall, Vancouver V6T 1Z3 Canada
| | - Franco Kk Li
- University of British Columbia, Biochemistry and Molecular Biology and the Center for Blood Research, Rm 4350 Life Sciences Center, 2350 Health Sciences Mall, Vancouver V6T 1Z3 Canada
| | - Natalie Cj Strynadka
- University of British Columbia, Biochemistry and Molecular Biology and the Center for Blood Research, Rm 4350 Life Sciences Center, 2350 Health Sciences Mall, Vancouver V6T 1Z3 Canada.
| |
Collapse
|
44
|
Santiago M, Lee W, Fayad AA, Coe KA, Rajagopal M, Do T, Hennessen F, Srisuknimit V, Müller R, Meredith TC, Walker S. Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic. Nat Chem Biol 2018; 14:601-608. [PMID: 29662210 PMCID: PMC5964011 DOI: 10.1038/s41589-018-0041-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Identifying targets of antibacterial compounds remains a challenging step in antibiotic development. We have developed a two-pronged functional genomics approach to predict mechanism of action that uses mutant fitness data from antibiotic-treated transposon libraries containing both upregulation and inactivation mutants. We treated a Staphylococcus aureus transposon library containing 690,000 unique insertions with 32 antibiotics. Upregulation signatures, identified from directional biases in insertions, revealed known molecular targets and resistance mechanisms for the majority of these. Because single gene upregulation does not always confer resistance, we used a complementary machine learning approach to predict mechanism from inactivation mutant fitness profiles. This approach suggested the cell wall precursor Lipid II as the molecular target of the lysocins, a mechanism we have confirmed. We conclude that docking to membrane-anchored Lipid II precedes the selective bacteriolysis that distinguishes these lytic natural products, showing the utility of our approach for nominating antibiotic mechanism of action.
Collapse
Affiliation(s)
- Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Wonsik Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Antoine Abou Fayad
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Kathryn A Coe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Mithila Rajagopal
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Truc Do
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Fabienne Hennessen
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Veerasak Srisuknimit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| | - Timothy C Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. .,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
45
|
Malm S, Maaß S, Schaible UE, Ehlers S, Niemann S. In vivo virulence of Mycobacterium tuberculosis depends on a single homologue of the LytR-CpsA-Psr proteins. Sci Rep 2018; 8:3936. [PMID: 29500450 PMCID: PMC5834633 DOI: 10.1038/s41598-018-22012-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Abstract
LytR-cpsA-Psr (LCP) domain containing proteins fulfil important functions in bacterial cell wall synthesis. In Mycobacterium tuberculosis complex (Mtbc) strains, the causative agents of tuberculosis (TB), the genes Rv3484 and Rv3267 encode for LCP proteins which are putatively involved in arabinogalactan transfer to peptidoglycan. To evaluate the significance of Rv3484 for Mtbc virulence, we generated a deletion mutant in the Mtbc strain H37Rv and studied its survival in mice upon aerosol infection. The deletion mutant failed to establish infection demonstrating that Rv3484 is essential for growth in mice. Following an initial phase of marginal replication in the lungs until day 21, the Rv3484 deletion mutant was almost eliminated by day 180 post-infectionem. Interestingly, the mutant also showed higher levels of resistance to meropenem/clavulanate and lysozyme, both targeting peptidoglycan structure. We conclude that Rv3484 is essential for Mtbc virulence in vivo where its loss of function cannot be compensated by Rv3267.
Collapse
Affiliation(s)
- S Malm
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel - Leibniz Center for Medicine and Biosciences, 23845, Borstel, Germany.
| | - S Maaß
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel - Leibniz Center for Medicine and Biosciences, 23845, Borstel, Germany
| | - U E Schaible
- Cellular Microbiology, Priority Area Infections, Research Center Borstel - Leibniz Center for Medicine and Biosciences, 23845, Borstel, Germany
| | - S Ehlers
- Molecular Inflammation Medicine, Priority Area Infections, Research Center Borstel - Leibniz Center for Medicine and Biosciences, 23845, Borstel, Germany
| | - S Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel - Leibniz Center for Medicine and Biosciences, 23845, Borstel, Germany
- German Center for Infection Research, Borstel Site, Borstel, Germany
| |
Collapse
|
46
|
Schaefer K, Owens TW, Kahne D, Walker S. Substrate Preferences Establish the Order of Cell Wall Assembly in Staphylococcus aureus. J Am Chem Soc 2018; 140:2442-2445. [PMID: 29402087 DOI: 10.1021/jacs.7b13551] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Gram-positive bacterial cell wall is a large supramolecular structure and its assembly requires coordination of complex biosynthetic pathways. In the step that merges the two major biosynthetic pathways in Staphylococcus aureus cell wall assembly, conserved protein ligases attach wall teichoic acids to peptidoglycan, but the order of biosynthetic events is a longstanding question. Here, we use a chemical approach to define which of the possible peptidoglycan intermediates are substrates for wall-teichoic acid ligases, thereby establishing the order of cell wall assembly. We have developed a strategy to make defined glycan chain-length polymers of either un-cross-linked or cross-linked peptidoglycan, and we find that wall teichoic acid ligases cannot transfer wall teichoic acid precursors to the cross-linked substrates. A 1.9 Å crystal structure of a LytR-CpsA-Psr (LCP) family ligase in complex with a wall teichoic acid precursor defines the location of the peptidoglycan binding site as a long, narrow groove, and suggests that the basis for selectivity is steric exclusion of cross-linked peptidoglycan. Consistent with this hypothesis, we have found that chitin oligomers are good substrates for transfer, showing that LCPs do not discriminate cross-linked from un-cross-linked peptidoglycan substrates by recognizing features of the un-cross-linked stem peptide. We conclude that wall teichoic acids are coupled to un-cross-linked peptidoglycan chains at an early stage of peptidoglycan synthesis and may create marks that define the proper spacing of subsequent cross-links.
Collapse
Affiliation(s)
- Kaitlin Schaefer
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States.,Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Tristan W Owens
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
47
|
The complex resistomes of Paenibacillaceae reflect diverse antibiotic chemical ecologies. ISME JOURNAL 2017; 12:885-897. [PMID: 29259290 DOI: 10.1038/s41396-017-0017-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/17/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
Abstract
The ecology of antibiotic resistance involves the interplay of a long natural history of antibiotic production in the environment, and the modern selection of resistance in pathogens through human use of these drugs. Important components of the resistome are intrinsic resistance genes of environmental bacteria, evolved and acquired over millennia, and their mobilization, which drives dissemination in pathogens. Understanding the dynamics and evolution of resistance across bacterial taxa is essential to address the current crisis in drug-resistant infections. Here we report the exploration of antibiotic resistance in the Paenibacillaceae prompted by our discovery of an ancient intrinsic resistome in Paenibacillus sp. LC231, recovered from the isolated Lechuguilla cave environment. Using biochemical and gene expression analysis, we have mined the resistome of the second member of the Paenibacillaceae family, Brevibacillus brevis VM4, which produces several antimicrobial secondary metabolites. Using phylogenomics, we show that Paenibacillaceae resistomes are in flux, evolve mostly independent of secondary metabolite biosynthetic diversity, and are characterized by cryptic, redundant, pseudoparalogous, and orthologous genes. We find that in contrast to pathogens, mobile genetic elements are not significantly responsible for resistome remodeling. This offers divergent modes of resistome development in pathogens and environmental bacteria.
Collapse
|
48
|
Gale RT, Li FKK, Sun T, Strynadka NCJ, Brown ED. B. subtilis LytR-CpsA-Psr Enzymes Transfer Wall Teichoic Acids from Authentic Lipid-Linked Substrates to Mature Peptidoglycan In Vitro. Cell Chem Biol 2017; 24:1537-1546.e4. [PMID: 29107701 DOI: 10.1016/j.chembiol.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/01/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Gram-positive bacteria endow their peptidoglycan with glycopolymers that are crucial for viability and pathogenesis. However, the cellular machinery that executes this function is not well understood. While decades of genetic and phenotypic work have highlighted the LytR-CpsA-Psr (LCP) family of enzymes as cell-wall glycopolymer transferases, their in vitro characterization has been elusive, largely due to a paucity of tools for functional assays. In this report, we synthesized authentic undecaprenyl diphosphate-linked wall teichoic acid (WTA) intermediates and built an assay system capable of monitoring LCP-mediated glycopolymer transfer. We report that all Bacillus subtilis LCP enzymes anchor WTAs to peptidoglycan in vitro. Furthermore, we probed the catalytic requirements and substrate preferences for these LCP enzymes and elaborated in vitro conditions for facile tests of enzyme function. This work sheds light on the molecular features of glycopolymer transfer and aims to aid drug discovery and development programs exploiting this promising antibacterial target.
Collapse
Affiliation(s)
- Robert T Gale
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Franco K K Li
- Department of Biochemistry and Center for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tianjun Sun
- Department of Biochemistry and Center for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Center for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
49
|
Rush JS, Edgar RJ, Deng P, Chen J, Zhu H, van Sorge NM, Morris AJ, Korotkov KV, Korotkova N. The molecular mechanism of N-acetylglucosamine side-chain attachment to the Lancefield group A carbohydrate in Streptococcus pyogenes. J Biol Chem 2017; 292:19441-19457. [PMID: 29021255 DOI: 10.1074/jbc.m117.815910] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
In many Lactobacillales species (i.e. lactic acid bacteria), peptidoglycan is decorated by polyrhamnose polysaccharides that are critical for cell envelope integrity and cell shape and also represent key antigenic determinants. Despite the biological importance of these polysaccharides, their biosynthetic pathways have received limited attention. The important human pathogen, Streptococcus pyogenes, synthesizes a key antigenic surface polymer, the Lancefield group A carbohydrate (GAC). GAC is covalently attached to peptidoglycan and consists of a polyrhamnose polymer, with N-acetylglucosamine (GlcNAc) side chains, which is an essential virulence determinant. The molecular details of the mechanism of polyrhamnose modification with GlcNAc are currently unknown. In this report, using molecular genetics, analytical chemistry, and mass spectrometry analysis, we demonstrated that GAC biosynthesis requires two distinct undecaprenol-linked GlcNAc-lipid intermediates: GlcNAc-pyrophosphoryl-undecaprenol (GlcNAc-P-P-Und) produced by the GlcNAc-phosphate transferase GacO and GlcNAc-phosphate-undecaprenol (GlcNAc-P-Und) produced by the glycosyltransferase GacI. Further investigations revealed that the GAC polyrhamnose backbone is assembled on GlcNAc-P-P-Und. Our results also suggested that a GT-C glycosyltransferase, GacL, transfers GlcNAc from GlcNAc-P-Und to polyrhamnose. Moreover, GacJ, a small membrane-associated protein, formed a complex with GacI and significantly stimulated its catalytic activity. Of note, we observed that GacI homologs perform a similar function in Streptococcus agalactiae and Enterococcus faecalis In conclusion, the elucidation of GAC biosynthesis in S. pyogenes reported here enhances our understanding of how other Gram-positive bacteria produce essential components of their cell wall.
Collapse
Affiliation(s)
- Jeffrey S Rush
- From the Department of Molecular and Cellular Biochemistry and
| | - Rebecca J Edgar
- From the Department of Molecular and Cellular Biochemistry and
| | - Pan Deng
- Division of Cardiovascular Medicine and the Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536 and
| | - Jing Chen
- From the Department of Molecular and Cellular Biochemistry and
| | - Haining Zhu
- From the Department of Molecular and Cellular Biochemistry and
| | - Nina M van Sorge
- the Department of Medical Microbiology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Andrew J Morris
- Division of Cardiovascular Medicine and the Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536 and
| | | | | |
Collapse
|
50
|
Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of Lactococcus lactis. mBio 2017; 8:mBio.01303-17. [PMID: 28900021 PMCID: PMC5596347 DOI: 10.1128/mbio.01303-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Polysaccharides are ubiquitous components of the Gram-positive bacterial cell wall. In Lactococcus lactis, a polysaccharide pellicle (PSP) forms a layer at the cell surface. The PSP structure varies among lactococcal strains; in L. lactis MG1363, the PSP is composed of repeating hexasaccharide phosphate units. Here, we report the presence of an additional neutral polysaccharide in L. lactis MG1363 that is a rhamnan composed of α-l-Rha trisaccharide repeating units. This rhamnan is still present in mutants devoid of the PSP, indicating that its synthesis can occur independently of PSP synthesis. High-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) analysis of whole bacterial cells identified a PSP at the surface of wild-type cells. In contrast, rhamnan was detected only at the surface of PSP-negative mutant cells, indicating that rhamnan is located underneath the surface-exposed PSP and is trapped inside peptidoglycan. The genetic determinants of rhamnan biosynthesis appear to be within the same genetic locus that encodes the PSP biosynthetic machinery, except the gene tagO encoding the initiating glycosyltransferase. We present a model of rhamnan biosynthesis based on an ABC transporter-dependent pathway. Conditional mutants producing reduced amounts of rhamnan exhibit strong morphological defects and impaired division, indicating that rhamnan is essential for normal growth and division. Finally, a mutation leading to reduced expression of lcpA, encoding a protein of the LytR-CpsA-Psr (LCP) family, was shown to severely affect cell wall structure. In lcpA mutant cells, in contrast to wild-type cells, rhamnan was detected by HR-MAS NMR, suggesting that LcpA participates in the attachment of rhamnan to peptidoglycan.IMPORTANCE In the cell wall of Gram-positive bacteria, the peptidoglycan sacculus is considered the major structural component, maintaining cell shape and integrity. It is decorated with other glycopolymers, including polysaccharides, the roles of which are not fully elucidated. In the ovococcus Lactococcus lactis, a polysaccharide with a different structure between strains forms a layer at the bacterial surface and acts as the receptor for various bacteriophages that typically exhibit a narrow host range. The present report describes the identification of a novel polysaccharide in the L. lactis cell wall, a rhamnan that is trapped inside the peptidoglycan and covalently bound to it. We propose a model of rhamnan synthesis based on an ABC transporter-dependent pathway. Rhamnan appears as a conserved component of the lactococcal cell wall playing an essential role in growth and division, thus highlighting the importance of polysaccharides in the cell wall integrity of Gram-positive ovococci.
Collapse
|