1
|
Jang HS, Lee Y, Kim Y, Huh WK. The ubiquitin-proteasome system degrades fatty acid synthase under nitrogen starvation when autophagy is dysfunctional in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2024; 733:150423. [PMID: 39053108 DOI: 10.1016/j.bbrc.2024.150423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Autophagy and the ubiquitin-proteasome system (UPS) are two major protein quality control mechanisms maintaining cellular proteostasis. In Saccharomyces cerevisiae, the de novo synthesis of saturated fatty acids is performed by a multienzyme complex known as fatty acid synthase (FAS). A recent study reported that yeast FAS is preferentially degraded by autophagy under nitrogen starvation. In this study, we examined the fate of FAS during nitrogen starvation when autophagy is dysfunctional. We found that the UPS compensates for FAS degradation in the absence of autophagy. Additionally, we discovered that the UPS-dependent degradation of Fas2 requires the E3 ubiquitin ligase Ubr1. Our findings highlight the complementary relationship between autophagy and the UPS.
Collapse
Affiliation(s)
- Hae-Soo Jang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yongook Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeonsoo Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Cascio P. PA28γ, the ring that makes tumors invisible to the immune system? Biochimie 2024; 226:136-147. [PMID: 38631454 DOI: 10.1016/j.biochi.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
PA28γ is a proteasomal interactor whose main and most known function is to stimulate the hydrolytic activity of the 20 S proteasome independently of ubiquitin and ATP. Unlike its two paralogues, PA28α and PA28β, PA28γ is largely present in the nuclear compartment and plays pivotal functions in important pathways such as cellular division, apoptosis, neoplastic transformation, chromatin structure and organization, fertility, lipid metabolism, and DNA repair mechanisms. Although it is known that a substantial fraction of PA28γ is found in the cell in a free form (i.e. not associated with 20 S), almost all of the studies so far have focused on its ability to modulate proteasomal enzymatic activities. In this respect, the ability of PA28γ to strongly stimulate degradation of proteins, especially if intrinsically disordered and therefore devoid of three-dimensional tightly folded structure, appears to be the main molecular mechanism underlying its multiple biological effects. Initial studies, conducted more than 20 years ago, came to the conclusion that among the many biological functions of PA28γ, the immunological ones were rather limited and circumscribed. In this review, we focus on recent evidence showing that PA28γ fulfills significant functions in cell-mediated acquired immunity, with a particular role in attenuating MHC class I antigen presentation, especially in relation to neoplastic transformation and autoimmune diseases.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
3
|
Korona B, Itzhaki LS. How to target membrane proteins for degradation: Bringing GPCRs into the TPD fold. J Biol Chem 2024:107926. [PMID: 39454955 DOI: 10.1016/j.jbc.2024.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
We are now in the middle of a so-called 'fourth wave' of drug innovation: multi-specific medicines aimed at diseases and targets previously thought to be "undruggable"; by inducing proximity between two or more proteins, for example a target and an effector that do not naturally interact, such modalities have potential far beyond the scope of conventional drugs. In particular, targeted protein degradation (TPD) strategies to destroy disease-associated proteins have emerged as an exciting pipeline in drug discovery. Most efforts are focused on intracellular proteins, whereas membrane proteins have been less thoroughly explored despite the fact that they comprise roughly a quarter of the human proteome with G-protein coupled receptors (GPCRs) notably dysregulated in many diseases. Here, we discuss the opportunities and the challenges of developing degraders for membrane proteins with a focus on GPCRs. We provide an overview of different TPD platforms in the context of membrane-tethered targets, and we present recent degradation technologies highlighting their potential application to GPCRs.
Collapse
Affiliation(s)
- Boguslawa Korona
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD.
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD.
| |
Collapse
|
4
|
Xu S, Gierisch ME, Barchi E, Poser I, Alberti S, Salomons FA, Dantuma NP. Chemical inhibition of the integrated stress response impairs the ubiquitin-proteasome system. Commun Biol 2024; 7:1282. [PMID: 39379572 PMCID: PMC11461528 DOI: 10.1038/s42003-024-06974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Inhibitors of the integrated stress response (ISR) have been used to explore the potential beneficial effects of reducing the activation of this pathway in diseases. As the ISR is in essence a protective response, there is, however, a risk that inhibition may compromise the cell's ability to restore protein homeostasis. Here, we show that the experimental compound ISRIB impairs degradation of proteins by the ubiquitin-proteasome system (UPS) during proteotoxic stress in the cytosolic, but not nuclear, compartment. Accumulation of a UPS reporter substrate that is intercepted by ribosome quality control was comparable to the level observed after blocking the UPS with a proteasome inhibitor. Consistent with impairment of the cytosolic UPS, ISRIB treatment caused an accumulation of polyubiquitylated and detergent insoluble defective ribosome products (DRiPs) in the presence of puromycin. Our data suggest that the persistent protein translation during proteotoxic stress in the absence of a functional ISR increases the pool of DRiPs, thereby hindering the efficient clearance of cytosolic substrates by the UPS.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Maria E Gierisch
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Enrica Barchi
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Open Sesame Therapeutics GmbH, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Florian A Salomons
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden.
| |
Collapse
|
5
|
Gao R, Wu Y, Wang Y, Yang Z, Mao Y, Yang Y, Yang C, Chen Z. Ubiquitination and De-Ubiquitination in the Synthesis of Cow Milk Fat: Reality and Prospects. Molecules 2024; 29:4093. [PMID: 39274941 PMCID: PMC11397273 DOI: 10.3390/molecules29174093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Ubiquitination modifications permit the degradation of labelled target proteins with the assistance of proteasomes and lysosomes, which is the main protein degradation pathway in eukaryotic cells. Polyubiquitination modifications of proteins can also affect their functions. De-ubiquitinating enzymes reverse the process of ubiquitination via cleavage of the ubiquitin molecule, which is known as a de-ubiquitination. It was demonstrated that ubiquitination and de-ubiquitination play key regulatory roles in fatty acid transport, de novo synthesis, and desaturation in dairy mammary epithelial cells. In addition, natural plant extracts, such as stigmasterol, promote milk fat synthesis in epithelial cells via the ubiquitination pathway. This paper reviews the current research on ubiquitination and de-ubiquitination in dairy milk fat production, with a view to providing a reference for subsequent research on milk fat and exploring new directions for the improvement of milk quality.
Collapse
Affiliation(s)
- Rui Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chunhua Yang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. J Control Release 2024; 372:619-647. [PMID: 38909702 DOI: 10.1016/j.jconrel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Cecilia Ortiz
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jesús Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
7
|
Cole J, Schulman R. Limiting the Broadcast Range of a Secreting Cell during Intercellular Signaling Using Protease-Mediated Degradation. ACS Synth Biol 2024; 13:2019-2028. [PMID: 38885472 DOI: 10.1021/acssynbio.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Synthetic biology is revolutionizing our approaches to biocomputing, diagnostics, and environmental monitoring through the use of designed genetic circuits that perform a function within a single cell. More complex functions can be performed by multiple cells that coordinate as they perform different subtasks. Cell-cell communication using molecular signals is particularly suited for aiding in this communication, but the number of molecules that can be used in different communication channels is limited. Here we investigate how proteases can limit the broadcast range of communicating cells. We find that adding barrierpepsin to Saccharomyces cerevisiae cells in two-dimensional multicellular networks that use α-factor signaling prevents cells beyond a specific radius from responding to α-factor signals. Such limiting of the broadcast range of cells could allow multiple cells to use the same signaling molecules to direct different communication processes and functions, provided that they are far enough from one another. These results suggest a means by which complex synthetic cellular networks using only a few signals for communication could be created by structuring a community of cells to create distinct broadcast environments.
Collapse
Affiliation(s)
- Joshua Cole
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Naryzhny S. Puzzle of Proteoform Variety-Where Is a Key? Proteomes 2024; 12:15. [PMID: 38804277 PMCID: PMC11130821 DOI: 10.3390/proteomes12020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
One of the human proteome puzzles is an imbalance between the theoretically calculated and experimentally measured amounts of proteoforms. Considering the possibility of combinations of different post-translational modifications (PTMs), the quantity of possible proteoforms is huge. An estimation gives more than a million different proteoforms in each cell type. But, it seems that there is strict control over the production and maintenance of PTMs. Although the potential complexity of proteoforms due to PTMs is tremendous, available information indicates that only a small part of it is being implemented. As a result, a protein could have many proteoforms according to the number of modification sites, but because of different systems of personal regulation, the profile of PTMs for a given protein in each organism is slightly different.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- B. P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Leningrad Region, Gatchina 188300, Russia
| |
Collapse
|
9
|
Bhattarai D, Lee SO, Joshi N, Jun SR, Lo S, Jiang L, Gokden N, Parajuli N. Cold Storage Followed by Transplantation Induces Immunoproteasome in Rat Kidney Allografts: Inhibition of Immunoproteasome Does Not Improve Function. KIDNEY360 2024; 5:743-752. [PMID: 38303110 PMCID: PMC11146655 DOI: 10.34067/kid.0000000000000368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Key Points Cold storage (CS) increases the severity of graft dysfunction in a time-dependent manner, and prolonged CS decreases animal survival. CS plus transplant increases iproeasome levels/assembly in renal allografts; IFN-γ is a potential inducer of the iproteasome. Inhibiting iproteasome ex vivo during renal CS did not confer graft protection after transplantation. Background It is a major clinical challenge to ensure the long-term function of transplanted kidneys. Specifically, the injury associated with cold storage (CS) of kidneys compromises the long-term function of the grafts after transplantation. Therefore, the molecular mechanisms underlying CS-related kidney injury are attractive therapeutic targets to prevent injury and improve long-term graft function. Previously, we found that constitutive proteasome function was compromised in rat kidneys after CS followed by transplantation. Here, we evaluated the role of the immunoproteasome (i proteasome), a proteasome variant, during CS followed by transplantation. Methods Established in vivo rat kidney transplant model with or without CS containing vehicle or iproteasome inhibitor (ONX 0914) was used in this study. The i proteasome function was performed using rat kidney homogenates and fluorescent-based peptide substrate specific to β 5i subunit. Western blotting and quantitative RT-PCR were used to assess the subunit expression/level of the i proteasome (β 5i) subunit. Results We demonstrated a decrease in the abundance of the β 5i subunit of the i proteasome in kidneys during CS, but β 5i levels increased in kidneys after CS and transplant. Despite the increase in β 5i levels and its peptidase activity within kidneys, inhibiting β 5i during CS did not improve graft function after transplantation. Summary These results suggest that the pharmacologic inhibition of immunoproteasome function during CS does not improve graft function or outcome. In light of these findings, future studies targeting immunoproteasomes during both CS and transplantation may define the role of immunoproteasomes on short-term and long-term kidney transplant outcomes.
Collapse
Affiliation(s)
- Dinesh Bhattarai
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Seong-Ok Lee
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neelam Joshi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sorena Lo
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Li Jiang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
10
|
Cheng H, Hua L, Tang H, Bao Z, Xu X, Zhu H, Wang S, Jiapaer Z, Bhatia R, Dunn IF, Deng J, Wang D, Sun S, Luan S, Ji J, Xie Q, Yang X, Lei J, Li G, Wang X, Gong Y. CBX7 reprograms metabolic flux to protect against meningioma progression by modulating the USP44/c-MYC/LDHA axis. J Mol Cell Biol 2024; 15:mjad057. [PMID: 37791390 PMCID: PMC11195615 DOI: 10.1093/jmcb/mjad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/10/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Meningioma is one of the most common primary neoplasms in the central nervous system, but no specific molecularly targeted therapy has been approved for the clinical treatment of aggressive meningiomas. There is hence an urgent demand to decrypt the biological and molecular landscape of malignant meningioma. Here, through the in-silica prescreening and 10-year follow-up studies of 445 meningioma patients, we uncovered that CBX7 expression progressively decreases with malignancy grade and neoplasia stage in meningioma, and a high CBX7 expression level predicts a favorable prognosis in meningioma patients. CBX7 restoration significantly induces cell cycle arrest and inhibits meningioma cell proliferation. iTRAQ-based proteomics analysis indicated that CBX7 restoration triggers the metabolic shift from glycolysis to oxidative phosphorylation. The mechanistic study demonstrated that CBX7 promotes the proteasome-dependent degradation of c-MYC protein by transcriptionally inhibiting the expression of a c-MYC deubiquitinase, USP44, consequently attenuates c-MYC-mediated transactivation of LDHA transcripts, and further inhibits glycolysis and subsequent cell proliferation. More importantly, the functional role of CBX7 was further confirmed in subcutaneous and orthotopic meningioma xenograft mouse models and meningioma patients. Altogether, our results shed light on the critical role of CBX7 in meningioma malignancy progression and identify the CBX7/USP44/c-MYC/LDHA axis as a promising therapeutic target against meningioma progression.
Collapse
Affiliation(s)
- Haixia Cheng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Hongguang Zhu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biology Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Roma Bhatia
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Shihai Luan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xinyu Yang
- Fangshan Hospital of Beijing, University of Traditional Chinese Medicine, Beijing 102400, China
| | - Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Department of Critical Care Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Tague N, Coriano-Ortiz C, Sheets MB, Dunlop MJ. Light-inducible protein degradation in E. coli with the LOVdeg tag. eLife 2024; 12:RP87303. [PMID: 38270583 PMCID: PMC10945698 DOI: 10.7554/elife.87303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Molecular tools for optogenetic control allow for spatial and temporal regulation of cell behavior. In particular, light-controlled protein degradation is a valuable mechanism of regulation because it can be highly modular, used in tandem with other control mechanisms, and maintain functionality throughout growth phases. Here, we engineered LOVdeg, a tag that can be appended to a protein of interest for inducible degradation in Escherichia coli using blue light. We demonstrate the modularity of LOVdeg by using it to tag a range of proteins, including the LacI repressor, CRISPRa activator, and the AcrB efflux pump. Additionally, we demonstrate the utility of pairing the LOVdeg tag with existing optogenetic tools to enhance performance by developing a combined EL222 and LOVdeg system. Finally, we use the LOVdeg tag in a metabolic engineering application to demonstrate post-translational control of metabolism. Together, our results highlight the modularity and functionality of the LOVdeg tag system and introduce a powerful new tool for bacterial optogenetics.
Collapse
Affiliation(s)
- Nathan Tague
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Biological Design Center, Boston UniversityBostonUnited States
| | - Cristian Coriano-Ortiz
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Biological Design Center, Boston UniversityBostonUnited States
| | - Michael B Sheets
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Biological Design Center, Boston UniversityBostonUnited States
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Biological Design Center, Boston UniversityBostonUnited States
| |
Collapse
|
12
|
Hunt LC, Pagala V, Stephan A, Xie B, Kodali K, Kavdia K, Wang YD, Shirinifard A, Curley M, Graca FA, Fu Y, Poudel S, Li Y, Wang X, Tan H, Peng J, Demontis F. An adaptive stress response that confers cellular resilience to decreased ubiquitination. Nat Commun 2023; 14:7348. [PMID: 37963875 PMCID: PMC10646096 DOI: 10.1038/s41467-023-43262-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.
Collapse
Affiliation(s)
- Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Department of Biology, Rhodes College, 2000 North Pkwy, Memphis, TN, 38112, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
13
|
Tague N, Coriano-Ortiz C, Sheets MB, Dunlop MJ. Light inducible protein degradation in E. coli with the LOVdeg tag. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530042. [PMID: 36865169 PMCID: PMC9980293 DOI: 10.1101/2023.02.25.530042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Molecular tools for optogenetic control allow for spatial and temporal regulation of cell behavior. In particular, light controlled protein degradation is a valuable mechanism of regulation because it can be highly modular, used in tandem with other control mechanisms, and maintain functionality throughout growth phases. Here, we engineered LOVdeg, a tag that can be appended to a protein of interest for inducible degradation in Escherichia coli using blue light. We demonstrate the modularity of LOVdeg by using it to tag a range of proteins, including the LacI repressor, CRISPRa activator, and the AcrB efflux pump. Additionally, we demonstrate the utility of pairing the LOVdeg tag with existing optogenetic tools to enhance performance by developing a combined EL222 and LOVdeg system. Finally, we use the LOVdeg tag in a metabolic engineering application to demonstrate post-translational control of metabolism. Together, our results highlight the modularity and functionality of the LOVdeg tag system, and introduce a powerful new tool for bacterial optogenetics.
Collapse
|
14
|
Murali P, Kavitha B, Narasimhan M. Overexpression of deubiquitinase (usp 36) in oral squamous cell carcinoma. J Oral Maxillofac Pathol 2023; 27:623-628. [PMID: 38304515 PMCID: PMC10829461 DOI: 10.4103/jomfp.jomfp_311_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 02/03/2024] Open
Abstract
Aim Oral cancer is one of the top three types of cancer and is of significant public health importance in India. A common post-translational modification in cells is ubiquitination/deubiquitination, and its dysregulation is closely associated with the development of cancer. Studies on the role of ubiquitination in oral squamous cell carcinoma (OSCC) are lacking. Increased expression of usp36 has been observed in various types of cancer, and this study aimed to check the gene expression of usp36 in OSCC patients. In this study, we analyzed the expression of ubiquitin-specific proteases (USPs) 36 in OSCC. Materials and Methods A total of 15 OSCC patients at different stages of tumor differentiation and age- and sex-matched controls were recruited for the study. The patients were categorized based on their differentiation patterns. RNA was extracted from the tissues, and usp36 gene expression was checked in these samples using a quantitative real-time PCR technique. Results Our study showed increased expression of usp36 gene in OSCC patients. The usp36 mRNA was 231.8 ± 137.94 folds higher in well-differentiated squamous cell carcinoma patients, 38.18 ± 3.77 folds higher in moderately differentiated squamous cell carcinoma patients, and 25.49 ± 7.30 folds higher in poorly differentiated squamous cell carcinoma patients compared to control tissues. Conclusion Our study reports, for the first time, an increased gene expression of usp36 in OSCC tissues.
Collapse
Affiliation(s)
- Preethi Murali
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Meenakshi Ammal Dental College and Hospital, MAHER, Chennai, Tamil Nadu, India
| | - B. Kavitha
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Meenakshi Ammal Dental College and Hospital, MAHER, Chennai, Tamil Nadu, India
| | - Malathi Narasimhan
- Department of Oral and Maxillofacial Pathology, Sri Ramachandra Dental College and Hospitals, SRIHER, Chennai, Tamil Nadu, India
| |
Collapse
|
15
|
Wu C, Liu Y, Hu Y, Ding M, Cui X, Liu Y, Liu P, Zhang H, Yang Y, Zhang H. An Investigation into the Performance and Mechanisms of Soymilk-Sized Handmade Xuan Paper at Different Concentrations of Soymilk. Molecules 2023; 28:6791. [PMID: 37836634 PMCID: PMC10574515 DOI: 10.3390/molecules28196791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Invaluable paper relics that embody a rich traditional culture have suffered damage, requiring urgent restoration. In this context, the utilization of soymilk as a sizing agent holds great significance and reverence. This study investigates the use of soymilk as a sizing agent for Xuan paper and evaluates its effects on various properties and the long-term behavior of the paper. The findings reveal that the application of soymilk as a sizing agent for Xuan paper imparts distinct properties, including hydrophobicity, improved mechanical properties, and unique chromaticity. These characteristics-arising from the papillae on the surface of the Xuan paper, the protein folding of the soy protein, and hydrogen-bonding interactions between the soy protein and paper fibers-play a crucial role in shaping the paper's unique attributes. From a physicochemical perspective, the aging process leads to multiple changes in paper properties. These changes include acidification, which refers to a decrease in pH, as well as a decline in mechanical strength, an increase in chromaticity, and a decrease in the degree of polymerization (DP) of the paper. The Ekenstam equation is employed to predict the lifespan of the paper, showing longer lifespans for Sheng Xuan paper and a negative correlation between soymilk concentration and lifespan in soymilk-sized paper. Our work provides valuable insights for the preservation and maintenance of paper, highlighting the potential benefits and challenges of using soymilk for surface sizing.
Collapse
Affiliation(s)
- Chunfang Wu
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China; (C.W.)
| | - Yangyang Liu
- School of Creative Art and Fashion Design, Huzhou Vocational and Technical College, Huzhou 313000, China
| | - Yanxiao Hu
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China; (C.W.)
| | - Ming Ding
- Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiang Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yixin Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Peng Liu
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China; (C.W.)
| | - Hongbin Zhang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China; (C.W.)
| | - Yuliang Yang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China; (C.W.)
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Hongdong Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Makaros Y, Raiff A, Timms RT, Wagh AR, Gueta MI, Bekturova A, Guez-Haddad J, Brodsky S, Opatowsky Y, Glickman MH, Elledge SJ, Koren I. Ubiquitin-independent proteasomal degradation driven by C-degron pathways. Mol Cell 2023; 83:1921-1935.e7. [PMID: 37201526 PMCID: PMC10237035 DOI: 10.1016/j.molcel.2023.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Although most eukaryotic proteins are targeted for proteasomal degradation by ubiquitination, a subset have been demonstrated to undergo ubiquitin-independent proteasomal degradation (UbInPD). However, little is known about the molecular mechanisms driving UbInPD and the degrons involved. Utilizing the GPS-peptidome approach, a systematic method for degron discovery, we found thousands of sequences that promote UbInPD; thus, UbInPD is more prevalent than currently appreciated. Furthermore, mutagenesis experiments revealed specific C-terminal degrons required for UbInPD. Stability profiling of a genome-wide collection of human open reading frames identified 69 full-length proteins subject to UbInPD. These included REC8 and CDCA4, proteins which control proliferation and survival, as well as mislocalized secretory proteins, suggesting that UbInPD performs both regulatory and protein quality control functions. In the context of full-length proteins, C termini also play a role in promoting UbInPD. Finally, we found that Ubiquilin family proteins mediate the proteasomal targeting of a subset of UbInPD substrates.
Collapse
Affiliation(s)
- Yaara Makaros
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Anat Raiff
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, Cambridgeshire CB2 0AW, UK
| | - Ajay R Wagh
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Mor Israel Gueta
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aizat Bekturova
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Julia Guez-Haddad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yarden Opatowsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
17
|
Williams C, Dong KC, Arkinson C, Martin A. The Ufd1 cofactor determines the linkage specificity of polyubiquitin chain engagement by the AAA+ ATPase Cdc48. Mol Cell 2023; 83:759-769.e7. [PMID: 36736315 PMCID: PMC9992269 DOI: 10.1016/j.molcel.2023.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
The AAA+ ATPase Cdc48 utilizes the cofactor Ufd1/Npl4 to bind and thread polyubiquitinated substrates for their extraction from complexes or membranes and often for subsequent proteasomal degradation. Previous studies indicated that Cdc48 engages polyubiquitin chains through the Npl4-mediated unfolding of an initiator ubiquitin; yet, the underlying principles remain largely unknown. Using FRET-based assays, we revealed the mechanisms and kinetics of ubiquitin unfolding, insertion into the ATPase, and unfolding of the ubiquitin-attached substrate. We found that Cdc48 uses Ufd1's UT3 domain to bind a K48-linked ubiquitin on the initiator's proximal side of the chain, thereby directing the initiator toward rapid unfolding by Npl4 and engagement by Cdc48. Ubiquitins on the initiator's distal side increase substrate affinity and facilitate unfolding but impede substrate release from Cdc48-Ufd1/Npl4 in the absence of additional cofactors. Our findings explain how Cdc48-UN efficiently processes substrates with K48-linked chains of 4-6 ubiquitins, which represent most cellular polyubiquitinated proteins.
Collapse
Affiliation(s)
- Cameron Williams
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ken C Dong
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Connor Arkinson
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Fan Y, Wang H, Yu Z, Liang Z, Li Y, You G. Inhibition of proteasome, but not lysosome, upregulates organic anion transporter 3 in vitro and in vivo. Biochem Pharmacol 2023; 208:115387. [PMID: 36549459 PMCID: PMC9877193 DOI: 10.1016/j.bcp.2022.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Organic anion transporter 3 (OAT3), an indispensable basolateral membrane transporter predominantly distributed in the kidney proximal tubules, mediated the systemic clearance of substrates including clinical drugs, nutrients, endogenous and exogenous metabolites, toxins, and critically sustains body homeostasis. Preliminary data in this study showed that classical proteasome inhibitors (e.g., MG132), but not lysosome inhibitors, significantly increased the OAT3 ubiquitination and OAT3-mediated transport of estrone sulfate (ES) in OAT3 stable expressing cells, indicating that proteasome rather than lysosome is involved in the intracellular fate of OAT3. Next, bortezomib and carfilzomib, two FDA-approved and widely applied anticancer agents through selective targeting proteasome, were further used to define the role of inhibiting proteasome in OAT3 regulation and related molecular mechanisms. The results showed that 20S proteasome activity in cell lysates was suppressed with bortezomib and carfilzomib treatment, leading to the increased OAT3 ubiquitination, stimulated transport activity of ES, enhanced OAT3 surface and total expression. The upregulated OAT3 function by proteasome inhibition was attributed to the augment in maximum transport velocity and stability of membrane OAT3. Lastly, in vivo study using Sprague Dawley rats validated that proteasome inhibition using bortezomib induced enhancement of OAT3 ubiquitination and membrane expression in kidney. These data suggest that activity of proteasome but not lysosome could have an impact on the physiological function of OAT3, and proteasome displayed a promising target for OAT3 regulation in vitro and in vivo, and could be used in restoring OAT3 impairment under pathological conditions, avoiding OAT3-associated toxicity and diseases, ensuring drug efficacy and safety.
Collapse
Affiliation(s)
- Yunzhou Fan
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Haoxun Wang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Zhou Yu
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Zhengxuan Liang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yufan Li
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
19
|
Elu N, Osinalde N, Ramirez J, Presa N, Rodriguez JA, Prieto G, Mayor U. Identification of substrates for human deubiquitinating enzymes (DUBs): An up-to-date review and a case study for neurodevelopmental disorders. Semin Cell Dev Biol 2022; 132:120-131. [PMID: 35042675 DOI: 10.1016/j.semcdb.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Similar to the reversal of kinase-mediated protein phosphorylation by phosphatases, deubiquitinating enzymes (DUBs) oppose the action of E3 ubiquitin ligases and reverse the ubiquitination of proteins. A total of 99 human DUBs, classified in 7 families, allow in this way for a precise control of cellular function and homeostasis. Ubiquitination regulates a myriad of cellular processes, and is altered in many pathological conditions. Thus, ubiquitination-regulating enzymes are increasingly regarded as potential candidates for therapeutic intervention. In this context, given the predicted easier pharmacological control of DUBs relative to E3 ligases, a significant effort is now being directed to better understand the processes and substrates regulated by each DUB. Classical studies have identified specific DUB substrate candidates by traditional molecular biology techniques in a case-by-case manner. Lately, single experiments can identify thousands of ubiquitinated proteins at a specific cellular context and narrow down which of those are regulated by a given DUB, thanks to the development of new strategies to isolate and enrich ubiquitinated material and to improvements in mass spectrometry detection capabilities. Here we present an overview of both types of studies, discussing the criteria that, in our view, need to be fulfilled for a protein to be considered as a high-confidence substrate of a given DUB. Applying these criteria, we have manually reviewed the relevant literature currently available in a systematic manner, and identified 650 high-confidence substrates of human DUBs. We make this information easily accessible to the research community through an updated version of the DUBase website (https://ehubio.ehu.eus/dubase/). Finally, in order to illustrate how this information can contribute to a better understanding of the physiopathological role of DUBs, we place a special emphasis on a subset of these enzymes that have been associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nagore Elu
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Gorka Prieto
- Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain.
| |
Collapse
|
20
|
Engineering an SspB-mediated degron for novel controllable protein degradation. Metab Eng 2022; 74:150-159. [DOI: 10.1016/j.ymben.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
21
|
Waite KA, Roelofs J. Proteasome granule formation is regulated through mitochondrial respiration and kinase signaling. J Cell Sci 2022; 135:jcs259778. [PMID: 35975718 PMCID: PMC9482347 DOI: 10.1242/jcs.259778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, proteasomes are enriched in cell nuclei, in which they execute important cellular functions. Nutrient stress can change this localization, indicating that proteasomes respond to the metabolic state of the cell. However, the signals that connect these processes remain poorly understood. Carbon starvation triggers a reversible translocation of proteasomes to cytosolic condensates known as proteasome storage granules. Surprisingly, we observed strongly reduced levels of proteasome granules when cells had active cellular respiration prior to starvation. This suggests that the mitochondrial activity of cells is a determining factor in the response of proteasomes to carbon starvation. Consistent with this, upon inhibition of mitochondrial function, we observed that proteasomes relocalize to granules. These links between proteasomes and metabolism involve specific signaling pathways, as we identified a mitogen-activated protein kinase (MAPK) cascade that is critical to the formation of proteasome granules after respiratory growth but not following glycolytic growth. Furthermore, the yeast homolog of AMP kinase, Snf1, is important for proteasome granule formation induced by mitochondrial inhibitors, but it is dispensable for granule formation following carbon starvation. We propose a model in which mitochondrial activity promotes nuclear localization of the proteasome. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., HLSIC 1077, Kansas City, KS 66160-7421, USA
| |
Collapse
|
22
|
Aharoni S, Proskorovski-Ohayon R, Krishnan RK, Yogev Y, Wormser O, Hadar N, Bakhrat A, Alshafee I, Gombosh M, Agam N, Gradstein L, Shorer Z, Zarivach R, Eskin-Schwartz M, Abdu U, Birk OS. PSMC1 variant causes a novel neurological syndrome. Clin Genet 2022; 102:324-332. [PMID: 35861243 PMCID: PMC9541193 DOI: 10.1111/cge.14195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Proteasome 26S, the eukaryotic proteasome, serves as the machinery for cellular protein degradation. It is composed of the 20S core particle and one or two 19S regulatory particles, composed of a base and a lid. To date, several human diseases have been associated with mutations within the 26S proteasome subunits; only one of them affects a base subunit. We now delineate an autosomal recessive syndrome of failure to thrive, severe developmental delay and intellectual disability, spastic tetraplegia with central hypotonia, chorea, hearing loss, micropenis and undescended testes, as well as mild elevation of liver enzymes. None of the affected individuals achieved verbal communication or ambulation. Ventriculomegaly was evident on MRI. Homozygosity mapping combined with exome sequencing revealed a disease‐associated p.I328T PSMC1 variant. Protein modeling demonstrated that the PSMC1 variant is located at the highly conserved putative ATP binding and hydrolysis domain, and is suggested to interrupt a hydrophobic core within the protein. Fruit flies in which we silenced the Drosophila ortholog Rpt2 specifically in the eye exhibited an apparent phenotype that was highly rescued by the human wild‐type PSMC1, yet only partly by the mutant PSMC1, proving the functional effect of the p.I328T disease‐causing variant.
Collapse
Affiliation(s)
- Sarit Aharoni
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Regina Proskorovski-Ohayon
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ramesh Kumar Krishnan
- Department of Life Sciences, Faculty of Natural Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Noam Hadar
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Faculty of Natural Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ismael Alshafee
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Maya Gombosh
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nadav Agam
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Libe Gradstein
- Department of Ophthalmology, Soroka University Medical Center and Clalit Health Services, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zamir Shorer
- Pediatric Neurology Unit, Division of Pediatrics, Soroka Medical Center, Beer-sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Faculty of Natural Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Marina Eskin-Schwartz
- Genetics Institute, Soroka Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uri Abdu
- Department of Life Sciences, Faculty of Natural Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Genetics Institute, Soroka Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
23
|
Kesserwan S, Lewis BE, Mao L, Sharafieh R, Atwood T, Kreutzer DL, Klueh U. Inflammation at Site of Insulin Infusion Diminishes Glycemic Control. J Pharm Sci 2022; 111:1952-1961. [PMID: 34986358 PMCID: PMC9880961 DOI: 10.1016/j.xphs.2021.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/31/2023]
Abstract
The approximation of euglycemia is the most effective means of preventing diabetic complications, which is achieved through effective insulin delivery. Recent reports indicate that insulin phenolic preservatives, which are found in all commercial insulin formulations, are cytotoxic, pro-inflammatory and induce secondary fibrosis. Therefore, we hypothesize that these preservatives induce an inflammatory response at the site of insulin infusion leading to diminished glycemic control and adverse pharmacokinetic outcomes. Insulin degradation by inflammatory cell proteases was quantitated following protease treatment in vitro. A modified murine air pouch model was utilized to evaluate the relative inflammatory responses following infusions of saline, insulin preservatives, and insulin, utilizing the adjuvant irritant thioglycolate. Blood glucose levels were monitored in diabetic mice with and without air pouch irritation. A pharmacokinetic analysis evaluated insulin effectiveness for diabetic mice between these two conditions. Inflammatory cells are significantly present in insulin preservative-induced inflammation, which effects diminished blood glucose control by both insulin uptake and degradation. Insulin containing these preservatives resulted in similar degrees of inflammation as observed with the irritant thioglycolate. These studies imply that the preservative agents found in commercial insulin formulations induce an intense localized inflammatory reaction. This inflammatory reaction may be responsible for the premature failure of insulin infusion devices. Future studies directed at reducing this inflammatory reaction may prove to be an important step in extending the lifespan of insulin infusion devices.
Collapse
Affiliation(s)
- Shereen Kesserwan
- Department of Biomedical Engineering, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Brianne E. Lewis
- Department of Foundational Medical Studies, Oakland University, William Beaumont School of Medicine, Rochester, MI, USA
| | - Li Mao
- Department of Biomedical Engineering, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Roshanak Sharafieh
- Department of Surgery, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Thomas Atwood
- Department of Surgery, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Donald L. Kreutzer
- Department of Surgery, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Ulrike Klueh
- Department of Biomedical Engineering, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA,Corresponding Author: Ulrike Klueh Ph.D., Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, , Phone: 313-577-1359
| |
Collapse
|
24
|
Yang J, Li Y, Qiu Q, Wang R, Yan W, Yu Y, Niu L, Pei H, Wei H, Ouyang L, Ye H, Xu D, Wei Y, Chen Q, Chen L. Small Molecules Promote Selective Denaturation and Degradation of Tubulin Heterodimers through a Low-Barrier Hydrogen Bond. J Med Chem 2022; 65:9159-9173. [PMID: 35762925 DOI: 10.1021/acs.jmedchem.2c00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here, we report a novel mechanism to selectively degrade target proteins. 3-(3-Phenoxybenzyl)amino-β-carboline (PAC), a tubulin inhibitor, promotes selective degradation of αβ-tubulin heterodimers. Biochemical studies have revealed that PAC specifically denatures tubulin, making it prone to aggregation that predisposes it to ubiquitinylation and then degradation. The degradation is mediated by a single hydrogen bond formed between the pyridine nitrogen of PAC and βGlu198, which is identified as a low-barrier hydrogen bond (LBHB). In contrast, another two tubulin inhibitors that only form normal hydrogen bonds with βGlu198 exhibit no degradation effect. Thus, the LBHB accounts for the degradation. We then screened for compounds capable of forming an LBHB with βGlu198 and demonstrated that BML284, a Wnt signaling activator, also promotes tubulin heterodimer degradation through the LBHB. Our study provided a unique example of LBHB function and identified a novel approach to obtain tubulin degraders.
Collapse
Affiliation(s)
- Jianhong Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yong Li
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qiang Qiu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Ruihan Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wei Yan
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yamei Yu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lu Niu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Heying Pei
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Haoche Wei
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Liang Ouyang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Haoyu Ye
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuquan Wei
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qiang Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
25
|
Su WL, Wu CC, Wu SFV, Lee MC, Liao MT, Lu KC, Lu CL. A Review of the Potential Effects of Melatonin in Compromised Mitochondrial Redox Activities in Elderly Patients With COVID-19. Front Nutr 2022; 9:865321. [PMID: 35795579 PMCID: PMC9251345 DOI: 10.3389/fnut.2022.865321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Melatonin, an endogenous indoleamine, is an antioxidant and anti-inflammatory molecule widely distributed in the body. It efficiently regulates pro-inflammatory and anti-inflammatory cytokines under various pathophysiological conditions. The melatonin rhythm, which is strongly associated with oxidative lesions and mitochondrial dysfunction, is also observed during the biological process of aging. Melatonin levels decline considerably with age and are related to numerous age-related illnesses. The signs of aging, including immune aging, increased basal inflammation, mitochondrial dysfunction, significant telomeric abrasion, and disrupted autophagy, contribute to the increased severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These characteristics can worsen the pathophysiological response of the elderly to SARS-CoV-2 and pose an additional risk of accelerating biological aging even after recovery. This review explains that the death rate of coronavirus disease (COVID-19) increases with chronic diseases and age, and the decline in melatonin levels, which is closely related to the mitochondrial dysfunction in the patient, affects the virus-related death rate. Further, melatonin can enhance mitochondrial function and limit virus-related diseases. Hence, melatonin supplementation in older people may be beneficial for the treatment of COVID-19.
Collapse
Affiliation(s)
- Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Fang Vivienne Wu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mei-Chen Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
26
|
Guharoy M, Lazar T, Macossay-Castillo M, Tompa P. Degron masking outlines degronons, co-degrading functional modules in the proteome. Commun Biol 2022; 5:445. [PMID: 35545699 PMCID: PMC9095673 DOI: 10.1038/s42003-022-03391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Effective organization of proteins into functional modules (networks, pathways) requires systems-level coordination between transcription, translation and degradation. Whereas the cooperation between transcription and translation was extensively studied, the cooperative degradation regulation of protein complexes and pathways has not been systematically assessed. Here we comprehensively analyzed degron masking, a major mechanism by which cellular systems coordinate degron recognition and protein degradation. For over 200 substrates with characterized degrons (E3 ligase targeting motifs, ubiquitination sites and disordered proteasomal entry sequences), we demonstrate that degrons extensively overlap with protein-protein interaction sites. Analysis of binding site information and protein abundance comparisons show that regulatory partners effectively outcompete E3 ligases, masking degrons from the ubiquitination machinery. Protein abundance variations between normal and cancer cells highlight the dynamics of degron masking components. Finally, integrative analysis of gene co-expression, half-life correlations and functional relationships between interacting proteins point towards higher-order, co-regulated degradation modules (‘degronons’) in the proteome. Systematic bioinformatics analysis of cooperative degradation of protein complexes indicates that degrons extensively overlap with protein-protein interaction sites, hiding degrons from ubiquitination machinery and suggesting the existence of co-degrading functional modules in the proteome.
Collapse
Affiliation(s)
- Mainak Guharoy
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium. .,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,VIB Bioinformatics Core, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium.
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Mauricio Macossay-Castillo
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium. .,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, 1117, Budapest, Hungary.
| |
Collapse
|
27
|
Rushton MD, Saunderson EA, Patani H, Green MR, Ficz G. An shRNA kinase screen identifies regulators of UHRF1 stability and activity in mouse embryonic stem cells. Epigenetics 2022; 17:1590-1607. [PMID: 35324392 DOI: 10.1080/15592294.2022.2044126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Propagation of DNA methylation through cell division relies on the recognition of methylated cytosines by UHRF1. In reprogramming of mouse embryonic stem cells to naive pluripotency (also known as ground state), despite high levels of Uhrf1 transcript, the protein is targeted for degradation by the proteasome, leading to DNA methylation loss. We have undertaken an shRNA screen to identify the signalling pathways that converge upon UHRF1 and control its degradation, using UHRF1-GFP fluorescence as readout. Many candidates we identified are key enzymes in regulation of glucose metabolism, nucleotide metabolism and Pi3K/AKT/mTOR pathway. Unexpectedly, while downregulation of all candidates we selected for validation rescued UHRF1 protein levels, we found that in some of the cases this was not sufficient to maintain DNA methylation. This has implications for development, ageing and diseased conditions. Our study demonstrates two separate processes that regulate UHRF1 protein abundance and activity.
Collapse
Affiliation(s)
- Michael D Rushton
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.,Horizon Discovery, Cambridge Research Park, 8100 Beach Dr, Waterbeach, Cambridge, CB25 9TL
| | - Emily A Saunderson
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hemalvi Patani
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.,Research And Development, CS Genetics Ltd, Cambridge, UK
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
28
|
Disruption of the Ubiquitin-Proteasome System and Elevated Endoplasmic Reticulum Stress in Epilepsy. Biomedicines 2022; 10:biomedicines10030647. [PMID: 35327449 PMCID: PMC8945847 DOI: 10.3390/biomedicines10030647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The epilepsies are a broad group of conditions characterized by repeated seizures, and together are one of the most common neurological disorders. Additionally, epilepsy is comorbid with many neurological disorders, including lysosomal storage diseases, syndromic intellectual disability, and autism spectrum disorder. Despite the prevalence, treatments are still unsatisfactory: approximately 30% of epileptic patients do not adequately respond to existing therapeutics, which primarily target ion channels. Therefore, new therapeutic approaches are needed. Disturbed proteostasis is an emerging mechanism in epilepsy, with profound effects on neuronal health and function. Proteostasis, the dynamic balance of protein synthesis and degradation, can be directly disrupted by epilepsy-associated mutations in various components of the ubiquitin-proteasome system (UPS), or impairments can be secondary to seizure activity or misfolded proteins. Endoplasmic reticulum (ER) stress can arise from failed proteostasis and result in neuronal death. In light of this, several treatment modalities that modify components of proteostasis have shown promise in the management of neurological disorders. These include chemical chaperones to assist proper folding of proteins, inhibitors of overly active protein degradation, and enhancers of endogenous proteolytic pathways, such as the UPS. This review summarizes recent work on the pathomechanisms of abnormal protein folding and degradation in epilepsy, as well as treatment developments targeting this area.
Collapse
|
29
|
Predisposition to atrioventricular septal defects may be caused by SOX7 variants that impair interaction with GATA4. Mol Genet Genomics 2022; 297:671-687. [PMID: 35260939 DOI: 10.1007/s00438-022-01859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/12/2022] [Indexed: 10/18/2022]
Abstract
Atrioventricular septal defects (AVSD) are a complicated subtype of congenital heart defects for which the genetic basis is poorly understood. Many studies have demonstrated that the transcription factor SOX7 plays a pivotal role in cardiovascular development. However, whether SOX7 single nucleotide variants are involved in AVSD pathogenesis is unclear. To explore the potential pathogenic role of SOX7 variants, we recruited a total of 100 sporadic non-syndromic AVSD Chinese Han patients and screened SOX7 variants in the patient cohort by targeted sequencing. Functional assays were performed to evaluate pathogenicity of nonsynonymous variants of SOX7. We identified three rare SOX7 variants, c.40C > G, c.542G > A, and c.743C > T, in the patient cohort, all of which were found to be highly conserved in mammals. Compared to the wild type, these SOX7 variants had increased mRNA expression and decreased protein expression. In developing hearts, SOX7 and GATA4 were highly expressed in the region of atrioventricular cushions. Moreover, SOX7 overexpression promoted the expression of GATA4 in human umbilical vein endothelial cells. A chromatin immunoprecipitation assay revealed that SOX7 could directly bind to the GATA4 promoter and luciferase assays demonstrated that SOX7 activated the GATA4 promoter. The SOX7 variants had impaired transcriptional activity relative to wild-type SOX7. Furthermore, the SOX7 variants altered the ability of GATA4 to regulate its target genes. In conclusion, our findings showed that deleterious SOX7 variants potentially contribute to human AVSD by impairing its interaction with GATA4. This study provides novel insights into the etiology of AVSD and contributes new strategies to the prenatal diagnosis of AVSD.
Collapse
|
30
|
Nishimura S, Hitora Y, Kawahara T, Tanabe M, Ogata E, Kato H, Srikoon P, Watanabe T, Tsukamoto S. Cell-based screening of extracts of natural sources to search for inhibitors of the ubiquitin–proteasome system and identification of proteasome inhibitors from the fungus Remotididymella sp. Bioorg Med Chem Lett 2022; 59:128566. [DOI: 10.1016/j.bmcl.2022.128566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
|
31
|
Rothweiler EM, Brennan PE, Huber KVM. Covalent fragment-based ligand screening approaches for identification of novel ubiquitin proteasome system modulators. Biol Chem 2022; 403:391-402. [PMID: 35191283 DOI: 10.1515/hsz-2021-0396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Ubiquitination is a key regulatory mechanism vital for maintenance of cellular homeostasis. Protein degradation is induced by E3 ligases via attachment of ubiquitin chains to substrates. Pharmacological exploitation of this phenomenon via targeted protein degradation (TPD) can be achieved with molecular glues or bifunctional molecules facilitating the formation of ternary complexes between an E3 ligase and a given protein of interest (POI), resulting in ubiquitination of the substrate and subsequent proteolysis by the proteasome. Recently, the development of novel covalent fragment screening approaches has enabled the identification of first-in-class ligands for E3 ligases and deubiquitinases revealing so far unexplored binding sites which highlights the potential of these methods to uncover and expand druggable space for new target classes.
Collapse
Affiliation(s)
- Elisabeth M Rothweiler
- Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford OX3 7FZ, UK.,Nuffield Department of Medicine, Target Discovery Institute, Oxford OX3 7FZ, UK
| | - Paul E Brennan
- Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford OX3 7FZ, UK.,Nuffield Department of Medicine, Target Discovery Institute, Oxford OX3 7FZ, UK.,Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, Oxford OX3 7FZ, UK
| | - Kilian V M Huber
- Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford OX3 7FZ, UK.,Nuffield Department of Medicine, Target Discovery Institute, Oxford OX3 7FZ, UK
| |
Collapse
|
32
|
E3 ligases: a potential multi-drug target for different types of cancers and neurological disorders. Future Med Chem 2022; 14:187-201. [DOI: 10.4155/fmc-2021-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubiquitylation is a posttranslational modification of proteins that is necessary for a variety of cellular processes. E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase are all involved in transferring ubiquitin to the target substrate to regulate cellular function. The objective of this review is to provide an overview of different aspects of E3 ubiquitin ligases that can lead to major biological system failure in several deadly diseases. The first part of this review covers the important characteristics of E3 ubiquitin ligases and their classification based on structural domains. Further, the authors provide some online resources that help researchers explore the data relevant to the enzyme. The following section delves into the involvement of E3 ubiquitin ligases in various diseases and biological processes, including different types of cancer and neurological disorders.
Collapse
|
33
|
Linking post-translational modifications and protein turnover by site-resolved protein turnover profiling. Nat Commun 2022; 13:165. [PMID: 35013197 PMCID: PMC8748498 DOI: 10.1038/s41467-021-27639-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Proteome-wide measurements of protein turnover have largely ignored the impact of post-translational modifications (PTMs). To address this gap, we employ stable isotope labeling and mass spectrometry to measure the turnover of >120,000 peptidoforms including >33,000 phosphorylated, acetylated, and ubiquitinated peptides for >9,000 native proteins. This site-resolved protein turnover (SPOT) profiling discloses global and site-specific differences in turnover associated with the presence or absence of PTMs. While causal relationships may not always be immediately apparent, we speculate that PTMs with diverging turnover may distinguish states of differential protein stability, structure, localization, enzymatic activity, or protein-protein interactions. We show examples of how the turnover data may give insights into unknown functions of PTMs and provide a freely accessible online tool that allows interrogation and visualisation of all turnover data. The SPOT methodology is applicable to many cell types and modifications, offering the potential to prioritize PTMs for future functional investigations. Post-translational modifications (PTMs) can regulate cellular protein function but their global impact on protein turnover is largely unknown. Here, the authors develop proteomic workflows to profile PTM-resolved protein turnover and analyze the effects of phosphorylation, acetylation and ubiquitination.
Collapse
|
34
|
Reja SI, Hori Y, Kamikawa T, Yamasaki K, Nishiura M, Bull SD, Kikuchi K. An “OFF–ON–OFF” fluorescence protein-labeling probe for real-time visualization of the degradation of short-lived proteins in cellular systems. Chem Sci 2022; 13:1419-1427. [PMID: 35222926 PMCID: PMC8809410 DOI: 10.1039/d1sc06274c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022] Open
Abstract
The ability to monitor proteolytic pathways that remove unwanted and damaged proteins from cells is essential for understanding the multiple processes used to maintain cellular homeostasis. In this study, we have developed a new protein-labeling probe that employs an ‘OFF–ON–OFF’ fluorescence switch to enable real-time imaging of the expression (fluorescence ON) and degradation (fluorescence OFF) of PYP-tagged protein constructs in living cells. Fluorescence switching is modulated by intramolecular contact quenching interactions in the unbound probe (fluorescence OFF) being disrupted upon binding to the PYP-tag protein, which turns fluorescence ON. Quenching is then restored when the PYP-tag–probe complex undergoes proteolytic degradation, which results in fluorescence being turned OFF. Optimization of probe structures and PYP-tag mutants has enabled this fast reacting ‘OFF–ON–OFF’ probe to be used to fluorescently image the expression and degradation of short-lived proteins. An “OFF–ON–OFF” fluorescence probe for real-time imaging of the expression (fluorescence ‘OFF’) and degradation (fluorescence ‘ON’) of short lived PYP-tag proteins in cellular systems.![]()
Collapse
Affiliation(s)
- Shahi Imam Reja
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichiro Hori
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuya Kamikawa
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohei Yamasaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Miyako Nishiura
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Steven D. Bull
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Kazuya Kikuchi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Giovannucci TA, Salomons FA, Stoy H, Herzog LK, Xu S, Qian W, Merino LG, Gierisch ME, Haraldsson M, Lystad AH, Uvell H, Simonsen A, Gustavsson AL, Vallin M, Dantuma NP. Identification of a novel compound that simultaneously impairs the ubiquitin-proteasome system and autophagy. Autophagy 2021; 18:1486-1502. [PMID: 34740308 PMCID: PMC9298443 DOI: 10.1080/15548627.2021.1988359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy are the main proteolytic systems in eukaryotic cells for preserving protein homeostasis, i.e., proteostasis. By facilitating the timely destruction of aberrant proteins, these complementary pathways keep the intracellular environment free of inherently toxic protein aggregates. Chemical interference with the UPS or autophagy has emerged as a viable strategy for therapeutically targeting malignant cells which, owing to their hyperactive state, heavily rely on the sanitizing activity of these proteolytic systems. Here, we report on the discovery of CBK79, a novel compound that impairs both protein degradation by the UPS and autophagy. While CBK79 was identified in a high-content screen for drug-like molecules that inhibit the UPS, subsequent analysis revealed that this compound also compromises autophagic degradation of long-lived proteins. We show that CBK79 induces non-canonical lipidation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) that requires ATG16L1 but is independent of the ULK1 (unc-51 like autophagy activating kinase 1) and class III phosphatidylinositol 3-kinase (PtdIns3K) complexes. Thermal preconditioning of cells prevented CBK79-induced UPS impairment but failed to restore autophagy, indicating that activation of stress responses does not allow cells to bypass the inhibitory effect of CBK79 on autophagy. The identification of a small molecule that simultaneously impairs the two main proteolytic systems for protein quality control provides a starting point for the development of a novel class of proteostasis-targeting drugs.
Collapse
Affiliation(s)
- Tatiana A Giovannucci
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Florian A Salomons
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Henriette Stoy
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Laura K Herzog
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Shanshan Xu
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Weixing Qian
- Laboratories for Chemical Biology Umeå, Chemical Biology Consortium Sweden (CBCS), Umeå University, Umeå, Sweden
| | - Lara G Merino
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Maria E Gierisch
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alf H Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
| | - Hanna Uvell
- Laboratories for Chemical Biology Umeå, Chemical Biology Consortium Sweden (CBCS), Umeå University, Umeå, Sweden
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Michaela Vallin
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Klimecka MM, Antosiewicz A, Izert MA, Szybowska PE, Twardowski PK, Delaunay C, Górna MW. A Uniform Benchmark for Testing SsrA-Derived Degrons in the Escherichia coli ClpXP Degradation Pathway. Molecules 2021; 26:molecules26195936. [PMID: 34641479 PMCID: PMC8512704 DOI: 10.3390/molecules26195936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
The ssrA degron is commonly used in fusion proteins to control protein stability in bacteria or as an interaction module. These applications often rely on the modular activities of the ssrA tag in binding to the SspB adaptor and in engaging the ClpXP protease. However, a comparison of these activities for a substantial standard set of degron variants has not been conducted previously, which may hinder the development of new variants optimized exclusively for one application. Here, we strive to establish a benchmark that will facilitate the comparison of ssrA variants under uniform conditions. In our workflow, we included methods for expression and purification of ClpX, ClpP, SspB and eGFP-degrons, assays of ClpX ATPase activity, of eGFP-degron binding to SspB and for measuring eGFP-degron degradation in vitro and in vivo. Using uniform, precise and sensitive methods under the same conditions on a range of eGFP-degrons allowed us to determine subtle differences in their properties that can affect their potential applications. Our findings can serve as a reference and a resource for developing targeted protein degradation approaches.
Collapse
|
37
|
Balasubramanian N, Jadhav G, Sakharkar AJ. Repeated mild traumatic brain injuries perturb the mitochondrial biogenesis via DNA methylation in the hippocampus of rat. Mitochondrion 2021; 61:11-24. [PMID: 34508891 DOI: 10.1016/j.mito.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Mitochondrial biogenesis in the brain is impaired in various neurological disorders including traumatic brain injury (TBI). The long-lasting effects of TBI may be, in part, attributed to epigenetic mechanisms such as DNA methylation. However, the role of DNA methylation on regulatory elements of nuclear and mitochondrial genome in mitochondrial biogenesis is not known. We examined the epigenetic regulation of mitochondrial transcription factor A (TFAM), and further probed its implications in mitochondrial dysfunction in the hippocampus of rats subjected to repeated mild TBI (rMTBI) using weight drop injury paradigm. rMTBI-induced hypermethylation at TFAM promoter resulted in deficits in its protein levels in mitochondria after immediate (48 h) and protracted (30 d) time points. Further, rMTBI also caused hypomethylation of mitochondrial DNA (mtDNA) promoters (HSP1 and HSP2), which further culminated into low binding of TFAM. rMTBI-induced changes weakened mitochondrial biogenesis in terms of reduced mtDNA-encoded rRNA, mRNA, and protein levels leading to shortages of ATP. To verify the potential role of mtDNA methylation in rMTBI-induced persistent mitochondrial dysfunction, rMTBI-induced rats were treated with methionine, a methyl donor. Methionine treatment restored the methylation levels on HSP1 and HSP2 resulting in efficient binding of TFAM and normalized the rRNA, mRNA, and protein levels. These findings suggest the crucial role of DNA methylation at nuclear and mitochondrial promoter regions in mitochondrial gene expression and ATP activity in the hippocampus after rMTBI.
Collapse
Affiliation(s)
| | - Gouri Jadhav
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411 007, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411 007, India.
| |
Collapse
|
38
|
Mehrzadi S, Karimi MY, Fatemi A, Reiter RJ, Hosseinzadeh A. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin. Pharmacol Ther 2021; 224:107825. [PMID: 33662449 PMCID: PMC7919585 DOI: 10.1016/j.pharmthera.2021.107825] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/25/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Coronaviruses (CoVs) are a group of single stranded RNA viruses, of which some of them such as SARS-CoV, MERS-CoV, and SARS-CoV-2 are associated with deadly worldwide human diseases. Coronavirus disease-2019 (COVID-19), a condition caused by SARS-CoV-2, results in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) associated with high mortality in the elderly and in people with underlying comorbidities. Results from several studies suggest that CoVs localize in mitochondria and interact with mitochondrial protein translocation machinery to target their encoded products to mitochondria. Coronaviruses encode a number of proteins; this process is essential for viral replication through inhibiting degradation of viral proteins and host misfolded proteins including those in mitochondria. These viruses seem to maintain their replication by altering mitochondrial dynamics and targeting mitochondrial-associated antiviral signaling (MAVS), allowing them to evade host innate immunity. Coronaviruses infections such as COVID-19 are more severe in aging patients. Since endogenous melatonin levels are often dramatically reduced in the aged and because it is a potent anti-inflammatory agent, melatonin has been proposed to be useful in CoVs infections by altering proteasomal and mitochondrial activities. Melatonin inhibits mitochondrial fission due to its antioxidant and inhibitory effects on cytosolic calcium overload. The collective data suggests that melatonin may mediate mitochondrial adaptations through regulating both mitochondrial dynamics and biogenesis. We propose that melatonin may inhibit SARS-CoV-2-induced cell damage by regulating mitochondrial physiology.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Fatemi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Biological Activity Characterization of the Diagnostically Relevant Human Papillomavirus 16 E1C RNA. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The spliced human papillomavirus 16 (HPV16) E1C RNA is associated with high-grade precursor lesions and cervical cancer. This qualifies E1C as a biomarker for high-grade lesions in HPV-based cervical cancer precursor screening. Here, we aimed to characterize the biological activity of HPV16 E1C RNA. In HEK-293T cells overexpressing HPV16 E1C RNA, we detected 9 kDa E1C protein in the cytoplasm using immunological assays with a newly generated E1C-specific monoclonal antibody or in mass spectrometry only after proteasome inhibition with MG132, indicating instability of the E1C protein. In HPV16-transformed cervical cancer cell lines in which the level of endogenous E1C RNA is much lower, E1C protein was not detected even after proteasome inhibition. Transient E1C overexpression in HEK-293T cells, co-transfected with a firefly luciferase reporter gene under the control of the HPV16 upstream regulatory region (URR), activated the HPV16 URR by 38%. This activation was also present when E1C translation was abolished by mutation. However, a construct expressing a random RNA sequence with similar GC content and 45% homology to the E1C RNA sequence also stimulated URR activity, indicating that special E1C RNA motifs might be responsible for the activation. In HPV16-transformed cell lines W12-episomal (W12-epi), W12-integrated HPV (W12-int), CaSki and SiHa stably overexpressing E1C RNA from lentiviral transduction, levels of endogenous HPV16 RNAs E6*I and E7 remained unchanged, while E1^E4 levels were significantly reduced by 20–30% in W12-epi, W12-int and CaSki cells. Overall, our study shows that E1C RNA is active and might contribute to transformation independent of the E6*I or E7 pathways. However, E1C overexpression resulted in only subtle changes in HPV16 RNA expression and very low copies of endogenous E1C RNA were detected in cervical cancer cell lines. This could weigh towards a less prominent role of E1C RNA in natural HPV transformation.
Collapse
|
40
|
Ho JML, Miller CA, Smith KA, Mattia JR, Bennett MR. Improved pyrrolysine biosynthesis through phage assisted non-continuous directed evolution of the complete pathway. Nat Commun 2021; 12:3914. [PMID: 34168131 PMCID: PMC8225853 DOI: 10.1038/s41467-021-24183-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/04/2021] [Indexed: 11/29/2022] Open
Abstract
Pyrrolysine (Pyl, O) exists in nature as the 22nd proteinogenic amino acid. Despite being a fundamental building block of proteins, studies of Pyl have been hindered by the difficulty and inefficiency of both its chemical and biological syntheses. Here, we improve Pyl biosynthesis via rational engineering and directed evolution of the entire biosynthetic pathway. To accommodate toxicity of Pyl biosynthetic genes in Escherichia coli, we also develop Alternating Phage Assisted Non-Continuous Evolution (Alt-PANCE) that alternates mutagenic and selective phage growths. The evolved pathway provides 32-fold improved yield of Pyl-containing reporter protein compared to the rationally engineered ancestor. Evolved PylB mutants are present at up to 4.5-fold elevated levels inside cells, and show up to 2.2-fold increased protease resistance. This study demonstrates that Alt-PANCE provides a general approach for evolving proteins exhibiting toxic side effects, and further provides an improved pathway capable of producing substantially greater quantities of Pyl-proteins in E. coli. Pyrrolysine (Pyl) exists in nature as the 22nd proteinogenic amino acid, but studies of Pyl have been hindered by the difficulty and inefficiency of both its chemical and biological syntheses. Here, the authors developed an improved PANCE approach to evolve the pylBCD pathway for increased production of Pyl proteins in E. coli.
Collapse
Affiliation(s)
- Joanne M L Ho
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Corwin A Miller
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Kathryn A Smith
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Jacob R Mattia
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, TX, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
41
|
New insights into the mechanisms of age-related protein-protein crosslinking in the human lens. Exp Eye Res 2021; 209:108679. [PMID: 34147508 DOI: 10.1016/j.exer.2021.108679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
Although protein crosslinking is often linked with aging as well as some age-related diseases, very few molecular details are available on the nature of the amino acids involved, or mechanisms that are responsible for crosslinking. Recent research has shown that several amino acids are able to generate reactive intermediates that ultimately lead to covalent crosslinking through multiple non-enzymatic mechanisms. This information has been derived from proteomic investigations on aged human lenses and the mechanisms of crosslinking, in each case, have been elucidated using model peptides. Residues involved in spontaneous protein-protein crosslinking include aspartic acid, asparagine, cysteine, lysine, phosphoserine, phosphothreonine, glutamic acid and glutamine. It has become clear, therefore, that several amino acids can act as potential sites for crosslinking in the long-lived proteins that are present in aged individuals. Moreover, the lens has been an invaluable model tissue and source of crosslinked proteins from which to determine crosslinking mechanisms that may lead to crosslinking in other human tissues.
Collapse
|
42
|
Gambino F, Tai W, Voronin D, Zhang Y, Zhang X, Shi J, Wang X, Wang N, Du L, Qiao L. A vaccine inducing solely cytotoxic T lymphocytes fully prevents Zika virus infection and fetal damage. Cell Rep 2021; 35:109107. [PMID: 33979612 PMCID: PMC8742672 DOI: 10.1016/j.celrep.2021.109107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/20/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
As vaccine-induced non-neutralizing antibodies may cause antibody-dependent enhancement of Zika virus (ZIKV) infection, we test a vaccine that induces only specific cytotoxic T lymphocytes (CTLs) without specific antibodies. We construct a DNA vaccine expressing a ubiquitinated and rearranged ZIKV non-structural protein 3 (NS3). The protein is immediately degraded and processed in the proteasome for presentation via major histocompatibility complex (MHC) class I for CTL generation. We immunize Ifnar1-/- adult mice with the ubiquitin/NS3 vaccine, impregnate them, and challenge them with ZIKV. Our data show that the vaccine greatly reduces viral titers in reproductive organs and other tissues of adult mice. All mice immunized with the vaccine survived after ZIKV challenge. The vaccine remarkably reduces placenta damage and levels of pro-inflammatory cytokines, and it fully protects fetuses from damage. CD8+ CTLs are essential in protection, as demonstrated via depletion experiments. Our study provides a strategy to develop safe and effective vaccines against viral infections.
Collapse
Affiliation(s)
- Frank Gambino
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA,These authors contributed equally
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA,These authors contributed equally
| | - Denis Voronin
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Juan Shi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Xinyi Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Ning Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA,Senior author,Correspondence: (L.D.), (L.Q.)
| | - Liang Qiao
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA,Senior author,Lead contact,Correspondence: (L.D.), (L.Q.)
| |
Collapse
|
43
|
Identification of ubiquitination-related genes in human glioma as indicators of patient prognosis. PLoS One 2021; 16:e0250239. [PMID: 33914773 PMCID: PMC8084191 DOI: 10.1371/journal.pone.0250239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/04/2021] [Indexed: 11/21/2022] Open
Abstract
Ubiquitination is a dynamic and reversible process of a specific modification of target proteins catalyzed by a series of ubiquitination enzymes. Because of the extensive range of substrates, ubiquitination plays a crucial role in the localization, metabolism, regulation, and degradation of proteins. Although the treatment of glioma has been improved, the survival rate of patients is still not satisfactory. Therefore, we explore the role of ubiquitin proteasome in glioma. Survival-related ubiquitination related genes (URGs) were obtained through analysis of the Genotype-Tissue Expression (GTEx) and the Cancer Genome Atlas (TCGA). Cox analysis was performed to construct risk model. The accuracy of risk model is verified by survival, Receiver operating characteristic (ROC) and Cox analysis. We obtained 36 differentially expressed URGs and found that 25 URGs were related to patient prognosis. We used the 25 URGs to construct a model containing 8 URGs to predict glioma patient risk by Cox analysis. ROC showed that the accuracy rate of this model is 85.3%. Cox analysis found that this model can be used as an independent prognostic factor. We also found that this model is related to molecular typing markers. Patients in the high-risk group were enriched in multiple tumor-related signaling pathways. In addition, we predicted TFs that may regulate the risk model URGs and found that the risk model is related to B cells, CD4 T cells, and neutrophils.
Collapse
|
44
|
Kalathil D, John S, Nair AS. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front Oncol 2021; 10:626836. [PMID: 33680951 PMCID: PMC7927600 DOI: 10.3389/fonc.2020.626836] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several disease scenarios including cancer. It has been given an oncogenic status based on several evidences indicating its role in tumor development and progression. FOXM1 is highly expressed in several cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we attempt to understand various mechanisms underlying FOXM1 gene and protein regulation in cancer including the different signaling pathways, post-transcriptional and post-translational modifications. Identifying crucial molecules associated with these processes can aid in the development of potential pharmacological approaches to curb FOXM1 mediated tumorigenesis.
Collapse
Affiliation(s)
- Dhanya Kalathil
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Samu John
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Asha S Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
45
|
Kim L, Heo J, Kwon DH, Shin JS, Jang SH, Park ZY, Song HK. Structural basis for the N-degron specificity of ClpS1 from Arabidopsis thaliana. Protein Sci 2020; 30:700-708. [PMID: 33368743 DOI: 10.1002/pro.4018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
The N-degron pathway determines the half-life of proteins in both prokaryotes and eukaryotes by precisely recognizing the N-terminal residue (N-degron) of substrates. ClpS proteins from bacteria bind to substrates containing hydrophobic N-degrons (Leu, Phe, Tyr, and Trp) and deliver them to the caseinolytic protease system ClpAP. This mechanism is preserved in organelles such as mitochondria and chloroplasts. Bacterial ClpS adaptors bind preferentially to Leu and Phe N-degrons; however, ClpS1 from Arabidopsis thaliana (AtClpS1) shows a difference in that it binds strongly to Phe and Trp N-degrons and only weakly to Leu. This difference in behavior cannot be explained without structural information due to the high sequence homology between bacterial and plant ClpS proteins. Here, we report the structure of AtClpS1 at 2.0 Å resolution in the presence of a bound N-degron. The key determinants for α-amino group recognition are conserved among all ClpS proteins, but the α3-helix of eukaryotic AtClpS1 is significantly shortened, and consequently, a loop forming a pocket for the N-degron is moved slightly outward to enlarge the pocket. In addition, amino acid replacement from Val to Ala causes a reduction in hydrophobic interactions with Leu N-degron. A combination of the fine-tuned hydrophobic residues in the pocket and the basic gatekeeper at the entrance of the pocket controls the N-degron selectivity of the plant ClpS protein.
Collapse
Affiliation(s)
- Leehyeon Kim
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Jiwon Heo
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Do Hoon Kwon
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Jin Seok Shin
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
46
|
Liu L, Zhang Q. Comparative proteome analysis reveals VPS28 regulates milk fat synthesis through ubiquitylation in bovine mammary epithelial cells. PeerJ 2020; 8:e9542. [PMID: 33194328 PMCID: PMC7394067 DOI: 10.7717/peerj.9542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/24/2020] [Indexed: 11/20/2022] Open
Abstract
In our previous study, we found that VPS28 (vacuolar protein sorting 28 homolog) could alter ubiquitylation level to regulate milk fat synthesis in bovine primary mammary epithelial cells (BMECs). While the information on the regulation of VPS28 on proteome of milk fat synthesis is less known, we explored its effect on milk fat synthesis using isobaric tags for relative and absolute quantitation assay after knocking down VPS28 in BMECs. A total of 2,773 proteins in three biological replicates with a false discovery rate of less than 1.2% were identified and quantified. Among them, a subset of 203 proteins were screened as significantly down-(111) and up-(92) regulated in VPS28 knockdown BMECs compared with the control groups. According to Gene Ontology analysis, the differentially expressed proteins were enriched in the "proteasome," "ubiquitylation," "metabolism of fatty acids," "phosphorylation," and "ribosome." Meanwhile, some changes occurred in the morphology of BMECs and an accumulation of TG (triglyceride) and dysfunction of proteasome were identified, and a series of genes associated with milk fat synthesis, ubiquitylation and proteasome pathways were analyzed by quantitative real-time PCR. The results of this study suggested VPS28 regulated milk fat synthesis was mediated by ubiquitylation; it could be an important new area of study for milk fat synthesis and other milk fat content traits in bovine.
Collapse
Affiliation(s)
- Lily Liu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Qin Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
47
|
Abraham-Juárez MJ, Schrager-Lavelle A, Man J, Whipple C, Handakumbura P, Babbitt C, Bartlett M. Evolutionary Variation in MADS Box Dimerization Affects Floral Development and Protein Abundance in Maize. THE PLANT CELL 2020; 32:3408-3424. [PMID: 32873631 PMCID: PMC7610293 DOI: 10.1105/tpc.20.00300] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 05/19/2023]
Abstract
Interactions between MADS box transcription factors are critical in the regulation of floral development, and shifting MADS box protein-protein interactions are predicted to have influenced floral evolution. However, precisely how evolutionary variation in protein-protein interactions affects MADS box protein function remains unknown. To assess the impact of changing MADS box protein-protein interactions on transcription factor function, we turned to the grasses, where interactions between B-class MADS box proteins vary. We tested the functional consequences of this evolutionary variability using maize (Zea mays) as an experimental system. We found that differential B-class dimerization was associated with subtle, quantitative differences in stamen shape. In contrast, differential dimerization resulted in large-scale changes to downstream gene expression. Differential dimerization also affected B-class complex composition and abundance, independent of transcript levels. This indicates that differential B-class dimerization affects protein degradation, revealing an important consequence for evolutionary variability in MADS box interactions. Our results highlight complexity in the evolution of developmental gene networks: changing protein-protein interactions could affect not only the composition of transcription factor complexes but also their degradation and persistence in developing flowers. Our results also show how coding change in a pleiotropic master regulator could have small, quantitative effects on development.
Collapse
Affiliation(s)
- María Jazmín Abraham-Juárez
- Biology Department, University of Massachusetts, Amherst, 01003 Massachusetts
- CONACYT-Instituto Potosino de Investigación Científica y Tecnológica A.C., 78216 San Luis Potosi, Mexico
| | - Amanda Schrager-Lavelle
- Biology Department, University of Massachusetts, Amherst, 01003 Massachusetts
- Biology Department, Colorado Mesa University, Grand Junction, 81501 Colorado
| | - Jarrett Man
- Biology Department, University of Massachusetts, Amherst, 01003 Massachusetts
| | - Clinton Whipple
- Biology Department, Brigham Young University, Provo, 84602 Utah
| | - Pubudu Handakumbura
- Biology Department, University of Massachusetts, Amherst, 01003 Massachusetts
- Pacific Northwest National Laboratory, Richland, 99354 Washington
| | - Courtney Babbitt
- Biology Department, University of Massachusetts, Amherst, 01003 Massachusetts
| | - Madelaine Bartlett
- Biology Department, University of Massachusetts, Amherst, 01003 Massachusetts
| |
Collapse
|
48
|
Dehdashtian E, Pourhanifeh MH, Hemati K, Mehrzadi S, Hosseinzadeh A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab Res Rev 2020; 36:e3336. [PMID: 32415805 DOI: 10.1002/dmrr.3336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN.
Collapse
Affiliation(s)
- Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Mintis DG, Chasapi A, Poulas K, Lagoumintzis G, Chasapis CT. Assessing the Direct Binding of Ark-Like E3 RING Ligases to Ubiquitin and Its Implication on Their Protein Interaction Network. Molecules 2020; 25:molecules25204787. [PMID: 33086510 PMCID: PMC7594095 DOI: 10.3390/molecules25204787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
The ubiquitin pathway required for most proteins’ targeted degradation involves three classes of enzymes: E1-activating enzyme, E2-conjugating enzyme, and E3-ligases. The human Ark2C is the single known E3 ligase that adopts an alternative, Ub-dependent mechanism for the activation of Ub transfer in the pathway. Its RING domain binds both E2-Ub and free Ub with high affinity, resulting in a catalytic active UbR-RING-E2-UbD complex formation. We examined potential changes in the conformational plasticity of the Ark2C RING domain and its ligands in their complexed form within the ubiquitin pathway through molecular dynamics (MD). Three molecular mechanics force fields compared to previous NMR relaxation studies of RING domain of Arkadia were used for effective and accurate assessment of MDs. Our results suggest the Ark2C Ub-RING docking site has a substantial impact on maintaining the conformational rigidity of E2-E3 assembly, necessary for the E3’s catalytic activity. In the UbR-RING-E2-UbD catalytic complex, the UbR molecule was found to have greater mobility than the other Ub, bound to E2. Furthermore, network-based bioinformatics helped us identify E3 RING ligase candidates which potentially exhibit similar structural modules as Ark2C, along with predicted substrates targeted by the Ub-binding RING Ark2C. Our findings could trigger a further exploration of related unrevealed functions of various other E3 RING ligases.
Collapse
Affiliation(s)
- Dimitris G. Mintis
- Laboratory of Statistical Thermodynamics and Macromolecules, Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, 26504 Patras, Greece;
| | - Anastasia Chasapi
- Biological Computation & Process Lab, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, 57001 Thessaloniki, Greece;
| | - Konstantinos Poulas
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26504 Patras, Greece;
- Institute of Research and Innovation-IRIS, Patras Science Park SA, Stadiou, Platani, Rio, 26504 Patras, Greece
| | - George Lagoumintzis
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26504 Patras, Greece;
- Institute of Research and Innovation-IRIS, Patras Science Park SA, Stadiou, Platani, Rio, 26504 Patras, Greece
- Correspondence: (G.L.); (C.T.C.); Tel.: +30-2610-996-312 (G.L.); +30-2610-996-261 (C.T.C.)
| | - Christos T. Chasapis
- NMR Center, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
- Correspondence: (G.L.); (C.T.C.); Tel.: +30-2610-996-312 (G.L.); +30-2610-996-261 (C.T.C.)
| |
Collapse
|
50
|
Kitajima Y, Suzuki N, Yoshioka K, Izumi R, Tateyama M, Tashiro Y, Takahashi R, Aoki M, Ono Y. Inducible Rpt3, a Proteasome Component, Knockout in Adult Skeletal Muscle Results in Muscle Atrophy. Front Cell Dev Biol 2020; 8:859. [PMID: 32984340 PMCID: PMC7492297 DOI: 10.3389/fcell.2020.00859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin–proteasome system has the capacity to degrade polyubiquitinated proteins and plays an important role in many cellular processes. However, the role of Rpt3, a crucial proteasomal gene, has not been investigated in adult muscles in vivo. Herein, we generated skeletal-muscle-specific Rpt3 knockout mice, in which genetic inactivation of Rpt3 could be induced by doxycycline administration. The Rpt3-knockout mice showed a significant reduction by more than 90% in the expression of Rpt3 in adult muscles. Using this model, we found that proteasome dysfunction in adult muscles resulted in muscle wasting and a decrease in the myofiber size. Immunoblotting analysis showed that the amounts of ubiquitinated proteins were markedly higher in muscles of Rpt3-deficient mice than in those of the control mice. Analysis of the autophagy pathway in the Rpt3-deficient mice showed that the upregulation of LC3II, p62, Atg5, Atg7, and Beclin-1 in protein levels, which supposed to be compensatory proteolysis activation. Our results suggest that the proteasome inhibition in adult muscle severely deteriorates myofiber integrity and results in muscle atrophy.
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan.,Department of Neurology, Shodo-kai Southern Tohoku General Hospital, Iwanuma, Japan
| | - Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Maki Tateyama
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan.,National Hospital Organization Iwate National Hospital, Hanamaki, Japan
| | - Yoshitaka Tashiro
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|