1
|
Xiang Y, Zheng J, Liu Z, Cui X, Zhang Y, Guo M, Li W. Cu2+ mediates the oxidation of the transcription factor MscA to regulate the antioxidant defense of mycobacteria. Nucleic Acids Res 2025; 53:gkae1309. [PMID: 39788544 PMCID: PMC11711680 DOI: 10.1093/nar/gkae1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/05/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
Copper (Cu), a trace element with redox activity, is both essential and toxic to living organisms. Its redox properties make it a cofactor for a variety of proteins, but it also causes oxidative stress, hence the need to maintain intracellular copper homeostasis. However, the role of copper in the regulation of antioxidant defense in bacteria remains unclear, and the involved transcription factors remain to be explored. In this study, we identified a novel transcription factor, MscA, that responded directly to Cu2+ to regulate the antioxidant defense of mycobacteria. Cu2+ directly bound to MscA to mediate oxidation and inhibit the DNA binding activity of MscA, subsequently downregulating the expression of antioxidant gene cluster to increase the accumulation of reactive oxygen species in mycobacteria, ultimately leading to oxidative damage to mycobacteria. Therefore, we firstly reported that the Cu2+ responsive transcription factor regulated the antioxidant defense in bacteria. This finding firstly and directly links the function of Cu2+ to the antioxidant defense of bacteria, and provides a new insight into bacterial antioxidant defense.
Collapse
Affiliation(s)
- Yuling Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiachen Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhendong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xujie Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yunfan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Minhao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
2
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
3
|
Zhi F, Liu K, Geng H, Su M, Xu J, Fu L, Ma K, Gao P, Yuan L, Chu Y. Copper sensing transcription factor ArsR2 regulates VjbR to sustain virulence in Brucella abortus. Emerg Microbes Infect 2024; 13:2406274. [PMID: 39295505 PMCID: PMC11425708 DOI: 10.1080/22221751.2024.2406274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/21/2024]
Abstract
Brucellosis, caused by the intracellular pathogen Brucella, is a major zoonotic infection that promotes reproductive disease in domestic animals and chronic debilitating conditions in humans. The ArsR family of transcriptional regulators plays key roles in diverse cellular processes, including metal ion homeostasis, responding to adverse conditions, and virulence. However, little is known about the function of ArsR family members in Brucella. Here, we identified ArsR2 as a nonclassical member of the family that lacks autoregulatory function, but which nevertheless plays a vital role in maintaining copper homeostasis in B. abortus. ArsR2 is a global regulator of 241 genes, including those involved in the VirB type IV secretion system (T4SS). Significantly, ArsR2 regulates T4SS production in B. abortus by targeting VjbR which encodes a LuxR-type family transcriptional regulator. Moreover, copper modulates transcriptional activity of ArsR2, but not of VjbR. Furthermore, deletion of arsR2 attenuated virulence in a mouse model. Collectively, these findings enhance understanding of the mechanism by which ArsR proteins regulate virulence gene expression in pathogenic Brucella species.
Collapse
Affiliation(s)
- Feijie Zhi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Kemeng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Hao Geng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Mengru Su
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Jian Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Lei Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Ke Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Lvfeng Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - YueFeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| |
Collapse
|
4
|
Yan M, Wang W, Jin L, Deng G, Han X, Yu X, Tang J, Han X, Ma M, Ji L, Zhao K, Zou L. Emerging antibiotic and heavy metal resistance in spore-forming bacteria from pig manure, manure slurry and fertilized soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123270. [PMID: 39541816 DOI: 10.1016/j.jenvman.2024.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Spore-forming bacteria (SFB), like Bacillus, are the gram-positive bacteria with broad-spectrum activity that is one of the commonly used strains of probiotics. However, these bacteria also have significant resistance. In this study, we systematically investigated pig manure, manure slurry and soil by 16S rRNA high-throughput sequencing and traditional culture techniques. We found the SFB was widespread in manure, manure slurry and soil, Firmicutes was one of the main dominant phyla in pig manure, manure slurry and soil, the relative abundance of Bacillus were 0.98%, 0.01%, and 2.57%, respectively, and metals such as copper have complex relationships with bacteria. We isolated 504 SFB from 369 samples, with the highest number identified as Bacillus subtilis. SFB strains showed varying degrees of antibiotic resistance; the greatest against erythromycin, followed by imipenem. The MICs of SFB varied greatly against different heavy metals; with high (est) resistance against Zn2+, followed by Cu2+. Second-generation whole genome sequencing (WGS) revealed that nine Bacillus strains carried different subtypes of vancomycin resistance genes, among which vanRM had the highest frequency. The strain W129 included the vanRA-vanRM-vanSA-vanZF cluster. The nine Bacillus strains also contained antibiotic genes such as aminoglycoside (ant(9)-Ia), β-lactam (bcII), and macrolide (msrE). Twenty-six Bacillus isolates carried copper resistance clusters, including csoR-copZ, copA-copZ-csoR, and copZ-copA. WGS showed that strain W166 carried 11 vancomycin resistance genes and 11 copper resistance genes. There were 4 vancomycin resistance genes and 14 copper resistance genes on the W129 chromosome. Strain W129 also harbors the plasmid pLKYM01 that contains an intact transposon consisting of insertion sequence and vancomycin resistance genes vanYF and vanRA. This study explores the potential risks of using pig manure and fertilized soil to inform safe and effective use of probiotics in agriculture. It highlights scientific evidence for concern over the safe utilization and control of animal waste products.
Collapse
Affiliation(s)
- Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guoyou Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xinfeng Han
- College of Veterinary Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Junni Tang
- College of Food Sciences and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lin Ji
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
5
|
Nonoyama S, Maeno S, Gotoh Y, Sugimoto R, Tanaka K, Hayashi T, Masuda S. Increased intracellular H 2S levels enhance iron uptake in Escherichia coli. mBio 2024; 15:e0199124. [PMID: 39324809 PMCID: PMC11481527 DOI: 10.1128/mbio.01991-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
We investigated the impact of intracellular hydrogen sulfide (H2S) hyperaccumulation on the transcriptome of Escherichia coli. The wild-type (WT) strain overexpressing mstA, encoding 3-mercaptopyruvate sulfur transferase, produced significantly higher H2S levels than the control WT strain. The mstA-overexpressing strain exhibited increased resistance to antibiotics, supporting the prior hypothesis that intracellular H2S contributes to oxidative stress responses and antibiotic resistance. RNA-seq analysis revealed that over 1,000 genes were significantly upregulated or downregulated upon mstA overexpression. The upregulated genes encompassed those associated with iron uptake, including siderophore synthesis and iron import transporters. The mstA-overexpressing strain showed increased levels of intracellular iron content, indicating that H2S hyperaccumulation affects iron availability within cells. We found that the H2S-/supersulfide-responsive transcription factor YgaV is required for the upregulated expression of iron uptake genes in the mstA-overexpression conditions. These findings indicate that the expression of iron uptake genes is regulated by intracellular H2S, which is crucial for oxidative stress responses and antibiotic resistance in E. coli. IMPORTANCE H2S is recognized as a second messenger in bacteria, playing a vital role in diverse intracellular and extracellular activities, including oxidative stress responses and antibiotic resistance. Both H2S and iron serve as essential signaling molecules for gut bacteria. However, the intricate intracellular coordination between them, governing bacterial physiology, remains poorly understood. This study unveils a close relationship between intracellular H2S accumulation and iron uptake activity, a relationship critical for antibiotic resistance. We present additional evidence expanding the role of intracellular H2S synthesis in bacterial physiology.
Collapse
Affiliation(s)
- Shouta Nonoyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shintaro Maeno
- Department of Biological Chemistry, College of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Sugimoto
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
6
|
Singh P, Kaur J. MSMEG_5850, a global TetR family member supports Mycobacterium smegmatis to survive environmental stress. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01186-9. [PMID: 39017913 DOI: 10.1007/s12223-024-01186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
A Mycobacterium smegmatis transcriptional regulator, MSMEG_5850, and its ortholog in M. tuberculosis, rv0775 were annotated as putative TetR Family Transcriptional Regulators. Our previous study revealed MSMEG_5850 is involved in global transcriptional regulation in M. smegmatis and the presence of gene product supported the survival of bacteria during nutritional starvation. Phylogenetic analysis showed that MSMEG_5850 diverged early in comparison to its counterparts in virulent strains. Therefore, the expression pattern of MSMEG_5850 and its counterpart, rv0775, was compared during various in-vitro growth and stress conditions. Expression of MSMEG_5850 was induced under different environmental stresses while no change in expression was observed under mid-exponential and stationary phases. No expression of rv0775 was observed under any stress condition tested, while the gene was expressed during the mid-exponential phase that declined in the stationary phase. The effect of MSMEG_5850 on the survival of M. smegmatis under stress conditions and growth pattern was studied using wild type, knockout, and supplemented strain. Deletion of MSMEG_5850 resulted in altered colony morphology, biofilm/pellicle formation, and growth pattern of M. smegmatis. The survival rate of wild-type MSMEG_5850 was higher in comparison to knockout under different environmental stresses. Overall, this study suggested the role of MSMEG_5850 in the growth and adaptation/survival of M. smegmatis under stress conditions.
Collapse
Affiliation(s)
- Parul Singh
- Department of Biotechnology, Panjab University, BMS Block-1, Sector-25, Chandigarh, India, 160014
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, BMS Block-1, Sector-25, Chandigarh, India, 160014.
| |
Collapse
|
7
|
Huang Z, Cao L, Yan D. Inflammatory immunity and bacteriological perspectives: A new direction for copper treatment of sepsis. J Trace Elem Med Biol 2024; 84:127456. [PMID: 38692229 DOI: 10.1016/j.jtemb.2024.127456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Copper is an essential trace element for all aerobic organisms because of its unique biological functions. In recent years, researchers have discovered that copper can induce cell death through various regulatory mechanisms, thereby inducing inflammation. Efforts have also been made to alter the chemical structure of copper to achieve either anticancer or anti-inflammatory effects. The copper ion can exhibit bactericidal effects by interfering with the integrity of the cell membrane and promoting oxidative stress. Sepsis is a systemic inflammatory response caused by infection. Some studies have revealed that copper is involved in the pathophysiological process of sepsis and is closely related to its prognosis. During the infection of sepsis, the body may enhance the antimicrobial effect by increasing the release of copper. However, to avoid copper poisoning, all organisms have evolved copper resistance genes. Therefore, further analysis of the complex relationship between copper and bacteria may provide new ideas and research directions for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Huang
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China
| | - Lunfei Cao
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China
| | - Dengfeng Yan
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China..
| |
Collapse
|
8
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Wang S, Fang R, Wang H, Li X, Xing J, Li Z, Song N. The role of transcriptional regulators in metal ion homeostasis of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2024; 14:1360880. [PMID: 38529472 PMCID: PMC10961391 DOI: 10.3389/fcimb.2024.1360880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Metal ions are essential trace elements for all living organisms and play critical catalytic, structural, and allosteric roles in many enzymes and transcription factors. Mycobacterium tuberculosis (MTB), as an intracellular pathogen, is usually found in host macrophages, where the bacterium can survive and replicate. One of the reasons why Tuberculosis (TB) is so difficult to eradicate is the continuous adaptation of its pathogen. It is capable of adapting to a wide range of harsh environmental stresses, including metal ion toxicity in the host macrophages. Altering the concentration of metal ions is the common host strategy to limit MTB replication and persistence. This review mainly focuses on transcriptional regulatory proteins in MTB that are involved in the regulation of metal ions such as iron, copper and zinc. The aim is to offer novel insights and strategies for screening targets for TB treatment, as well as for the development and design of new therapeutic interventions.
Collapse
Affiliation(s)
- Shuxian Wang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Hui Wang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- Drug Innovation Research Center, SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
10
|
Igbaria-Jaber Y, Hofmann L, Gevorkyan-Airapetov L, Shenberger Y, Ruthstein S. Revealing the DNA Binding Modes of CsoR by EPR Spectroscopy. ACS OMEGA 2023; 8:39886-39895. [PMID: 37901548 PMCID: PMC10601412 DOI: 10.1021/acsomega.3c06336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
In pathogens, a unique class of metalloregulator proteins, called gene regulatory proteins, sense specific metal ions that initiate gene transcription of proteins that export metal ions from the cell, thereby preventing toxicity and cell death. CsoR is a metalloregulator protein found in various bacterial systems that "sense" Cu(I) ions with high affinity. Upon copper binding, CsoR dissociates from the DNA promoter region, resulting in initiation of gene transcription. Crystal structures of CsoR in the presence and absence of Cu(I) from various bacterial systems have been reported, suggesting either a dimeric or tetrameric structure of these helical proteins. However, structural information about the CsoR-DNA complex is missing. Here, we applied electron paramagnetic resonance (EPR) spectroscopy to follow the conformational and dynamical changes that Mycobacterium tuberculosis CsoR undergoes upon DNA binding in solution. We showed that the quaternary structure is predominantly dimeric in solution, and only minor conformational and dynamical changes occur in the DNA bound state. Also, labeling of the unresolved C- terminus revealed no significant change in dynamics upon DNA binding. These observations are unique, since for other bacterial copper metalloregulators, such as the MerR and CopY families, major conformational changes were observed upon DNA binding, indicating a different mode of action for this protein family.
Collapse
Affiliation(s)
- Yasmin Igbaria-Jaber
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lukas Hofmann
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Sharon Ruthstein
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
11
|
Giedroc DP, Antelo GT, Fakhoury JN, Capdevila DA. Sensing and regulation of reactive sulfur species (RSS) in bacteria. Curr Opin Chem Biol 2023; 76:102358. [PMID: 37399745 PMCID: PMC10526684 DOI: 10.1016/j.cbpa.2023.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 07/05/2023]
Abstract
The infected host deploys generalized oxidative stress caused by small inorganic reactive molecules as antibacterial weapons. An emerging consensus is that hydrogen sulfide (H2S) and forms of sulfur with sulfur-sulfur bonds termed reactive sulfur species (RSS) provide protection against oxidative stressors and antibiotics, as antioxidants. Here, we review our current understanding of RSS chemistry and its impact on bacterial physiology. We start by describing the basic chemistry of these reactive species and the experimental approaches developed to detect them in cells. We highlight the role of thiol persulfides in H2S-signaling and discuss three structural classes of ubiquitous RSS sensors that tightly regulate cellular H2S/RSS levels in bacteria, with a specific focus on the chemical specificity of these sensors.
Collapse
Affiliation(s)
- David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| | - Joseph N Fakhoury
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
12
|
Limón G, Samhadaneh NM, Pironti A, Darwin KH. Aldehyde accumulation in Mycobacterium tuberculosis with defective proteasomal degradation results in copper sensitivity. mBio 2023; 14:e0036323. [PMID: 37350636 PMCID: PMC10470581 DOI: 10.1128/mbio.00363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 06/24/2023] Open
Abstract
Mycobacterium tuberculosis is a major human pathogen and the causative agent of tuberculosis disease. M. tuberculosis is able to persist in the face of host-derived antimicrobial molecules nitric oxide (NO) and copper (Cu). However, M. tuberculosis with defective proteasome activity is highly sensitive to NO and Cu, making the proteasome an attractive target for drug development. Previous work linked NO susceptibility with the accumulation of para-hydroxybenzaldehyde (pHBA) in M. tuberculosis mutants with defective proteasomal degradation. In this study, we found that pHBA accumulation was also responsible for Cu sensitivity in these strains. We showed that exogenous addition of pHBA to wild-type M. tuberculosis cultures sensitized bacteria to Cu to a degree similar to that of a proteasomal degradation mutant. We determined that pHBA reduced the production and function of critical Cu resistance proteins of the regulated in copper repressor (RicR) regulon. Furthermore, we extended these Cu-sensitizing effects to an aldehyde that M. tuberculosis may face within the macrophage. Collectively, this study is the first to mechanistically propose how aldehydes can render M. tuberculosis susceptible to an existing host defense and could support a broader role for aldehydes in controlling M. tuberculosis infections. IMPORTANCE M. tuberculosis is a leading cause of death by a single infectious agent, causing 1.5 million deaths annually. An effective vaccine for M. tuberculosis infections is currently lacking, and prior infection does not typically provide robust immunity to subsequent infections. Nonetheless, immunocompetent humans can control M. tuberculosis infections for decades. For these reasons, a clear understanding of how mammalian immunity inhibits mycobacterial growth is warranted. In this study, we show aldehydes can increase M. tuberculosis susceptibility to copper, an established antibacterial metal used by immune cells to control M. tuberculosis and other microbes. Given that activated macrophages produce increased amounts of aldehydes during infection, we propose host-derived aldehydes may help control bacterial infections, making aldehydes a previously unappreciated antimicrobial defense.
Collapse
Affiliation(s)
- Gina Limón
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Nora M. Samhadaneh
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, New York, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, New York, USA
| | - K. Heran Darwin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
13
|
Splan KE, Choi SR, Claycomb RE, Eckart-Frank IK, Nagdev S, Rodemeier ME. Disruption of zinc (II) binding and dimeric protein structure of the XIAP-RING domain by copper (I) ions. J Biol Inorg Chem 2023:10.1007/s00775-023-02002-4. [PMID: 37268744 DOI: 10.1007/s00775-023-02002-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/15/2023] [Indexed: 06/04/2023]
Abstract
Modulation of metalloprotein structure and function via metal ion substitution may constitute a molecular basis for metal ion toxicity and/or metal-mediated functional control. The X-linked Inhibitor of Apoptosis Protein (XIAP) is a metalloprotein that requires zinc for proper structure and function. In addition to its role as a modulator of apoptosis, XIAP has been implicated in copper homeostasis. Given the similar coordination preferences of copper and zinc, investigation of XIAP structure and function upon interaction with copper is relevant. The Really Interesting New Gene (RING) domain of XIAP is representative of a class of zinc finger proteins that utilize a bi-nuclear zinc-binding motif to maintain proper structure and ubiquitin ligase function. Herein, we report the characterization of copper (I) binding to the Zn2-RING domain of XIAP. Electronic absorption studies that monitor copper-thiolate interactions demonstrate that the RING domain of XIAP binds 5-6 Cu(I) ions and that copper is thermodynamically preferred relative to zinc. Repetition of the experiments in the presence of the Zn(II)-specific dye Mag-Fura2 shows that Cu(I) addition results in Zn(II) ejection from the protein, even in the presence of glutathione. Loss of dimeric structure of the RING domain, which is a requirement for its ubiquitin ligase activity, upon copper substitution at the zinc-binding sites, was readily observed via size exclusion chromatography. These results provide a molecular basis for the modulation of RING function by copper and add to the growing body of literature that describe the impact of Cu(I) on zinc metalloprotein structure and function.
Collapse
Affiliation(s)
- Kathryn E Splan
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA.
| | - Sylvia R Choi
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Ruth E Claycomb
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Isaiah K Eckart-Frank
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Shreya Nagdev
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Madeline E Rodemeier
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| |
Collapse
|
14
|
Barrows JK, Van Dyke MW. A CsoR family transcriptional regulator, TTHA1953, controls the sulfur oxidation pathway in Thermus thermophilus HB8. J Biol Chem 2023; 299:104759. [PMID: 37116710 DOI: 10.1016/j.jbc.2023.104759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
Transcription regulation is a critical means by which microorganisms sense and adapt to their environments. Bacteria contain a wide range of highly conserved families of transcription factors that have evolved to regulate diverse sets of genes. It is increasingly apparent that structural similarities between transcription factors do not always equate to analogous transcription regulatory networks. For example, transcription factors within the CsoR/RcnR family have been found to repress a wide range of gene targets, including various metal efflux genes, as well as genes involved in sulfide and formaldehyde detoxification machinery. In this study, we identify the preferred DNA binding sequence for the CsoR-like protein, TTHA1953, from the model extremophile Thermus thermophilus HB8 using the iterative selection approach, restriction endonuclease, protection, selection and amplification (REPSA). By mapping significant DNA motifs to the T. thermophilus HB8 genome, we identify potentially regulated genes that we validate with in vitro and in vivo methodologies. We establish TTHA1953 as a master regulator of the sulfur oxidation (Sox) pathway, providing the first link between CsoR-like proteins and Sox regulation.
Collapse
Affiliation(s)
- John K Barrows
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, USA
| | - Michael W Van Dyke
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, USA.
| |
Collapse
|
15
|
Gautam P, Erill I, Cusick KD. Linking Copper-Associated Signal Transduction Systems with Their Environment in Marine Bacteria. Microorganisms 2023; 11:microorganisms11041012. [PMID: 37110435 PMCID: PMC10141476 DOI: 10.3390/microorganisms11041012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Copper is an essential trace element for living cells. However, copper can be potentially toxic for bacterial cells when it is present in excess amounts due to its redox potential. Due to its biocidal properties, copper is prevalent in marine systems due to its use in antifouling paints and as an algaecide. Thus, marine bacteria must possess means of sensing and responding to both high copper levels and those in which it is present at only typical trace metal levels. Bacteria harbor diverse regulatory mechanisms that respond to intracellular and extracellular copper and maintain copper homeostasis in cells. This review presents an overview of the copper-associated signal transduction systems in marine bacteria, including the copper efflux systems, detoxification, and chaperone mechanisms. We performed a comparative genomics study of the copper-regulatory signal transduction system on marine bacteria to examine the influence of the environment on the presence, abundance, and diversity of copper-associated signal transduction systems across representative phyla. Comparative analyses were performed among species isolated from sources, including seawater, sediment, biofilm, and marine pathogens. Overall, we observed many putative homologs of copper-associated signal transduction systems from various copper systems across marine bacteria. While the distribution of the regulatory components is mainly influenced by phylogeny, our analyses identified several intriguing trends: (1) Bacteria isolated from sediment and biofilm displayed an increased number of homolog hits to copper-associated signal transduction systems than those from seawater. (2) A large variability exists for hits to the putative alternate σ factor CorE hits across marine bacteria. (3) Species isolated from seawater and marine pathogens harbored fewer CorE homologs than those isolated from the sediment and biofilm.
Collapse
Affiliation(s)
- Pratima Gautam
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Kathleen D Cusick
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
16
|
Sharma KK, Singh D, Mohite SV, Williamson PR, Kennedy JF. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases". Int J Biol Macromol 2023; 233:123534. [PMID: 36740121 DOI: 10.1016/j.ijbiomac.2023.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The chemistry of metal ions with human pathogens is essential for their survival, energy generation, redox signaling, and niche dominance. To regulate and manipulate the metal ions, various enzymes and metal chelators are present in pathogenic bacteria. Metalloenzymes incorporate transition metal such as iron, zinc, cobalt, and copper in their reaction centers to perform essential metabolic functions; however, iron and copper have gained more importance. Multicopper oxidases have the ability to perform redox reaction on phenolic substrates with the help of copper ions. They have been reported from Enterobacteriaceae, namely Salmonella enterica, Escherichia coli, and Yersinia enterocolitica, but their role in virulence is still poorly understood. Similarly, superoxide dismutases participate in reducing oxidative stress and allow the survival of pathogens. Their role in virulence and survival is well established in Salmonella typhimurium and Mycobacterium tuberculosis. Further, to ensure survival against stress, like metal starvation or metal toxicity, redox metalloenzymes and metal transportation systems of pathogens actively participate in metal homeostasis. Recently, the omics and protein structure biology studies have helped to predict new targets for regulation the colonization potential of the pathogenic strains. The current review is focused on the major roles of redox metalloenzymes, especially MCOs and SODs of human pathogenic bacteria.
Collapse
Affiliation(s)
- Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Deepti Singh
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 the Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
17
|
Pham VN, Chang CJ. Metalloallostery and Transition Metal Signaling: Bioinorganic Copper Chemistry Beyond Active Sites. Angew Chem Int Ed Engl 2023; 62:e202213644. [PMID: 36653724 PMCID: PMC10754205 DOI: 10.1002/anie.202213644] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 01/20/2023]
Abstract
Transition metal chemistry is essential to life, where metal binding to DNA, RNA, and proteins underpins all facets of the central dogma of biology. In this context, metals in proteins are typically studied as static active site cofactors. However, the emergence of transition metal signaling, where mobile metal pools can transiently bind to biological targets beyond active sites, is expanding this conventional view of bioinorganic chemistry. This Minireview focuses on the concept of metalloallostery, using copper as a canonical example of how metals can regulate protein function by binding to remote allosteric sites (e.g., exosites). We summarize advances in and prospects for the field, including imaging dynamic transition metal signaling pools, allosteric inhibition or activation of protein targets by metal binding, and metal-dependent signaling pathways that underlie nutrient vulnerabilities in diseases spanning obesity, fatty liver disease, cancer, and neurodegeneration.
Collapse
Affiliation(s)
- Vanha N Pham
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Thavarajah W, Owuor PM, Awuor DR, Kiprotich K, Aggarwal R, Lucks JB, Young SL. The accuracy and usability of point-of-use fluoride biosensors in rural Kenya. NPJ CLEAN WATER 2023; 6:5. [PMID: 36777475 PMCID: PMC9905762 DOI: 10.1038/s41545-023-00221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Geogenic fluoride contaminates the water of tens of millions of people. However, many are unaware of the fluoride content due in part to shortcomings of detection methods. Biosensor tests are a relatively new approach to water quality testing that address many of these shortcomings but have never been tested by non-experts in a "real-world" setting. We therefore sought to assess the accuracy and usability of a point-of-use fluoride biosensor using surveys and field tests in Nakuru County, Kenya. Biosensor tests accurately classified elevated fluoride (≥1.5 ppm) in 89.5% of the 57 samples tested. Usability was also high; all participants were able to use the test and correctly interpreted all but one sample. These data suggest that biosensor tests can provide accurate, meaningful water quality data that help non-experts make decisions about the water they consume. Further scaling of these technologies could provide new approaches to track global progress towards Sustainable Development Goal 6.
Collapse
Affiliation(s)
- Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Water Research, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Patrick Mbullo Owuor
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL 60208 USA
- Institute for Policy Research, Northwestern University, 2040 Sheridan Road, Evanston, IL 60208 USA
- Program of African Studies, Northwestern University, 620 Library Pl, Evanston, IL 60208 USA
| | - Diana Ross Awuor
- Department of Management Science and Project Planning, Nairobi University, P.O. Box 30197, GPO, Nairobi, Kenya
| | - Karlmax Kiprotich
- Department of Epidemiology and Medical Statistics, School of Public Health, Moi University, P.O. Box 4606-30100, Eldoret, Kenya
| | - Rahul Aggarwal
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL 60208 USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Water Research, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Sera L. Young
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Water Research, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL 60208 USA
- Program of African Studies, Northwestern University, 620 Library Pl, Evanston, IL 60208 USA
| |
Collapse
|
19
|
Pham VN, Chang CJ. Metalloallostery and Transition Metal Signaling: Bioinorganic Copper Chemistry Beyond Active Sites. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202213644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Vanha N. Pham
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - Christopher J. Chang
- Department of Chemistry University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute University of California Berkeley CA 94720 USA
| |
Collapse
|
20
|
Pacheco PJ, Cabrera JJ, Jiménez-Leiva A, Torres MJ, Gates AJ, Bedmar EJ, Richardson DJ, Mesa S, Tortosa G, Delgado MJ. The copper-responsive regulator CsoR is indirectly involved in Bradyrhizobium diazoefficiens denitrification. FEMS Microbiol Lett 2023; 370:fnad084. [PMID: 37573143 PMCID: PMC10457146 DOI: 10.1093/femsle/fnad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/14/2023] Open
Abstract
The soybean endosymbiont Bradyrhizobium diazoefficiens harbours the complete denitrification pathway that is catalysed by a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a nitrous oxide reductase (Nos), encoded by the napEDABC, nirK, norCBQD, and nosRZDFYLX genes, respectively. Induction of denitrification genes requires low oxygen and nitric oxide, both signals integrated into a complex regulatory network comprised by two interconnected cascades, FixLJ-FixK2-NnrR and RegSR-NifA. Copper is a cofactor of NirK and Nos, but it has also a role in denitrification gene expression and protein synthesis. In fact, Cu limitation triggers a substantial down-regulation of nirK, norCBQD, and nosRZDFYLX gene expression under denitrifying conditions. Bradyrhizobium diazoefficiens genome possesses a gene predicted to encode a Cu-responsive repressor of the CsoR family, which is located adjacent to copA, a gene encoding a putative Cu+-ATPase transporter. To investigate the role of CsoR in the control of denitrification gene expression in response to Cu, a csoR deletion mutant was constructed in this work. Mutation of csoR did not affect the capacity of B. diazoefficiens to grow under denitrifying conditions. However, by using qRT-PCR analyses, we showed that nirK and norCBQD expression was much lower in the csoR mutant compared to wild-type levels under Cu-limiting denitrifying conditions. On the contrary, copA expression was significantly increased in the csoR mutant. The results obtained suggest that CsoR acts as a repressor of copA. Under Cu limitation, CsoR has also an indirect role in the expression of nirK and norCBQD genes.
Collapse
Affiliation(s)
- Pedro J Pacheco
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Juan J Cabrera
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Andrea Jiménez-Leiva
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - María J Torres
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, United Kingdom
- Department of Biochemistry and Molecular Biology, Campus Universitario de Rabanales, University of Córdoba, Ed. C6, Planta Baja, 14071 Córdoba, Spain
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, United Kingdom
| | - Eulogio J Bedmar
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, United Kingdom
| | - Socorro Mesa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Germán Tortosa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - María J Delgado
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
21
|
Han S, Li Y, Gao H. Generation and Physiology of Hydrogen Sulfide and Reactive Sulfur Species in Bacteria. Antioxidants (Basel) 2022; 11:antiox11122487. [PMID: 36552695 PMCID: PMC9774590 DOI: 10.3390/antiox11122487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Sulfur is not only one of the most abundant elements on the Earth, but it is also essential to all living organisms. As life likely began and evolved in a hydrogen sulfide (H2S)-rich environment, sulfur metabolism represents an early form of energy generation via various reactions in prokaryotes and has driven the sulfur biogeochemical cycle since. It has long been known that H2S is toxic to cells at high concentrations, but now this gaseous molecule, at the physiological level, is recognized as a signaling molecule and a regulator of critical biological processes. Recently, many metabolites of H2S, collectively called reactive sulfur species (RSS), have been gradually appreciated as having similar or divergent regulatory roles compared with H2S in living organisms, especially mammals. In prokaryotes, even in bacteria, investigations into generation and physiology of RSS remain preliminary and an understanding of the relevant biological processes is still in its infancy. Despite this, recent and exciting advances in the fields are many. Here, we discuss abiotic and biotic generation of H2S/RSS, sulfur-transforming enzymes and their functioning mechanisms, and their physiological roles as well as the sensing and regulation of H2S/RSS.
Collapse
|
22
|
Diisonitrile Lipopeptides Mediate Resistance to Copper Starvation in Pathogenic Mycobacteria. mBio 2022; 13:e0251322. [PMID: 36197089 PMCID: PMC9600254 DOI: 10.1128/mbio.02513-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens and their hosts engage in intense competition for critical nutrients during infection, including metals such as iron, copper, and zinc. Some metals are limited by the host, and some are deployed by the host as antimicrobials. To counter metal limitation, pathogens deploy high-affinity metal acquisition systems, best exemplified by siderophores to acquire iron. Although pathogen strategies to resist the toxic effects of high Cu have been elucidated, the role of Cu starvation and the existence of Cu acquisition systems are less well characterized. In this study, we examined the role of diisonitrile chalkophores of pathogenic mycobacteria, synthesized by the enzymes encoded by the virulence-associated nrp gene cluster, in metal acquisition. nrp gene cluster expression is strongly induced by starvation or chelation of Cu but not starvation of Zn or excess Cu. Mycobacterium tuberculosis and Mycobacterium marinum strains lacking the nrp-encoded nonribosomal peptide sythetase, the fadD10 adenylate-forming enzyme, or the uncharacterized upstream gene ppe1 are all sensitized to Cu, but not Zn, starvation. This low Cu sensitivity is rescued by genetic complementation or by provision of a synthetic diisonitrile chalkophore. These data demonstrate that diisonitrile lipopeptides in mycobacteria are chalkophores that facilitate survival under Cu-limiting conditions and suggest that Cu starvation is a relevant stress for M. tuberculosis in the host.
Collapse
|
23
|
Mycobacterial resistance to zinc poisoning requires assembly of P-ATPase-containing membrane metal efflux platforms. Nat Commun 2022; 13:4731. [PMID: 35961955 PMCID: PMC9374683 DOI: 10.1038/s41467-022-32085-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis requires a P1B-ATPase metal exporter, CtpC (Rv3270), for resistance to zinc poisoning. Here, we show that zinc resistance also depends on a chaperone-like protein, PacL1 (Rv3269). PacL1 contains a transmembrane domain, a cytoplasmic region with glutamine/alanine repeats and a C-terminal metal-binding motif (MBM). PacL1 binds Zn2+, but the MBM is required only at high zinc concentrations. PacL1 co-localizes with CtpC in dynamic foci in the mycobacterial plasma membrane, and the two proteins form high molecular weight complexes. Foci formation does not require flotillin nor the PacL1 MBM. However, deletion of the PacL1 Glu/Ala repeats leads to loss of CtpC and sensitivity to zinc. Genes pacL1 and ctpC appear to be in the same operon, and homologous gene pairs are found in the genomes of other bacteria. Furthermore, PacL1 colocalizes and functions redundantly with other PacL orthologs in M. tuberculosis. Overall, our results indicate that PacL proteins may act as scaffolds that assemble P-ATPase-containing metal efflux platforms mediating bacterial resistance to metal poisoning. The human pathogen Mycobacterium tuberculosis requires a metal exporter, CtpC, for resistance to zinc poisoning. Here, the authors show that zinc resistance also depends on a chaperone-like protein that binds zinc ions, forms high-molecular-weight complexes with CtpC in the cytoplasmic membrane, and is required for CtpC function.
Collapse
|
24
|
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. Mitigation of the Adverse Impact of Copper, Nickel, and Zinc on Soil Microorganisms and Enzymes by Mineral Sorbents. MATERIALS 2022; 15:ma15155198. [PMID: 35955133 PMCID: PMC9369485 DOI: 10.3390/ma15155198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 02/02/2023]
Abstract
Despite numerous studies on the influence of heavy metals on soil health, the search for effective, eco-friendly, and economically viable remediation substances is far from over. This encouraged us to carry out a study under strictly controlled conditions to test the effects of Cu2+, Ni2+, and Zn2+ added to soil in amounts of 150 mg·kg−1 d.m. of soil on the soil microbiome, on the activity of two oxidoreductases and five hydrolases, and on the growth and development of the sunflower Helianthus annunus L. The remediation substances were a molecular sieve, halloysite, sepiolite, expanded clay, zeolite, and biochar. It has been demonstrated that the most severe turbulences in the soil microbiome, its activity, and the growth of Helianthus annunus L. were caused by Ni2+, followed by Cu2+, and the mildest negative effect was produced by Zn2+. The adverse impact of heavy metals on the soil microbiome and its activity was alleviated by the applied sorbents. Their application also contributed to the increased biomass of plants, which is significant for the successful phytoextraction of these metals from soil. Irrespective of which property was analysed, sepiolite can be recommended for the remediation of soil polluted with Ni2+ and zeolite—for soil polluted with Cu2+ and Zn2+. Both sorbents mitigated to the highest degree disturbances caused by the tested metals in the soil environment.
Collapse
|
25
|
Novoa-Aponte L, Argüello JM. Unique underlying principles shaping copper homeostasis networks. J Biol Inorg Chem 2022; 27:509-528. [PMID: 35802193 PMCID: PMC9470648 DOI: 10.1007/s00775-022-01947-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
Abstract Copper is essential in cells as a cofactor for key redox enzymes. Bacteria have acquired molecular components that sense, uptake, distribute, and expel copper ensuring that cuproenzymes are metallated and steady-state metal levels are maintained. Toward preventing deleterious reactions, proteins bind copper ions with high affinities and transfer the metal via ligand exchange, warranting that copper ions are always complexed. Consequently, the directional copper distribution within cell compartments and across cell membranes requires specific dynamic interactions and metal exchange between cognate holo-apo protein partners. These metal exchange reactions are determined by thermodynamic and kinetics parameters and influenced by mass action. Then, copper distribution can be conceptualized as a molecular system of singular interacting elements that maintain a physiological copper homeostasis. This review focuses on the impact of copper high-affinity binding and exchange reactions on the homeostatic mechanisms, the conceptual models to describe the cell as a homeostatic system, the various molecule functions that contribute to copper homeostasis, and the alternative system architectures responsible for copper homeostasis in model bacteria. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.,Genetics and Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.
| |
Collapse
|
26
|
Shey-Njila O, Hikal AF, Gupta T, Sakamoto K, Yahyaoui Azami H, Watford WT, Quinn FD, Karls RK. CtpB Facilitates Mycobacterium tuberculosis Growth in Copper-Limited Niches. Int J Mol Sci 2022; 23:5713. [PMID: 35628523 PMCID: PMC9147137 DOI: 10.3390/ijms23105713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Copper is required for aerobic respiration by Mycobacterium tuberculosis and its human host, but this essential element is toxic in abundance. Copper nutritional immunity refers to host processes that modulate levels of free copper to alternately starve and intoxicate invading microbes. Bacteria engulfed by macrophages are initially contained within copper-limited phagosomes, which fuse with ATP7A vesicles that pump in toxic levels of copper. In this report, we examine how CtpB, a P-type ATPase in M. tuberculosis, aids in response to nutritional immunity. In vitro, the induced expression of ctpB in copper-replete medium inhibited mycobacterial growth, while deletion of the gene impaired growth only in copper-starved medium and within copper-limited host cells, suggesting a role for CtpB in copper acquisition or export to the copper-dependent respiration supercomplex. Unexpectedly, the absence of ctpB resulted in hypervirulence in the DBA/2 mouse infection model. As ctpB null strains exhibit diminished growth only in copper-starved conditions, reduced copper transport may have enabled the mutant to acquire a "Goldilocks" amount of the metal during transit through copper-intoxicating environments within this model system. This work reveals CtpB as a component of the M. tuberculosis toolkit to counter host nutritional immunity and underscores the importance of elucidating copper-uptake mechanisms in pathogenic mycobacteria.
Collapse
Affiliation(s)
- Oliver Shey-Njila
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (O.S.-N.); (A.F.H.); (T.G.); (H.Y.A.); (W.T.W.); (F.D.Q.)
| | - Ahmed F. Hikal
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (O.S.-N.); (A.F.H.); (T.G.); (H.Y.A.); (W.T.W.); (F.D.Q.)
- Department of Bacteriology, Immunology and Mycology, College of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Tuhina Gupta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (O.S.-N.); (A.F.H.); (T.G.); (H.Y.A.); (W.T.W.); (F.D.Q.)
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Hind Yahyaoui Azami
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (O.S.-N.); (A.F.H.); (T.G.); (H.Y.A.); (W.T.W.); (F.D.Q.)
| | - Wendy T. Watford
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (O.S.-N.); (A.F.H.); (T.G.); (H.Y.A.); (W.T.W.); (F.D.Q.)
| | - Frederick D. Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (O.S.-N.); (A.F.H.); (T.G.); (H.Y.A.); (W.T.W.); (F.D.Q.)
| | - Russell K. Karls
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (O.S.-N.); (A.F.H.); (T.G.); (H.Y.A.); (W.T.W.); (F.D.Q.)
| |
Collapse
|
27
|
Ke N, Bauer CE. The Response Regulator RegA Is a Copper Binding Protein That Covalently Dimerizes When Exposed to Oxygen. Microorganisms 2022; 10:microorganisms10050934. [PMID: 35630378 PMCID: PMC9147068 DOI: 10.3390/microorganisms10050934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
In Rhodobacter capsulatus, the histidine kinase RegB is believed to phosphorylate its cognate transcriptional factor RegA only under anaerobic conditions. However, transcriptome evidence indicates that RegA regulates 47 genes involved in energy storage, energy production, signaling and transcription, under aerobic conditions. In this study, we provide evidence that RegA is a copper binding protein and that copper promotes the dimerization of RegA under aerobic conditions. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicates that RegA binds Cu1+ and Cu2+ in a 1:1 and 2:1 ratio, respectively. Through LC-MS/MS, ESI-MS and non-reducing SDS-PAGE gels, we show that Cu2+ stimulates disulfide bond formation in RegA at Cys156 in the presence of oxygen. Finally, we used DNase I footprint analysis to demonstrate that Cu2+-mediated covalent dimerized RegA is capable of binding to the ccoN promoter, which drives the expression of cytochrome cbb3 oxidase subunits. This study provides a new model of aerobic regulation of gene expression by RegA involving the formation of an intermolecular disulfide bond.
Collapse
|
28
|
Kaewnirat K, Chuaychob S, Chukamnerd A, Pomwised R, Surachat K, Phoo MTP, Phaothong C, Sakunrang C, Jeenkeawpiam K, Hortiwakul T, Charernmak B, Chusri S. In vitro Synergistic Activities of Fosfomycin in Combination with Other Antimicrobial Agents Against Carbapenem-Resistant Escherichia coli Harboring blaNDM-1 on the IncN2 Plasmid and a Study of the Genomic Characteristics of These Pathogens. Infect Drug Resist 2022; 15:1777-1791. [PMID: 35437346 PMCID: PMC9013254 DOI: 10.2147/idr.s357965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose The spread of New Delhi metallo-β-lactamase (NDM) encoded by the blaNDM gene has been a global health crisis for many years. Most of blaNDM-harboring bacteria commonly carry various antimicrobial resistance (AMR) genes on their chromosomes or plasmids, leading to limited treatment options. Thus, we aimed to evaluate the synergistic effects of fosfomycin in combination with other antimicrobial agents against blaNDM-harboring carbapenem-resistant Escherichia coli (CREC) and to characterize the whole-genome and plasmid sequences of these pathogens. Methods Thirty-eight CREC isolates were collected from patients in the Medicine Ward, Songklanagarind Hospital, Thailand. The activity of fosfomycin in combination with other antimicrobial agents against CREC isolates harboring blaNDM on the plasmid was evaluated using the checkerboard method. In this method, the serial dilutions of two antibiotics were mixed with the cultured CREC, the mixtures were incubated, and FICI was calculated to interpret the synergistic activity of the combination. The whole-genome and particular plasmids of these pathogens were sequenced using next-generation sequencing. Sequence analysis, especially on antimicrobial resistance (AMR) genes, mobile-genetic elements (MGEs), and virulence genes was performed using many bioinformatics tools. Results Of the E. coli 38 isolates, only 3 isolates contained the blaNDM-1 gene, which is located on the IncN2 plasmid. The combinations of fosfomycin with aminoglycosides, colistin, tigecycline, sitafloxacin, and ciprofloxacin were synergies against blaNDM-1-harboring CREC isolates. Genomic analysis revealed that these isolates harbored many β-lactam resistance genes and other AMR genes that may confer resistance to aminoglycoside, fluoroquinolone, rifampicin, trimethoprim, sulfonamide, tetracycline, and macrolide. Also, various MGEs, especially the blaNDM-1-bearing IncN2 plasmid, were present in these isolates. Conclusion Our study demonstrated some synergistic effects of antimicrobial combination against CREC isolates harboring blaNDM-1 on the IncN2 plasmid. Also, our data on the whole-genome and plasmid sequences might be beneficial in the control of the spread of blaNDM-1-harboring CREC isolates. The linkages between blaNDM-1-carrying plasmid, patient information, and time of collection will be elucidated to track the horizontal gene transfer in the future.
Collapse
Affiliation(s)
- Kalyarat Kaewnirat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Surachat Chuaychob
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - May Thet Paing Phoo
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chanitnart Phaothong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chanida Sakunrang
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Boonsri Charernmak
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Correspondence: Sarunyou Chusri, Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand, Tel +66 8 973 40446, Email
| |
Collapse
|
29
|
Lunavat SK, Singh SS, Mohammed AQ, Nakka VP, Phanithi PB, Medisetty R, Gogada R. The MreA Metal-Binding Sites C40, H65, and C69 Play a Critical Role in the Metal Tolerance of Pseudomonas putida KT2440. Curr Microbiol 2022; 79:142. [PMID: 35322302 DOI: 10.1007/s00284-022-02804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Metal-binding proteins occur in the cytosol of most eubacteria. The hypothetical metal responsive protein MreA (PP-2969 gene; NreA) seems responsible for zinc, chromium, cadmium accumulation, and metal ion homeostasis. However, there is a lack of definitive evidence regarding the specific metal-binding sites of MreA protein. The present study aimed to identify putative metal-binding regions for MreA. In silico analysis revealed that amino acids C40, H65, and C69 (CHC region) seem critical for metal-protein interactions. We created site-directed mutants (SDM's) of MreA for interacted amino acids to validate in silico results. The differential scanning fluorimetry (DSF) and atomic absorption spectroscopy (AAS) showed that SDM strains of MreA protein curtailed metal accumulation compared to the wild types indicating C40, H65, and C69 amino acids are critical for metal binding. Thus, we report potential implications for MreA-bioengineered strains of Pseudomonas putida KT2440 for metal ion homeostasis by alleviating metal toxicity in the biological environment.
Collapse
Affiliation(s)
- Shanti Kumari Lunavat
- Department of Biochemistry, Osmania University, Hyderabad, Telangana, 500 007, India
| | | | - Abdul Qadeer Mohammed
- Department of Biochemistry, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Venkata Prasuja Nakka
- Department of Biochemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522510, India
| | - Prakash-Babu Phanithi
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Rajesh Medisetty
- Department of Biochemistry, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Raghu Gogada
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, 500046, India.
- Department of Biochemistry, Osmania University, Hyderabad, Telangana, 500 007, India.
- Department of Biochemistry and Plant Physiology, MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India.
| |
Collapse
|
30
|
Pacheco PJ, Cabrera JJ, Jiménez-Leiva A, Bedmar EJ, Mesa S, Tortosa G, Delgado MJ. Effect of Copper on Expression of Functional Genes and Proteins Associated with Bradyrhizobium diazoefficiens Denitrification. Int J Mol Sci 2022; 23:ijms23063386. [PMID: 35328804 PMCID: PMC8951191 DOI: 10.3390/ijms23063386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas that contributes to climate change. Denitrification is one of the largest sources of N2O in soils. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model for rhizobial denitrification studies since, in addition to fixing N2, it has the ability to grow anaerobically under free-living conditions by reducing nitrate from the medium through the complete denitrification pathway. This bacterium contains a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a Cu-dependent nitrous oxide reductase (Nos) encoded by the napEDABC, nirK, norCBQD and nosRZDFYLX genes, respectively. In this work, an integrated study of the role of Cu in B. diazoefficiens denitrification has been performed. A notable reduction in nirK, nor, and nos gene expression observed under Cu limitation was correlated with a significant decrease in NirK, NorC and NosZ protein levels and activities. Meanwhile, nap expression was not affected by Cu, but a remarkable depletion in Nap activity was found, presumably due to an inhibitory effect of nitrite accumulated under Cu-limiting conditions. Interestingly, a post-transcriptional regulation by increasing Nap and NirK activities, as well as NorC and NosZ protein levels, was observed in response to high Cu. Our results demonstrate, for the first time, the role of Cu in transcriptional and post-transcriptional control of B. diazoefficiens denitrification. Thus, this study will contribute by proposing useful strategies for reducing N2O emissions from agricultural soils.
Collapse
|
31
|
Vilchèze C, Yan B, Casey R, Hingley-Wilson S, Ettwiller L, Jacobs WR. Commonalities of Mycobacterium tuberculosis Transcriptomes in Response to Defined Persisting Macrophage Stresses. Front Immunol 2022; 13:909904. [PMID: 35844560 PMCID: PMC9283954 DOI: 10.3389/fimmu.2022.909904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
As the goal of a bacterium is to become bacteria, evolution has imposed continued selections for gene expression. The intracellular pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis, has adopted a fine-tuned response to survive its host's methods to aggressively eradicate invaders. The development of microarrays and later RNA sequencing has led to a better understanding of biological processes controlling the relationship between host and pathogens. In this study, RNA-seq was performed to detail the transcriptomes of M. tuberculosis grown in various conditions related to stresses endured by M. tuberculosis during host infection and to delineate a general stress response incurring during persisting macrophage stresses. M. tuberculosis was subjected to long-term growth, nutrient starvation, hypoxic and acidic environments. The commonalities between these stresses point to M. tuberculosis maneuvering to exploit propionate metabolism for lipid synthesis or to withstand propionate toxicity whilst in the intracellular environment. While nearly all stresses led to a general shutdown of most biological processes, up-regulation of pathways involved in the synthesis of amino acids, cofactors, and lipids were observed only in hypoxic M. tuberculosis. This data reveals genes and gene cohorts that are specifically or exclusively induced during all of these persisting stresses. Such knowledge could be used to design novel drug targets or to define possible M. tuberculosis vulnerabilities for vaccine development. Furthermore, the disruption of specific functions from this gene set will enhance our understanding of the evolutionary forces that have caused the tubercle bacillus to be a highly successful pathogen.
Collapse
Affiliation(s)
- Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Bo Yan
- Research Department, Genome Biology Division, New England Biolabs Inc., Ipswich, MA, United States
| | - Rosalyn Casey
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Suzie Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Laurence Ettwiller
- Research Department, Genome Biology Division, New England Biolabs Inc., Ipswich, MA, United States
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: William R. Jacobs Jr,
| |
Collapse
|
32
|
Fakhoury JN, Zhang Y, Edmonds KA, Bringas M, Luebke JL, Gonzalez-Gutierrez G, Capdevila DA, Giedroc DP. Functional asymmetry and chemical reactivity of CsoR family persulfide sensors. Nucleic Acids Res 2021; 49:12556-12576. [PMID: 34755876 PMCID: PMC8643695 DOI: 10.1093/nar/gkab1040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
CstR is a persulfide-sensing member of the functionally diverse copper-sensitive operon repressor (CsoR) superfamily. While CstR regulates the bacterial response to hydrogen sulfide (H2S) and more oxidized reactive sulfur species (RSS) in Gram-positive pathogens, other dithiol-containing CsoR proteins respond to host derived Cu(I) toxicity, sometimes in the same bacterial cytoplasm, but without regulatory crosstalk in cells. It is not clear what prevents this crosstalk, nor the extent to which RSS sensors exhibit specificity over other oxidants. Here, we report a sequence similarity network (SSN) analysis of the entire CsoR superfamily, which together with the first crystallographic structure of a CstR and comprehensive mass spectrometry-based kinetic profiling experiments, reveal new insights into the molecular basis of RSS specificity in CstRs. We find that the more N-terminal cysteine is the attacking Cys in CstR and is far more nucleophilic than in a CsoR. Moreover, our CstR crystal structure is markedly asymmetric and chemical reactivity experiments reveal the functional impact of this asymmetry. Substitution of the Asn wedge between the resolving and the attacking thiol with Ala significantly decreases asymmetry in the crystal structure and markedly impacts the distribution of species, despite adopting the same global structure as the parent repressor. Companion NMR, SAXS and molecular dynamics simulations reveal that the structural and functional asymmetry can be traced to fast internal dynamics of the tetramer. Furthermore, this asymmetry is preserved in all CstRs and with all oxidants tested, giving rise to markedly distinct distributions of crosslinked products. Our exploration of the sequence, structural, and kinetic features that determine oxidant-specificity suggest that the product distribution upon RSS exposure is determined by internal flexibility.
Collapse
Affiliation(s)
- Joseph N Fakhoury
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - Yifan Zhang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405 USA
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - Mauro Bringas
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Justin L Luebke
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - Giovanni Gonzalez-Gutierrez
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405 USA
| | - Daiana A Capdevila
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA.,Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405 USA
| |
Collapse
|
33
|
Yang X, Liu H, Zhang Y, Shen X. Roles of Type VI Secretion System in Transport of Metal Ions. Front Microbiol 2021; 12:756136. [PMID: 34803980 PMCID: PMC8602904 DOI: 10.3389/fmicb.2021.756136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
The type VI secretion system (T6SS) is a transmembrane protein nanomachine employed by many gram-negative bacteria to directly translocate effectors into adjacent cells or the extracellular milieu, showing multiple functions in both interbacterial competition and bacteria-host interactions. Metal ion transport is a newly discovered T6SS function. This review summarizes the identified T6SS functions and highlights the features of metal ion transport mediated by T6SS and discusses its regulation.
Collapse
Affiliation(s)
- Xiaobing Yang
- College of Applied Engineering, Henan University of Science and Technology (HAUST), Sanmenxia, China.,Medical College, Sanmenxia Vocational Technical School, Sanmenxia, China
| | - Hai Liu
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, China
| | - Yanxiong Zhang
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
34
|
Willemse D, Moodley C, Mehra S, Kaushal D. Transcriptional Response of Mycobacterium tuberculosis to Cigarette Smoke Condensate. Front Microbiol 2021; 12:744800. [PMID: 34721344 PMCID: PMC8554204 DOI: 10.3389/fmicb.2021.744800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Smoking is known to be an added risk factor for tuberculosis (TB), with nearly a quarter of the TB cases attributed to cigarette smokers in the 22 countries with the highest TB burden. Many studies have indicated a link between risk of active TB and cigarette smoke. Smoking is also known to significantly decrease TB cure and treatment completion rate and increase mortality rates. Cigarette smoke contains thousands of volatile compounds including carcinogens, toxins, reactive solids, and oxidants in both particulate and gaseous phase. Yet, to date, limited studies have analyzed the impact of cigarette smoke components on Mycobacterium tuberculosis (Mtb), the causative agent of TB. Here we report the impact of cigarette smoke condensate (CSC) on survival, mutation frequency, and gene expression of Mtb in vitro. We show that exposure of virulent Mtb to cigarette smoke increases the mutation frequency of the pathogen and strongly induces the expression of the regulon controlled by SigH—a global transcriptional regulator of oxidative stress. SigH has previously been shown to be required for Mtb to respond to oxidative stress, survival, and granuloma formation in vivo. A high-SigH expression phenotype is known to be associated with greater virulence of Mtb. In patients with pulmonary TB who smoke, these changes may therefore play an important, yet unexplored, role in the treatment efficacy by potentially enhancing the virulence of tubercle bacilli.
Collapse
Affiliation(s)
- Danicke Willemse
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Chivonne Moodley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States.,Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States.,Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
35
|
Molecular Insights into the Copper-Sensitive Operon Repressor in Acidithiobacillus caldus. Appl Environ Microbiol 2021; 87:e0066021. [PMID: 34085855 DOI: 10.1128/aem.00660-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The copper-sensitive operon repressor (CsoR) family, which is the main Cu(I)-sensing family, is widely distributed and regulates regulons involved in detoxification in response to extreme copper stress (a general range of ≥3 g/liter copper ions). Here, we identified CsoR in hyper-copper-resistant Acidithiobacillus caldus (CsoRAc), an organism used in the bioleaching process of copper ores. CsoRAc possesses highly conserved Cu(I) ligands and structures within the CsoR family members. Transcriptional analysis assays indicated that the promoter (PIII) of csoR was active but weakly responsive to copper in Escherichia coli. Copper titration assays gave a stoichiometry of 0.8 mol Cu(I) per apo-CsoRAc monomer in vitro combined with atomic absorption spectroscopy analysis. CuI-CsoRAc and apo-CsoRAc share essentially identical secondary structures and assembly states, as demonstrated by circular dichroism spectra and size exclusion chromatography profiles. The average dissociation constants (KD = 2.26 × 10-18 M and 0.53 × 10-15 M) and Cu(I) binding affinity of apo-CsoRAc were estimated by bathocuproine disulfonate (BCS) and bicinchoninic acid (BCA) competition assays, respectively. Site-directed mutations of conserved Cu(I) ligands in CsoRAc did not significantly alter the secondary structure or assembly state. Competition assays showed that mutants had the same order of magnitude of Cu(I) binding affinity as apo-CsoRAc. Moreover, apo-CsoRAc could bind to the DNA fragment P08430 in vitro, although with low affinity. Finally, a working model was developed to illustrate putative copper resistance mechanisms in A. caldus. IMPORTANCE Research on copper resistance among various species has attracted considerable interest. However, due to the lack of effective and reproducible genetic tools, few studies regarding copper resistance have been reported for A. caldus. Here, we characterized a major Cu(I)-sensing family protein, CsoRAc, which binds Cu(I) with an attomolar affinity higher than that of the Cu(I)-specific chelator bathocuproine disulfonate. In particular, CsoR family proteins were identified only in A. caldus, rather than A. ferrooxidans and A. thiooxidans, which are both used for bioleaching. Meanwhile, A. caldus harbored more copper resistance determinants and a relatively full-scale regulatory system involved in copper homeostasis. These observations suggested that A. caldus may play an essential role in the application of engineered strains with higher copper resistance in the near future.
Collapse
|
36
|
Buglino JA, Sankhe GD, Lazar N, Bean JM, Glickman MS. Integrated sensing of host stresses by inhibition of a cytoplasmic two-component system controls M. tuberculosis acute lung infection. eLife 2021; 10:e65351. [PMID: 34003742 PMCID: PMC8131098 DOI: 10.7554/elife.65351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/25/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial pathogens that infect phagocytic cells must deploy mechanisms that sense and neutralize host microbicidal effectors. For Mycobacterium tuberculosis, the causative agent of tuberculosis, these mechanisms allow the bacterium to rapidly adapt from aerosol transmission to initial growth in the lung alveolar macrophage. Here, we identify a branched signaling circuit in M. tuberculosis that controls growth in the lung through integrated direct sensing of copper ions and nitric oxide by coupled activity of the Rip1 intramembrane protease and the PdtaS/R two-component system. This circuit uses a two-signal mechanism to inactivate the PdtaS/PdtaR two-component system, which constitutively represses virulence gene expression. Cu and NO inhibit the PdtaS sensor kinase through a dicysteine motif in the N-terminal GAF domain. The NO arm of the pathway is further controlled by sequestration of the PdtaR RNA binding response regulator by an NO-induced small RNA, controlled by the Rip1 intramembrane protease. This coupled Rip1/PdtaS/PdtaR circuit controls NO resistance and acute lung infection in mice by relieving PdtaS/R-mediated repression of isonitrile chalkophore biosynthesis. These studies identify an integrated mechanism by which M. tuberculosis senses and resists macrophage chemical effectors to achieve pathogenesis.
Collapse
Affiliation(s)
- John A Buglino
- Immunology Program Sloan Kettering InstituteNew York CityUnited States
| | - Gaurav D Sankhe
- Immunology Program Sloan Kettering InstituteNew York CityUnited States
| | - Nathaniel Lazar
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate SchoolNew York CityUnited States
| | - James M Bean
- Immunology Program Sloan Kettering InstituteNew York CityUnited States
| | - Michael S Glickman
- Immunology Program Sloan Kettering InstituteNew York CityUnited States
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate SchoolNew York CityUnited States
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer CenterNew York CityUnited States
| |
Collapse
|
37
|
Antelo GT, Vila AJ, Giedroc DP, Capdevila DA. Molecular Evolution of Transition Metal Bioavailability at the Host-Pathogen Interface. Trends Microbiol 2021; 29:441-457. [PMID: 32951986 PMCID: PMC7969482 DOI: 10.1016/j.tim.2020.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
The molecular evolution of the adaptive response at the host-pathogen interface has been frequently referred to as an 'arms race' between the host and bacterial pathogens. The innate immune system employs multiple strategies to starve microbes of metals. Pathogens, in turn, develop successful strategies to maintain access to bioavailable metal ions under conditions of extreme restriction of transition metals, or nutritional immunity. However, the processes by which evolution repurposes or re-engineers host and pathogen proteins to perform or refine new functions have been explored only recently. Here we review the molecular evolution of several human metalloproteins charged with restricting bacterial access to transition metals. These include the transition metal-chelating S100 proteins, natural resistance-associated macrophage protein-1 (NRAMP-1), transferrin, lactoferrin, and heme-binding proteins. We examine their coevolution with bacterial transition metal acquisition systems, involving siderophores and membrane-spanning metal importers, and the biological specificity of allosteric transcriptional regulatory proteins tasked with maintaining bacterial metallostasis. We also discuss the evolution of metallo-β-lactamases; this illustrates how rapid antibiotic-mediated evolution of a zinc metalloenzyme obligatorily occurs in the context of host-imposed nutritional immunity.
Collapse
Affiliation(s)
- Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res 2021; 22:133. [PMID: 33926483 PMCID: PMC8082489 DOI: 10.1186/s12931-021-01722-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
Collapse
|
39
|
Young AT, Carette X, Helmel M, Steen H, Husson RN, Quackenbush J, Platig J. Multi-omic regulatory networks capture downstream effects of kinase inhibition in Mycobacterium tuberculosis. NPJ Syst Biol Appl 2021; 7:8. [PMID: 33514755 PMCID: PMC7846781 DOI: 10.1038/s41540-020-00164-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to adapt to diverse stresses in its host environment is crucial for pathogenesis. Two essential Mtb serine/threonine protein kinases, PknA and PknB, regulate cell growth in response to environmental stimuli, but little is known about their downstream effects. By combining RNA-Seq data, following treatment with either an inhibitor of both PknA and PknB or an inactive control, with publicly available ChIP-Seq and protein–protein interaction data for transcription factors, we show that the Mtb transcription factor (TF) regulatory network propagates the effects of kinase inhibition and leads to widespread changes in regulatory programs involved in cell wall integrity, stress response, and energy production, among others. We also observe that changes in TF regulatory activity correlate with kinase-specific phosphorylation of those TFs. In addition to characterizing the downstream regulatory effects of PknA/PknB inhibition, this demonstrates the need for regulatory network approaches that can incorporate signal-driven transcription factor modifications.
Collapse
Affiliation(s)
- Albert T Young
- School of Medicine, University of California, San Francisco, USA
| | - Xavier Carette
- Division of Infectious Diseases, Boston Children's Hospital, Boston, USA.,Harvard Medical School, Boston, USA
| | - Michaela Helmel
- Harvard Medical School, Boston, USA.,Department of Pathology, Boston Children's Hospital, Boston, USA
| | - Hanno Steen
- Division of Infectious Diseases, Boston Children's Hospital, Boston, USA.,Harvard Medical School, Boston, USA.,Department of Pathology, Boston Children's Hospital, Boston, USA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital, Boston, USA.,Harvard Medical School, Boston, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA
| | - John Platig
- Harvard Medical School, Boston, USA. .,Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA.
| |
Collapse
|
40
|
Bharathi M, Senthil Kumar N, Chellapandi P. Functional Prediction and Assignment of Methanobrevibacter ruminantium M1 Operome Using a Combined Bioinformatics Approach. Front Genet 2020; 11:593990. [PMID: 33391347 PMCID: PMC7772410 DOI: 10.3389/fgene.2020.593990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Methanobrevibacter ruminantium M1 (MRU) is a rod-shaped rumen methanogen with the ability to use H2 and CO2, and formate as substrates for methane formation in the ruminants. Enteric methane emitted from this organism can also be influential to the loss of dietary energy in ruminants and humans. To date, there is no successful technology to reduce methane due to a lack of knowledge on its molecular machinery and 73% conserved hypothetical proteins (HPs; operome) whose functions are still not ascertained perceptively. To address this issue, we have predicted and assigned a precise function to HPs and categorize them as metabolic enzymes, binding proteins, and transport proteins using a combined bioinformatics approach. The results of our study show that 257 (34%) HPs have well-defined functions and contributed essential roles in its growth physiology and host adaptation. The genome-neighborhood analysis identified 6 operon-like clusters such as hsp, TRAM, dsr, cbs and cas, which are responsible for protein folding, sudden heat-shock, host defense, and protection against the toxicities in the rumen. The functions predicted from MRU operome comprised of 96 metabolic enzymes with 17 metabolic subsystems, 31 transcriptional regulators, 23 transport, and 11 binding proteins. Functional annotation of its operome is thus more imperative to unravel the molecular and cellular machinery at the systems-level. The functional assignment of its operome would advance strategies to develop new anti-methanogenic targets to mitigate methane production. Hence, our approach provides new insight into the understanding of its growth physiology and lifestyle in the ruminants and also to reduce anthropogenic greenhouse gas emissions worldwide.
Collapse
Affiliation(s)
- M Bharathi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - N Senthil Kumar
- Human Genetics Lab, Department of Biotechnology, School of Life Sciences, Mizoram University (Central University), Aizawl, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
41
|
Capdevila DA, Walsh BJC, Zhang Y, Dietrich C, Gonzalez-Gutierrez G, Giedroc DP. Structural basis for persulfide-sensing specificity in a transcriptional regulator. Nat Chem Biol 2020; 17:65-70. [PMID: 33106663 DOI: 10.1038/s41589-020-00671-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022]
Abstract
Cysteine thiol-based transcriptional regulators orchestrate the coordinated regulation of redox homeostasis and other cellular processes by 'sensing' or detecting a specific redox-active molecule, which in turn activates the transcription of a specific detoxification pathway. The extent to which these sensors are truly specific in cells for a singular class of reactive small-molecule stressors, for example, reactive oxygen or sulfur species, is largely unknown. Here, we report structural and mechanistic insights into the thiol-based transcriptional repressor SqrR, which reacts exclusively with oxidized sulfur species such as persulfides, to yield a tetrasulfide bridge that inhibits DNA operator-promoter binding. Evaluation of crystallographic structures of SqrR in various derivatized states, coupled with the results of a mass spectrometry-based kinetic profiling strategy, suggest that persulfide selectivity is determined by structural frustration of the disulfide form. These findings led to the identification of an uncharacterized repressor from the bacterial pathogen Acinetobacter baumannii as a persulfide sensor.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Department of Chemistry and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA.,Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Brenna J C Walsh
- Department of Chemistry and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Yifan Zhang
- Department of Chemistry and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Christopher Dietrich
- Department of Chemistry and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Giovanni Gonzalez-Gutierrez
- Department of Chemistry and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - David P Giedroc
- Department of Chemistry and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
42
|
Walsh BJC, Giedroc DP. H 2S and reactive sulfur signaling at the host-bacterial pathogen interface. J Biol Chem 2020; 295:13150-13168. [PMID: 32699012 PMCID: PMC7504917 DOI: 10.1074/jbc.rev120.011304] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial pathogens that cause invasive disease in the vertebrate host must adapt to host efforts to cripple their viability. Major host insults are reactive oxygen and reactive nitrogen species as well as cellular stress induced by antibiotics. Hydrogen sulfide (H2S) is emerging as an important player in cytoprotection against these stressors, which may well be attributed to downstream more oxidized sulfur species termed reactive sulfur species (RSS). In this review, we summarize recent work that suggests that H2S/RSS impacts bacterial survival in infected cells and animals. We discuss the mechanisms of biogenesis and clearance of RSS in the context of a bacterial H2S/RSS homeostasis model and the bacterial transcriptional regulatory proteins that act as "sensors" of cellular RSS that maintain H2S/RSS homeostasis. In addition, we cover fluorescence imaging- and MS-based approaches used to detect and quantify RSS in bacterial cells. Last, we discuss proteome persulfidation (S-sulfuration) as a potential mediator of H2S/RSS signaling in bacteria in the context of the writer-reader-eraser paradigm, and progress toward ascribing regulatory significance to this widespread post-translational modification.
Collapse
Affiliation(s)
- Brenna J C Walsh
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
43
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
44
|
Chieffi D, Fanelli F, Fusco V. Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Compr Rev Food Sci Food Saf 2020; 19:2071-2109. [PMID: 33337088 DOI: 10.1111/1541-4337.12577] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022]
Abstract
Arcobacter butzleri, recently emended to the Aliarcobacter butzleri comb. nov., is an emerging pathogen causing enteritis, severe diarrhea, septicaemia, and bacteraemia in humans and enteritis, stillbirth, and abortion in animals. Since its recognition as emerging pathogen on 2002, advancements have been made in elucidating its pathogenicity and epidemiology, also thanks to advent of genomics, which, moreover, contributed in emending its taxonomy. In this review, we provide an overview of the up-to-date taxonomy, ecology, and pathogenicity of this emerging pathogen. Moreover, the implication of A. butzleri in the safety of foods is pinpointed, and culture-dependent and independent detection, identification, and typing methods as well as strategies to control and prevent the survival and growth of this pathogen are provided.
Collapse
Affiliation(s)
- Daniele Chieffi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| |
Collapse
|
45
|
Salam LB. Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. 3 Biotech 2020; 10:238. [PMID: 32405442 PMCID: PMC7205953 DOI: 10.1007/s13205-020-02219-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
The antibiotic and heavy metal resistome of a chronically polluted soil (3S) obtained from an automobile workshop in Ilorin, Kwara State, Nigeria was deciphered via functional annotation of putative ORFs (open reading frames). Functional annotation of antibiotic and heavy metal resistance genes in 3S metagenome was conducted using the Comprehensive Antibiotic Resistance Database (CARD), Antibiotic Resistance Gene-annotation (ARG-ANNOT) and Antibacterial Biocide and Metal Resistance Gene Database (BacMet). Annotation revealed detection of resistance genes for 15 antibiotic classes with the preponderance of beta lactamases, mobilized colistin resistance determinant (mcr), glycopepetide and tetracycline resistance genes, the OqxBgb and OqxA RND-type multidrug efflux pumps, among others. The dominance of resistance genes for antibiotics effective against members of the Enterobacteriaceae indicate possible contamination with faecal materials. Annotation of heavy metal resistance genes revealed diverse resistance genes responsible for the uptake, transport, detoxification, efflux and regulation of copper, zinc, cadmium, nickel, chromium, cobalt, mercury, arsenic, iron, molybdenum and several others. Majority of the antibiotic and heavy metal resistance genes detected in this study are borne on mobile genetic elements, which facilitate their spread and dissemination in the polluted soil. The presence of the heavy metal resistance genes is strongly believed to play a major role in the proliferation of antibiotic resistance genes. This study has established that soil is a huge repertoire of antibiotic and heavy metal resistome and due to the intricate link between human, animals and the soil environment, it may be a major contributor to the proliferation of multidrug-resistant clinical pathogens.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Summit University, Offa, Kwara Nigeria
| |
Collapse
|
46
|
Rules of Expansion: an Updated Consensus Operator Site for the CopR-CopY Family of Bacterial Copper Exporter System Repressors. mSphere 2020; 5:5/3/e00411-20. [PMID: 32461276 PMCID: PMC7253601 DOI: 10.1128/msphere.00411-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many Gram-positive bacteria respond to copper stress by upregulating a copper export system controlled by a copper-sensitive repressor, CopR-CopY. The previous operator sequence for this family of proteins had been identified as TACANNTGTA. Here, using several recombinant proteins and mutations in various DNA fragments, we define those 10 bases as necessary but not sufficient for binding and in doing so, refine the cop operon operator to the 16-base sequence RNYKACANNTGTMRNY. Due to the sheer number of repressors that have been said to bind to the original 10 bases, including many antibiotic resistance repressors such as BlaI and MecI, we feel that this study highlights the need to reexamine many of these sites of the past and use added stringency for verifying operators in the future. Copper is broadly toxic to bacteria. As such, bacteria have evolved specialized copper export systems (cop operons) often consisting of a DNA-binding/copper-responsive regulator (which can be a repressor or activator), a copper chaperone, and a copper exporter. For those bacteria using DNA-binding copper repressors, few studies have examined the regulation of this operon regarding the operator DNA sequence needed for repressor binding. In Streptococcus pneumoniae (the pneumococcus), CopY is the copper repressor for the cop operon. Previously, homologs of pneumococcal CopY have been characterized to bind a 10-base consensus sequence T/GACANNTGTA known as the cop box. Using this motif, we sought to determine whether genes outside the cop operon are also regulated by the CopY repressor, which was previously shown in Lactococcus lactis. We found that S. pneumoniae CopY did not bind to cop operators upstream of these candidate genes in vitro. During this process, we found that the cop box sequence is necessary but not sufficient for CopY binding. Here, we propose an updated operator sequence for the S. pneumoniaecop operon to be ATTGACAAATGTAGAT binding CopY with a dissociation constant (Kd) of ∼28 nM. We demonstrate strong cross-species interaction between some CopY proteins and CopY operators, suggesting strong evolutionary conservation. Taken together with our binding studies and bioinformatics data, we propose the consensus operator RNYKACANNYGTMRNY for the bacterial CopR-CopY copper repressor homologs. IMPORTANCE Many Gram-positive bacteria respond to copper stress by upregulating a copper export system controlled by a copper-sensitive repressor, CopR-CopY. The previous operator sequence for this family of proteins had been identified as TACANNTGTA. Here, using several recombinant proteins and mutations in various DNA fragments, we define those 10 bases as necessary but not sufficient for binding and in doing so, refine the cop operon operator to the 16-base sequence RNYKACANNTGTMRNY. Due to the sheer number of repressors that have been said to bind to the original 10 bases, including many antibiotic resistance repressors such as BlaI and MecI, we feel that this study highlights the need to reexamine many of these sites of the past and use added stringency for verifying operators in the future.
Collapse
|
47
|
Shimizu T, Masuda S. Persulphide-responsive transcriptional regulation and metabolism in bacteria. J Biochem 2020; 167:125-132. [PMID: 31385583 DOI: 10.1093/jb/mvz063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulphide (H2S) impacts on bacterial growth both positively and negatively; it is utilized as an electron donor for photosynthesis and respiration, and it inactivates terminal oxidases and iron-sulphur clusters. Therefore, bacteria have evolved H2S-responsive detoxification mechanisms for survival. Sulphur assimilation in bacteria has been well studied, and sulphide:quinone oxidoreductase, persulphide dioxygenase, rhodanese and sulphite oxidase were reported as major sulphide-oxidizing enzymes of sulphide assimilation and detoxification pathways. However, how bacteria sense sulphide availability to control H2S and sulphide metabolism remains largely unknown. Recent studies have identified several bacterial (per)sulphide-sensitive transcription factors that change DNA-binding affinity through persulphidation of specific cysteine residues in response to highly reactive sulphur-containing chemicals and reactive sulphur species (RSS). This review focuses on current understanding of the persulphide-responsive transcription factors and RSS metabolism regulated by RSS sensory proteins.
Collapse
Affiliation(s)
- Takayuki Shimizu
- Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komana, Meguro-ku, Tokyo 153-8902, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
48
|
León-Torres A, Arango E, Castillo E, Soto CY. CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis. Biol Res 2020; 53:6. [PMID: 32054527 PMCID: PMC7017476 DOI: 10.1186/s40659-020-00274-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The intracellular concentration of heavy-metal cations, such as copper, nickel, and zinc is pivotal for the mycobacterial response to the hostile environment inside macrophages. To date, copper transport mediated by P-type ATPases across the mycobacterial plasma membrane has not been sufficiently explored. RESULTS In this work, the ATPase activity of the putative Mycobacterium tuberculosis P1B-type ATPase CtpB was associated with copper (I) transport from mycobacterial cells. Although CtpB heterologously expressed in M. smegmatis induced tolerance to toxic concentrations of Cu2+ and a metal preference for Cu+, the disruption of ctpB in M. tuberculosis cells did not promote impaired cell growth or heavy-metal accumulation in whole mutant cells in cultures under high doses of copper. In addition, the Cu+ ATPase activity of CtpB embedded in the plasma membrane showed features of high affinity/slow turnover ATPases, with enzymatic parameters KM 0.19 ± 0.04 µM and Vmax 2.29 ± 0.10 nmol/mg min. In contrast, the ctpB gene transcription was activated in cells under culture conditions that mimicked the hostile intraphagosomal environment, such as hypoxia, nitrosative and oxidative stress, but not under high doses of copper. CONCLUSIONS The overall results suggest that M. tuberculosis CtpB is associated with Cu+ transport from mycobacterial cells possibly playing a role different from copper detoxification.
Collapse
Affiliation(s)
- Andrés León-Torres
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Epifania Arango
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Eliana Castillo
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Carlos Y Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Ciudad Universitaria, Bogotá, Colombia.
| |
Collapse
|
49
|
Baksh KA, Zamble DB. Allosteric control of metal-responsive transcriptional regulators in bacteria. J Biol Chem 2020; 295:1673-1684. [PMID: 31857375 PMCID: PMC7008368 DOI: 10.1074/jbc.rev119.011444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many transition metals are essential trace nutrients for living organisms, but they are also cytotoxic in high concentrations. Bacteria maintain the delicate balance between metal starvation and toxicity through a complex network of metal homeostasis pathways. These systems are coordinated by the activities of metal-responsive transcription factors-also known as metal-sensor proteins or metalloregulators-that are tuned to sense the bioavailability of specific metals in the cell in order to regulate the expression of genes encoding proteins that contribute to metal homeostasis. Metal binding to a metalloregulator allosterically influences its ability to bind specific DNA sequences through a variety of intricate mechanisms that lie on a continuum between large conformational changes and subtle changes in internal dynamics. This review summarizes recent advances in our understanding of how metal sensor proteins respond to intracellular metal concentrations. In particular, we highlight the allosteric mechanisms used for metal-responsive regulation of several prokaryotic single-component metalloregulators, and we briefly discuss current open questions of how metalloregulators function in bacterial cells. Understanding the regulation and function of metal-responsive transcription factors is a fundamental aspect of metallobiochemistry and is important for gaining insights into bacterial growth and virulence.
Collapse
Affiliation(s)
- Karina A Baksh
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deborah B Zamble
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
50
|
Saini V, Chinta KC, Reddy VP, Glasgow JN, Stein A, Lamprecht DA, Rahman MA, Mackenzie JS, Truebody BE, Adamson JH, Kunota TTR, Bailey SM, Moellering DR, Lancaster JR, Steyn AJC. Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis. Nat Commun 2020; 11:557. [PMID: 31992699 PMCID: PMC6987094 DOI: 10.1038/s41467-019-14132-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/13/2019] [Indexed: 01/23/2023] Open
Abstract
Hydrogen sulfide (H2S) is involved in numerous pathophysiological processes and shares overlapping functions with CO and •NO. However, the importance of host-derived H2S in microbial pathogenesis is unknown. Here we show that Mtb-infected mice deficient in the H2S-producing enzyme cystathionine β-synthase (CBS) survive longer with reduced organ burden, and that pharmacological inhibition of CBS reduces Mtb bacillary load in mice. High-resolution respirometry, transcriptomics and mass spectrometry establish that H2S stimulates Mtb respiration and bioenergetics predominantly via cytochrome bd oxidase, and that H2S reverses •NO-mediated inhibition of Mtb respiration. Further, exposure of Mtb to H2S regulates genes involved in sulfur and copper metabolism and the Dos regulon. Our results indicate that Mtb exploits host-derived H2S to promote growth and disease, and suggest that host-directed therapies targeting H2S production may be potentially useful for the management of tuberculosis and other microbial infections. The importance of host-produced hydrogen sulfide (H2S) in microbial pathogenesis is poorly understood. Here, Saini et al. show that H2S alters Mycobacterium tuberculosis (Mtb) central metabolism, stimulates respiration to promote growth and TB disease, and upregulates the Dos regulon.
Collapse
Affiliation(s)
- Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.,Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Asaf Stein
- Department of Environment Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dirk A Lamprecht
- Africa Health Research Institute, Durban, South Africa.,Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | | | | | | | - Shannon M Bailey
- Department of Environment Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Douglas R Moellering
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jack R Lancaster
- Departments of Pharmacology and Chemical Biology, Medicine, and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA. .,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA. .,Africa Health Research Institute, Durban, South Africa. .,Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|