1
|
Tirado-Class N, Hathaway C, Nelligan A, Nguyen T, Dungrawala H. DCAF14 regulates CDT2 to promote SET8-dependent replication fork protection. Life Sci Alliance 2024; 7:e202302230. [PMID: 37940188 PMCID: PMC10631547 DOI: 10.26508/lsa.202302230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
DDB1- and CUL4-associated factors (DCAFs) CDT2 and DCAF14 are substrate receptors for Cullin4-RING E3 ubiquitin ligase (CRL4) complexes. CDT2 is responsible for PCNA-coupled proteolysis of substrates CDT1, p21, and SET8 during S-phase of cell cycle. DCAF14 functions at stalled replication forks to promote genome stability, but the mechanism is unknown. We find that DCAF14 mediates replication fork protection by regulating CRL4CDT2 activity. Absence of DCAF14 causes increased proteasomal degradation of CDT2 substrates. When forks are challenged with replication stress, increased CDT2 function causes stalled fork collapse and impairs fork recovery in DCAF14-deficient conditions. We further show that stalled fork protection is dependent on CDT2 substrate SET8 and does not involve p21 and CDT1. Like DCAF14, SET8 blocks nuclease-mediated digestion of nascent DNA at remodeled replication forks. Thus, unregulated CDT2-mediated turnover of SET8 triggers nascent strand degradation when DCAF14 is absent. We propose that DCAF14 controls CDT2 activity at stalled replication forks to facilitate SET8 function in safeguarding genomic integrity.
Collapse
Affiliation(s)
- Neysha Tirado-Class
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Caitlin Hathaway
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Anthony Nelligan
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Thuan Nguyen
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Huzefa Dungrawala
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Hou B, Chen T, Zhang H, Li J, Wang P, Shang G. The E3 ubiquitin ligases regulate PD-1/PD-L1 protein levels in tumor microenvironment to improve immunotherapy. Front Immunol 2023; 14:1123244. [PMID: 36733484 PMCID: PMC9887025 DOI: 10.3389/fimmu.2023.1123244] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
The tumor microenvironment (TME) is the tumor surrounding environment, which is critical for tumor development and progression. TME is also involved in clinical intervention and treatment outcomes. Modulation of TME is useful for improving therapy strategies. PD-L1 protein on tumor cells interacts with PD-1 protein on T cells, contributing to T cell dysfunction and exhaustion, blockage of the immune response. Evidence has demonstrated that the expression of PD-1/PD-L1 is associated with clinical response to anti-PD-1/PD-L1 therapy in cancer patients. It is important to discuss the regulatory machinery how PD-1/PD-L1 protein is finely regulated in tumor cells. In recent years, studies have demonstrated that PD-1/PD-L1 expression was governed by various E3 ubiquitin ligases in TME, contributing to resistance of anti-PD-1/PD-L1 therapy in human cancers. In this review, we will discuss the role and molecular mechanisms of E3 ligases-mediated regulation of PD-1 and PD-L1 in TME. Moreover, we will describe how E3 ligases-involved PD-1/PD-L1 regulation alters anti-PD-1/PD-L1 efficacy. Altogether, targeting E3 ubiquitin ligases to control the PD-1/PD-L1 protein levels could be a potential strategy to potentiate immunotherapeutic effects in cancer patients.
Collapse
Affiliation(s)
- Bo Hou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiatong Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, China
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Guanning Shang,
| |
Collapse
|
3
|
Paul D, Kales SC, Cornwell JA, Afifi MM, Rai G, Zakharov A, Simeonov A, Cappell SD. Revealing β-TrCP activity dynamics in live cells with a genetically encoded biosensor. Nat Commun 2022; 13:6364. [PMID: 36289220 PMCID: PMC9606124 DOI: 10.1038/s41467-022-33762-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/30/2022] [Indexed: 12/25/2022] Open
Abstract
The F-box protein beta-transducin repeat containing protein (β-TrCP) acts as a substrate adapter for the SCF E3 ubiquitin ligase complex, plays a crucial role in cell physiology, and is often deregulated in many types of cancers. Here, we develop a fluorescent biosensor to quantitatively measure β-TrCP activity in live, single cells in real-time. We find β-TrCP remains constitutively active throughout the cell cycle and functions to maintain discreet steady-state levels of its substrates. We find no correlation between expression levels of β-TrCP and β-TrCP activity, indicating post-transcriptional regulation. A high throughput screen of small-molecules using our reporter identifies receptor-tyrosine kinase signaling as a key axis for regulating β-TrCP activity by inhibiting binding between β-TrCP and the core SCF complex. Our study introduces a method to monitor β-TrCP activity in live cells and identifies a key signaling network that regulates β-TrCP activity throughout the cell cycle.
Collapse
Affiliation(s)
- Debasish Paul
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Stephen C. Kales
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - James A. Cornwell
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Marwa M. Afifi
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Ganesha Rai
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Alexey Zakharov
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Anton Simeonov
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Steven D. Cappell
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| |
Collapse
|
4
|
Cao T, Cui Y, Wang Y, Wu L, Yu K, Chen K, Xia J, Li Y, Wang ZP, Ma J. CACNA1C-AS2 inhibits cell proliferation and suppresses cell migration and invasion via targeting FBXO45 and PI3K/AKT/mTOR pathways in glioma. Apoptosis 2022; 27:979-991. [PMID: 36038736 DOI: 10.1007/s10495-022-01764-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Glioma is the most common brain cancer with a poor prognosis, and its underlying molecular mechanisms still needs to be further explored. In the current study, we discovered that an antisense lncRNA, CACNA1C-AS2, suppressed growth, migration and invasion of glioma cells, suggesting that CACNA1C-AS2 functions as a tumor suppressor. Furthermore, we found that CACNA1C-AS2 negatively regulated Fbxo45 protein expression in glioma cells. Impressively, extensive experimental results revealed that Fbxo45 accelerated growth, migration and invasion of glioma cells. Clinically, increased Fbxo45 expression was observed in 75 human glioma tissue samples. Moreover, in vivo experiments also demonstrated that Fbxo45 overexpression enhanced tumor growth in mice. Especially, we further identified that Fbxo45 activated mTORC1 rather than mTORC2 through PI3K/AKT signaling to promote cell growth and motility in glioma cells. Rescue experiments also exhibited that CACNA1C-AS2 inhibited cell growth and motility partly through down-regulating Fbxo45 expression in glioma. Our results provide the novel insights into the critical role of CACNA1C-AS2/Fbxo45/mTOR axis involved in regulating glioma tumorigenesis and progression, and further indicate that CACNA1C-AS2 and Fbxo45 may be the potential biomarkers and therapeutic targets for glioma.
Collapse
Affiliation(s)
- Tong Cao
- Department of Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China.,Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Yue Cui
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, Anhui, China.,Department of Clinical Laboratory, Fuyang People's Hospital, Fuyang, 236001, Anhui, China
| | - Yingying Wang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Linhui Wu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, Anhui, China.,Clinical Laboratory Center, Lu'an People's Hospital, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, 237000, Anhui, China
| | - Ke Yu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Kai Chen
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai Street, Bengbu, 233030, Anhui, China
| | - Yuyun Li
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Zhiwei Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai Street, Bengbu, 233030, Anhui, China. .,Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai Street, Bengbu, 233030, Anhui, China.
| |
Collapse
|
5
|
Hernández-Reyes Y, Paz-Cabrera MC, Freire R, Smits VAJ. USP29 Deubiquitinates SETD8 and Regulates DNA Damage-Induced H4K20 Monomethylation and 53BP1 Focus Formation. Cells 2022; 11:cells11162492. [PMID: 36010569 PMCID: PMC9406528 DOI: 10.3390/cells11162492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
SETD8 is a histone methyltransferase that plays pivotal roles in several cellular functions, including transcriptional regulation, cell cycle progression, and genome maintenance. SETD8 regulates the recruitment of 53BP1 to sites of DNA damage by controlling histone H4K20 methylation. Moreover, SETD8 levels are tightly regulated in a cell cycle-dependent manner by ubiquitin-dependent proteasomal degradation. Here, we identified ubiquitin-specific peptidase 29, USP29, as a novel regulator of SETD8. Depletion of USP29 leads to decreased SETD8 protein levels, an effect that is independent of the cell cycle. We demonstrate that SETD8 binds to USP29 in vivo, and this interaction is dependent on the catalytic activity of USP29. Wildtype USP29 can deubiquitinate SETD8 in vivo, indicating that USP29 directly regulates SETD8 protein levels. Importantly, USP29 knockdown inhibits the irradiation-induced increase in H4K20 monomethylation, thereby preventing focus formation of 53BP1 in response to DNA damage. Lastly, depletion of USP29 increases the cellular sensitivity to irradiation. These results demonstrate that USP29 is critical for the DNA damage response and cell survival, likely by controlling protein levels of SETD8.
Collapse
Affiliation(s)
- Yeray Hernández-Reyes
- Unidad de Investigación, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudio de Postgrado, Universidad de la Laguna, 38200 Santa Cruz de Tenerife, Spain
| | | | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Veronique A. J. Smits
- Unidad de Investigación, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
- Correspondence: ; Tel.: +34-922-678107
| |
Collapse
|
6
|
Xia L, Chen J, Huang M, Mei J, Lin M. The functions of long noncoding RNAs on regulation of F-box proteins in tumorigenesis and progression. Front Oncol 2022; 12:963617. [PMID: 35928868 PMCID: PMC9343830 DOI: 10.3389/fonc.2022.963617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
Accumulated evidence has revealed that F-box protein, a subunit of SCF E3 ubiquitin ligase complexes, participates in carcinogenesis and tumor progression via targeting its substrates for ubiquitination and degradation. F-box proteins could be regulated by cellular signaling pathways and noncoding RNAs in tumorigenesis. Long noncoding RNA (lncRNA), one type of noncoding RNAs, has been identified to modulate the expression of F-box proteins and contribute to oncogenesis. In this review, we summarize the role and mechanisms of multiple lncRNAs in regulating F-box proteins in tumorigenesis, including lncRNAs SLC7A11-AS1, MT1JP, TUG1, FER1L4, TTN-AS1, CASC2, MALAT1, TINCR, PCGEM1, linc01436, linc00494, GATA6-AS1, and ODIR1. Moreover, we discuss that targeting these lncRNAs could be helpful for treating cancer via modulating F-box protein expression. We hope our review can stimulate the research on exploration of molecular insight into how F-box proteins are governed in carcinogenesis. Therefore, modulation of lncRNAs is a potential therapeutic strategy for cancer therapy via regulation of F-box proteins.
Collapse
|
7
|
Liu J, Chen T, Li S, Liu W, Wang P, Shang G. Targeting matrix metalloproteinases by E3 ubiquitin ligases as a way to regulate the tumor microenvironment for cancer therapy. Semin Cancer Biol 2022; 86:259-268. [PMID: 35724822 DOI: 10.1016/j.semcancer.2022.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
The tumor microenvironment (TME) plays an important role in neoplastic development. Matrix metalloproteinases (MMPs) are critically involved in tumorigenesis by modulation of the TME and degradation of the extracellular matrix (ECM) in a large variety of malignancies. Evidence has revealed that dysregulated MMPs can lead to ECM damage, the promotion of cell migration and tumor metastasis. The expression and activities of MMPs can be tightly regulated by TIMPs, multiple signaling pathways and noncoding RNAs. MMPs are also finely controlled by E3 ubiquitin ligases. The current review focuses on the molecular mechanism by which MMPs are governed by E3 ubiquitin ligases in carcinogenesis. Due to the essential role of MMPs in oncogenesis, they have been considered the attractive targets for antitumor treatment. Several strategies that target MMPs have been discovered, including the use of small-molecule inhibitors, peptides, inhibitory antibodies, natural compounds with anti-MMP activity, and RNAi therapeutics. However, these molecules have multiple disadvantages, such as poor solubility, severe side-effects and low oral bioavailability. Therefore, it is necessary to discover the novel inhibitors that suppress MMPs for cancer therapy. Here, we discuss the therapeutic potential of targeting E3 ubiquitin ligases to inhibit MMPs. We hope this review will stimulate the discovery of novel therapeutics for the MMP-targeted treatment of a variety of human cancers.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shizhe Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Wenjun Liu
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China
| | - Peter Wang
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China.
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
8
|
Xu L, Zhang L, Sun J, Hu X, Kalvakolanu DV, Ren H, Guo B. Roles for the methyltransferase SETD8 in DNA damage repair. Clin Epigenetics 2022; 14:34. [PMID: 35246238 PMCID: PMC8897848 DOI: 10.1186/s13148-022-01251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/20/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetic posttranslational modifications are critical for fine-tuning gene expression in various biological processes. SETD8 is so far the only known lysyl methyltransferase in mammalian cells to produce mono-methylation of histone H4 at lysine 20 (H4K20me1), a prerequisite for di- and tri-methylation. Importantly, SETD8 is related to a number of cellular activities, impinging upon tissue development, senescence and tumorigenesis. The double-strand breaks (DSBs) are cytotoxic DNA damages with deleterious consequences, such as genomic instability and cancer origin, if unrepaired. The homology-directed repair and canonical nonhomologous end-joining are two most prominent DSB repair pathways evolved to eliminate such aberrations. Emerging evidence implies that SETD8 and its corresponding H4K20 methylation are relevant to establishment of DSB repair pathway choice. Understanding how SETD8 functions in DSB repair pathway choice will shed light on the molecular basis of SETD8-deficiency related disorders and will be valuable for the development of new treatments. In this review, we discuss the progress made to date in roles for the lysine mono-methyltransferase SETD8 in DNA damage repair and its therapeutic relevance, in particular illuminating its involvement in establishment of DSB repair pathway choice, which is crucial for the timely elimination of DSBs.
Collapse
Affiliation(s)
- Libo Xu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Ling Zhang
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Jicheng Sun
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xindan Hu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Hui Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.
| | - Baofeng Guo
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
9
|
Neha S, Dholaniya PS. The Prevailing Role of Topoisomerase 2 Beta and its Associated Genes in Neurons. Mol Neurobiol 2021; 58:6443-6459. [PMID: 34546528 DOI: 10.1007/s12035-021-02561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
Topoisomerase 2 beta (TOP2β) is an enzyme that alters the topological states of DNA by making a transient double-strand break during the transcription process. The direct interaction of TOP2β with DNA strand results in transcriptional regulation of certain genes and some studies have suggested that a particular set of genes are regulated by TOP2β, which have a prominent role in various stages of neuron from development to degeneration. In this review, we discuss the role of TOP2β in various phases of the neuron's life. Based on the existing reports, we have compiled the list of genes, which are directly regulated by the enzyme, from different studies and performed their functional classification. We discuss the role of these genes in neurogenesis, neuron migration, fate determination, differentiation and maturation, generation of neural circuits, and senescence.
Collapse
Affiliation(s)
- Neha S
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
10
|
Chen LC, Hsieh YL, Tan GYT, Kuo TY, Chou YC, Hsu PH, Hwang-Verslues WW. Differential effects of SUMO1 and SUMO2 on circadian protein PER2 stability and function. Sci Rep 2021; 11:14431. [PMID: 34257372 PMCID: PMC8277905 DOI: 10.1038/s41598-021-93933-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Posttranslational modification (PTM) of core circadian clock proteins, including Period2 (PER2), is required for proper circadian regulation. PER2 function is regulated by casein kinase 1 (CK1)-mediated phosphorylation and ubiquitination but little is known about other PER2 PTMs or their interaction with PER2 phosphorylation. We found that PER2 can be SUMOylated by both SUMO1 and SUMO2; however, SUMO1 versus SUMO2 conjugation had different effects on PER2 turnover and transcriptional suppressor function. SUMO2 conjugation facilitated PER2 interaction with β-TrCP leading to PER2 proteasomal degradation. In contrast, SUMO1 conjugation, mediated by E3 SUMO-protein ligase RanBP2, enhanced CK1-mediated PER2S662 phosphorylation, inhibited PER2 degradation and increased PER2 transcriptional suppressor function. PER2 K736 was critical for both SUMO1- and SUMO2-conjugation. A PER2K736R mutation was sufficient to alter PER2 protein oscillation and reduce PER2-mediated transcriptional suppression. Together, our data revealed that SUMO1 versus SUMO2 conjugation acts as a determinant of PER2 stability and function and thereby affects the circadian regulatory system and the expression of clock-controlled genes.
Collapse
Affiliation(s)
- Ling-Chih Chen
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 115, Taiwan, ROC
| | - Yung-Lin Hsieh
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 115, Taiwan, ROC
| | - Grace Y T Tan
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 115, Taiwan, ROC
| | - Tai-Yun Kuo
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 115, Taiwan, ROC
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, 202, Taiwan, ROC
| | - Wendy W Hwang-Verslues
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 115, Taiwan, ROC.
| |
Collapse
|
11
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
12
|
β-Trcp and CK1δ-mediated degradation of LZTS2 activates PI3K/AKT signaling to drive tumorigenesis and metastasis in hepatocellular carcinoma. Oncogene 2021; 40:1269-1283. [PMID: 33420362 PMCID: PMC7892348 DOI: 10.1038/s41388-020-01596-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022]
Abstract
Distant metastasis is the leading cause of treatment failure in patients with hepatocellular carcinoma (HCC). However, the underlying mechanisms have not been fully elucidated. Here, we report that Leucine zipper tumor suppressor 2 (LZTS2) is downregulated and correlated with poor prognosis in HCC. Furthermore, we provide evidence that LZTS2 associates with p85 to inhibit the activation of PI3K/AKT signaling and impairs HCC tumorigenesis and metastasis in vitro and in vivo. Moreover, we identify LZTS2 as a bona fide substrate of the E3 ligase β-Trcp and protein kinase CK1δ, which are responsible for the ubiquitination and degradation of LZTS2. Importantly, we show that the β-Trcp and CK1δ-mediated degradation of LZTS2 promotes HCC progression and metastasis by activating PI3K/AKT signaling. Collectively, our study not only illustrates the roles of LZTS2 in regulating HCC tumorigenesis and metastasis but also reveals a novel posttranslational modification of LZTS2 by β-Trcp and CK1δ, indicating that the β-Trcp/CK1δ/LZTS2/PI3K axis may be a novel oncogenic driver involved in HCC progression and metastasis.
Collapse
|
13
|
Zhang X, Peng Y, Yuan Y, Gao Y, Hu F, Wang J, Zhu X, Feng X, Cheng Y, Wei Y, Fan X, Xie Y, Lv Y, Ashktorab H, Smoot D, Li S, Meltzer SJ, Hou G, Jin Z. Histone methyltransferase SET8 is regulated by miR-192/215 and induces oncogene-induced senescence via p53-dependent DNA damage in human gastric carcinoma cells. Cell Death Dis 2020; 11:937. [PMID: 33127874 PMCID: PMC7599338 DOI: 10.1038/s41419-020-03130-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
Abstract
Gastric cancer (GC) is the most common cancer throughout the world. Despite advances of the treatments, detailed oncogenic mechanisms are largely unknown. In our previous study, we investigated microRNA (miR) expression profiles in human GC using miR microarrays. We found miR-192/215 were upregulated in GC tissues. Then gene microarray was implemented to discover the targets of miR-192/215. We compared the expression profile of BGC823 cells transfected with miR-192/215 inhibitors, and HFE145 cells transfected with miR-192/-215 mimics, respectively. SET8 was identified as a proposed target based on the expression change of more than twofold. SET8 belongs to the SET domain-containing methyltransferase family and specifically catalyzes monomethylation of H4K20me. It is involved in diverse functions in tumorigenesis and metastasis. Therefore, we focused on the contributions of miR-192/215/SET8 axis to the development of GC. In this study, we observe that functionally, SET8 regulated by miR-192/215 is involved in GC-related biological activities. SET8 is also found to trigger oncogene-induced senescence (OIS) in GC in vivo and in vitro, which is dependent on the DDR (DNA damage response) and p53. Our findings reveal that SET8 functions as a negative regulator of metastasis via the OIS-signaling pathway. Taken together, we investigated the functional significance, molecular mechanisms, and clinical impact of miR-192/215/SET8/p53 in GC.
Collapse
Affiliation(s)
- Xiaojing Zhang
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yin Peng
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yuan Yuan
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yuli Gao
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Fan Hu
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Jian Wang
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xiaohui Zhu
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xianling Feng
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yulan Cheng
- grid.21107.350000 0001 2171 9311Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Ki-mmel Comprehensive Cancer Center, Baltimore, MD 21287 USA
| | - Yanjie Wei
- grid.458489.c0000 0001 0483 7922Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Xinmin Fan
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yaohong Xie
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yansi Lv
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Hassan Ashktorab
- grid.257127.40000 0001 0547 4545Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC 20060 USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208 USA
| | - Song Li
- grid.454883.6Shenzhen Science & Technology Development Exchange Center, Shenzhen Science and Technology Building, Shenzhen, Guangdong 518055 People’s Republic of China
| | - Stephen J. Meltzer
- grid.21107.350000 0001 2171 9311Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Ki-mmel Comprehensive Cancer Center, Baltimore, MD 21287 USA
| | - Gangqiang Hou
- Department of Medical Image Center, Kangning Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China.
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, People's Republic of China.
| |
Collapse
|
14
|
Jang SM, Redon CE, Thakur BL, Bahta MK, Aladjem MI. Regulation of cell cycle drivers by Cullin-RING ubiquitin ligases. Exp Mol Med 2020; 52:1637-1651. [PMID: 33005013 PMCID: PMC8080560 DOI: 10.1038/s12276-020-00508-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
The last decade has revealed new roles for Cullin-RING ubiquitin ligases (CRLs) in a myriad of cellular processes, including cell cycle progression. In addition to CRL1, also named SCF (SKP1-Cullin 1-F box protein), which has been known for decades as an important factor in the regulation of the cell cycle, it is now evident that all eight CRL family members are involved in the intricate cellular pathways driving cell cycle progression. In this review, we summarize the structure of CRLs and their functions in driving the cell cycle. We focus on how CRLs target key proteins for degradation or otherwise alter their functions to control the progression over the various cell cycle phases leading to cell division. We also summarize how CRLs and the anaphase-promoting complex/cyclosome (APC/C) ligase complex closely cooperate to govern efficient cell cycle progression.
Collapse
Affiliation(s)
- Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Meriam K Bahta
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| |
Collapse
|
15
|
Ugai K, Matsuda S, Mikami H, Shimada A, Misawa T, Nakamura H, Tatsumi K, Hatano M, Murayama T, Kasuya Y. Inhibition of the SET8 Pathway Ameliorates Lung Fibrosis Even Through Fibroblast Dedifferentiation. Front Mol Biosci 2020; 7:192. [PMID: 32850975 PMCID: PMC7419601 DOI: 10.3389/fmolb.2020.00192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease of unknown etiopathogenesis. The activation of extracellular matrix (ECM)-producing myofibroblasts plays a key role in fibrotic tissue remodeling. The dedifferentiation of myofibroblasts has attracted considerable attention as a promising target for the development of effective therapeutic interventions against IPF. Here, we screened a small library of epigenetics-related inhibitors using dedifferentiation assay of lung myofibroblasts prepared from a patient at the terminal stages of IPF and chose UNC0379. The inhibition of SET8, a histone H4 lysine 20 (H4K20) monomethyltransferase, by UNC0379 markedly suppressed the expression of α-smooth muscle actin (SMA) and ED-A-fibronectin in myofibroblasts. In IPF myofibroblasts, SET8 expression and H4K20 monomethylation (H4K20me1) levels, which were significantly higher than those in normal human lung fibroblasts, were reduced upon treatment with UNC0379. Hence, the changes in the expression of the two fibrotic markers clearly correlated with those in SET8 expression and H4K20me1 level. Furthermore, in a mouse model of bleomycin (BLM)-induced lung fibrosis, the intratracheal administration of UNC0379 at an early fibrotic stage markedly ameliorated the histopathological changes associated with collagen deposition in the lungs. However, treatment with UNC0379 did not significantly affect the number of proinflammatory cells or cytokine production in the bronchoalveolar lavage fluids from mice treated with BLM. In the BLM-injured lung, SET8 was predominantly localized to the nuclei of α-SMA-positive cells, which colocalized with H4K20me1. Taken together, our results indicate that the inhibition of SET8 resulting in myofibroblast dedifferentiation may partly mitigate lung fibrosis without affecting the inflammatory responses.
Collapse
Affiliation(s)
- Keita Ugai
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba, Japan
| | - Shuichi Matsuda
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Mikami
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayako Shimada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoko Misawa
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba, Japan
| | - Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
16
|
Fukuura K, Inoue Y, Miyajima C, Watanabe S, Tokugawa M, Morishita D, Ohoka N, Komada M, Hayashi H. The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21. J Biol Chem 2019; 294:16429-16439. [PMID: 31533987 DOI: 10.1074/jbc.ra119.009006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/13/2019] [Indexed: 01/12/2023] Open
Abstract
Su(var)3-9, Enhancer-of-zeste, and Trithorax (SET) domain-containing protein 8 (SET8) is the sole enzyme that monomethylates Lys-20 of histone H4 (H4K20). SET8 has been implicated in the regulation of multiple biological processes, such as gene transcription, the cell cycle, and senescence. SET8 quickly undergoes ubiquitination and degradation by several E3 ubiquitin ligases; however, the enzyme that deubiquitinates SET8 has not yet been identified. Here we demonstrated that ubiquitin-specific peptidase 17-like family member (USP17) deubiquitinates and therefore stabilizes the SET8 protein. We observed that USP17 interacts with SET8 and removes polyubiquitin chains from SET8. USP17 knockdown not only decreased SET8 protein levels and H4K20 monomethylation but also increased the levels of the cyclin-dependent kinase inhibitor p21. As a consequence, USP17 knockdown suppressed cell proliferation. We noted that USP17 was down-regulated in replicative senescence and that USP17 inhibition alone was sufficient to trigger cellular senescence. These results reveal a regulatory mechanism whereby USP17 prevents cellular senescence by removing ubiquitin marks from and stabilizing SET8 and transcriptionally repressing p21.
Collapse
Affiliation(s)
- Keishi Fukuura
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan .,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shin Watanabe
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Muneshige Tokugawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Masayuki Komada
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan .,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
17
|
Zouaz A, Fernando C, Perez Y, Sardet C, Julien E, Grimaud C. Cell-cycle regulation of non-enzymatic functions of the Drosophila methyltransferase PR-Set7. Nucleic Acids Res 2019; 46:2834-2849. [PMID: 29373730 PMCID: PMC5888314 DOI: 10.1093/nar/gky034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/16/2018] [Indexed: 12/27/2022] Open
Abstract
Tight cell-cycle regulation of the histone H4-K20 methyltransferase PR-Set7 is essential for the maintenance of genome integrity. In mammals, this mainly involves the interaction of PR-Set7 with the replication factor PCNA, which triggers the degradation of the enzyme by the CRL4CDT2 E3 ubiquitin ligase. PR-Set7 is also targeted by the SCFβ-TRCP ligase, but the role of this additional regulatory pathway remains unclear. Here, we show that Drosophila PR-Set7 undergoes a cell-cycle proteolytic regulation, independently of its interaction with PCNA. Instead, Slimb, the ortholog of β-TRCP, is specifically required for the degradation of the nuclear pool of PR-Set7 prior to S phase. Consequently, inactivation of Slimb leads to nuclear accumulation of PR-Set7, which triggers aberrant chromatin compaction and G1/S arrest. Strikingly, these phenotypes result from non-enzymatic PR-Set7 functions that prevent proper histone H4 acetylation independently of H4K20 methylation. Altogether, these results identify the Slimb-mediated PR-Set7 proteolysis as a new critical regulatory mechanism required for proper interphase chromatin organization at G1/S transition.
Collapse
Affiliation(s)
- Amel Zouaz
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier F-34298, France.,University of Montpellier, Montpellier F-34090, France
| | - Céline Fernando
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier F-34298, France.,University of Montpellier, Montpellier F-34090, France
| | - Yannick Perez
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier F-34298, France.,University of Montpellier, Montpellier F-34090, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier F-34298, France.,University of Montpellier, Montpellier F-34090, France
| | - Eric Julien
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier F-34298, France.,University of Montpellier, Montpellier F-34090, France
| | - Charlotte Grimaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier F-34298, France.,University of Montpellier, Montpellier F-34090, France
| |
Collapse
|
18
|
Jiang ZH, Peng T, Qian HL, Lu CD, Qiu F, Zhang SZ. DNA damage-induced activation of ATM promotes β-TRCP-mediated ARID1A ubiquitination and destruction in gastric cancer cells. Cancer Cell Int 2019; 19:162. [PMID: 31210753 PMCID: PMC6567580 DOI: 10.1186/s12935-019-0878-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background AT-rich interactive domain-containing protein 1A (ARID1A) is a subunit of the mammary SWI/SNF chromatin remodeling complex and a tumor suppressor protein. The loss of ARID1A been observed in several types of human cancers and associated with poor patient prognosis. Previously, we have reported that ARID1A protein was rapidly ubiquitinated and destructed in gastric cancer cells during DNA damage response. However, the ubiquitin e3 ligase that mediated this process remains unclear. Materials and methods The interaction between ARID1A and β-TRCP was verified by co-immunoprecipitation (Co-IP) assay. The degron site of ARID1A protein was analyzed by bioinformatics assay. Short hairpin RNAs (shRNAs) were used to knockdown (KD) gene expression. Results Here we show that DNA damage promotes ARID1A ubiquitination and subsequent destruction via the ubiquitin E3 ligase complex SCFβ-TRCP. β-TRCP recognizes ARID1A through a canonical degron site (DSGXXS) after its phosphorylation in response to DNA damage. Notably, genetic inactivation of the Ataxia Telangiectasia Mutated (ATM) kinase impaired DNA damage-induced ARID1A destruction. Conclusions Our studies provide a novel molecular mechanism for the negative regulation of ARID1A by β-TRCP and ATM in DNA damaged gastric cancer cells.
Collapse
Affiliation(s)
- Zhou-Hua Jiang
- 1Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China.,Department of Gastrointestinal Surgery, Ningbo Medical Center, Li Huili Eastern Hospital, Ningbo, 315000 Zhejiang China
| | - Tao Peng
- Department of Gastrointestinal Surgery, Ningbo Medical Center, Li Huili Eastern Hospital, Ningbo, 315000 Zhejiang China
| | - Hai-Long Qian
- Department of Gastrointestinal Surgery, Ningbo Medical Center, Li Huili Eastern Hospital, Ningbo, 315000 Zhejiang China
| | - Cai-de Lu
- Department of Gastrointestinal Surgery, Ningbo Medical Center, Li Huili Eastern Hospital, Ningbo, 315000 Zhejiang China
| | - Feng Qiu
- Department of Gastrointestinal Surgery, Ningbo Medical Center, Li Huili Eastern Hospital, Ningbo, 315000 Zhejiang China
| | - Su-Zhan Zhang
- 3Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| |
Collapse
|
19
|
Orouji E, Utikal J. Tackling malignant melanoma epigenetically: histone lysine methylation. Clin Epigenetics 2018; 10:145. [PMID: 30466474 PMCID: PMC6249913 DOI: 10.1186/s13148-018-0583-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
Post-translational histone modifications such as acetylation and methylation can affect gene expression. Histone acetylation is commonly associated with activation of gene expression whereas histone methylation is linked to either activation or repression of gene expression. Depending on the site of histone modification, several histone marks can be present throughout the genome. A combination of these histone marks can shape global chromatin architecture, and changes in patterns of marks can affect the transcriptomic landscape. Alterations in several histone marks are associated with different types of cancers, and these alterations are distinct from marks found in original normal tissues. Therefore, it is hypothesized that patterns of histone marks can change during the process of tumorigenesis. This review focuses on histone methylation changes (both removal and addition of methyl groups) in malignant melanoma, a deadly skin cancer, and the implications of specific inhibitors of these modifications as a combinatorial therapeutic approach.
Collapse
Affiliation(s)
- Elias Orouji
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, 1901 East Rd. South Campus Research Building 4, Houston, TX, 77054, USA. .,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
20
|
Wang J, Qiu Z, Wu Y. Ubiquitin Regulation: The Histone Modifying Enzyme's Story. Cells 2018; 7:cells7090118. [PMID: 30150556 PMCID: PMC6162602 DOI: 10.3390/cells7090118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Histone post-translational modifications influence many fundamental cellular events by regulating chromatin structure and gene transcriptional activity. These modifications are highly dynamic and tightly controlled, with many enzymes devoted to the addition and removal of these modifications. Interestingly, these modifying enzymes are themselves fine-tuned and precisely regulated at the level of protein turnover by ubiquitin-proteasomal processing. Here, we focus on recent progress centered on the mechanisms regulating ubiquitination of histone modifying enzymes, including ubiquitin proteasomal degradation and the reverse process of deubiquitination. We will also discuss the potential pathophysiological significance of these processes.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Pharmacology & Nutritional Sciences, University of Kentucky School of Medicine, KY 40506, USA.
- Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA.
| | - Zhaoping Qiu
- Department of Pharmacology & Nutritional Sciences, University of Kentucky School of Medicine, KY 40506, USA.
- Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA.
| | - Yadi Wu
- Department of Pharmacology & Nutritional Sciences, University of Kentucky School of Medicine, KY 40506, USA.
- Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA.
| |
Collapse
|
21
|
Jang SM, Zhang Y, Utani K, Fu H, Redon CE, Marks AB, Smith OK, Redmond CJ, Baris AM, Tulchinsky DA, Aladjem MI. The replication initiation determinant protein (RepID) modulates replication by recruiting CUL4 to chromatin. Nat Commun 2018; 9:2782. [PMID: 30018425 PMCID: PMC6050238 DOI: 10.1038/s41467-018-05177-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
Cell cycle progression in mammals is modulated by two ubiquitin ligase complexes, CRL4 and SCF, which facilitate degradation of chromatin substrates involved in the regulation of DNA replication. One member of the CRL4 complex, the WD-40 containing protein RepID (DCAF14/PHIP), selectively binds and activates a group of replication origins. Here we show that RepID recruits the CRL4 complex to chromatin prior to DNA synthesis, thus playing a crucial architectural role in the proper licensing of chromosomes for replication. In the absence of RepID, cells rely on the alternative ubiquitin ligase, SKP2-containing SCF, to progress through the cell cycle. RepID depletion markedly increases cellular sensitivity to SKP2 inhibitors, which triggered massive genome re-replication. Both RepID and SKP2 interact with distinct, non-overlapping groups of replication origins, suggesting that selective interactions of replication origins with specific CRL components execute the DNA replication program and maintain genomic stability by preventing re-initiation of DNA replication. RepID has previously been shown to promote origin firing. Here the authors reveal that RepID regulates replication origins via the recruitment of the CRL4 complex, and prevents re-initiation and unscheduled DNA replication.
Collapse
Affiliation(s)
- Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Ya Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Koichi Utani
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Anna B Marks
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Owen K Smith
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Catherine J Redmond
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Adrian M Baris
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Danielle A Tulchinsky
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892-4255, USA.
| |
Collapse
|
22
|
Jang SM, Redon CE, Aladjem MI. Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy. Front Mol Biosci 2018; 5:19. [PMID: 29594129 PMCID: PMC5859106 DOI: 10.3389/fmolb.2018.00019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases, are functional multi-subunit complexes including substrate receptors, adaptors, cullin scaffolds, and RING-box proteins. CRLs are responsible for ubiquitination of ~20% of cellular proteins and are involved in diverse biological processes including cell cycle progression, genome stability, and oncogenesis. Not surprisingly, cullins are deregulated in many diseases and instances of cancer. Recent studies have highlighted the importance of CRL-mediated ubiquitination in the regulation of DNA replication/repair, including specific roles in chromatin assembly and disassembly of the replication machinery. The development of novel therapeutics targeting the CRLs that regulate the replication machinery and chromatin in cancer is now an attractive therapeutic strategy. In this review, we summarize the structure and assembly of CRLs and outline their cellular functions and their diverse roles in cancer, emphasizing the regulatory functions of nuclear CRLs in modulating the DNA replication machinery. Finally, we discuss the current strategies for targeting CRLs against cancer in the clinic.
Collapse
Affiliation(s)
| | | | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
23
|
Replication-Coupled Dilution of H4K20me2 Guides 53BP1 to Pre-replicative Chromatin. Cell Rep 2018; 19:1819-1831. [PMID: 28564601 PMCID: PMC5857200 DOI: 10.1016/j.celrep.2017.05.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/06/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
The bivalent histone modification reader 53BP1 accumulates around DNA double-strand breaks (DSBs), where it dictates repair pathway choice decisions by limiting DNA end resection. How this function is regulated locally and across the cell cycle to channel repair reactions toward non-homologous end joining (NHEJ) in G1 and promote homology-directed repair (HDR) in S/G2 is insufficiently understood. Here, we show that the ability of 53BP1 to accumulate around DSBs declines as cells progress through S phase and reveal that the inverse relationship between 53BP1 recruitment and replicated chromatin is linked to the replication-coupled dilution of 53BP1’s target mark H4K20me2. Consistently, premature maturation of post-replicative chromatin restores H4K20me2 and rescues 53BP1 accumulation on replicated chromatin. The H4K20me2-mediated chromatin association of 53BP1 thus represents an inbuilt mechanism to distinguish DSBs in pre- versus post-replicative chromatin, allowing for localized repair pathway choice decisions based on the availability of replication-generated template strands for HDR.
Collapse
|
24
|
Ci Y, Li X, Chen M, Zhong J, North BJ, Inuzuka H, He X, Li Y, Guo J, Dai X. SCF β-TRCP E3 ubiquitin ligase targets the tumor suppressor ZNRF3 for ubiquitination and degradation. Protein Cell 2018; 9:879-889. [PMID: 29497989 PMCID: PMC6160385 DOI: 10.1007/s13238-018-0510-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
Abstract
Wnt signaling has emerged as a major regulator of tissue development by governing the self-renewal and maintenance of stem cells in most tissue types. As a key upstream regulator of the Wnt pathway, the transmembrane E3 ligase ZNRF3 has recently been established to play a role in negative regulation of Wnt signaling by targeting Frizzled (FZD) receptor for ubiquitination and degradation. However, the upstream regulation of ZNRF3, in particular the turnover of ZNRF3, is still unclear. Here we report that ZNRF3 is accumulated in the presence of proteasome inhibitor treatment independent of its E3-ubiquitin ligase activity. Furthermore, the Cullin 1-specific SCF complex containing β-TRCP has been identified to directly interact with and ubiquitinate ZNRF3 thereby regulating its protein stability. Similar with the degradation of β-catenin by β-TRCP, ZNRF3 is ubiquitinated by β-TRCP in both CKI-phosphorylation- and degron-dependent manners. Thus, our findings not only identify a novel substrate for β-TRCP oncogenic regulation, but also highlight the dual regulation of Wnt signaling by β-TRCP in a context-dependent manner where β-TRCP negatively regulates Wnt signaling by targeting β-catenin, and positively regulates Wnt signaling by targeting ZNRF3.
Collapse
Affiliation(s)
- Yanpeng Ci
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Xiaoning Li
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Maorong Chen
- The FM Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, USA
| | - Jiateng Zhong
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Xi He
- The FM Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, USA
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
25
|
β-Trcp ubiquitin ligase and RSK2 kinase-mediated degradation of FOXN2 promotes tumorigenesis and radioresistance in lung cancer. Cell Death Differ 2018; 25:1473-1485. [PMID: 29396548 DOI: 10.1038/s41418-017-0055-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Aberrant expression of FOXN2, a member of the Forkhead box transcription factors, has been found in several types of cancer. However, the underlying mechanisms of FOXN2 deregulation in tumorigenesis remain largely unknown. Here, we find that FOXN2 binds to and is ubiquitinated by β-Trcp ubiquitin ligase and RSK2 kinase for degradation. Furthermore, we demonstrate that the Ser365 and Ser369 sites in a conserved DSGYAS motif are critical for the degradation of FOXN2 by β-Trcp and RSK2. Moreover, gain-of-function and loss-of-function studies show that FOXN2 impairs cell proliferation in vitro and in vivo and enhances the radiosensitivity of lung cancer. Importantly, β-Trcp-mediated and RSK2-mediated degradation of FOXN2 promotes tumorigenesis and radioresistance in lung cancer cells. Collectively, our study reveals a novel post-translational modification of FOXN2 and suggests that FOXN2 may be a potential therapeutic and radiosensitization target for lung cancer.
Collapse
|
26
|
Huang Y, Hu K, Zhang S, Dong X, Yin Z, Meng R, Zhao Y, Dai X, Zhang T, Yang K, Liu L, Huang K, Shi S, Zhang Y, Chen J, Wu G, Xu S. S6K1 phosphorylation-dependent degradation of Mxi1 by β-Trcp ubiquitin ligase promotes Myc activation and radioresistance in lung cancer. Theranostics 2018; 8:1286-1300. [PMID: 29507620 PMCID: PMC5835936 DOI: 10.7150/thno.22552] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Rationale: Mxi1 is regarded as a potential tumor suppressor protein that antagonizes the transcriptional activity of proto-oncogene Myc. However, the clinical significances and underlying mechanisms by which Mxi1 is regulated in lung cancer remain poorly understood. Methods: Mass spectrometry analysis and immunoprecipitation assay were utilized to detect the protein-protein interaction. The phosphorylation of Mxi1 was evaluated by in vitro kinase assays. Poly-ubiquitination of Mxi1 was examined by in vivo ubiquitination assay. Lung cancer cells stably expressing wild-type Mxi1 or Mxi1-S160A were used for functional analyses. The expression levels of Mxi1 and S6K1 were determined by immunohistochemistry in lung cancer tissues and adjacent normal lung tissues. Results: We found that Mxi1 is downregulated and correlated with poor prognosis in lung cancer. Using tandem affinity purification technology, we provided evidence that β-Trcp E3 ubiquitin ligase interacts with and promotes the ubiquitination and degradation of Mxi1. Furthermore, we demonstrated that Mxi1 is phosphorylated at S160 site by the protein kinase S6K1 and subsequently degraded via the ubiquitin ligase β-Trcp. Moreover, a phosphorylation mutant form of Mxi1 (Mxi1-S160A), which cannot be degraded by S6K1 and β-Trcp, is much more stable and efficient in suppressing the transcriptional activity of Myc and radioresistance in lung cancer cells. More importantly, a strong inverse correlation between S6K1 and Mxi1 expression was observed in human lung cancer tissues. Conclusion: Our findings not only establish a crosstalk between the mTOR/S6K1 signaling pathway and Myc activation, but also suggest that targeting S6K1/Mxi1 pathway is a promising therapeutic strategy for the treatment of lung cancer.
Collapse
|
27
|
Tanaka H, Takebayashi SI, Sakamoto A, Igata T, Nakatsu Y, Saitoh N, Hino S, Nakao M. The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling. Cell Rep 2017; 18:2148-2161. [PMID: 28249161 DOI: 10.1016/j.celrep.2017.02.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/29/2016] [Accepted: 02/06/2017] [Indexed: 01/01/2023] Open
Abstract
Cellular senescence is an irreversible growth arrest that contributes to development, tumor suppression, and age-related conditions. Senescent cells show active metabolism compared with proliferating cells, but the underlying mechanisms remain unclear. Here we show that the SETD8/PR-Set7 methyltransferase, which catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1), suppresses nucleolar and mitochondrial activities to prevent cellular senescence. SETD8 protein was selectively downregulated in both oncogene-induced and replicative senescence. Inhibition of SETD8 alone was sufficient to trigger senescence. Under these states, the expression of genes encoding ribosomal proteins (RPs) and ribosomal RNAs as well as the cyclin-dependent kinase (CDK) inhibitor p16INK4A was increased, with a corresponding reduction of H4K20me1 at each locus. As a result, the loss of SETD8 concurrently stimulated nucleolar function and retinoblastoma protein-mediated mitochondrial metabolism. In conclusion, our data demonstrate that SETD8 acts as a barrier to prevent cellular senescence through chromatin-mediated regulation of senescence-associated metabolic remodeling.
Collapse
Affiliation(s)
- Hiroshi Tanaka
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shin-Ichiro Takebayashi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Akihisa Sakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tomoka Igata
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuko Nakatsu
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Noriko Saitoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan.
| |
Collapse
|
28
|
Mosallayi M, Simonian M, Khosravi S, Salehi AR, Khodadoostan M, Sebghatollahi V, Baradaran A, Salehi R. Polymorphism (rs16917496) at the miR-502 Binding Site of the Lysine Methyltransferase 5A ( SET8) and Its Correlation with Colorectal Cancer in Iranians. Adv Biomed Res 2017; 6:77. [PMID: 28808643 PMCID: PMC5539672 DOI: 10.4103/2277-9175.210656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: One of the gene expression regulatory mechanisms is mediated by small noncoding RNAs called microRNA (miRNA). They interact with a recognition sequence located mostly in 3’-untranslated regions (3’-UTRs) of mRNAs. Polymorphisms in miRNAs recognition sequences could affect gene expression which in turn may alter disease susceptibility. SET8, a member of the SET domain-containing methyltransferase, acts in a variety of biological processes such as genomic stability. Here, we report correlation of rs16917496 polymorphism, located in the recognition sequence of miR-502 within 3’-UTR of SET8, with colorectal cancer (CRC) in Iranians. Materials and Methods: One hundred and seventy CRC patients and 170 noncancer counterparts were recruited in this case–control study. Genotyping of rs16917496 was performed using polymerase chain reaction-restriction fragment length polymorphism method. Results: There was no significant association of rs16917496 with CRC in population under study (P value for genotype and allele distribution were >0.05). However, stratification analysis based on smoking status revealed that TT+TC genotypes of SET8 rs16917496 are strongly associated with increased risk of CRC (odds ratio: 5.8, 95% confidence interval: 1.37–24.34, P - 0.005) in smoker subgroup. Conclusion: Correlation of rs16917496 T allele with CRC in smokers is emphasizing the importance of individuals’ genotype in the recruitment of adverse health hazards of smoking more profoundly for certain people compared to others.
Collapse
Affiliation(s)
- Meysam Mosallayi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Miganoosh Simonian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharifeh Khosravi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Reza Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Khodadoostan
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahid Sebghatollahi
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azar Baradaran
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Gerfa Namayesh Azmayesh (GENAZMA) Science and Research Institute, Isfahan, Iran
| |
Collapse
|
29
|
Cheng X, Hao Y, Shu W, Zhao M, Zhao C, Wu Y, Peng X, Yao P, Xiao D, Qing G, Pan Z, Yin L, Hu D, Du HN. Cell cycle-dependent degradation of the methyltransferase SETD3 attenuates cell proliferation and liver tumorigenesis. J Biol Chem 2017; 292:9022-9033. [PMID: 28442573 DOI: 10.1074/jbc.m117.778001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/23/2017] [Indexed: 01/22/2023] Open
Abstract
Histone modifications, including lysine methylation, are epigenetic marks that influence many biological pathways. Accordingly, many methyltransferases have critical roles in various biological processes, and their dysregulation is often associated with cancer. However, the biological functions and regulation of many methyltransferases are unclear. Here, we report that a human homolog of the methyltransferase SET (SU(var), enhancer of zeste, and trithorax) domain containing 3 (SETD3) is cell cycle-regulated; SETD3 protein levels peaked in S phase and were lowest in M phase. We found that the β-isoform of the tumor suppressor F-box and WD repeat domain containing 7 (FBXW7β) specifically mediates SETD3 degradation. Aligning the SETD3 sequence with those of well known FBXW7 substrates, we identified six potential non-canonical Cdc4 phosphodegrons (CPDs), and one of them, CPD1, is primarily phosphorylated by the kinase glycogen synthase kinase 3 (GSK3β), which is required for FBXW7β-mediated recognition and degradation. Moreover, depletion or inhibition of GSK3β or FBXW7β resulted in elevated SETD3 levels. Mutations of the phosphorylated residues in CPD1 of SETD3 abolished the interaction between FBXW7β and SETD3 and prevented SETD3 degradation. Our data further indicated that SETD3 levels positively correlated with cell proliferation of liver cancer cells and liver tumorigenesis in a xenograft mouse model, and that overexpression of FBXW7β counteracts the SETD3's tumorigenic role. We also show that SETD3 levels correlate with cancer malignancy, indicated by SETD3 levels that the 54 liver tumors are 2-fold higher than those in the relevant adjacent tissues. Collectively, these data elucidated that a GSK3β-FBXW7β-dependent mechanism controls SETD3 protein levels during the cell cycle and attenuates its oncogenic role in liver tumorigenesis.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072
| | - Yuan Hao
- the Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiaotong University School of Medicine, Shanghai 200092,
| | - Wenjie Shu
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072
| | - Mengjie Zhao
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072
| | - Chen Zhao
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072
| | - Yuan Wu
- the Department of Radiotherapy, Hubei Cancer Hospital, Wuhan 430079
| | - Xiaodan Peng
- the Department of Oncology, Shenzhen Hospital of Peking University, Shenzhen 518083
| | - Pinfang Yao
- the Department of Radiotherapy, Hubei Cancer Hospital, Wuhan 430079
| | - Daibiao Xiao
- the Medical Research Institute, Wuhan University, Wuhan 430071, and
| | - Guoliang Qing
- the Medical Research Institute, Wuhan University, Wuhan 430071, and
| | - Zhengying Pan
- the Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Lei Yin
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072
| | - Desheng Hu
- the Department of Radiotherapy, Hubei Cancer Hospital, Wuhan 430079,
| | - Hai-Ning Du
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072,
| |
Collapse
|
30
|
Lampert F, Brodersen MML, Peter M. Guard the guardian: A CRL4 ligase stands watch over histone production. Nucleus 2017; 8:134-143. [PMID: 28072566 DOI: 10.1080/19491034.2016.1276143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Histones are evolutionarily conserved proteins that together with DNA constitute eukaryotic chromatin in a defined stoichiometry. Core histones are dynamic scaffolding proteins that undergo a myriad of post-translational modifications, which selectively engage chromosome condensation, replication, transcription and DNA damage repair. Cullin4-RING ubiquitin E3 ligases are known to hold pivotal roles in a wide spectrum of chromatin biology ranging from chromatin remodeling and transcriptional repression, to sensing of cytotoxic DNA lesions. Our recent work uncovers an unexpected function of a CRL4 ligase upstream of these processes in promoting histone biogenesis. The CRL4WDR23 ligase directly controls the activity of the stem-loop binding protein (SLBP), which orchestrates elemental steps of canonical histone transcript metabolism. We demonstrate that non-proteolytic ubiquitination of SLBP ensures sufficient histone reservoirs during DNA replication and is vital for genome integrity and cellular fitness.
Collapse
Affiliation(s)
| | - Mia M L Brodersen
- a Institute of Biochemistry, ETH Zurich , Zürich , Switzerland.,b nspm. ltd. , Meggen , Switzerland
| | - Matthias Peter
- a Institute of Biochemistry, ETH Zurich , Zürich , Switzerland
| |
Collapse
|
31
|
Veschi V, Liu Z, Voss TC, Ozbun L, Gryder B, Yan C, Hu Y, Ma A, Jin J, Mazur SJ, Lam N, Souza BK, Giannini G, Hager GL, Arrowsmith CH, Khan J, Appella E, Thiele CJ. Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma. Cancer Cell 2017; 31:50-63. [PMID: 28073004 PMCID: PMC5233415 DOI: 10.1016/j.ccell.2016.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/26/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Abstract
Given the paucity of druggable mutations in high-risk neuroblastoma (NB), we undertook chromatin-focused small interfering RNA and chemical screens to uncover epigenetic regulators critical for the differentiation block in high-risk NB. High-content Opera imaging identified 53 genes whose loss of expression led to a decrease in NB cell proliferation and 16 also induced differentiation. From these, the secondary chemical screen identified SETD8, the H4K20me1 methyltransferase, as a druggable NB target. Functional studies revealed that SETD8 ablation rescued the pro-apoptotic and cell-cycle arrest functions of p53 by decreasing p53K382me1, leading to activation of the p53 canonical pathway. In pre-clinical xenograft NB models, genetic or pharmacological (UNC0379) SETD8 inhibition conferred a significant survival advantage, providing evidence for SETD8 as a therapeutic target in NB.
Collapse
Affiliation(s)
- Veronica Veschi
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC, 1-3940, 10 Center Drive MSC-1105, Bethesda, MD 20892, USA
| | - Zhihui Liu
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC, 1-3940, 10 Center Drive MSC-1105, Bethesda, MD 20892, USA
| | - Ty C Voss
- High-Throughput Imaging Facility, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Laurent Ozbun
- High-Throughput Imaging Facility, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Berkley Gryder
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chunhua Yan
- Center for Biomedical Informatics and Information Technology, Center for Cancer Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Ying Hu
- Center for Biomedical Informatics and Information Technology, Center for Cancer Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Anqi Ma
- Department of Structural and Chemical Biology, Oncological Sciences, Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Department of Structural and Chemical Biology, Oncological Sciences, Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sharlyn J Mazur
- Chemical Immunology Section, Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Norris Lam
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC, 1-3940, 10 Center Drive MSC-1105, Bethesda, MD 20892, USA
| | - Barbara K Souza
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC, 1-3940, 10 Center Drive MSC-1105, Bethesda, MD 20892, USA
| | - Giuseppe Giannini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ettore Appella
- Chemical Immunology Section, Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Carol J Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC, 1-3940, 10 Center Drive MSC-1105, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Shimizu K, Fukushima H, Ogura K, Lien EC, Nihira NT, Zhang J, North BJ, Guo A, Nagashima K, Nakagawa T, Hoshikawa S, Watahiki A, Okabe K, Yamada A, Toker A, Asara JM, Fukumoto S, Nakayama KI, Nakayama K, Inuzuka H, Wei W. The SCFβ-TRCP E3 ubiquitin ligase complex targets Lipin1 for ubiquitination and degradation to promote hepatic lipogenesis. Sci Signal 2017; 10:10/460/eaah4117. [PMID: 28049764 DOI: 10.1126/scisignal.aah4117] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The SCFβ-TRCP E3 ubiquitin ligase complex plays pivotal roles in normal cellular physiology and in pathophysiological conditions. Identification of β-transducin repeat-containing protein (β-TRCP) substrates is therefore critical to understand SCFβ-TRCP biology and function. We used a β-TRCP-phosphodegron motif-specific antibody in a β-TRCP substrate screen coupled with tandem mass spectrometry and identified multiple β-TRCP substrates. One of these substrates was Lipin1, an enzyme and suppressor of the family of sterol regulatory element-binding protein (SREBP) transcription factors, which activate genes encoding lipogenic factors. We showed that SCFβ-TRCP specifically interacted with and promoted the polyubiquitination of Lipin1 in a manner that required phosphorylation of Lipin1 by mechanistic target of rapamycin 1 (mTORC1) and casein kinase I (CKI). β-TRCP depletion in HepG2 hepatocellular carcinoma cells resulted in increased Lipin1 protein abundance, suppression of SREBP-dependent gene expression, and attenuation of triglyceride synthesis. Moreover, β-TRCP1 knockout mice showed increased Lipin1 protein abundance and were protected from hepatic steatosis induced by a high-fat diet. Together, these data reveal a critical physiological function of β-TRCP in regulating hepatic lipid metabolic homeostasis in part through modulating Lipin1 stability.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hidefumi Fukushima
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Kohei Ogura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Infectious Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Evan C Lien
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Naoe Taira Nihira
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ailan Guo
- Cell Signaling Technology Inc., Danvers, MA 01923, USA
| | - Katsuyuki Nagashima
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Seira Hoshikawa
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Asami Watahiki
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Koji Okabe
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Satoshi Fukumoto
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Keiichi I Nakayama
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. .,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Zheng N, Dai X, Wang Z, Wei W. A new layer of degradation mechanism for PR-Set7/Set8 during cell cycle. Cell Cycle 2016; 15:3042-3047. [PMID: 27649746 DOI: 10.1080/15384101.2016.1234552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Set8 is critically involved in transcription regulation, cell cycle progression and genomic stability. Emerging evidence has revealed that E3 ubiquitin ligases such as CRL4cdt2 and SCFSkp2 regulate Set8 protein abundance. However, it is unclear whether other E3 ligase(s) could govern Set8 level for proper cell cycle progression in response to genotoxic stress such as UV irradiation. Recently, we report that the SCFβ-TRCP complex regulates Set8 protein stability by targeting it for ubiquitination and subsequent degradation. Notably, Set8 interacts with the SCFβ-TRCP E3 ligase complex. We further revealed a critical role of CKI in SCFβ-TRCP-mediated degradation of Set8. Mechanistically, CKI-mediated phosphorylation of Set8 at the S253 site promotes its destruction by SCFβ-TRCP. Importantly, SCFβ-TRCP-dependent Set8 destruction also contributes to the tight control of cell proliferation and cell cycle progression, in response to UV irradiation. Here, we summarize our new findings regarding the crucial role of β-TRCP in CKI-mediated Set8 degradation, which could provide new evidence to support that dysregulation of a tight regulatory network of Set8 could lead to aberrant cell cycle process.
Collapse
Affiliation(s)
- Nana Zheng
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University , Suzhou , P. R. China
| | - Xiangpeng Dai
- b Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Zhiwei Wang
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University , Suzhou , P. R. China
| | - Wenyi Wei
- b Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
34
|
Zheng N, Wang Z, Wei W. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. Int J Biochem Cell Biol 2016; 73:99-110. [PMID: 26860958 PMCID: PMC4798898 DOI: 10.1016/j.biocel.2016.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
F-box proteins, subunits of SKP1-cullin 1-F-box protein (SCF) type of E3 ubiquitin ligase complexes, have been validated to play a crucial role in governing various cellular processes such as cell cycle, cell proliferation, apoptosis, migration, invasion and metastasis. Recently, a wealth of evidence has emerged that F-box proteins is critically involved in tumorigenesis in part through governing the ubiquitination and subsequent degradation of cell cycle proteins, and dysregulation of this process leads to aberrant cell cycle progression and ultimately, tumorigenesis. Therefore, in this review, we describe the critical role of F-box proteins in the timely regulation of cell cycle. Moreover, we discuss how F-box proteins involve in tumorigenesis via targeting cell cycle-related proteins using biochemistry studies, engineered mouse models, and pathological gene alternations. We conclude that inhibitors of F-box proteins could have promising therapeutic potentials in part through controlling of aberrant cell cycle progression for cancer therapies.
Collapse
Affiliation(s)
- Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| |
Collapse
|