1
|
Boczki P, Colombo M, Weiner J, Rapöhn I, Lacher M, Kiess W, Hanschkow M, Körner A, Landgraf K. Inhibition of AHCY impedes proliferation and differentiation of mouse and human adipocyte progenitor cells. Adipocyte 2024; 13:2290218. [PMID: 38064408 PMCID: PMC10732623 DOI: 10.1080/21623945.2023.2290218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
S-adenosyl-homocysteine-hydrolase (AHCY) plays an important role in the methionine cycle regulating cellular methylation levels. AHCY has been reported to influence proliferation and differentiation processes in different cell types, e.g. in cancer cells and mouse embryonic stem cells. In the development of adipose tissue, both the proliferation and differentiation of adipocyte progenitor cells (APCs) are important processes, which in the context of obesity are often dysregulated. To assess whether AHCY might also be involved in cell proliferation and differentiation of APCs, we investigated the effect of reduced AHCY activity on human and mouse APCs in vitro. We show that the inhibition of AHCY using adenosine dialdehyde (AdOx) and the knockdown of AHCY using gene-specific siRNAs reduced APC proliferation and number. Inhibition of AHCY further reduced APC differentiation into mature adipocytes and the expression of adipogenic differentiation markers. Global DNA methylation profiling in human APCs revealed that inhibition of AHCY is associated with alterations in CpG methylation levels of genes involved in fat cell differentiation and pathways related to cellular growth. Our findings suggest that AHCY is necessary for the maintenance of APC proliferation and differentiation and inhibition of AHCY alters DNA methylation processes leading to a dysregulation of the expression of genes involved in the regulation of these processes.
Collapse
Affiliation(s)
- Paula Boczki
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Marco Colombo
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Inka Rapöhn
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Martha Hanschkow
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Zheng H, Chen H, Cai Y, Shen M, Li X, Han Y, Deng X, Cao H, Liu J, Li H, Liu B, Li G, Wang X, Chen H, Hou J, Lin SH, Zong L, Zhang Y. Hydrogen sulfide-mediated persulfidation regulates homocysteine metabolism and enhances ferroptosis in non-small cell lung cancer. Mol Cell 2024; 84:4016-4030.e6. [PMID: 39321805 DOI: 10.1016/j.molcel.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/15/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Hydrogen sulfide (H₂S), a metabolite of the transsulfuration pathway, has been implicated in ferroptosis, a unique form of cell death caused by lipid peroxidation. While the exact mechanisms controlling ferroptosis remain unclear, our study reveals that H₂S sensitizes human non-small cell lung cancer (NSCLC) cells to this process, particularly when cysteine levels are low. Combining H₂S with cystine depletion significantly enhances the effectiveness of ferroptosis-based cancer therapy. Mechanistically, H₂S persulfidates the 195th cysteine on S-adenosyl homocysteine hydrolase (SAHH), reducing its enzymatic activity. This leads to decreased homocysteine levels, subsequently lowering cysteine and glutathione concentrations under cystine depletion conditions. These changes ultimately increase the vulnerability of NSCLC cells to ferroptosis. Our findings establish H₂S as a key regulator of homocysteine metabolism and a critical factor in determining NSCLC cell susceptibility to ferroptosis. These results highlight the potential of H₂S-based therapies to improve the efficacy of ferroptosis-targeted cancer treatments for NSCLC.
Collapse
Affiliation(s)
- Hualei Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Huidi Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yunjie Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Min Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xilin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yi Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xusheng Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hongjie Cao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Junjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hao Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Benchao Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Ganlin Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xindong Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hui Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, Fujian, China
| | - Lili Zong
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yongyou Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
3
|
Li J, Xiao F, Wang S, Fan X, He Z, Yan T, Zhang J, Yang M, Yang D. LncRNAs are involved in regulating ageing and age-related disease through the adenosine monophosphate-activated protein kinase signalling pathway. Genes Dis 2024; 11:101042. [PMID: 38966041 PMCID: PMC11222807 DOI: 10.1016/j.gendis.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2024] Open
Abstract
A long noncoding RNA (lncRNA) is longer than 200 bp. It regulates various biological processes mainly by interacting with DNA, RNA, or protein in multiple kinds of biological processes. Adenosine monophosphate-activated protein kinase (AMPK) is activated during nutrient starvation, especially glucose starvation and oxygen deficiency (hypoxia), and exposure to toxins that inhibit mitochondrial respiratory chain complex function. AMPK is an energy switch in organisms that controls cell growth and multiple cellular processes, including lipid and glucose metabolism, thereby maintaining intracellular energy homeostasis by activating catabolism and inhibiting anabolism. The AMPK signalling pathway consists of AMPK and its upstream and downstream targets. AMPK upstream targets include proteins such as the transforming growth factor β-activated kinase 1 (TAK1), liver kinase B1 (LKB1), and calcium/calmodulin-dependent protein kinase β (CaMKKβ), and its downstream targets include proteins such as the mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1), hepatocyte nuclear factor 4α (HNF4α), and silencing information regulatory 1 (SIRT1). In general, proteins function relatively independently and cooperate. In this article, a review of the currently known lncRNAs involved in the AMPK signalling pathway is presented and insights into the regulatory mechanisms involved in human ageing and age-related diseases are provided.
Collapse
Affiliation(s)
- Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jia Zhang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610017, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
4
|
Poltronieri P. Regulatory RNAs: role as scaffolds assembling protein complexes and their epigenetic deregulation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:841-876. [PMID: 39280246 PMCID: PMC11390297 DOI: 10.37349/etat.2024.00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/26/2024] [Indexed: 09/18/2024] Open
Abstract
Recently, new data have been added to the interaction between non-coding RNAs (ncRNAs) and epigenetic machinery. Epigenetics includes enzymes involved in DNA methylation, histone modifications, and RNA modifications, and mechanisms underlying chromatin structure, repressive states, and active states operating in transcription. The main focus is on long ncRNAs (lncRNAs) acting as scaffolds to assemble protein complexes. This review does not cover RNA's role in sponging microRNAs, or decoy functions. Several lncRNAs were shown to regulate chromatin activation and repression by interacting with Polycomb repressive complexes and mixed-lineage leukemia (MLL) activating complexes. Various groups reported on enhancer of zeste homolog 2 (EZH2) interactions with regulatory RNAs. Knowledge of the function of these complexes opens the perspective to develop new therapeutics for cancer treatment. Lastly, the interplay between lncRNAs and epitranscriptomic modifications in cancers paves the way for new targets in cancer therapy. The approach to inhibit lncRNAs interaction with protein complexes and perspective to regulate epitrascriptomics-regulated RNAs may bring new compounds as therapeuticals in various types of cancer.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Agrofood Department, National Research Council, CNR-ISPA, 73100 Lecce, Italy
| |
Collapse
|
5
|
Li Z, Wang W, Yu X, Zhao P, Li W, Zhang X, Peng M, Li S, Ruan M. Integrated analysis of DNA methylome and transcriptome revealing epigenetic regulation of CRIR1-promoted cold tolerance. BMC PLANT BIOLOGY 2024; 24:631. [PMID: 38965467 PMCID: PMC11225538 DOI: 10.1186/s12870-024-05285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND DNA methylation contributes to the epigenetic regulation of nuclear gene expression, and is associated with plant growth, development, and stress responses. Compelling evidence has emerged that long non-coding RNA (lncRNA) regulates DNA methylation. Previous genetic and physiological evidence indicates that lncRNA-CRIR1 plays a positive role in the responses of cassava plants to cold stress. However, it is unclear whether global DNA methylation changes with CRIR1-promoted cold tolerance. RESULTS In this study, a comprehensive comparative analysis of DNA methylation and transcriptome profiles was performed to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression. Compared with the wild-type plants, CRIR1-overexpressing plants present gained DNA methylation in over 37,000 genomic regions and lost DNA methylation in about 16,000 genomic regions, indicating a global decrease in DNA methylation after CRIR1 overexpression. Declining DNA methylation is not correlated with decreased/increased expression of the DNA methylase/demethylase genes, but is associated with increased transcripts of a few transcription factors, chlorophyll metabolism and photosynthesis-related genes, which could contribute to the CRIR1-promoted cold tolerance. CONCLUSIONS In summary, a first set of transcriptome and epigenome data was integrated in this study to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression, with the identification of several TFs, chlorophyll metabolism and photosynthesis-related genes that may be involved in CRIR1-promoted cold tolerance. Therefore, our study has provided valuable data for the systematic study of molecular insights for plant cold stress response.
Collapse
Affiliation(s)
- Zhibo Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Wenjuan Wang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
- College of Tropical Crops, Hainan University, Haikou, 570228, P.R. China
| | - Xiaoling Yu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Pingjuan Zhao
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Wenbin Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Xiuchun Zhang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Ming Peng
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Shuxia Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China.
| | - Mengbin Ruan
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China.
| |
Collapse
|
6
|
Huang L, Chen X, Yang X, Zhang Y, Liang Y, Qiu X. Elucidating epigenetic mechanisms governing odontogenic differentiation in dental pulp stem cells: an in-depth exploration. Front Cell Dev Biol 2024; 12:1394582. [PMID: 38863943 PMCID: PMC11165363 DOI: 10.3389/fcell.2024.1394582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Epigenetics refers to the mechanisms such as DNA methylation and histone modification that influence gene expression without altering the DNA sequence. These epigenetic modifications can regulate gene transcription, splicing, and stability, thereby impacting cell differentiation, development, and disease occurrence. The formation of dentin is intrinsically linked to the odontogenic differentiation of dental pulp stem cells (DPSCs), which are recognized as the optimal cell source for dentin-pulp regeneration due to their varied odontogenic potential, strong proliferative and angiogenic characteristics, and ready accessibility Numerous studies have demonstrated the critical role of epigenetic regulation in DPSCs differentiation into specific cell types. This review thus provides a comprehensive review of the mechanisms by which epigenetic regulation controls the odontogenesis fate of DPSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoling Qiu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Brandt A, Kopp F. Long Noncoding RNAs in Diet-Induced Metabolic Diseases. Int J Mol Sci 2024; 25:5678. [PMID: 38891865 PMCID: PMC11171519 DOI: 10.3390/ijms25115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The prevalence of metabolic diseases, including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD), is steadily increasing. Although many risk factors, such as obesity, insulin resistance, or hyperlipidemia, as well as several metabolic gene programs that contribute to the development of metabolic diseases are known, the underlying molecular mechanisms of these processes are still not fully understood. In recent years, it has become evident that not only protein-coding genes, but also noncoding genes, including a class of noncoding transcripts referred to as long noncoding RNAs (lncRNAs), play key roles in diet-induced metabolic disorders. Here, we provide an overview of selected lncRNA genes whose direct involvement in the development of diet-induced metabolic dysfunctions has been experimentally demonstrated in suitable in vivo mouse models. We further summarize and discuss the associated molecular modes of action for each lncRNA in the respective metabolic disease context. This overview provides examples of lncRNAs with well-established functions in diet-induced metabolic diseases, highlighting the need for appropriate in vivo models and rigorous molecular analyses to assign clear biological functions to lncRNAs.
Collapse
Affiliation(s)
- Annette Brandt
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Florian Kopp
- Clinical Pharmacy Group, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Huang C, Aghaei-Zarch SM. From molecular pathogenesis to therapy: Unraveling non-coding RNAs/DNMT3A axis in human cancers. Biochem Pharmacol 2024; 222:116107. [PMID: 38438051 DOI: 10.1016/j.bcp.2024.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Cancer is a comprehensive classification encompassing more than 100 forms of malignancies that manifest in diverse tissues within the human body. Recent studies have provided evidence that aberrant epigenetic modifications are pivotal indicators of cancer. Epigenetics encapsulates DNA methyltransferases as a crucial class of modifiers. DNMTs, including DNMT3A, assume central roles in DNA methylation processes that orchestrate normal biological functions, such as gene transcription, predominantly in mammals. Typically, deviations in DNMT3A function engender distortions in factors that drive tumor growth and progression, thereby exacerbating the malignant phenotype of tumors. Consequently, such abnormalities pose significant challenges in cancer therapy because they impede treatment efficacy. Non-coding RNAs (ncRNAs) represent a group of RNA molecules that cannot encode functional proteins. Recent investigation attests to the crucial significance of regulatory ncRNAs in epigenetic regulation. Notably, recent reports have illuminated the complex interplay between ncRNA expression and epigenetic regulatory machinery, including DNMT3A, particularly in cancer. Recent findings have demonstrated that miRNAs, namely miR-770-5p, miR-101, and miR-145 exhibit the capability to target DNMT3A directly, and their aberration is implicated in diverse cellular abnormalities that predispose to cancer development. This review aims to articulate the interplay between DNMT3A and the ncRNAs, focusing on its impact on the development and progression of cancer, cancer therapy resistance, cancer stem cells, and prognosis. Importantly, the emergence of such reports that suggest a connection between DNMT3A and ncRNAs in several cancers indicates that this connecting axis offers a valuable target with significant therapeutic potential that might be exploited for cancer management.
Collapse
Affiliation(s)
- Chunjie Huang
- School of Medicine, Nantong University, Nantong 226001, China
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Lei F, Zhang L, Wang L, Wu W, Wang F. Association between early spontaneous abortion and homocysteine metabolism. Front Med (Lausanne) 2024; 11:1310112. [PMID: 38590316 PMCID: PMC10999573 DOI: 10.3389/fmed.2024.1310112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Objective The purpose of this study is to explore the effects of homocysteine (HCY) metabolism and related factors on early spontaneous abortion. Methods We conducted a hospital-based case-control study and included a total of 500 cases and 1,000 controls in Shaanxi China. Pregnant women waiting for delivery in the hospital were interviewed to report their characteristics and other relevant information during pregnancy. The unconditional Logisitic regression model was applied to assess the association between early spontaneous abortion and HCY metabolism and related factors. The multiplicative model was applied to assess the effects of interaction of HCY metabolism and related factors on early spontaneous abortion. The logit test method of generalized structural equation model (GSEM) was used to construct the pathway diagram of HCY metabolism and related factors affecting early spontaneous abortion. Results Folic acid supplementation and adequate folic acid supplementation during periconception were the protective factors of early spontaneous abortion (OR = 0.50, 95% CI: 0.38-0.65; OR = 0.44, 95% CI: 0.35-0.54). The serum folate deficiency, higher plasma HCY in early pregnancy, the women who carried the MTHFR 677TT genotype were the risk factors of early spontaneous abortion (OR = 5.87, 95% CI: 1.53-22.50; OR = 2.94, 95% CI: 1.14-7.57; OR = 2.32, 95% CI: 1.20-4.50). The women's educational level and maternal and child health care utilization affected the occurrence of early spontaneous abortion by influencing the folic acid supplementation during periconception. The folic acid supplementation during periconception affected the occurrence of early spontaneous abortion by influencing the level of serum folate or plasma HCY in early pregnancy. The maternal MTHFR 677 gene polymorphism affected the occurrence of early spontaneous abortion by influencing the level of serum folate in early pregnancy. In terms of the risks for early spontaneous abortion, there was multiplicative interaction between higher plasma HCY in early pregnancy, serum folate deficiency in early pregnancy and maternal MTHFR 677TT genotype (OR = 1.76, 95% CI: 1.17-4.03), and there was multiplicative interaction between higher plasma HCY and serum folate deficiency in early pregnancy (OR = 3.46, 95% CI: 2.49-4.81), and there was multiplicative interaction between serum folate deficiency in early pregnancy and maternal MTHFR 677TT genotype (OR = 3.50, 95% CI: 2.78-5.18). The above interactions are all synergistic. The occurrence risk of early spontaneous abortion was significantly increased if multiple factors existed at the same time. Conclusion Our study is the first time to construct the pathway of HCY metabolism and related factors affecting early spontaneous abortion, and provides a comprehensively new idea to prevent and reduce the occurrence of spontaneous abortion.
Collapse
Affiliation(s)
- Fangliang Lei
- Office of Hospital Infection Management, Shaanxi Provincial People’s Hospital, Xi’an, China
- Department of Epidemiology and Health Statistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Lili Zhang
- Center of Health Examination, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Li Wang
- Office of Hospital Infection Management, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Wentao Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Fei Wang
- Department of Gynecology, Shaanxi Provincial People’s Hospital, Xi’an, China
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
10
|
Xia Y, Pei T, Zhao J, Wang Z, Shen Y, Yang Y, Liang J. Long noncoding RNA H19: functions and mechanisms in regulating programmed cell death in cancer. Cell Death Discov 2024; 10:76. [PMID: 38355574 PMCID: PMC10866971 DOI: 10.1038/s41420-024-01832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs with transcript lengths of >200 nucleotides. Mounting evidence suggests that lncRNAs are closely associated with tumorigenesis. LncRNA H19 (H19) was the first lncRNA to function as an oncogene in many malignant tumors. Apart from the established role of H19 in promoting cell growth, proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and metastasis, it has been recently discovered that H19 also inhibits programmed cell death (PCD) of cancer cells. In this review, we summarize the mechanisms by which H19 regulates PCD in cancer cells through various signaling pathways, molecular mechanisms, and epigenetic modifications. H19 regulates PCD through the Wnt/β-catenin pathway and the PI3K-Akt-mTOR pathway. It also acts as a competitive endogenous RNA (ceRNA) in PCD regulation. The interaction between H19 and RNA-binding proteins (RBP) regulates apoptosis in cancer. Moreover, epigenetic modifications, including DNA and RNA methylation and histone modifications, are also involved in H19-associated PCD regulation. In conclusion, we summarize the role of H19 signaling via PCD in cancer chemoresistance, highlighting the promising research significance of H19 as a therapeutic target. We hope that our study will contribute to a broader understanding of H19 in cancer development and treatment.
Collapse
Affiliation(s)
- Yuyang Xia
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Tianjiao Pei
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Junjie Zhao
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Zilin Wang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Yang Yang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
11
|
Xie T, Huang Q, Huang Q, Huang Y, Liu S, Zeng H, Liu J. Dysregulated lncRNAs regulate human umbilical cord mesenchymal stem cell differentiation into insulin-producing cells by forming a regulatory network with mRNAs. Stem Cell Res Ther 2024; 15:22. [PMID: 38273351 PMCID: PMC10809572 DOI: 10.1186/s13287-023-03572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/16/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE In recent years, cell therapy has emerged as a new research direction in the treatment of diabetes. However, the underlying molecular mechanisms of mesenchymal stem cell (MSC) differentiation necessary to form such treatment have not been clarified. METHODS In this study, human umbilical cord mesenchymal stem cells (HUC-MSCs) isolated from newborns were progressively induced into insulin-producing cells (IPCs) using small molecules. HUC-MSC (S0) and four induced stage (S1-S4) samples were prepared. We then performed transcriptome sequencing experiments to obtain the dynamic expression profiles of both mRNAs and long noncoding RNAs (lncRNAs). RESULTS We found that the number of differentially expressed lncRNAs and mRNAs trended downwards during differentiation. Gene Ontology (GO) analysis showed that the target genes of differentially expressed lncRNAs were associated with translation, cell adhesion, and cell connection. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the NF-KB signalling pathway, MAPK signalling pathway, HIPPO signalling pathway, PI3K-Akt signalling pathway, and p53 signalling pathway were enriched in these differentially expressed lncRNA-targeting genes. We also found that the coexpression of the lncRNA CTBP1-AS2 with PROX1 and the lncRNAs AC009014.3 and GS1-72M22.1 with JARID2 mRNA was related to the development of pancreatic beta cells. Moreover, the coexpression of the lncRNAs: XLOC_ 050969, LINC00883, XLOC_050981, XLOC_050925, MAP3K14- AS1, RP11-148K1.12, and CTD2020K17.3 with p53, regulated insulin secretion by pancreatic beta cells. CONCLUSION In this study, HUC-MSCs combined with small molecule compounds were successfully induced into IPCs. Differentially expressed lncRNAs may regulate the insulin secretion of pancreatic beta cells by regulating multiple signalling pathways. The lncRNAs AC009014.3, Gs1-72m21.1, and CTBP1-AS2 may be involved in the development of pancreatic beta cells, and the lncRNAs: XLOC_050969, LINC00883, XLOC_050981, XLOC_050925, MAP3K14-AS1, RP11-148K1.12, and CTD2020K17.3 may be involved in regulating the insulin secretion of pancreatic beta cells, thus providing a lncRNA catalogue for future research regarding the mechanism of the transdifferentiation of HUC-MSCs into IPCs. It also provides a new theoretical basis for the transplantation of insulin-producing cells into diabetic patients in the future.
Collapse
Affiliation(s)
- Tianqin Xie
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China
| | - Qiming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translation Medicine, Nanchang University, Nanchang of Jiangxi, China
| | - Qiulan Huang
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China
| | - Yanting Huang
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China
| | - Shuang Liu
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China
| | - Haixia Zeng
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China
| | - Jianping Liu
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China.
| |
Collapse
|
12
|
Motawi TK, Sadik NAH, Shaker OG, Ghaleb MMH, Elbaz EM. Expression, Functional Polymorphism, and Diagnostic Values of MIAT rs2331291 and H19 rs217727 Long Non-Coding RNAs in Cerebral Ischemic Stroke Egyptian Patients. Int J Mol Sci 2024; 25:842. [PMID: 38255915 PMCID: PMC10815378 DOI: 10.3390/ijms25020842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Cerebral ischemic stroke (CIS) is a severe cerebral vascular event. This research aimed to evaluate the role of single-nucleotide polymorphisms (SNPs) of the lncRNAs MIAT rs2331291 and H19 rs217727 and epigenetic methylation in the expression patterns of serum lncRNA H19 in CIS Egyptian patients. It included 80 CIS cases and 40 healthy subjects. Serum MIAT expression levels decreased, whereas serum H19 expression levels increased among CIS compared to controls. For MIAT rs2331291, there were significant differences in the genotypic and allelic frequencies between the CIS and healthy subjects at p = 0.02 and p = 0.0001, respectively. Our findings illustrated a significantly increased MIAT T/T genotype frequency in hypertensive CIS compared to non-hypertensive CIS at p = 0.004. However, H19 rs217727 gene frequency C/C was not significantly higher in non-hypertensive CIS than in hypertensive CIS. The methylation of the H19 gene promoter was significantly higher in CIS patients compared to healthy subjects. The level of MIAT was positively correlated with serum H19 in CIS. Receiver operating characteristics (ROC) analysis revealed that serum MIAT and H19 have a high diagnostic potential for distinguishing CIS subjects from healthy ones. In conclusion, the MIAT-rs2331291 polymorphism might serve as a novel potential indicator of CIS.
Collapse
Affiliation(s)
- Tarek K. Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | | | - Eman M. Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
13
|
Zhong C, Xie Z, Duan S. H1Innovative approaches to combat anti-cancer drug resistance: Targeting lncRNA and autophagy. Clin Transl Med 2023; 13:e1445. [PMID: 37837401 PMCID: PMC10576445 DOI: 10.1002/ctm2.1445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND To date, standardizing clinical predictive biomarkers for assessing the response to immunotherapy remains challenging due to variations in personal genetic signatures, tumour microenvironment complexities and epigenetic onco-mechanisms. MAIN BODY Early monitoring of key non-coding RNA (ncRNA) biomarkers may help in predicting the clinical efficacy of cancer immunotherapy and come up with standard predictive ncRNA biomarkers. For instance, reduced miR-125b-5p level in the plasma of non-small cell lung cancer patients treated with anti-PD-1 predicts a positive outcome. The level of miR-153 in the plasma of colorectal cancer patients treated with chimeric antigen receptor T lymphocyte (CAR-T) cell therapy may indicate the activation of T-cell killing activity. miR-148a-3p and miR-375 levels may forecast favourable responses to CAR-T-cell therapy in B-cell acute lymphoblastic leukaemia. In cancer patients treated with the GPC3 peptide vaccine, serum levels of miR-1228-5p, miR-193a-5p and miR-375-3p were reported as predictive biomarkers of good response and improved overall survival. Therefore, there is a critical need for further studies to elaborate on the key ncRNA biomarkers that have the potential to predict early clinical responses to immunotherapy. CONCLUSIONS This review summarises important predictive ncRNA biomarkers that were reported in cancer patients treated with different immunotherapeutic modalities including monoclonal antibodies, small molecule inhibitors, cancer vaccines and CAR-T cells. In addition, a concise discussion on forthcoming perspectives is provided, outlining technical approaches for the optimal utilisation of immune-modulatory ncRNA biomarkers as predictive tools and therapeutic targets.
Collapse
Affiliation(s)
- Chenming Zhong
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangP. R. China
- Medical Genetics CenterSchool of MedicineNingbo UniversityNingboZhejiangP. R. China
| | - Zijun Xie
- Medical Genetics CenterSchool of MedicineNingbo UniversityNingboZhejiangP. R. China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangP. R. China
- Medical Genetics CenterSchool of MedicineNingbo UniversityNingboZhejiangP. R. China
| |
Collapse
|
14
|
Zhu P, Liu B, Fan Z. Noncoding RNAs in tumorigenesis and tumor therapy. FUNDAMENTAL RESEARCH 2023; 3:692-706. [PMID: 38933287 PMCID: PMC11197782 DOI: 10.1016/j.fmre.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2024] Open
Abstract
Tumorigenesis is a complicated process in which numerous modulators are involved in different ways. Previous studies have focused primarily on tumor-associated protein-coding genes such as oncogenes and tumor suppressor genes, as well as their associated oncogenic pathways. However, noncoding RNAs (ncRNAs), rising stars in diverse physiological and pathological processes, have recently emerged as additional modulators in tumorigenesis. In this review, we focus on two typical kinds of ncRNAs: long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). We describe the molecular patterns of ncRNAs and focus on the roles of ncRNAs in cancer stem cells (CSCs), tumor cells, and tumor environmental cells. CSCs are a small subset of tumor cells and are generally considered to be cells that initiate tumorigenesis, and dozens of ncRNAs have been defined as critical modulators in CSC maintenance and oncogenesis. Moreover, ncRNAs are widely involved in oncogenetic processes, including sustaining proliferation, resisting cell death, genome instability, metabolic disorders, immune escape and metastasis. We also discuss the potential applications of ncRNAs in tumor diagnosis and therapy. The progress in ncRNA research greatly improves our understanding of ncRNAs in oncogenesis and provides new potential targets for future tumor therapy.
Collapse
Affiliation(s)
- Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Benyu Liu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Ramos EI, Veerapandian R, Das K, Chacon JA, Gadad SS, Dhandayuthapani S. Pathogenic mycoplasmas of humans regulate the long noncoding RNAs in epithelial cells. Noncoding RNA Res 2023; 8:282-293. [PMID: 36970372 PMCID: PMC10031284 DOI: 10.1016/j.ncrna.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023] Open
Abstract
Non-coding RNAs (ncRNAs), specifically long ncRNAs (lncRNAs), regulate cellular processes by affecting gene expression at the transcriptional, post-transcriptional, and epigenetic levels. Emerging evidence indicates that pathogenic microbes dysregulate the expression of host lncRNAs to suppress cellular defense mechanisms and promote survival. To understand whether the pathogenic human mycoplasmas dysregulate host lncRNAs, we infected HeLa cells with Mycoplasma genitalium (Mg) and Mycoplasma penumoniae (Mp) and assessed the expression of lncRNAs by directional RNA-seq analysis. HeLa cells infected with these species showed up-and-down regulation of lncRNAs expression, indicating that both species can modulate host lncRNAs. However, the number of upregulated (200 for Mg and 112 for Mp) and downregulated lncRNAs (30 for Mg and 62 for Mp) differ widely between these two species. GREAT analysis of the noncoding regions associated with differentially expressed lncRNAs showed that Mg and Mp regulate a discrete set of lncRNA plausibly related to transcription, metabolism, and inflammation. Further, signaling network analysis of the differentially regulated lncRNAs exhibited diverse pathways such as neurodegeneration, NOD-like receptor signaling, MAPK signaling, p53 signaling, and PI3K signaling, suggesting that both species primarily target signaling mechanisms. Overall, the study's results suggest that Mg and Mp modulate lncRNAs to promote their survival within the host but in distinct manners.
Collapse
Affiliation(s)
- Enrique I. Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Kishore Das
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Jessica A. Chacon
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, 78229, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA
| |
Collapse
|
16
|
Xia J, Liu Y, Ma Y, Yang F, Ruan Y, Xu JF, Pi J. Advances of Long Non-Coding RNAs as Potential Biomarkers for Tuberculosis: New Hope for Diagnosis? Pharmaceutics 2023; 15:2096. [PMID: 37631310 PMCID: PMC10458399 DOI: 10.3390/pharmaceutics15082096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), one of the top ten causes of death globally induced by the infection of Mycobacterium tuberculosis (Mtb), remains a grave public health issue worldwide. With almost one-third of the world's population getting infected by Mtb, between 5% and 10% of these infected individuals are predicted to develop active TB disease, which would not only result in severe tissue damage and necrosis, but also pose serious threats to human life. However, the exact molecular mechanisms underlying the pathogenesis and immunology of TB remain unclear, which significantly restricts the effective control of TB epidemics. Despite significant advances in current detection technologies and treatments for TB, there are still no appropriate solutions that are suitable for simultaneous, early, rapid, and accurate screening of TB. Various cellular events can perturb the development and progression of TB, which are always associated with several specific molecular signaling events controlled by dysregulated gene expression patterns. Long non-coding RNAs (lncRNAs), a kind of non-coding RNA (ncRNA) with a transcript of more than 200 nucleotides in length in eukaryotic cells, have been found to regulate the expression of protein-coding genes that are involved in some critical signaling events, such as inflammatory, pathological, and immunological responses. Increasing evidence has claimed that lncRNAs might directly influence the susceptibility to TB, as well as the development and progression of TB. Therefore, lncRNAs have been widely expected to serve as promising molecular biomarkers and therapeutic targets for TB. In this review, we summarized the functions of lncRNAs and their regulatory roles in the development and progression of TB. More importantly, we widely discussed the potential of lncRNAs to act as TB biomarkers, which would offer new possibilities in novel diagnostic strategy exploration and benefit the control of the TB epidemic.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
17
|
Park MN. The Therapeutic Potential of a Strategy to Prevent Acute Myeloid Leukemia Stem Cell Reprogramming in Older Patients. Int J Mol Sci 2023; 24:12037. [PMID: 37569414 PMCID: PMC10418941 DOI: 10.3390/ijms241512037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and incurable leukemia subtype. Despite extensive research into the disease's intricate molecular mechanisms, effective treatments or expanded diagnostic or prognostic markers for AML have not yet been identified. The morphological, immunophenotypic, cytogenetic, biomolecular, and clinical characteristics of AML patients are extensive and complex. Leukemia stem cells (LSCs) consist of hematopoietic stem cells (HSCs) and cancer cells transformed by a complex, finely-tuned interaction that causes the complexity of AML. Microenvironmental regulation of LSCs dormancy and the diagnostic and therapeutic implications for identifying and targeting LSCs due to their significance in the pathogenesis of AML are discussed in this review. It is essential to perceive the relationship between the niche for LSCs and HSCs, which together cause the progression of AML. Notably, methylation is a well-known epigenetic change that is significant in AML, and our data also reveal that microRNAs are a unique factor for LSCs. Multiple-targeted approaches to reduce the risk of epigenetic factors, such as the administration of natural compounds for the elimination of local LSCs, may prevent potentially fatal relapses. Furthermore, the survival analysis of overlapping genes revealed that specific targets had significant effects on the survival and prognosis of patients. We predict that the multiple-targeted effects of herbal products on epigenetic modification are governed by different mechanisms in AML and could prevent potentially fatal relapses. Thus, these strategies can facilitate the incorporation of herbal medicine and natural compounds into the advanced drug discovery and development processes achievable with Network Pharmacology research.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
18
|
Šikrová D, Testa AM, Willemsen I, van den Heuvel A, Tapscott SJ, Daxinger L, Balog J, van der Maarel SM. SMCHD1 and LRIF1 converge at the FSHD-associated D4Z4 repeat and LRIF1 promoter yet display different modes of action. Commun Biol 2023; 6:677. [PMID: 37380887 DOI: 10.1038/s42003-023-05053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic derepression of the 4q-linked D4Z4 macrosatellite repeat resulting in inappropriate expression of the D4Z4 repeat-encoded DUX4 gene in skeletal muscle. In 5% of FSHD cases, D4Z4 chromatin relaxation is due to germline mutations in one of the chromatin modifiers SMCHD1, DNMT3B or LRIF1. The mechanism of SMCHD1- and LRIF1-mediated D4Z4 repression is not clear. We show that somatic loss-of-function of either SMCHD1 or LRIF1 does not result in D4Z4 chromatin changes and that SMCHD1 and LRIF1 form an auxiliary layer of D4Z4 repressive mechanisms. We uncover that SMCHD1, together with the long isoform of LRIF1, binds to the LRIF1 promoter and silences LRIF1 expression. The interdependency of SMCHD1 and LRIF1 binding differs between D4Z4 and the LRIF1 promoter, and both loci show different transcriptional responses to either early developmentally or somatically perturbed chromatin function of SMCHD1 and LRIF1.
Collapse
Affiliation(s)
- Darina Šikrová
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Alessandra M Testa
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
- Department of Biomedical Sciences, University of Padua, 35100, Padua, Italy
| | - Iris Willemsen
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands.
| |
Collapse
|
19
|
Zhong XL, Du Y, Chen L, Cheng Y. The emerging role of long noncoding RNA in depression and its implications in diagnostics and therapeutic responses. J Psychiatr Res 2023; 164:251-258. [PMID: 37385004 DOI: 10.1016/j.jpsychires.2023.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Depression is one of the most common mental illnesses, affecting more than 350 million people worldwide. However, the occurrence of depression is a complex process involving genetic, physiological, psychological, and social factors, and the underlying mechanisms of its pathogenesis remain unclear. With advances in sequencing technology and epigenetic studies, increasing research evidence suggests that long noncoding RNAs (lncRNAs) play nonnegligible roles in the development of depression and may be involved in the pathogenesis of depression through multiple pathways, including regulating neurotrophic factors and other growth factors and affecting synaptic function. In addition, significant alterations in lncRNA expression profiles in peripheral blood and different brain regions of patients and model animals with depression suggest that lncRNAs may function as biomarkers for the differential diagnosis of depression and other psychiatric disorders and may also be potential therapeutic targets. In this paper, the biological functions of lncRNAs are briefly described, and the functional roles and abnormal expression of lncRNAs in the development, diagnosis and treatment of depression are reviewed.
Collapse
Affiliation(s)
- Xiao-Lin Zhong
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
20
|
Perez-Perri JI, Ferring-Appel D, Huppertz I, Schwarzl T, Sahadevan S, Stein F, Rettel M, Galy B, Hentze MW. The RNA-binding protein landscapes differ between mammalian organs and cultured cells. Nat Commun 2023; 14:2074. [PMID: 37045843 PMCID: PMC10097726 DOI: 10.1038/s41467-023-37494-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
System-wide approaches have unveiled an unexpected breadth of the RNA-bound proteomes of cultured cells. Corresponding information regarding RNA-binding proteins (RBPs) of mammalian organs is still missing, largely due to technical challenges. Here, we describe ex vivo enhanced RNA interactome capture (eRIC) to characterize the RNA-bound proteomes of three different mouse organs. The resulting organ atlases encompass more than 1300 RBPs active in brain, kidney or liver. Nearly a quarter (291) of these had formerly not been identified in cultured cells, with more than 100 being metabolic enzymes. Remarkably, RBP activity differs between organs independent of RBP abundance, suggesting organ-specific levels of control. Similarly, we identify systematic differences in RNA binding between animal organs and cultured cells. The pervasive RNA binding of enzymes of intermediary metabolism in organs points to tightly knit connections between gene expression and metabolism, and displays a particular enrichment for enzymes that use nucleotide cofactors. We describe a generically applicable refinement of the eRIC technology and provide an instructive resource of RBPs active in intact mammalian organs, including the brain.
Collapse
Affiliation(s)
- Joel I Perez-Perri
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Dunja Ferring-Appel
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Ina Huppertz
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Thomas Schwarzl
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Sudeep Sahadevan
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
21
|
Lin S, Yin HT, Zhao ZM, Chen ZK, Zhou XMI, Zhang ZD, Guo XJ, Zhao WG, Wu P. LincRNA_XR209691.3 could promote Bombyx mori nucleopolyhedrovirus replication by interacting with BmHSP70. INSECT MOLECULAR BIOLOGY 2023; 32:160-172. [PMID: 36482511 DOI: 10.1111/imb.12821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Long non-coding RNAs (lncRNAs), a class of transcripts exceeding 200 nucleotides and lacking protein coding potential, have been proven to play important roles in viral infection and host immunity. Bombyx mori nucleopolyhedrovirus (BmNPV) is an important pathogen, which causes the silkworm disease and leads to a huge challenge to the sericultural industry. At present, research on the roles of insect lncRNAs in host-virus interaction are relatively few. In this study, we explored the function of lincRNA_XR209691.3 that was significantly up-regulated in the silkworm fat body upon BmNPV infection. Firstly, the subcellular localization experiment confirmed that lincRNA_XR209691.3 was present in both the nucleus and cytoplasm. Enhancing the expression of lincRNA_XR209691.3 in BmN cells could promote the proliferation of BmNPV, while inhibition of lincRNA_XR209691.3 by RNA interference suppresses the proliferation of BmNPV. Combining RNA pull-down and mass spectrometry, we identified the host and BmNPV proteins that could interact with lincRNA_XR209691.3. Next, by using truncation experiment and RNA immunoprecipitation (RIP) assay, it was found that lincRNA_XR209691.3 could bind to the Actin domain of BmHSP70. Subsequently, overexpression of lncRNA_XR209691.3 in BmN cells promoted the expression of BmHSP70, while knockdown of BmHsp70 suppressed the replication of BmNPV. Based on the above results, it is speculated that lincRNA_XR209691.3 could promote the proliferation of BmNPV through interaction with BmHSP70, possibly by improving the stability of BmHSP70 and thereby enhancing the expression of BmHSP70. Our results shed light on the lncRNA function in insect-pathogen interactions and provide a new clue to elucidate the molecular mechanism of BmNPV infection.
Collapse
Affiliation(s)
- Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Hao Tong Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhi Meng Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zi Kang Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xue MIng Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zheng Dong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xi Jie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Wei Guo Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
22
|
Zeng M, Zhang T, Lin Y, Lin Y, Wu Z. The Common LncRNAs of Neuroinflammation-Related Diseases. Mol Pharmacol 2023; 103:113-131. [PMID: 36456192 DOI: 10.1124/molpharm.122.000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.
Collapse
Affiliation(s)
- Meixing Zeng
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Ting Zhang
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yongluan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Zhuomin Wu
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| |
Collapse
|
23
|
Heidarzadehpilehrood R, Pirhoushiaran M, Binti Osman M, Abdul Hamid H, Ling KH. Weighted Gene Co-Expression Network Analysis (WGCNA) Discovered Novel Long Non-Coding RNAs for Polycystic Ovary Syndrome. Biomedicines 2023; 11:biomedicines11020518. [PMID: 36831054 PMCID: PMC9953234 DOI: 10.3390/biomedicines11020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) affects reproductive-age women. This condition causes infertility, insulin resistance, obesity, and heart difficulties. The molecular basis and mechanism of PCOS might potentially generate effective treatments. Long non-coding RNAs (lncRNAs) show control over multifactorial disorders' growth and incidence. Numerous studies have emphasized its significance and alterations in PCOS. We used bioinformatic methods to find novel dysregulated lncRNAs in PCOS. To achieve this objective, the gene expression profile of GSE48301, comprising PCOS patients and normal control tissue samples, was evaluated using the R limma package with the following cut-off criterion: p-value < 0.05. Firstly, weighted gene co-expression network analysis (WGCNA) was used to determine the co-expression genes of lncRNAs; subsequently, hub gene identification and pathway enrichment analysis were used. With the defined criteria, nine novel dysregulated lncRNAs were identified. In WGCNA, different colors represent different modules. In the current study, WGCNA resulted in turquoise, gray, blue, and black co-expression modules with dysregulated lncRNAs. The pathway enrichment analysis of these co-expressed modules revealed enrichment in PCOS-associated pathways, including gene expression, signal transduction, metabolism, and apoptosis. In addition, CCT7, EFTUD2, ESR1, JUN, NDUFAB1, CTTNB1, GRB2, and CTNNB1 were identified as hub genes, and some of them have been investigated in PCOS. This study uncovered nine novel PCOS-related lncRNAs. To confirm how these lncRNAs control translational modification in PCOS, functional studies are required.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Malina Binti Osman
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Habibah Abdul Hamid
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.H.); (K.-H.L.)
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.H.); (K.-H.L.)
| |
Collapse
|
24
|
Liu D, Gong H, Tao Z, Chen S, Kong Y, Xiao B. LncRNA IUR downregulates miR-144 to regulate PTEN in nasopharyngeal carcinoma. Arch Physiol Biochem 2023; 129:116-121. [PMID: 32795216 DOI: 10.1080/13813455.2020.1799018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IUR is a recently identified oncogenic lncRNA in leukaemia, while its roles in nasopharyngeal carcinoma (NPC) are unclear. We aimed to explore the possible involvement of IUR in NPC. IUR and PTEN were downregulated, while miR-144 was upregulated in NPC. In addition, IUR was inversely correlated with miR-144 and positively correlated with PTEN. In NPC cells, overexpression of IUR resulted in a downregulated expression of miR-144 and an upregulated expression of PTEN. Overexpression of miR-144 led to a downregulated expression of PTEN and attenuated the effects of overexpression of IUR. Cell proliferation assay showed that overexpression of IUR and PTEN resulted in decreased NPC cell proliferation rate. Overexpression of miR-144 played an opposite role and attenuated the effects of overexpression of IUR. In conclusion, IUR can downregulate miR-144 to upregulate PTEN in NPC, therefore inhibiting NPC cell proliferation.
Collapse
Affiliation(s)
- Dan Liu
- Department of Otolaryngology, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Hao Gong
- Huangshi Maternity and Children's Health Hospital, Huangshi, Hubei, China
| | - Zezhang Tao
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shiming Chen
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yonggang Kong
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bokui Xiao
- Otolaryngology Head and Neck Surgery Institute, Medical School of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
25
|
Lin Y, Tan H, Yu G, Zhan M, Xu B. Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24021305. [PMID: 36674820 PMCID: PMC9860629 DOI: 10.3390/ijms24021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Although several therapeutic options have been shown to improve survival of most patients with prostate cancer, progression to castration-refractory state continues to present challenges in clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them, noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs, especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and lncRNAs, discuss their potential functional mechanisms and highlight their clinical application prospects in CRPC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| |
Collapse
|
26
|
Fu Y, Li X, Pan B, Niu Y, Zhang B, Zhao X, Nie J, Yang J. Effects of H19/SAHH/DNMT1 on the oxidative DNA damage related to benzo[a]pyrene exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11706-11718. [PMID: 36098921 DOI: 10.1007/s11356-022-22936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms that long noncoding RNA (lncRNA) H19 binding to S-adenosylhomocysteine hydrolase (SAHH) interacted with DNA methyltransferase 1 (DNMT1) and then regulated DNA damage caused by polycyclic aromatic hydrocarbons (PAHs) remain unclear. A total of 146 occupational workers in a Chinese coke-oven plant in 2014 were included in the final analyses. We used high-performance liquid chromatography mass spectrometry (HPLC-MS) equipped to detect urine biomarkers of PAHs exposure, including 2-hydroxynaphthalene (2-NAP), 2-hydroxyfluorene (2-FLU), 9-hydroxyphenanthrene (9-PHE) and 1-hydroxypyrene (1-OHP). The levels of SAM and SAH in plasma were detected by HPLC-ultraviolet. By constructing various BEAS-2B cell models exposed to 16 μM benzo[a]pyrene (BaP) for 24 h, toxicological parameters reflecting distinct mechanisms were evaluated. We documented that urinary 1-hydroxypyrene (1-OHP) levels were positively associated with blood H19 RNA expression (OR: 1.51, 95% CI: 1.03-2.19), but opposite to plasma SAHH activity (OR: 0.63, 95% CI: 0.41-0.98) in coke oven workers. Moreover, by constructing various BEAS-2B cell models exposed to benzo[a]pyrene (BaP), we investigated that H19 binding to SAHH exaggerated DNMT1 expressions and activity. Suppression of H19 enhanced the interaction of SAHH and DNMT1 in BaP-treated cells, decreased eight-oxoguanine DNA glycosylase 1 (OGG1) methylation, reduced oxidative DNA damage and lessened S phase arrest. However, SAHH or DNMT1 single knockdown and SAHH/DNMT1 double knockdown showed the opposite trend. A H19/SAHH/DNMT1 axis was involved in OGG1 methylation, oxidative DNA damage and cell cycle arrest by carcinogen BaP.
Collapse
Affiliation(s)
- Ye Fu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xuejing Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd, Taiyuan, China
| | - Yingying Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xinyu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China.
| |
Collapse
|
27
|
Yang Z, Xu F, Teschendorff AE, Zhao Y, Yao L, Li J, He Y. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front Mol Biosci 2022; 9:1067406. [PMID: 36533073 PMCID: PMC9755597 DOI: 10.3389/fmolb.2022.1067406] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is one of the most important epigenetic mechanisms that governing regulation of gene expression, aberrant DNA methylation patterns are strongly associated with human malignancies. Long non-coding RNAs (lncRNAs) have being discovered as a significant regulator on gene expression at the epigenetic level. Emerging evidences have indicated the intricate regulatory effects between lncRNAs and DNA methylation. On one hand, transcription of lncRNAs are controlled by the promoter methylation, which is similar to protein coding genes, on the other hand, lncRNA could interact with enzymes involved in DNA methylation to affect the methylation pattern of downstream genes, thus regulating their expression. In addition, circular RNAs (circRNAs) being an important class of noncoding RNA are also found to participate in this complex regulatory network. In this review, we summarize recent research progress on this crosstalk between lncRNA, circRNA, and DNA methylation as well as their potential functions in complex diseases including cancer. This work reveals a hidden layer for gene transcriptional regulation and enhances our understanding for epigenetics regarding detailed mechanisms on lncRNA regulatory function in human cancers.
Collapse
Affiliation(s)
- Zhen Yang
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Xu
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Lei Yao
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Li
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yungang He
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Ding Y, Zou LH, Wu J, Ramakrishnan M, Gao Y, Zhao L, Zhou M. The pattern of DNA methylation alteration, and its association with the expression changes of non-coding RNAs and mRNAs in Moso bamboo under abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111451. [PMID: 36075278 DOI: 10.1016/j.plantsci.2022.111451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic changes play an important role in plant growth and development and in stress response. However, DNA methylation pattern and its relationship with the expression changes of non-coding RNAs and mRNAs of Moso bamboo in response to abiotic stress is still largely unknown. In this work, we used whole-genome bisulfite sequencing in combination with whole-transcriptome sequencing to analyze the DNA methylation and transcription patterns of mRNAs and non-coding RNAs in Moso bamboo under abiotic stresses such as cold, heat, ultraviolet (UV) and salinity. We found that CHH methylation in the promoter region was positively correlated with gene expression, while CHG and CHH methylations in the gene body regions were negatively associated with gene expression. Moreover, CG and CHG methylations in the promoter regions were negatively correlated with the transcript abundance of long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs). Similarly, the methylation levels of three contexts in the genic regions were negatively correlated with the transcript abundance of lncRNAs and miRNAs but positively correlated with that of circRNAs. In addition, we suggested that the reduction of 21-nt and 24-nt small interfering RNA (siRNA) expression tended to increase methylation levels in the genic regions. We found that stress-responsive genes such as CRPK1, HSFB2A and CIPK were differentially methylated and expressed. Our results also proposed that DNA methylation may regulate the expression of the transcription factors (TFs) and plant hormone signalling genes such as IAA9, MYC2 and ERF110 in response to abiotic stress. This study firstly reports the abiotic stress-responsive DNA methylation pattern and its involvement of expression of coding RNAs and non-coding RNAs in Moso bamboo. The results expand the knowledge of epigenetic mechanisms in Moso bamboo under abiotic stress and support in-depth deciphering of the function of specific non-coding RNAs in future studies.
Collapse
Affiliation(s)
- Yiqian Ding
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Long-Hai Zou
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| | - Jiajun Wu
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Muthusamy Ramakrishnan
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yubang Gao
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Liangzhen Zhao
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China; Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingbing Zhou
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
29
|
Hong X, Wu Z, Cao W, Lv J, Yu C, Huang T, Sun D, Liao C, Pang Y, Pang Z, Cong L, Wang H, Wu X, Liu Y, Gao W, Li L. Longitudinal Association of DNA Methylation With Type 2 Diabetes and Glycemic Traits: A 5-Year Cross-Lagged Twin Study. Diabetes 2022; 71:2804-2817. [PMID: 36170668 DOI: 10.2337/db22-0513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Investigators of previous cross-sectional epigenome-wide association studies (EWAS) in adults have reported hundreds of 5'-cytosine-phosphate-guanine-3' (CpG) sites associated with type 2 diabetes mellitus (T2DM) and glycemic traits. However, the results from EWAS have been inconsistent, and longitudinal observations of these associations are scarce. Furthermore, few studies have investigated whether DNA methylation (DNAm) could be modified by smoking, drinking, and glycemic traits, which have broad impacts on genome-wide DNAm and result in altering the risk of T2DM. Twin studies provide a valuable tool for epigenetic studies, as twins are naturally matched for genetic information. In this study, we conducted a systematic literature search in PubMed and Embase for EWAS, and 214, 33, and 117 candidate CpG sites were selected for T2DM, HbA1c, and fasting blood glucose (FBG). Based on 1,070 twins from the Chinese National Twin Registry, 67, 17, and 16 CpG sites from previous studies were validated for T2DM, HbA1c, and FBG. Longitudinal review and blood sampling for phenotypic information and DNAm were conducted twice in 2013 and 2018 for 308 twins. A cross-lagged analysis was performed to examine the temporal relationship between DNAm and T2DM or glycemic traits in the longitudinal data. A total of 11 significant paths from T2DM to subsequent DNAm and 15 paths from DNAm to subsequent T2DM were detected, suggesting both directions of associations. For glycemic traits, we detected 17 cross-lagged associations from baseline glycemic traits to subsequent DNAm, and none were from the other cross-lagged direction, indicating that CpG sites may be the consequences, not the causes, of glycemic traits. Finally, a longitudinal mediation analysis was performed to explore the mediation effects of DNAm on the associations of smoking, drinking, and glycemic traits with T2DM. No significant mediations of DNAm in the associations linking smoking and drinking with T2DM were found. In contrast, our study suggested a potential role of DNAm of cg19693031, cg00574958, and cg04816311 in mediating the effect of altered glycemic traits on T2DM.
Collapse
Affiliation(s)
- Xuanming Hong
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhiyu Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Weihua Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chunxiao Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zengchang Pang
- Qingdao Center for Disease Control and Prevention, Qingdao, China
| | - Liming Cong
- Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| | - Hua Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Yu Liu
- Heilongjiang Center for Disease Control and Prevention, Harbin, China
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
30
|
Martínez-Iglesias O, Naidoo V, Carrera I, Corzo L, Cacabelos R. Nosustrophine: An Epinutraceutical Bioproduct with Effects on DNA Methylation, Histone Acetylation and Sirtuin Expression in Alzheimer's Disease. Pharmaceutics 2022; 14:pharmaceutics14112447. [PMID: 36432638 PMCID: PMC9698419 DOI: 10.3390/pharmaceutics14112447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, causes irreversible memory loss and cognitive deficits. Current AD drugs do not significantly improve cognitive function or cure the disease. Novel bioproducts are promising options for treating a variety of diseases, including neurodegenerative disorders. Targeting the epigenetic apparatus with bioactive compounds (epidrugs) may aid AD prevention treatment. The aims of this study were to determine the composition of a porcine brain-derived extract Nosustrophine, and whether treating young and older trigenic AD mice produced targeted epigenetic and neuroprotective effects against neurodegeneration. Nosustrophine regulated AD-related APOE and PSEN2 gene expression in young and older APP/BIN1/COPS5 mice, inflammation-related (NOS3 and COX-2) gene expression in 3-4-month-old mice only, global (5mC)- and de novo DNA methylation (DNMT3a), HDAC3 expression and HDAC activity in 3-4-month-old mice; and SIRT1 expression and acetylated histone H3 protein levels in 8-9-month-old mice. Mass spectrometric analysis of Nosustrophine extracts revealed the presence of adenosylhomocysteinase, an enzyme implicated in DNA methylation, and nicotinamide phosphoribosyltransferase, which produces the NAD+ precursor, enhancing SIRT1 activity. Our findings show that Nosustrophine exerts substantial epigenetic effects against AD-related neurodegeneration and establishes Nosustrophine as a novel nutraceutical bioproduct with epigenetic properties (epinutraceutical) that may be therapeutically effective for prevention and early treatment for AD-related neurodegeneration.
Collapse
|
31
|
Feng C, Jiang Y, Li S, Ge Y, Shi Y, Tang X, Le G. Methionine Restriction Improves Cognitive Ability by Alleviating Hippocampal Neuronal Apoptosis through H19 in Middle-Aged Insulin-Resistant Mice. Nutrients 2022; 14:4503. [PMID: 36364766 PMCID: PMC9653609 DOI: 10.3390/nu14214503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 10/29/2023] Open
Abstract
LncRNA H19 has been reported to regulate apoptosis and neurological diseases. Hippocampal neuron apoptosis damages cognitive ability. Methionine restriction (MR) can improve cognitive impairment. However, the effect of MR on hippocampal neuronal apoptosis induced by a high-fat diet (HFD) in middle-aged mice remains unclear. For 25 weeks, middle-aged mice (C57BL/6J) were given a control diet (CON, 0.86% methionine + 4.2% fat), a high-fat diet (HFD, 0.86% methionine + 24% fat), or an HFD + MR diet (HFMR, 0.17% methionine + 24% fat). The HT22 cells were used to establish the early apoptosis model induced by high glucose (HG). In vitro, the results showed that MR significantly improved cell viability, suppressed the generation of ROS, and rescued HT22 cell apoptosis in a gradient-dependent manner. In Vivo, MR inhibited the damage and apoptosis of hippocampal neurons caused by a high-fat diet, reduced hippocampal oxidative stress, improved hippocampal glucose metabolism, relieved insulin resistance, and enhanced cognitive ability. Furthermore, MR could inhibit the overexpression of H19 and caspase-3 induced by HFD, HG, or H2O2 in vivo and in vitro, and promoted let-7a, b, e expression. These results indicate that MR can protect neurons from HFD-, HG-, or H2O2-induced injury and apoptosis by inhibiting H19.
Collapse
Affiliation(s)
- Chuanxing Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuge Jiang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Yueting Ge
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
32
|
Zhang X, Luo M, Zhang J, Guo B, Singh S, Lin X, Xiong H, Ju S, Wang L, Zhou Y, Zhou J. The role of lncRNA H19 in tumorigenesis and drug resistance of human Cancers. Front Genet 2022; 13:1005522. [PMID: 36246634 PMCID: PMC9555214 DOI: 10.3389/fgene.2022.1005522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Systemic therapy is one of the most significant cancer treatments. However, drug resistance often appears and has become the primary cause of cancer therapy failure. Regulation of drug target, drug metabolism and drug efflux, cell death escape (apoptosis, autophagy, et al.), epigenetic changes, and many other variables are complicatedly involved in the mechanisms of drug resistance. In various types of cancers, long non-coding RNA H19 (lncRNA H19) has been shown to play critical roles in tumor development, proliferation, metastasis, and multiple drug resistance as well. The efficacy of chemotherapy, endocrine therapy, and targeted therapy are all influenced by the expression of H19, especially in breast cancer, liver cancer, lung cancer and colorectal cancer. Here, we summarize the relationship between lncRNA H19 and tumorigenesis, and illustrate the drug resistance mechanisms caused by lncRNA H19 as well. This review may provide more therapeutic potential targets for future cancer treatments.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Mingpeng Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Bize Guo
- Zhejiang University School of Medicine, Hangzhou, China
| | - Shreya Singh
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xixi Lin
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hanchu Xiong
- Zhejiang University School of Medicine, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| | - Yulu Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| |
Collapse
|
33
|
Wanowska E, Samorowska K, Szcześniak MW. Emerging Roles of Long Noncoding RNAs in Breast Cancer Epigenetics and Epitranscriptomics. Front Cell Dev Biol 2022; 10:922351. [PMID: 35865634 PMCID: PMC9294602 DOI: 10.3389/fcell.2022.922351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Breast carcinogenesis is a multistep process that involves both genetic and epigenetic changes. Epigenetics refers to reversible changes in gene expression that are not accompanied by changes in gene sequence. In breast cancer (BC), dysregulated epigenetic changes, such as DNA methylation and histone modifications, are accompanied by epitranscriptomic changes, in particular adenine to inosine modifications within RNA molecules. Factors that trigger these phenomena are largely unknown, but there is evidence for widespread participation of long noncoding RNAs (lncRNAs) that already have been linked to virtually any aspect of BC biology, making them promising biomarkers and therapeutic targets in BC patients. Here, we provide a systematic review of known and possible roles of lncRNAs in epigenetic and epitranscriptomic processes, along with methods and tools to study them, followed by a brief overview of current challenges regarding the use of lncRNAs in medical applications.
Collapse
Affiliation(s)
- Elżbieta Wanowska
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
- *Correspondence: Elżbieta Wanowska, ; Michał Wojciech Szcześniak,
| | - Klaudia Samorowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Michał Wojciech Szcześniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
- *Correspondence: Elżbieta Wanowska, ; Michał Wojciech Szcześniak,
| |
Collapse
|
34
|
Li X, Wang M, Liu S, Chen X, Qiao Y, Yang X, Yao J, Wu S. Paternal transgenerational nutritional epigenetic effect: A new insight into nutritional manipulation to reduce the use of antibiotics in animal feeding. ANIMAL NUTRITION 2022; 11:142-151. [PMID: 36204282 PMCID: PMC9527621 DOI: 10.1016/j.aninu.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
The use of antibiotics in animal feeding has been banned in many countries because of increasing concerns about the development of bacterial resistance to antibiotics and potential issues on food safety. Searching for antibiotic substitutes is essential. Applying transgenerational epigenetic technology to animal production could be an alternative. Some environmental changes can be transferred to memory-like responses in the offspring through epigenetic mechanisms without changing the DNA sequence. In this paper, we reviewed those nutrients and non-nutritional additives that have transgenerational epigenetic effects, including some amino acids, vitamins, and polysaccharides. The paternal transgenerational nutritional epigenetic regulation was particularly focused on mechanism of the substantial contribution of male stud animals to the animal industries. We illustrated the effects of paternal transgenerational epigenetics on the metabolism and immunity in farming animals and proposed strategies to modulate male breeding livestock or poultry.
Collapse
Affiliation(s)
- Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Medicine, Karolinska Institutet, Solna, Stockholm 17165, Sweden
| | - Mengya Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shimin Liu
- Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Qiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| |
Collapse
|
35
|
Dai X, Liu S, Cheng L, Huang T, Guo H, Wang D, Xia M, Ling W, Xiao Y. Epigenetic Upregulation of H19 and AMPK Inhibition Concurrently Contribute to S-Adenosylhomocysteine Hydrolase Deficiency-Promoted Atherosclerotic Calcification. Circ Res 2022; 130:1565-1582. [PMID: 35410483 DOI: 10.1161/circresaha.121.320251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND S-adenosylhomocysteine (SAH) is a risk factor of cardiovascular disease; inhibition of SAH hydrolase (SAHH) results in SAH accumulation and induces endothelial dysfunction and atherosclerosis. However, the effect and mechanism of SAHH in atherosclerotic calcification is still unclear. We aimed to explore the role and mechanism of SAHH in atherosclerotic calcification. METHODS The relationship between SAHH and atherosclerotic calcification was investigated in patients with coronary atherosclerotic calcification. Different in vivo genetic models were used to examine the effect of SAHH deficiency on atherosclerotic calcification. Human aortic and murine vascular smooth muscle cells (VSMCs) were cultured to explore the underlying mechanism of SAHH on osteoblastic differentiation of VSMCs. RESULTS The expression and activity of SAHH were decreased in calcified human coronary arteries and inversely associated with coronary atherosclerotic calcification severity, whereas plasma SAH and total homocysteine levels were positively associated with coronary atherosclerotic calcification severity. Heterozygote knockout of SAHH promoted atherosclerotic calcification. Specifically, VSMC-deficient but not endothelial cell-deficient or macrophage-deficient SAHH promoted atherosclerotic calcification. Mechanistically, SAHH deficiency accumulated SAH levels and induced H19-mediated Runx2 (runt-related transcription factor 2)-dependent osteoblastic differentiation of VSMCs by inhibiting DNMT3b (DNA methyltransferase 3 beta) and leading to hypomethylation of the H19 promoter. On the other hand, SAHH deficiency resulted in lower intracellular levels of adenosine and reduced AMPK (AMP-activated protein kinase) activation. Adenosine supplementation activated AMPK and abolished SAHH deficiency-induced expression of H19 and Runx2 and osteoblastic differentiation of VSMCs. Finally, AMPK activation by adenosine inhibited H19 expression by inducing Sirt1-mediated histone H3 hypoacetylation and DNMT3b-mediated hypermethylation of the H19 promoter in SAHH deficiency VSMCs. CONCLUSIONS We have confirmed a novel correlation between SAHH deficiency and atherosclerotic calcification and clarified a new mechanism that epigenetic upregulation of H19 and AMPK inhibition concurrently contribute to SAHH deficiency-promoted Runx2-dependent atherosclerotic calcification.
Collapse
Affiliation(s)
- Xin Dai
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Si Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Lokyu Cheng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Ting Huang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, China (H.G.)
| | - Dongliang Wang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (D.W., M.X., W.L.)
| | - Min Xia
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (D.W., M.X., W.L.)
| | - Wenhua Ling
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (D.W., M.X., W.L.)
| | - Yunjun Xiao
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| |
Collapse
|
36
|
DNMT3B System Dysregulation Contributes to the Hypomethylated State in Ischaemic Human Hearts. Biomedicines 2022; 10:biomedicines10040866. [PMID: 35453616 PMCID: PMC9029641 DOI: 10.3390/biomedicines10040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022] Open
Abstract
A controversial understanding of the state of the DNA methylation machinery exists in ischaemic cardiomyopathy (ICM). Moreover, its relationship to other epigenetic alterations is incomplete. Therefore, we carried out an in-depth study of the DNA methylation process in human cardiac tissue. We showed a dysregulation of the DNA methylation machinery accordingly with the genome-wide hypomethylation that we observed: specifically, an overexpression of main genes involved in the elimination of methyl groups (TET1, SMUG1), and underexpression of molecules implicated in the maintenance of methylation (MBD2, UHRF1). By contrast, we found DNMT3B upregulation, a key molecule in the addition of methyl residues in DNA, and an underexpression of miR-133a-3p, an inhibitor of DNMT3B transcription. However, we found many relevant alterations that would counteract the upregulation observed, such as the overexpression of TRAF6, responsible for Dnmt3b degradation. Furthermore, we showed that molecules regulating Dnmts activity were altered; specifically, SAM/SAH ratio reduction. All these results are in concordance with the Dnmts normal function that we show. Our analysis revealed genome-wide hypomethylation along with dysregulation in the mechanisms of addition, elimination and maintenance of methyl groups in the DNA of ICM. We describe relevant alterations in the DNMT3B system, which promote a normal Dnmt3b function despite its upregulation.
Collapse
|
37
|
Aminimoghaddam S, Fooladi B, Noori M, Nickhah Klashami Z, Kakavand Hamidi A, M Amoli M. The Effect of Metformin on Expression of Long Non-coding RNA H19 in Endometrial Cancer. Med J Islam Repub Iran 2022; 35:155. [PMID: 35341081 PMCID: PMC8932210 DOI: 10.47176/mjiri.35.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Endometrial cancer is the fourth most widespread cancer among females, with a growing prevalence in recent years. Management by combined therapies along with surgery, radiotherapy, and chemotherapy have improved patients' prognoses. Besides, the development of new therapies helps preserve fertility and prognosis in aggressive tumors. The purpose of this research was to identify the efficacy of metformin on the H19 long non-coding RNA expression in endometrial cancer to provide further insight into the pathogenesis and treatment of the disease. Methods: A total of 23 patients with endometrial cancer, diagnosed by biopsy or diagnostic curettage, were recruited and divided into three groups, before and after metformin treatment and placebo. Real-time PCR was used to evaluate the H19 expression in cancer tissue in all patients. Results: : It has been observed that in endometrial tissue of the "after-metformin" treatment group, the H19 expression level was significantly reduced, compared with the "before-metformin" treatment group, but not in comparison with the placebo. These findings indicate that metformin reduced the H19 expression in endometrial cancer. Conclusion: Anti-diabetic drugs, such as metformin, may be beneficial by reducing the H19 expression in endometrial cancer due to the H19 relation to cancer progression.
Collapse
Affiliation(s)
- Soheila Aminimoghaddam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Fooladi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Department of Obstetrics and Gynecology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeynab Nickhah Klashami
- Metabolic Disorders Research Centre, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Iran
| | - Armita Kakavand Hamidi
- Metabolic Disorders Research Centre, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Centre, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Iran
| |
Collapse
|
38
|
Yang C, Chen K. Long Non-Coding RNA in Esophageal Cancer: A Review of Research Progress. Pathol Oncol Res 2022; 28:1610140. [PMID: 35241975 PMCID: PMC8885534 DOI: 10.3389/pore.2022.1610140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022]
Abstract
In recent years, there has been significant progress in the diagnosis and treatment of esophageal cancer. However, owing to the lack of early diagnosis strategies and treatment targets, the prognosis of patients with esophageal cancer remains unsatisfactory. There is an urgent need to identify novel biomarkers and treatment targets for esophageal cancer. With the development of genomics, long-chain non-coding RNAs (LncRNAs), which were once considered transcriptional “noise,” are being identified and characterized rapidly in large numbers. Recent research shows that LncRNAs are closely related to a series of steps in tumor development and play an important regulatory role in DNA replication, transcription, and post-transcriptional regulation. The abnormal expression of LncRNAs leads to tumor cell proliferation, migration, invasion, and treatment resistance. This review focuses on the latest progress in research on the abnormal expression and functional mechanisms of LncRNAs in esophageal cancer. Further, it discusses the potential applications of these findings towards achieving an early diagnosis, improving treatment efficacy, and evaluating the prognosis of esophageal cancer.
Collapse
Affiliation(s)
- Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond. J Exp Clin Cancer Res 2022; 41:100. [PMID: 35292092 PMCID: PMC8922926 DOI: 10.1186/s13046-022-02319-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is one of the most important epigenetic mechanisms to regulate gene expression, which is highly dynamic during development and specifically maintained in somatic cells. Aberrant DNA methylation patterns are strongly associated with human diseases including cancer. How are the cell-specific DNA methylation patterns established or disturbed is a pivotal question in developmental biology and cancer epigenetics. Currently, compelling evidence has emerged that long non-coding RNA (lncRNA) mediates DNA methylation in both physiological and pathological conditions. In this review, we provide an overview of the current understanding of lncRNA-mediated DNA methylation, with emphasis on the roles of this mechanism in cancer, which to the best of our knowledge, has not been systematically summarized. In addition, we also discuss the potential clinical applications of this mechanism in RNA-targeting drug development.
Collapse
|
40
|
王 冲, 黄 海, 王 宏, 李 椿, 刘 晓. [Research progress on the relationship between lncRNA and the pathogenesis of allergic rhinitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:233-238. [PMID: 35193349 PMCID: PMC10128298 DOI: 10.13201/j.issn.2096-7993.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/11/2021] [Indexed: 04/30/2023]
Abstract
Long non-coding RNA(lncRNA) belongs to the category of non-coding RNA, which length exceeds 200 nucleotides and can hardly encode the expression of proteins. Based on the data from several clinical researches, it is considered that lncRNA not only plays the biological role in epigenetics, transcriptional and post-transcriptional levels, but also abnormally expresses in inflammatory response and the related diseases. In recent years, with the intensive study of gene expression regulation of allergic rhinitis(AR), it has been found that a variety of non-coding RNA, including lncRNA, have close relationship with the occurrence and development of AR. This review mainly summarized the biological function, immunomodulatory effect of lncRNA and the relationship between the lncRNA and the pathogenesis of AR, providing new thoughts and strategies for the further research, prevention as well as the treatment of AR.
Collapse
|
41
|
Wu Y, Yang L, Zhang L, Zheng X, Xu H, Wang K, Weng X. Identification of a Four-Gene Signature Associated with the Prognosis Prediction of Lung Adenocarcinoma Based on Integrated Bioinformatics Analysis. Genes (Basel) 2022; 13:genes13020238. [PMID: 35205284 PMCID: PMC8872064 DOI: 10.3390/genes13020238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is often diagnosed at an advanced stage, so it is necessary to identify potential biomarkers for the early diagnosis and prognosis of LUAD. In our study, a gene co-expression network was constructed using weighted gene co-expression network analysis (WGCNA) in order to obtain the key modules and genes correlated with LUAD prognosis. Four hub genes (HLF, CHRDL1, SELENBP1, and TMEM163) were screened out using least absolute shrinkage and selection operator (LASSO)–Cox regression analysis; then, a prognostic model was established for predicting overall survival (OS) based on these four hub genes..Furthermore, the prognostic values of this four-gene signature were verified in four validation sets (GSE26939, GSE31210, GSE72094, and TCGA-LUAD) as well as in the GEPIA database. To assess the prognostic values of hub genes, receiver operating characteristic (ROC) curves were constructed and a nomogram was created. We found that a higher expression of four hub genes was associated with a lower risk of patient death. In a training set, it was demonstrated that this four-gene signature was a better prognostic factor than clinical factors such as age and stage of disease. Moreover, our results revealed that these four genes were suppressor factors of LUAD and that their high expression was associated with a lower risk of death. In summary, we demonstrated that this four-gene signature could be a potential prognostic factor for LUAD patients. These findings provide a theoretical basis for exploring potential biomarkers for LUAD prognosis prediction in the future.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322000, China; (Y.W.); (L.Y.); (L.Z.); (X.Z.); (H.X.)
| | - Lingge Yang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322000, China; (Y.W.); (L.Y.); (L.Z.); (X.Z.); (H.X.)
| | - Long Zhang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322000, China; (Y.W.); (L.Y.); (L.Z.); (X.Z.); (H.X.)
| | - Xinjie Zheng
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322000, China; (Y.W.); (L.Y.); (L.Z.); (X.Z.); (H.X.)
| | - Huan Xu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322000, China; (Y.W.); (L.Y.); (L.Z.); (X.Z.); (H.X.)
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322000, China; (Y.W.); (L.Y.); (L.Z.); (X.Z.); (H.X.)
- Correspondence: (K.W.); (X.W.)
| | - Xianwu Weng
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322000, China
- Correspondence: (K.W.); (X.W.)
| |
Collapse
|
42
|
Xia K, Yu LY, Huang XQ, Zhao ZH, Liu J. Epigenetic regulation by long noncoding RNAs in osteo-/adipogenic differentiation of mesenchymal stromal cells and degenerative bone diseases. World J Stem Cells 2022; 14:92-103. [PMID: 35126830 PMCID: PMC8788182 DOI: 10.4252/wjsc.v14.i1.92] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/07/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Bone is a complex tissue that undergoes constant remodeling to maintain homeostasis, which requires coordinated multilineage differentiation and proper proliferation of mesenchymal stromal cells (MSCs). Mounting evidence indicates that a disturbance of bone homeostasis can trigger degenerative bone diseases, including osteoporosis and osteoarthritis. In addition to conventional genetic modifications, epigenetic modifications (i.e., DNA methylation, histone modifications, and the expression of noncoding RNAs) are considered to be contributing factors that affect bone homeostasis. Long noncoding RNAs (lncRNAs) were previously regarded as ‘transcriptional noise’ with no biological functions. However, substantial evidence suggests that lncRNAs have roles in the epigenetic regulation of biological processes in MSCs and related diseases. In this review, we summarized the interactions between lncRNAs and epigenetic modifiers associated with osteo-/adipogenic differentiation of MSCs and the pathogenesis of degenerative bone diseases and highlighted promising lncRNA-based diagnostic and therapeutic targets for bone diseases.
Collapse
Affiliation(s)
- Kai Xia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Yuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin-Qi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhi-He Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
43
|
V SKP, Thahsin A, M M, G G. A Heterogeneous Information Network Model for Long Non-Coding RNA Function Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:255-266. [PMID: 32750859 DOI: 10.1109/tcbb.2020.3000518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exciting information on the functional roles played by long non-coding RNA (lncRNA) has drawn substantial research attention these days. With the advent of techniques such as RNA-Seq, thousands of lncRNAs are identified in very short time spans. However, due to the poor annotation rate, only a few of them are functionally characterised. The wet lab experiments to elucidate lncRNA functions are challenging, slow progressing and sometimes prohibitively expensive. This work attempts to solve the crucial problem of developing computational methods to predict lncRNA functions. The model presented here, predicts the functions of lncRNAs by making use of a meta-path based measure, AvgSim on a Heterogeneous Information Network (HIN). The network is constructed from existing protein and function association data of lncRNAs, lncRNA co-expression data and protein protein interaction data. Out of the 2,758 lncRNA considered for the experiment, the proposed method predicts possible functions for 2,695 lncRNAs with an accuracy of 73.68 percent and found to perform better than the other state-of-the-art approaches for an independent test set. A case study of two well-known lncRNAs (HOTAIR and H19) is conducted and the associated functions are identified. The results were validated using experimental evidence from the literature. The script and data used for the implementation of the model is freely available at: http://bdbl.nitc.ac.in/LncFunPred/index.html.
Collapse
|
44
|
Liu W, Wang X, Chen J, Zeng F, Xiong J. The polymorphisms of MIR31HG gene is correlated with alcohol-induced osteonecrosis of the femoral head in Chinese Han male population. Front Endocrinol (Lausanne) 2022; 13:976165. [PMID: 36506078 PMCID: PMC9731210 DOI: 10.3389/fendo.2022.976165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Alcoholic osteonecrosis of the femoral head (ONFH) is a multifaceted illness that seriously disturbs the patients' quality of life. The role of lncRNAs in alcoholic ONFH has attracted widespread attention in recent years. This study mainly explored whether MIR31HG polymorphism affects the risk of ONFH. METHODS There were 733 males (308 alcohol-induced ONFH patients and 425 healthy controls). Seven single nucleotide polymorphisms from MIR31HG were genotyped using the Agena MassARRAY platform. Odds ratio (OR) and 95% confidence intervals (CI) via logistic regression was applied to assess the contribution of MIR31HG variants to alcoholic ONFH susceptibility. RESULTS We found that rs10965059 was related to a lower risk of alcoholic ONFH in the overall, age, and necrotic sites analysis. Rs10965064 also showed a risk-reducing effect in the occurrence of alcoholic ONFH patients older than 40 years old. CONCLUSIONS We confirmed that MIR31HG variants have a significant correlation with the occurrence of alcoholic ONFH among the Chinese Han male population. our findings may provide new ideas for understanding the effect of MIR31HG on the prevention and diagnosis of alcoholic ONFH.
Collapse
|
45
|
Crosstalk between non-coding RNAs expression profile, drug resistance and immune response in breast cancer. Pharmacol Res 2021; 176:106041. [PMID: 34952200 DOI: 10.1016/j.phrs.2021.106041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Drug resistance is one of the most critical challenges facing researchers in treating breast cancer. Despite numerous treatments for breast cancer, including conventional chemical drugs, monoclonal antibodies, and immunotherapeutic drugs known as immune checkpoint inhibitors (ICI), many patients resist various approaches. In recent years, the relationship between gene expression profiles and drug resistance phenotypes has attracted much attention. Non-coding RNAs (ncRNAs) are regulatory molecules that have been shown to regulate gene expression and cell transcriptome. Two categories, microRNAs and long non-coding RNAs have been more considered and studied among these ncRNAs. Studying the role of different ncRNAs in chemical drug resistance and ICI resistance together can be beneficial in selecting more effective treatments for breast cancer. Changing the expression and action mechanism of these regulatory molecules on drug resistance phenotypes is the main topic of this review article.
Collapse
|
46
|
Park EG, Pyo SJ, Cui Y, Yoon SH, Nam JW. Tumor immune microenvironment lncRNAs. Brief Bioinform 2021; 23:6458113. [PMID: 34891154 PMCID: PMC8769899 DOI: 10.1093/bib/bbab504] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
Long non-coding ribonucleic acids (RNAs) (lncRNAs) are key players in tumorigenesis and immune responses. The nature of their cell type-specific gene expression and other functional evidence support the idea that lncRNAs have distinct cellular functions in the tumor immune microenvironment (TIME). To date, the majority of lncRNA studies have heavily relied on bulk RNA-sequencing data in which various cell types contribute to an averaged signal, limiting the discovery of cell type-specific lncRNA functions. Single-cell RNA-sequencing (scRNA-seq) is a potential solution for tackling this limitation despite the lack of annotations for low abundance yet cell type-specific lncRNAs. Hence, updated annotations and further understanding of the cellular expression of lncRNAs will be necessary for characterizing cell type-specific functions of lncRNA genes in the TIME. In this review, we discuss lncRNAs that are specifically expressed in tumor and immune cells, summarize the regulatory functions of the lncRNAs at the cell type level and highlight how a scRNA-seq approach can help to study the cell type-specific functions of TIME lncRNAs.
Collapse
Affiliation(s)
- Eun-Gyeong Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung-Jin Pyo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Youxi Cui
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang-Ho Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
47
|
Zhang H, Hao Y, Yang A, Xie L, Ding N, Xu L, Wang Y, Yang Y, Bai Y, Zhang H, Jiang Y. TGFB3-AS1 promotes Hcy-induced inflammation of macrophages via inhibiting the maturity of miR-144 and upregulating Rap1a. MOLECULAR THERAPY - NUCLEIC ACIDS 2021; 26:1318-1335. [PMID: 34853730 PMCID: PMC8609111 DOI: 10.1016/j.omtn.2021.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/23/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
It has been demonstrated that homocysteine (Hcy) can cause inflammatory diseases. Long noncoding RNAs (lncRNA) and microRNAs (miRNAs) are involved in this biological process, but the mechanism underlying Hcy-induced inflammation remains poorly understood. Here, we found that lncRNA TGFB3-AS1 was highly expressed in macrophages treated with Hcy and the peripheral blood monocytes from cystathionine beta-synthase heterozygous knockout (CBS+/−) mice with a high-methionine diet using lncRNA microarray. In vivo and in vitro experiments further confirmed that TGFB3-AS1 accelerated Hcy-induced inflammation of macrophages through the Rap1a/wnt signaling pathway. Meanwhile, TGFB3-AS1 interacted with Rap1a and reduced degradation of Rap1a through inhibiting its ubiquitination in macrophages treated with Hcy. Rap1a mediated inflammation induced by Hcy and serves as a direct target of miR-144. Moreover, TGFB3-AS1 regulated miR-144 by binding to pri-miR-144 and inhibiting its maturation, which further regulated Rap1a expression. More importantly, we found that high expression of TGFB3-AS1 was positively correlated with the levels of Hcy and proinflammatory cytokines in serum of healthy individuals and patients with HHcy. Our study revealed a novel mechanism by which TGFB3-AS1 promoted inflammation of macrophages through inhibiting miR-144 maturation to stay miR-144 regulated inhibition of functional Rap1a expression.
Collapse
Affiliation(s)
- Hui Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Lingbo Xu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yanhua Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yong Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Department of Neurology, Region People's Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yongsheng Bai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Department of Neurology, Region People's Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Corresponding author Huiping Zhang, Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, 804 Sheng Li Street, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China.
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
- Corresponding author Yideng Jiang, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Sheng Li Street, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China.
| |
Collapse
|
48
|
Non-coding RNA-mediated autophagy in cancer: A protumor or antitumor factor? Biochim Biophys Acta Rev Cancer 2021; 1876:188642. [PMID: 34715268 DOI: 10.1016/j.bbcan.2021.188642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022]
Abstract
Autophagy, usually referred to as macroautophagy, is a cytoprotective behavior that helps cells, especially cancer cells, escape crises. However, the role of autophagy in cancer remains controversial. The induction of autophagy is favorable for tumor growth, as it can degrade damaged cell components accumulated during nutrient deficiency, chemotherapy, or other stresses in a timely manner. Whereas the antitumor effect of autophagy might be closely related to its crosstalk with metabolism, immunomodulation, and other pathways. Recent studies have verified that lncRNAs and circRNAs modulate autophagy in carcinogenesis, cancer cells proliferation, apoptosis, metastasis, and chemoresistance via multiple mechanisms. A comprehensive understanding of the regulatory relationships between ncRNAs and autophagy in cancer might resolve chemoresistance and also offer intervention strategies for cancer therapy. This review systematically displays the regulatory effects of lncRNAs and circRNAs on autophagy in the contexts of cancer initiation, progression, and resistance to chemo- or radiotherapy and provides a novel insight into cancer therapy.
Collapse
|
49
|
Spinelli M, Boucard C, Ornaghi S, Schoeberlein A, Irene K, Coman D, Hyder F, Zhang L, Haesler V, Bordey A, Barnea E, Paidas M, Surbek D, Mueller M. Preimplantation factor modulates oligodendrocytes by H19-induced demethylation of NCOR2. JCI Insight 2021; 6:132335. [PMID: 34676826 PMCID: PMC8564895 DOI: 10.1172/jci.insight.132335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Failed or altered gliogenesis is a major characteristic of diffuse white matter injury in survivors of premature birth. The developmentally regulated long noncoding RNA (lncRNA) H19 inhibits S-adenosylhomocysteine hydrolase (SAHH) and contributes to methylation of diverse cellular components, such as DNA, RNA, proteins, lipids, and neurotransmitters. We showed that the pregnancy-derived synthetic PreImplantation Factor (sPIF) induces expression of the nuclear receptor corepressor 2 (NCOR2) via H19/SAHH-mediated DNA demethylation. In turn, NCOR2 affects oligodendrocyte differentiation markers. Accordingly, after hypoxic-ischemic brain injury in rodents, myelin protection and oligodendrocytes' fate are in part modulated by sPIF and H19. Our results revealed an unexpected mechanism of the H19/SAHH axis underlying myelin preservation during brain recovery and its use in treating neurodegenerative diseases can be envisioned.
Collapse
Affiliation(s)
- Marialuigia Spinelli
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Celiné Boucard
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Sara Ornaghi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andreina Schoeberlein
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Keller Irene
- Department for Biomedical Research and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | | | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging.,Department of Biomedical Engineering
| | - Longbo Zhang
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Valérie Haesler
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Angelique Bordey
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eytan Barnea
- Department of Research, BioIncept LLC, New York, New York, USA
| | - Michael Paidas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel Surbek
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Martin Mueller
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
50
|
He Z, Zhang J, Chen G, Cao J, Chen Y, Ai C, Wang H. H19/let-7 axis mediates caffeine exposure during pregnancy induced adrenal dysfunction and its multi-generation inheritance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148440. [PMID: 34465058 DOI: 10.1016/j.scitotenv.2021.148440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Previously, we systemically confirmed that prenatal caffeine exposure (PCE) could cause intrauterine growth retardation (IUGR) and adrenal steroid synthesis dysfunction in offspring rats. However, the multi-generation inheritance of adrenal dysfunction and its epigenetic mechanism has not been reported. In this study, the PCE rat model was established, part of the pregnant rats were executed on gestational day 20, while the others were delivered normally and the fetal rats were reared into adulthood. The PCE female rats of filial generation 1 (F1) were mated with wild males to produce F2 offspring, and the same way to produce F3 offspring. All the adult female rats of three generations were sacrificed for the related detection. Results showed that PCE could decrease fetal weight, increase IUGR rate, and elevate serum corticosterone level. Meanwhile, the expression of fetal adrenal GR, DNMT3a/3b, miRNA let-7c increased while those of CTCF, H19, and StAR decreased, and the total methylation rate of the H19 promoter region was enhanced. We used SW-13 cells to clarify the molecular mechanism and found that cortisol-induced in vitro changes of these indexes were consistent with those in vivo. We confirmed that high level of cortisol through activating GR, on the one hand, promoted let-7 expression and inhibited StAR expression; on the other hand, caused high methylation and low expression of H19 by down-regulating CTCF and up-regulating DNMT3a/3b, then enhanced let-7 inhibitory effect on StAR by "molecular sponge" effect. Finally, in vivo experiments showed that the adrenal steroid synthesis function and H19/let-7 axis presented the glucocorticoid-dependent changes in the adult female F1, F2, and F3. In conclusion, PCE can cause female adrenal dysfunction with matrilineal multi-generation inheritance, which is related to the programming alteration of the H19/let-7 axis. This study provides a novel perspective to explain the multi-generation inheritance of fetal-originated disease in IUGR offspring.
Collapse
Affiliation(s)
- Zheng He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinzhi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jiangang Cao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Can Ai
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China.
| |
Collapse
|