1
|
Jiang H, Ye Y, Wang M, Sun X, Sun T, Chen Y, Li P, Zhang M, Wang T. The progress on the relationship between gut microbiota and immune checkpoint blockade in tumors. Biotechnol Genet Eng Rev 2024; 40:4446-4465. [PMID: 37191003 DOI: 10.1080/02648725.2023.2212526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a promising immunotherapeutic approach for the treatment of various tumors. However, the efficacy of this therapy is limited in a subset of patients, and it is important to develop strategies to enhance immune responses. Studies have demonstrated a critical role of gut microbiota in regulating the therapeutic response to ICB. Gut microbiota composition, diversity, and function are mediated by metabolites, such as short-chain fatty acids and secondary bile acids, that interact with host immune cells through specific receptors. In addition, gut bacteria may translocate to the tumor site and stimulate antitumor immune responses. Therefore, maintaining a healthy gut microbiota composition, for instance through avoiding the use of antibiotics or probiotic interventions, can be an effective approach to optimize ICB therapy. This review summarizes the current understanding of the microbiota-immunity interactions in the context of ICB therapy, and discusses potential clinical implications of these findings.
Collapse
Affiliation(s)
- Haili Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingqi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Lo JW, Schroeder JH, Roberts LB, Mohamed R, Cozzetto D, Beattie G, Omer OS, Ross EM, Heuts F, Jowett GM, Read E, Madgwick M, Neves JF, Korcsmaros T, Jenner RG, Walker LSK, Powell N, Lord GM. CTLA-4 expressing innate lymphoid cells modulate mucosal homeostasis in a microbiota dependent manner. Nat Commun 2024; 15:9520. [PMID: 39496592 PMCID: PMC11535242 DOI: 10.1038/s41467-024-51719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2024] [Indexed: 11/06/2024] Open
Abstract
The maintenance of intestinal homeostasis is a fundamental process critical for organismal integrity. Sitting at the interface of the gut microbiome and mucosal immunity, adaptive and innate lymphoid populations regulate the balance between commensal micro-organisms and pathogens. Checkpoint inhibitors, particularly those targeting the CTLA-4 pathway, disrupt this fine balance and can lead to inflammatory bowel disease and immune checkpoint colitis. Here, we show that CTLA-4 is expressed by innate lymphoid cells and that its expression is regulated by ILC subset-specific cytokine cues in a microbiota-dependent manner. Genetic deletion or antibody blockade of CTLA-4 in multiple in vivo models of colitis demonstrates that this pathway plays a key role in intestinal homeostasis. Lastly, we have found that this observation is conserved in human IBD. We propose that this population of CTLA-4-positive ILC may serve as an important target for the treatment of idiopathic and iatrogenic intestinal inflammation.
Collapse
Affiliation(s)
- Jonathan W Lo
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | | | - Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rami Mohamed
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Domenico Cozzetto
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Gordon Beattie
- CRUK City of London Centre Single Cell Genomics Facility, UCL Cancer Institute, University College London, London, UK
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London, UK
| | - Omer S Omer
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ellen M Ross
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Frank Heuts
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Geraldine M Jowett
- Centre for Host-Microbiome Interactions, King's College London, London, T, UK
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, UK
| | - Emily Read
- Centre for Host-Microbiome Interactions, King's College London, London, T, UK
| | - Matthew Madgwick
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Joana F Neves
- Centre for Host-Microbiome Interactions, King's College London, London, T, UK
| | - Tamas Korcsmaros
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Richard G Jenner
- UCL Cancer Institute and CRUK City of London Centre, University College London, London, UK
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Nick Powell
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK.
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Adhikari NP, Adhikari S, Rijal KR. Community composition and co-occurrence of free-living and particle-attached bacteria in the source region of the Ganges and Brahmaputra Rivers. Int Microbiol 2024:10.1007/s10123-024-00607-6. [PMID: 39400629 DOI: 10.1007/s10123-024-00607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Bacteria have two trophic lifestyles in aquatic ecosystems, i.e., free-living (FL) and particle-attached (PA), with different but essential ecological roles. However, relevant knowledge is still dearth in the upstream source region of the Himalayan Rivers. Thus, we emphasized a comparative study on community composition, co-occurrence, and geographic distribution of the FL and PA bacteria and the effect of environmental factors in the source region of the Ganges and Brahmaputra Rivers. PA bacteria relative to FL harbored a significantly higher local diversity, richness, and evenness. A significantly higher abundance of Betaproteobacteria, Verrucomicrobiota, and Planctomycetota in PA trophic lifestyle and Gammaproteobacteria and Actinomycetota in FL tropic lifestyle and indicator OTUs belonging to related taxa were observed. The spatial variation of the FL and PA bacterial communities was most significantly impacted by dispersal limitation as a discrete factor. Among the environmental parameters, the total nitrogen (TN) was found to be a significant (P < 0.001) driver of the variation in PA communities. Meanwhile, particulate organic carbon (POC) and TN considerably explained the variation of FL communities. A significant correlation (P < 0.001) of TN with dominant bacterial taxa (Pseudomonadota, Actinomycetota, and Verrucomicrobiota) and FL and PA indicator OTUs associated with these taxa further confirmed nitrogen as the limiting nutrient in the source region of the Ganges and Brahmaputra Rivers. The co-occurrence network topological characteristics showed that the PA network was more stable than the FL network, which was more complicated and unstable. Thus, it can be speculated that FL communities relative to PA are more vulnerable to shifting upon disturbances.
Collapse
Affiliation(s)
- Namita Paudel Adhikari
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Subash Adhikari
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, 44613, Kathmandu, Nepal
| |
Collapse
|
5
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
6
|
Pasoto SG, Franco AS, Silva CA, Bonfa E. Sicca syndrome/Sjögren's disease associated with cancer immunotherapy: a narrative review on clinical presentation, biomarkers, and management. Expert Rev Clin Immunol 2024; 20:1149-1167. [PMID: 38903050 DOI: 10.1080/1744666x.2024.2370327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION Almost one-quarter of immune checkpoint inhibitor (ICI) recipients experience sicca syndrome, while Sjögren's disease (SjD) is estimated at 0.3-2.5%, possibly underreported. AREAS COVERED This narrative review (Medline/Embase until January/31/2024) addresses the pathophysiology, incidence, demographic/clinical features, biomarkers, labial salivary gland biopsy (LSGB), fulfillment of the idiopathic SjD (iSjD) classificatory criteria, differential diagnosis, and management of sicca syndrome/SjD associated with ICIs. EXPERT OPINION SjD associated with ICIs is underdiagnosed, since studies that performed the mandatory SjD investigation identified that 40-60% of patients with sicca syndrome associated with ICIs meet the iSjD classificatory criteria. LSGB played a fundamental role in recognizing these cases, as most of them had negative anti-Ro/SS-A antibody. Despite the finding of focal lymphocytic sialoadenitis in LSGB samples mimicking iSjD, immunohistochemical analysis provided novel evidence of a distinct pattern for sicca syndrome/SjD associated with ICIs compared to iSjD. The former has scarcity of B lymphocytes, which are a hallmark of iSjD. Additionally, patients with sicca syndrome/SjD associated with ICIs have demographical/clinical/serological and treatment response dissimilarities compared to iSjD. Dryness symptoms are more acute in the former than in iSjD, with predominance of xerostomia over xerophthalmia, and partial/complete response to glucocorticoids. Dryness symptoms in ICI-treated patients warrant prompt SjD investigation.
Collapse
Affiliation(s)
- Sandra Gofinet Pasoto
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - André Silva Franco
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Clovis Artur Silva
- Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Eloisa Bonfa
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| |
Collapse
|
7
|
Khorashadizadeh S, Abbasifar S, Yousefi M, Fayedeh F, Moodi Ghalibaf A. The Role of Microbiome and Probiotics in Chemo-Radiotherapy-Induced Diarrhea: A Narrative Review of the Current Evidence. Cancer Rep (Hoboken) 2024; 7:e70029. [PMID: 39410854 PMCID: PMC11480522 DOI: 10.1002/cnr2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND In this article, we review the most recent research on probiotics effects on diarrhea in both human and animal models of the condition along with the therapeutic potential of these compounds based on their findings. RECENT FINDINGS Nearly 50%-80% of cancer patients experience chemotherapy-induced diarrhea (CID), serious gastrointestinal toxicity of chemotherapeutic and radiation regimens that leads to prolonged hospitalizations, cardiovascular problems, electrolyte imbalances, disruptions in cancer treatment, poor cancer prognosis, and death. CID is typically categorized as osmotic diarrhea. The depletion of colonic crypts and villi by radiotherapy and chemotherapy agents interferes with the absorptive function of the intestine, thereby decreasing the absorption of chloride and releasing water into the intestinal lumen. Probiotic supplements have been found to be able to reverse the intestinal damage caused by chemo-radiation therapy by promoting the growth of crypt and villi and reducing inflammatory pathways. In addition, they support the modulation of immunological and angiogenesis responses in the gut as well as the metabolism of certain digestive enzymes by altering the gut microbiota. CONCLUSION Beyond the benefits of probiotics, additional clinical research is required to clarify the most effective strain combinations and dosages for preventing chemotherapy and radiotherapy diarrhea.
Collapse
Affiliation(s)
| | - Sara Abbasifar
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Mohammad Yousefi
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Farzad Fayedeh
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | | |
Collapse
|
8
|
Jiménez-Andrade Y, Flesher JL, Park JM. Cancer Therapy-induced Dermatotoxicity as a Window to Understanding Skin Immunity. Hematol Oncol Clin North Am 2024; 38:1011-1025. [PMID: 38866636 PMCID: PMC11368641 DOI: 10.1016/j.hoc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Pruritus, rash, and various other forms of dermatotoxicity are the most frequent adverse events among patients with cancer receiving targeted molecular therapy and immunotherapy. Immune checkpoint inhibitors, macrophage-targeting agents, and epidermal growth factor receptor/MEK inhibitors not only exert antitumor effects but also interfere with molecular pathways essential for skin immune homeostasis. Studying cancer therapy-induced dermatotoxicity helps us identify molecular mechanisms governing skin immunity and deepen our understanding of human biology. This review summarizes new mechanistic insights emerging from the analysis of cutaneous adverse events and discusses knowledge gaps that remain to be closed by future research.
Collapse
Affiliation(s)
- Yanek Jiménez-Andrade
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA
| | - Jessica L Flesher
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA
| | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA.
| |
Collapse
|
9
|
Haddad A, Holder AM. Microbiome and Immunotherapy for Melanoma: Are We Ready for Clinical Application? Hematol Oncol Clin North Am 2024; 38:1061-1070. [PMID: 38908958 DOI: 10.1016/j.hoc.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The microbiome plays a substantial role in the efficacy of immune checkpoint blockade (ICB) in patients with metastatic melanoma. While the exact gut microbiome composition and the pathways involved in this interaction are not clearly delineated, novel studies and ongoing clinical trials are likely to reveal findings applicable to the clinical setting for the prediction and optimization of response to ICB. Nevertheless, lifestyle modifications, including high fiber diet, avoidance of unnecessary antibiotic prescriptions, and careful use of probiotics may be helpful to optimize the "health" of the gut microbiome and potentially enhance response to ICB in patients with melanoma.
Collapse
Affiliation(s)
- Antony Haddad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA. https://twitter.com/Haddad_Antony
| | - Ashley M Holder
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA.
| |
Collapse
|
10
|
González A, Badiola I, Fullaondo A, Rodríguez J, Odriozola A. Personalised medicine based on host genetics and microbiota applied to colorectal cancer. ADVANCES IN GENETICS 2024; 112:411-485. [PMID: 39396842 DOI: 10.1016/bs.adgen.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) ranks second in incidence and third in cancer mortality worldwide. This situation, together with the understanding of the heterogeneity of the disease, has highlighted the need to develop a more individualised approach to its prevention, diagnosis and treatment through personalised medicine. This approach aims to stratify patients according to risk, predict disease progression and determine the most appropriate treatment. It is essential to identify patients who may respond adequately to treatment and those who may be resistant to treatment to avoid unnecessary therapies and minimise adverse side effects. Current research is focused on identifying biomarkers such as specific mutated genes, the type of mutations and molecular profiles critical for the individualisation of CRC diagnosis, prognosis and treatment guidance. In addition, the study of the intestinal microbiota as biomarkers is being incorporated due to the growing scientific evidence supporting its influence on this disease. This article comprehensively addresses the use of current and emerging diagnostic, prognostic and predictive biomarkers in precision medicine against CRC. The effects of host genetics and gut microbiota composition on new approaches to treating this disease are discussed. How the gut microbiota could mitigate the side effects of treatment is reviewed. In addition, strategies to modulate the gut microbiota, such as dietary interventions, antibiotics, and transplantation of faecal microbiota and phages, are discussed to improve CRC prevention and treatment. These findings provide a solid foundation for future research and improving the care of CRC patients.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | | | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
11
|
Jiang SS, Kang ZR, Chen YX, Fang JY. The gut microbiome modulate response to immunotherapy in cancer. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2634-7. [PMID: 39235561 DOI: 10.1007/s11427-023-2634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 09/06/2024]
Abstract
Gut microbiota have been reported to play an important role in the occurrence and development of malignant tumors. Currently, clinical studies have identified specific gut microbiota and its metabolites associated with efficacy of immunotherapy in multiple types of cancers. Preclinical investigations have elucidated that gut microbiota modulate the antitumor immunity and affect the efficacy of cancer immunotherapy. Certain microbiota and its metabolites may favorably remodel the tumor microenvironment by engaging innate and/or adaptive immune cells. Understanding how the gut microbiome interacts with cancer immunotherapy opens new avenues for improving treatment strategies. Fecal microbial transplants, probiotics, dietary interventions, and other strategies targeting the microbiota have shown promise in preclinical studies to enhance the immunotherapy. Ongoing clinical trials are evaluating these approaches. This review presents the recent advancements in understanding the dynamic interplay among the host immunity, the microbiome, and cancer immunotherapy, as well as strategies for modulating the microbiome, with a view to translating into clinical applications.
Collapse
Affiliation(s)
- Shan-Shan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Zi-Ran Kang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China.
| |
Collapse
|
12
|
Cao C, Yue S, Lu A, Liang C. Host-Gut Microbiota Metabolic Interactions and Their Role in Precision Diagnosis and Treatment of Gastrointestinal Cancers. Pharmacol Res 2024; 207:107321. [PMID: 39038631 DOI: 10.1016/j.phrs.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The critical role of the gut microbiome in gastrointestinal cancers is becoming increasingly clear. Imbalances in the gut microbial community, referred to as dysbiosis, are linked to increased risks for various forms of gastrointestinal cancers. Pathogens like Fusobacterium and Helicobacter pylori relate to the onset of esophageal and gastric cancers, respectively, while microbes such as Porphyromonas gingivalis and Clostridium species have been associated with a higher risk of pancreatic cancer. In colorectal cancer, bacteria such as Fusobacterium nucleatum are known to stimulate the growth of tumor cells and trigger cancer-promoting pathways. On the other hand, beneficial microbes like Bifidobacteria offer a protective effect, potentially inhibiting the development of gastrointestinal cancers. The potential for therapeutic interventions that manipulate the gut microbiome is substantial, including strategies to engineer anti-tumor metabolites and employ microbiota-based treatments. Despite the progress in understanding the influence of the microbiome on gastrointestinal cancers, significant challenges remain in identifying and understanding the precise contributions of specific microbial species and their metabolic products. This knowledge is essential for leveraging the role of the gut microbiome in the development of precise diagnostics and targeted therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
13
|
Verhaert MAM, Aspeslagh S. Immunotherapy efficacy and toxicity: Reviewing the evidence behind patient implementable strategies. Eur J Cancer 2024; 209:114235. [PMID: 39059186 DOI: 10.1016/j.ejca.2024.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The use of immune checkpoint inhibitors (ICI) in cancer treatment is expanding, offering promising outcomes but with an important risk of immune-related adverse events (irAEs). These events, stemming from an overstimulated immune system attacking healthy cells, can necessitate immunosuppressant treatment, disrupt treatment courses, and impact patients' quality of life. The analysis of ICI efficacy data has led to a better understanding of the characteristics of responders. Similarly, we are gaining clearer insights into the characteristics of patients who develop irAEs, prompting an increasing emphasis on modifiable factors associated with irAE risk. These factors include lifestyle choices and the composition of the gut microbiome. Despite comprehensive reviews exploring the microbiome's role in therapy efficacy, understanding its connection with immune-related toxicity remains incomplete. While endeavours to identify predictive biomarkers continue, lifestyle modifications emerge as a promising avenue for enhancing treatment outcomes. This review consolidates the current evidence regarding the impact of the gut microbiome on irAE occurrence. Furthermore, it focuses on actionable strategies for mitigating these adverse events, elucidating the evidence supporting dietary adjustments, supplementation, medication management, and physical activity. With the expanding range of indications for ICI therapy, a significant proportion of oncology patients, including those in early disease stages, are now exposed to these treatments. Acknowledging the importance of averting irAEs in this context, our review offers timely insights crucial for addressing the evolving challenges associated with immunotherapy across diverse oncological settings.
Collapse
Affiliation(s)
- Marthe August Marianne Verhaert
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Sandrine Aspeslagh
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium; Department of Internal Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
14
|
Adiwinata R, Tandarto K, Tanadi C, Waleleng BJ, Haroen H, Rotty L, Gosal F, Rotty L, Hendratta C, Lasut P, Winarta J, Waleleng A, Simadibrata P, Simadibrata M. Immune checkpoint inhibitor colitis, a rising issue in targeted cancer therapy era: A literature review. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2024; 62:219-230. [PMID: 38595047 DOI: 10.2478/rjim-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/11/2024]
Abstract
Research advances in the oncology treatment field have led to the widespread use of immunotherapy. The usage of immune checkpoint inhibitor (ICI) has improved the survival of cancer patients with metastases. This has also led to the rapidly expanding indications for ICI use. However, ICI usage may lead to toxicity, which may be immune-related, in different organ-specific targets. The immune-related adverse events (irAEs) of ICI may lead to increased morbidity, decreased quality of life, and early termination of ICI. The clinical manifestations of irAEs in the gastrointestinal system are variable, ranging from self-limited to life-threatening or fatal events. In this review article, we would like to focus on discussing ICI-induced colitis, which is one of the most common ICI irAEs in the gastrointestinal tract.
Collapse
Affiliation(s)
- Randy Adiwinata
- 1Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi "Prof. dr. R. D. Kandou" Hospital, Manado, Indonesia
- 2Gastrointestinal Cancer Center, MRCCC Siloam Hospital Semanggi, Jakarta, Indonesia
| | - Kevin Tandarto
- 3Intensive Care Unit, Columbia Asia Hospital, Semarang, Indonesia
| | | | - Bradley Jimmy Waleleng
- 5Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi "Prof. dr. R. D. Kandou" Hospital, Manado, Indonesia
| | - Harlinda Haroen
- 6Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Linda Rotty
- 6Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Fandy Gosal
- 5Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi "Prof. dr. R. D. Kandou" Hospital, Manado, Indonesia
| | - Luciana Rotty
- 5Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi "Prof. dr. R. D. Kandou" Hospital, Manado, Indonesia
| | - Cecilia Hendratta
- 6Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Pearla Lasut
- 6Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Jeanne Winarta
- 5Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi "Prof. dr. R. D. Kandou" Hospital, Manado, Indonesia
| | - Andrew Waleleng
- 5Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi "Prof. dr. R. D. Kandou" Hospital, Manado, Indonesia
| | - Paulus Simadibrata
- 2Gastrointestinal Cancer Center, MRCCC Siloam Hospital Semanggi, Jakarta, Indonesia
- 7Abdi Waluyo Hospital, Jakarta, Indonesia
| | - Marcellus Simadibrata
- 8Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
15
|
Keam S, Turner N, Kugeratski FG, Rico R, Colunga-Minutti J, Poojary R, Alekseev S, Patel AB, Li YJ, Sheshadri A, Loghin ME, Woodman K, Aaroe AE, Hamidi S, Iyer PC, Palaskas NL, Wang Y, Nurieva R. Toxicity in the era of immune checkpoint inhibitor therapy. Front Immunol 2024; 15:1447021. [PMID: 39247203 PMCID: PMC11377343 DOI: 10.3389/fimmu.2024.1447021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) reinvigorate anti-tumor immune responses by disrupting co-inhibitory immune checkpoint molecules such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4). Although ICIs have had unprecedented success and have become the standard of care for many cancers, they are often accompanied by off-target inflammation that can occur in any organ system. These immune related adverse events (irAEs) often require steroid use and/or cessation of ICI therapy, which can both lead to cancer progression. Although irAEs are common, the detailed molecular and immune mechanisms underlying their development are still elusive. To further our understanding of irAEs and develop effective treatment options, there is pressing need for preclinical models recapitulating the clinical settings. In this review, we describe current preclinical models and immune implications of ICI-induced skin toxicities, colitis, neurological and endocrine toxicities, pneumonitis, arthritis, and myocarditis along with their management.
Collapse
Affiliation(s)
- Synat Keam
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naimah Turner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fernanda G Kugeratski
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rene Rico
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jocelynn Colunga-Minutti
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center University of Texas Health (UTHealth) Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| | | | - Sayan Alekseev
- College of Sciences, The University of Texas at San Antonio, San Antonio, TX, United States
- The Cancer Prevention and Research Institute of Texas (CPRIT)-CURE Summer Undergraduate Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anisha B Patel
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuanteng Jeff Li
- Department of General Internal Medicine, Section of Rheumatology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Monica E Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karin Woodman
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ashley E Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sarah Hamidi
- Department of Endocrine Neoplasia and HD, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priyanka Chandrasekhar Iyer
- Department of Endocrine Neoplasia and HD, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center University of Texas Health (UTHealth) Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| |
Collapse
|
16
|
Sekito T, Bekku K, Katayama S, Watanabe T, Tsuboi I, Yoshinaga K, Maruyama Y, Yamanoi T, Kawada T, Tominaga Y, Sadahira T, Iwata T, Nishimura S, Kusumi N, Edamura K, Kobayashi T, Kurose K, Ichikawa T, Miyaji Y, Wada K, Kobayashi Y, Araki M. Effect of Antacids on the Survival of Patients With Metastatic Urothelial Carcinoma Treated With Pembrolizumab. Clin Genitourin Cancer 2024; 22:102097. [PMID: 38763123 DOI: 10.1016/j.clgc.2024.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Concomitant medications can affect the efficacy of immune checkpoint inhibitors. The association between histamine-2 receptor antagonists (H2RAs), major antacids similar to proton pump inhibitors (PPIs), and the efficacy of pembrolizumab for metastatic urothelial carcinoma (mUC) treatment has been poorly evaluated. We evaluated the impact of PPIs and H2RAs on oncological outcomes in mUC patients treated with pembrolizumab. PATIENTS AND METHODS This retrospective multicenter study included patients with mUC treated with pembrolizumab. Patients prescribed PPIs or H2RAs within 30 days before and after the initial administration were extracted. The overall survival (OS), cancer-specific survival (CSS), progression-free survival (PFS), and objective response rates (ORR) were assessed. Kaplan-Meier survival curve analysis and multivariable Cox proportional hazard models were employed to assess the association between PPIs or H2RAs and survival outcomes. RESULTS Overall, 404 patients were eligible for this study; 121 patients (29.9%) used PPIs, and 34 (8.4%) used H2RAs. Kaplan-Meier analysis showed significantly worse OS, CSS, and PFS in patients using PPIs compared to no PPIs (P = .010, .018, and .012, respectively). In multivariable analyses, the use of PPIs was a significant prognostic factor for worse OS (HR = 1.42, 95% CI 1.08-1.87, P = .011), CSS (HR = 1.45, 95% CI 1.09-1.93, P = .011), and PFS (HR = 1.35, 95% CI 1.05-1.73, P = .020). PPIs were not associated with ORRs. The use of H2RAs was not associated with survival or ORRs. CONCLUSION PPIs were significantly associated with worse survival of patients with mUC treated with pembrolizumab, and H2RAs could be an alternative during administration. Both the oncological and gastrointestinal implications should be carefully considered when switching these antacids.
Collapse
Affiliation(s)
- Takanori Sekito
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kensuke Bekku
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Satoshi Katayama
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan.
| | - Tomofumi Watanabe
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Ichiro Tsuboi
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan; Department of Urology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Kasumi Yoshinaga
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Yuki Maruyama
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Tomoaki Yamanoi
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Tatsushi Kawada
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Yusuke Tominaga
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takuya Sadahira
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takehiro Iwata
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Shingo Nishimura
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Norihiro Kusumi
- Department of Urology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Kohei Edamura
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Tomoko Kobayashi
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kyohei Kurose
- Department of Urology, Fukuyama City Hospital, Hiroshima, Japan
| | - Takaharu Ichikawa
- Department of Urology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Yoshiyuki Miyaji
- Department of Urology, Kawasaki Medical School Hospital, Okayama, Japan
| | - Koichiro Wada
- Department of Urology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yasuyuki Kobayashi
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Motoo Araki
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
17
|
Hirata Y, Tanaka Y, Yokota H, Ohno H, Nishida K, Shimizu H, Mizuta N, Nakazawa K, Koshiba R, Kakimoto K, Miyazaki T, Nakamura S, Nishikawa H. Gut microbiota shifts from onset to remission in immune checkpoint inhibitor-induced enterocolitis: a case report. Gut Pathog 2024; 16:33. [PMID: 38965595 PMCID: PMC11225377 DOI: 10.1186/s13099-024-00630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are crucial in cancer treatment; however, they carry the risk of immune-related adverse events (irAEs), such as enteritis. CASE PRESENTATION This study investigated the role of the gut microbiota during the onset and remission of irAE enteritis in a patient with stage IV melanoma undergoing anti-PD-1 and anti-CTLA-4 therapy. Following commencement of ICI treatment, the patient developed severe diarrhea and was diagnosed with grade 3 irAE enteritis. Steroid and probiotic treatments provided swift symptom relief and remission, as confirmed by reduced fecal calprotectin levels and gastrointestinal imaging. Microbiota diversity analysis conducted via 16S rRNA gene sequencing identified a decrease in Streptococcus prevalence with improvement in enteritis symptoms. Conversely, genera Fusobacterium, Faecalibacterium, Bacteroides, Prevotella, and Bifidobacterium showed increased representation after remission. These genera are associated with anti-inflammatory properties and fibrous substrate degradation, aiding gut health. Immunological assessment demonstrated fluctuations in cytokine expression and the modulation of costimulatory molecules, aligning with therapeutic interventions and microbiota alterations. CONCLUSIONS Our findings indicate a significant correlation between gut microbiota and immune responses in irAE enteritis. This underscores the potential utility of microbiome profiling in predicting irAE occurrence and in providing treatment strategies, thereby promoting a more comprehensive approach to managing the adverse effects of ICIs.
Collapse
Affiliation(s)
- Yuki Hirata
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan.
| | | | | | | | - Koji Nishida
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Hikaru Shimizu
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Noboru Mizuta
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Kei Nakazawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Ryoji Koshiba
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Kazuki Kakimoto
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Takako Miyazaki
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Shiro Nakamura
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Hiroki Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
18
|
Cho YS, Han K, Xu J, Moon JJ. Novel strategies for modulating the gut microbiome for cancer therapy. Adv Drug Deliv Rev 2024; 210:115332. [PMID: 38759702 PMCID: PMC11268941 DOI: 10.1016/j.addr.2024.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Recent advancements in genomics, transcriptomics, and metabolomics have significantly advanced our understanding of the human gut microbiome and its impact on the efficacy and toxicity of anti-cancer therapeutics, including chemotherapy, immunotherapy, and radiotherapy. In particular, prebiotics, probiotics, and postbiotics are recognized for their unique properties in modulating the gut microbiota, maintaining the intestinal barrier, and regulating immune cells, thus emerging as new cancer treatment modalities. However, clinical translation of microbiome-based therapy is still in its early stages, facing challenges to overcome physicochemical and biological barriers of the gastrointestinal tract, enhance target-specific delivery, and improve drug bioavailability. This review aims to highlight the impact of prebiotics, probiotics, and postbiotics on the gut microbiome and their efficacy as cancer treatment modalities. Additionally, we summarize recent innovative engineering strategies designed to overcome challenges associated with oral administration of anti-cancer treatments. Moreover, we will explore the potential benefits of engineered gut microbiome-modulating approaches in ameliorating the side effects of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 21009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, China
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Du E, Jiang M, Chen F, Fan Q, Guo S, Zhao N, Jin F, Guo W, Huang S, Wei J. Dietary honokiol supplementation improves antioxidant capacity, enhances intestinal health, and modulates cecal microbial composition and function of broiler chickens. Poult Sci 2024; 103:103798. [PMID: 38703759 PMCID: PMC11079521 DOI: 10.1016/j.psj.2024.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Honokiol is a multifunctional polyphenol present in Magnolia officinalis. The effects of honokiol as a supplement in broiler chicken diets, and the underlying mechanisms, remain unclear. Therefore, the aim of the present study was to investigate the effects of honokiol on the growth performance, antioxidant capacity, and intestinal histomorphology of broiler chickens and to explore the underlying mechanisms. In total, 240 one-day-old broilers were randomly allocated to 5 dietary treatments, with 6 replicate pens and 8 birds per pen. Birds were fed a basal diet supplemented with 0 (blank control, BC), 100, 200, or 400 mg/kg honokiol (H100, H200, and H400), or 200 mg/kg bacitracin zinc (PC) for 42 d. The results showed that H200 and H400 increased body weight gain (BWG) and decreased feed conversion ratio (FCR) during the starter period (P < 0.05). H100 and H200 increased total superoxide dismutase (T-SOD) activity in the serum and decreased malondialdehyde (MDA) amount in the jejunum on d 42 (P < 0.05). Moreover, H100 increased villus height-to-crypt depth ratio in both the jejunum and ileum on d 21 (P < 0.05). PCR analysis showed that honokiol upregulated intestinal expression of glutathione peroxidase (GSH-Px) and downregulated intestinal expression of inducible nitric oxide synthase (iNOS) on d 42 (P < 0.05). The Shannon index, which represents the microbial alpha diversity, was reduced for the PC, H200, and H400 groups. Notably, honokiol treatment altered the cecal microbial community structure and promoted the enrichment of several bacteria, including Firmicutes and Lactobacillus. Higher production of short-chain fatty acids was observed in the cecal digesta of H100 birds, accompanied by an enriched glycolysis/gluconeogenesis pathway, according to the functional prediction of the cecal microbiota. This study provides evidence that honokiol improves growth performance, antioxidant capacity, and intestinal health of broiler chickens, possibly by manipulating the composition and function of the microbial community.
Collapse
Affiliation(s)
- Encun Du
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Meihan Jiang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Fang Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Qiwen Fan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Na Zhao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Feng Jin
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Wanzheng Guo
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Shaowen Huang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Jintao Wei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China.
| |
Collapse
|
20
|
Barrenechea PM. Interaction of the Gut Microbiome With Cancer Treatment. J Adv Pract Oncol 2024; 15:311-319. [PMID: 39328379 PMCID: PMC11424160 DOI: 10.6004/jadpro.2024.15.5.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
The gut microbiome is known to influence health and well-being beyond the gastrointestinal system, including metabolism, mood, and cognitive function. Research on the influence of the gut microbiome on cancer and cancer treatment has expanded in recent decades. This review discusses the effects of the gut microbiome on the pathogenesis of certain cancers, as well as the current guidelines and recommendations for health-care professionals for modifying the gut microbiome in cancer patients currently receiving chemotherapy or immunotherapy. The focus of this review is on five major areas of gut microbiome research (colorectal cancer, melanoma, renal cell carcinoma and non-small cell lung cancer, lymphoma, and acute leukemia) in which therapies, and particularly checkpoint inhibitors, have considerably improved survival outcomes. The relationship between microbial species and therapies to cure malignancies is largely unclear. This review will delineate the relationships being studied and conclusions to draw from the research in these areas thus far.
Collapse
|
21
|
Rajagopal D, MacLeod E, Corogeanu D, Vessillier S. Immune-related adverse events of antibody-based biological medicines in cancer therapy. J Cell Mol Med 2024; 28:e18470. [PMID: 38963257 PMCID: PMC11223167 DOI: 10.1111/jcmm.18470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
Recombinant antibodies (Abs) are an integral modality for the treatment of multiple tumour malignancies. Since the Food and Drug Administration (FDA) approval of rituximab as the first monoclonal antibody (mAb) for cancer treatment, several mAbs and antibody (Ab)-based therapies have been approved for the treatment of solid tumour malignancies and other cancers. These Abs function by either blocking oncogenic pathways or angiogenesis, modulating immune response, or by delivering a conjugated drug. The use of Ab-based therapy in cancer patients who could benefit from the treatment, however, is still limited by associated toxicity profiles which may stem from biological features and processes related to target binding, alongside biochemical and/or biophysical characteristics of the therapeutic Ab. A significant immune-related adverse event (irAE) associated with Ab-based therapies is cytokine release syndrome (CRS), characterized by the development of fever, rash and even marked, life-threatening hypotension, and acute inflammation with secondary to systemic uncontrolled increase in a range of pro-inflammatory cytokines. Here, we review irAEs associated with specific classes of approved, Ab-based novel cancer immunotherapeutics, namely immune checkpoint (IC)-targeting Abs, bispecific Abs (BsAbs) and Ab-drug-conjugates (ADCs), highlighting the significance of harmonization in preclinical assay development for safety assessment of Ab-based biotherapeutics as an approach to support and refine clinical translation.
Collapse
Affiliation(s)
- Deepa Rajagopal
- Immunotherapy, Biotherapeutics and Advanced Therapies Division, Science, Research, and Innovation Group, Medicines and Healthcare products Regulatory Agency (MHRA)HertfordshireUK
| | - Elliot MacLeod
- Immunotherapy, Biotherapeutics and Advanced Therapies Division, Science, Research, and Innovation Group, Medicines and Healthcare products Regulatory Agency (MHRA)HertfordshireUK
- Present address:
Gilead Sciences, Winchester HouseOxfordUK
| | - Diana Corogeanu
- Immunotherapy, Biotherapeutics and Advanced Therapies Division, Science, Research, and Innovation Group, Medicines and Healthcare products Regulatory Agency (MHRA)HertfordshireUK
- Present address:
East Sussex Healthcare NHS Trust, Conquest HospitalEast SussexUK
| | - Sandrine Vessillier
- Immunotherapy, Biotherapeutics and Advanced Therapies Division, Science, Research, and Innovation Group, Medicines and Healthcare products Regulatory Agency (MHRA)HertfordshireUK
| |
Collapse
|
22
|
Pinto Y, Bhatt AS. Sequencing-based analysis of microbiomes. Nat Rev Genet 2024:10.1038/s41576-024-00746-6. [PMID: 38918544 DOI: 10.1038/s41576-024-00746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/27/2024]
Abstract
Microbiomes occupy a range of niches and, in addition to having diverse compositions, they have varied functional roles that have an impact on agriculture, environmental sciences, and human health and disease. The study of microbiomes has been facilitated by recent technological and analytical advances, such as cheaper and higher-throughput DNA and RNA sequencing, improved long-read sequencing and innovative computational analysis methods. These advances are providing a deeper understanding of microbiomes at the genomic, transcriptional and translational level, generating insights into their function and composition at resolutions beyond the species level.
Collapse
Affiliation(s)
- Yishay Pinto
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Divisions of Hematology and Blood & Marrow Transplantation, Stanford University, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine, Divisions of Hematology and Blood & Marrow Transplantation, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Gault A, Hogarth L, Williams KC, Greystoke A, Rajan N, Speight A, Lamb CA, Bridgewood A, Brown-Schofield LJ, Rayner F, Isaacs JD, Nsengimana J, Stewart CJ, Anderson AE, Plummer R, Pratt AG. Monitoring immunE DysregulAtion foLLowing Immune checkpOint-inhibitioN (MEDALLION): protocol for an observational cancer immunotherapy cohort study. BMC Cancer 2024; 24:733. [PMID: 38877461 PMCID: PMC11179333 DOI: 10.1186/s12885-024-12468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Checkpoint inhibitors (CPIs) are widely used in cancer treatment, with transformative impacts on survival. They nonetheless carry a significant risk of toxicity in the form of immune-related adverse events (IrAEs), which may be sustained and life-altering. IrAEs may require high-dose and/or prolonged steroid use and represent a significant healthcare burden. They mimic immune-mediated inflammatory diseases (IMIDs) but understanding of their pathogenesis is limited. The MEDALLION project aims to determine targetable mechanisms of immune dysregulation in IrAE development, employing an immune monitoring approach to determine changes in circulating and tissue resident cells of CPI recipients who do/do not develop them and assessing the contribution of the microbiome in parallel. METHODS MEDALLION is a non-randomised longitudinal cohort study aiming to recruit 66 cancer patient recipients of anti-PD1/PD-L1, anti-CTLA-4 or combination therapy. Eligible participants include those with malignant melanoma in the adjuvant or metastatic setting, mesothelioma and non-small cell lung carcinoma (NSCLC) treated in the metastatic setting. Comprehensive clinical evaluation is carried out alongside blood, skin swab and stool sampling at the time of CPI initiation (baseline) and during subsequent routine hospital visits on 6 occasions over a 10-month follow-up period. It is conservatively anticipated that one third of enrolled patients will experience a "significant IrAE" (SirAE), defined according to pre-determined criteria specific to the affected tissue/organ system. Those developing such toxicity may optionally undergo a biopsy of affected tissue where appropriate, otherwise being managed according to standard of care. Peripheral blood mononuclear cells will be analysed using multi-parameter flow cytometry to investigate immune subsets, their activation status and cytokine profiles. Stool samples and skin swabs will undergo DNA extraction for 16 S ribosomal RNA (rRNA) sequencing and internal transcribed spacer (ITS) gene sequencing to determine bacterial and fungal microbiome diversity, respectively, including species associated with toxicity. Stored tissue biopsies will be available for in situ and single-cell transcriptomic evaluation. Analysis will focus on the identification of biological predictors and precursors of SirAEs. DISCUSSION The pathogenesis of IrAEs will be assessed through the MEDALLION cohort, with the potential to develop tools for their prediction and/or strategies for targeted prevention or treatment. TRIAL REGISTRATION The study was registered on 18/09/2023 in the ISRCTN registry (43,419,676).
Collapse
Affiliation(s)
- Abigail Gault
- Translational and Clinical Research Institute, The Medical School, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE4 2HH, UK
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Linda Hogarth
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kristian C Williams
- Translational and Clinical Research Institute, The Medical School, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE4 2HH, UK
| | - Alastair Greystoke
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Neil Rajan
- Translational and Clinical Research Institute, The Medical School, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE4 2HH, UK
- Department of Dermatology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ally Speight
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Christopher A Lamb
- Translational and Clinical Research Institute, The Medical School, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE4 2HH, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Alison Bridgewood
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lisa-Jayne Brown-Schofield
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Fiona Rayner
- Translational and Clinical Research Institute, The Medical School, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE4 2HH, UK
- Department of Rheumatology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, The Medical School, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE4 2HH, UK
- Department of Rheumatology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jérémie Nsengimana
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, The Medical School, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE4 2HH, UK
| | - Amy E Anderson
- Translational and Clinical Research Institute, The Medical School, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE4 2HH, UK
| | - Ruth Plummer
- Translational and Clinical Research Institute, The Medical School, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE4 2HH, UK
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Arthur G Pratt
- Translational and Clinical Research Institute, The Medical School, Newcastle University, William Leech Building, Framlington Place, Newcastle upon Tyne, NE4 2HH, UK.
- Department of Rheumatology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
24
|
Del Gaudio A, Di Vincenzo F, Petito V, Giustiniani MC, Gasbarrini A, Scaldaferri F, Lopetuso LR. Focus on Immune Checkpoint Inhibitors-related Intestinal Inflammation: From Pathogenesis to Therapeutical Approach. Inflamm Bowel Dis 2024; 30:1018-1031. [PMID: 37801695 PMCID: PMC11144981 DOI: 10.1093/ibd/izad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 10/08/2023]
Abstract
Recently, antitumor immunotherapies have witnessed a breakthrough with the emergence of immune checkpoint inhibitors (ICIs) including programmed cell death-1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors. Unfortunately, the use of ICIs has also led to the advent of a novel class of adverse events that differ from those of classic chemotherapeutics and are more reminiscent of autoimmune diseases, the immune-related adverse events (IRAEs). Herein, we performed an insight of the main IRAEs associated with ICIs, focusing on gastroenterological IRAEs and specifically on checkpoint inhibitor colitis, which represents the most widely reported IRAE to date. We comprehensively dissected the current evidence regarding pathogenesis, diagnosis, and management of ICIs-induced colitis, touching upon also on innovative therapies.
Collapse
Affiliation(s)
- Angelo Del Gaudio
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, 00168, Italy
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, 00168, Italy
| | - Federica Di Vincenzo
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, 00168, Italy
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, 00168, Italy
| | - Valentina Petito
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, 00168, Italy
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, 00168, Italy
| | | | - Antonio Gasbarrini
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, 00168, Italy
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, 00168, Italy
| | - Franco Scaldaferri
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, 00168, Italy
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, 00168, Italy
| | - Loris Riccardo Lopetuso
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, 00168, Italy
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, 00168, Italy
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
25
|
Hassel JC, Zimmer L. [Side effects of dermato-oncologic therapies]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:466-475. [PMID: 38802653 DOI: 10.1007/s00105-024-05354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) such as PD(L)1 and CTLA4 antibodies as well as targeted therapies such as BRAF and MEK inhibitors have significantly improved the systemic treatment of skin cancer in adjuvant and advanced therapy settings. All these drugs differ in their spectrum of side effects. MATERIALS AND METHODS The aim of this article is to provide an overview of the spectrum of side effects of dermato-oncological therapies and their management, taking into account the current literature. RESULTS The most important side effects of ICIs, the CCR4 inhibitor mogamulizumab, the ImmTAC tebentafusp, the BRAF and MEK inhibitors and the multityrosine kinase inhibitor imatinib are considered. CONCLUSIONS Side effects can manifest themselves in all organ systems. Chronic side effects and long-term harm are possible, especially with ICIs, and require close therapy monitoring and patient education. Knowledge of the side effects and the temporal, sometimes delayed course of their occurrence are essential for diagnosis and prompt initiation of therapy.
Collapse
Affiliation(s)
- Jessica C Hassel
- Medizinische Fakultät, Hautklinik und Nationales Centrum für Tumorerkrankungen (NCT), NCT Heidelberg, eine Partnerschaft zwischen DKFZ und dem Universitätsklinikum Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Deutschland.
| | - Lisa Zimmer
- Klinik für Dermatologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| |
Collapse
|
26
|
Li Z, Xiong W, Liang Z, Wang J, Zeng Z, Kołat D, Li X, Zhou D, Xu X, Zhao L. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J Hematol Oncol 2024; 17:33. [PMID: 38745196 PMCID: PMC11094969 DOI: 10.1186/s13045-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.
Collapse
Affiliation(s)
- Zehua Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Liang
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Jinyu Wang
- Departments of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ziyi Zeng
- Department of Neonatology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyong Zhao
- Department of General Surgery and Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Blake SJ, Wolf Y, Boursi B, Lynn DJ. Role of the microbiota in response to and recovery from cancer therapy. Nat Rev Immunol 2024; 24:308-325. [PMID: 37932511 DOI: 10.1038/s41577-023-00951-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Our understanding of how the microbiota affects the balance between response to and failure of cancer treatment by modulating the tumour microenvironment and systemic immune system has advanced rapidly in recent years. Microbiota-targeting interventions in patients with cancer are an area of intensive investigation. Promisingly, phase I-II clinical trials have shown that interventions such as faecal microbiota transplantation can overcome resistance to immune checkpoint blockade in patients with melanoma, improve therapeutic outcomes in treatment-naive patients and reduce therapy-induced immunotoxicities. Here, we synthesize the evidence showing that the microbiota is an important determinant of both cancer treatment efficacy and treatment-induced acute and long-term toxicity, and we discuss the complex and inter-related mechanisms involved. We also assess the potential of microbiota-targeting interventions, including bacterial engineering and phage therapy, to optimize the response to and recovery from cancer therapy.
Collapse
Affiliation(s)
- Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben Boursi
- School of Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel
- Center of Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
28
|
Zakharevich NV, Morozov MD, Kanaeva VA, Filippov MS, Zyubko TI, Ivanov AB, Ulyantsev VI, Klimina KM, Olekhnovich EI. Systemic metabolic depletion of gut microbiome undermines responsiveness to melanoma immunotherapy. Life Sci Alliance 2024; 7:e202302480. [PMID: 38448159 PMCID: PMC10917649 DOI: 10.26508/lsa.202302480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Immunotherapy has proven to be a boon for patients battling metastatic melanoma, significantly improving their clinical condition and overall quality of life. A compelling link between the composition of the gut microbiome and the efficacy of immunotherapy has been established in both animal models and human patients. However, the precise biological mechanisms by which gut microbes influence treatment outcomes remain poorly understood. Using a robust dataset of 680 fecal metagenomes from melanoma patients, a detailed catalog of metagenome-assembled genomes (MAGs) was constructed to explore the compositional and functional properties of the gut microbiome. Our study uncovered significant findings that deepen the understanding of the intricate relationship between gut microbes and the efficacy of melanoma immunotherapy. In particular, we discovered the specific metagenomic profile of patients with favorable treatment outcomes, characterized by a prevalence of MAGs with increased overall metabolic potential and proficiency in polysaccharide utilization, along with those responsible for cobalamin and amino acid production. Furthermore, our investigation of the biosynthetic pathways of short-chain fatty acids, known for their immunomodulatory role, revealed a differential abundance of these pathways among the specific MAGs. Among others, the cobalamin-dependent Wood-Ljungdahl pathway of acetate synthesis was directly associated with responsiveness to melanoma immunotherapy.
Collapse
Affiliation(s)
- Natalia V Zakharevich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Maxim D Morozov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Vera A Kanaeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
- Moscow Institute of Physics and Technology, Moscow, Russian
| | - Mikhail S Filippov
- https://ror.org/04btxg914 Bioinformatics Institute, Saint Petersburg, Russian
| | - Tatyana I Zyubko
- https://ror.org/04btxg914 Bioinformatics Institute, Saint Petersburg, Russian
| | - Artem B Ivanov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
- ITMO University, Saint Petersburg, Russian
| | | | - Ksenia M Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Evgenii I Olekhnovich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| |
Collapse
|
29
|
Thomas MF, Slowikowski K, Manakongtreecheep K, Sen P, Samanta N, Tantivit J, Nasrallah M, Zubiri L, Smith NP, Tirard A, Ramesh S, Arnold BY, Nieman LT, Chen JH, Eisenhaure T, Pelka K, Song Y, Xu KH, Jorgji V, Pinto CJ, Sharova T, Glasser R, Chan P, Sullivan RJ, Khalili H, Juric D, Boland GM, Dougan M, Hacohen N, Li B, Reynolds KL, Villani AC. Single-cell transcriptomic analyses reveal distinct immune cell contributions to epithelial barrier dysfunction in checkpoint inhibitor colitis. Nat Med 2024; 30:1349-1362. [PMID: 38724705 DOI: 10.1038/s41591-024-02895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/01/2024] [Indexed: 05/23/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology, but treatments are limited by immune-related adverse events, including checkpoint inhibitor colitis (irColitis). Little is understood about the pathogenic mechanisms driving irColitis, which does not readily occur in model organisms, such as mice. To define molecular drivers of irColitis, we used single-cell multi-omics to profile approximately 300,000 cells from the colon mucosa and blood of 13 patients with cancer who developed irColitis (nine on anti-PD-1 or anti-CTLA-4 monotherapy and four on dual ICI therapy; most patients had skin or lung cancer), eight controls on ICI therapy and eight healthy controls. Patients with irColitis showed expanded mucosal Tregs, ITGAEHi CD8 tissue-resident memory T cells expressing CXCL13 and Th17 gene programs and recirculating ITGB2Hi CD8 T cells. Cytotoxic GNLYHi CD4 T cells, recirculating ITGB2Hi CD8 T cells and endothelial cells expressing hypoxia gene programs were further expanded in colitis associated with anti-PD-1/CTLA-4 therapy compared to anti-PD-1 therapy. Luminal epithelial cells in patients with irColitis expressed PCSK9, PD-L1 and interferon-induced signatures associated with apoptosis, increased cell turnover and malabsorption. Together, these data suggest roles for circulating T cells and epithelial-immune crosstalk critical to PD-1/CTLA-4-dependent tolerance and barrier function and identify potential therapeutic targets for irColitis.
Collapse
Affiliation(s)
- Molly Fisher Thomas
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Division of Gastroenterology, Department of Medicine, Oregon Health and Sciences University, Portland, OR, USA.
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA.
| | - Kamil Slowikowski
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Kasidet Manakongtreecheep
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Pritha Sen
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nandini Samanta
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jessica Tantivit
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Mazen Nasrallah
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Department of Medicine, North Shore Physicians Group, Mass General Brigham Healthcare Center, Lynn, MA, USA
| | - Leyre Zubiri
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Neal P Smith
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Alice Tirard
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Swetha Ramesh
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Benjamin Y Arnold
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Linda T Nieman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan H Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas Eisenhaure
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Karin Pelka
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Yuhui Song
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine H Xu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Vjola Jorgji
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Glasser
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - PuiYee Chan
- Harvard Medical School, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan J Sullivan
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hamed Khalili
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Dejan Juric
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Dougan
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bo Li
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Kerry L Reynolds
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Bracamonte-Baran W, Kim ST. The Current and Future of Biomarkers of Immune Related Adverse Events. Rheum Dis Clin North Am 2024; 50:201-227. [PMID: 38670721 PMCID: PMC11232920 DOI: 10.1016/j.rdc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
With their groundbreaking clinical responses, immune checkpoint inhibitors (ICIs) have ushered in a new chapter in cancer therapeutics. However, they are often associated with life-threatening or organ-threatening autoimmune/autoinflammatory phenomena, collectively termed immune-related adverse events (irAEs). In this review, we will first describe the mechanisms of action of ICIs as well as irAEs. Next, we will review biomarkers for predicting the development of irAEs or stratifying risks.
Collapse
Affiliation(s)
- William Bracamonte-Baran
- Department of Rheumatology, Allergy & Immunology, Yale University, 300 Cedar Street, TAC S541, New Haven, CT 06520, USA
| | - Sang T Kim
- Department of Rheumatology, Allergy & Immunology, Yale University, 300 Cedar Street, TAC S541, New Haven, CT 06520, USA.
| |
Collapse
|
31
|
Sang Y, Zheng K, Zhao Y, Liu Y, Zhu S, Xie X, Shang L, Liu J, Li L. Efficacy and regulatory strategies of gut microbiota in immunotherapy: a narrative review. Transl Cancer Res 2024; 13:2043-2063. [PMID: 38737692 PMCID: PMC11082673 DOI: 10.21037/tcr-24-316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 05/14/2024]
Abstract
Background and Objective With advances in gut microbiome research, it has been recognized that the gut microbiome has an important and far-reaching impact on many human diseases, including cancer. Therefore, more and more researchers are focusing on the treatment of gut flora in tumors. In this article, we present a review of the mechanisms of gut microbes in tumor immunotherapy and related studies to provide reference for further research and insights into the clinical application of gut microbes. Methods Between April 25, 2023, and November 25, 2023, we searched for articles published only in English between 1984 and 2023 using the databases PubMed, American Medical Association and Elsevier ScienceDirect using the keywords "gut microbiology" and "tumor" or "immunotherapy". Key Content and Findings The gastrointestinal tract contains the largest number of microorganisms in the human body. Microorganisms are involved in regulating many physiological activities of the body. Studies have shown that gut microbes and their derivatives are involved in the occurrence and development of a variety of inflammations and tumors, and changes in their abundance and proportion affect the degree of cancer progression and sensitivity to immunotherapy. Gut microbiota-based drug research is ongoing, and some anti-tumor studies have entered the clinical trial stage. Conclusions The abundance and proportion of intestinal microorganisms influence the susceptibility of tumors to tumor immunotherapy. This article reviewed the effects and mechanisms of gut microbes on tumor immunotherapy to further explore the medical value of gut microbes in tumor immunotherapy.
Collapse
Affiliation(s)
- Yaodong Sang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kexin Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yulong Zhao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Siqiang Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
32
|
Tamura K, Okuma Y, Nomura S, Fukuda A, Masuda K, Matsumoto Y, Shinno Y, Yoshida T, Goto Y, Horinouchi H, Yamamoto N, Ohe Y. Efficacy and safety of chemoimmunotherapy in advanced non-small cell lung cancer patients with antibiotics-induced dysbiosis: a propensity-matched real-world analysis. J Cancer Res Clin Oncol 2024; 150:216. [PMID: 38668936 PMCID: PMC11052849 DOI: 10.1007/s00432-024-05649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/09/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE The gut microbiota is hypothesized as a prognostic biomarker for cancer immunotherapy. Antibiotic-induced dysbiosis negatively affects the clinical outcomes of immunotherapy. However, the effect of dysbiosis on the efficacy and safety of Chemoimmunotherapy (chemo-IOs), the frontline standard of care, in advanced non-small cell lung cancer (NSCLC) remains unknown. We aimed to compare the efficacy and safety of chemo-IOs in patients exposed to antibiotics before treatment with those of patients who were not exposed. METHODS We retrospectively reviewed patients with advanced NSCLC treated with first-line chemo-IOs between 2018 and 2020 at the National Cancer Center Hospital. The patients were divided into two groups: those exposed to antibiotics within 30 days before induction therapy (ABx group) and those did not antibiotics (Non-ABx group). Propensity score matching was used to control for potential confounding factors. Clinical outcomes including progression-free survival (PFS), overall survival (OS), and immune-related adverse events (irAEs) were compared. RESULTS Of 201 eligible patients, 21 were in the ABx group, and 42 were in the non-ABx group after propensity score matching. No differences in PFS or OS emerged between the two groups (ABx group vs. Non-ABx group) (PFS:7.0 months vs. 6.4 months, hazard ratio [HR] 0.89; 95% confidence interval [CI], 0.49-1.63, OS:20.4 months vs. 20.1 months, HR 0.87; 95% CI 0.44-1.71). The frequency of irAEs before propensity score matching was similar across any-grade irAEs (39.4% vs. 42.9%) or grade 3 or higher irAEs (9.1% vs. 11.3%). CONCLUSION Antibiotic-induced dysbiosis may not affect the efficacy of chemo-IOs in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato, Tokyo, 105-8461, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan.
| | - Shogo Nomura
- Department of Biostatics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Akito Fukuda
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Ken Masuda
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Yuji Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| |
Collapse
|
33
|
Constantin M, Chifiriuc MC, Mihaescu G, Corcionivoschi N, Burlibasa L, Bleotu C, Tudorache S, Mitache MM, Filip R, Munteanu SG, Gradisteanu Pircalabioru G. Microbiome and cancer: from mechanistic implications in disease progression and treatment to development of novel antitumoral strategies. Front Immunol 2024; 15:1373504. [PMID: 38715617 PMCID: PMC11074409 DOI: 10.3389/fimmu.2024.1373504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/23/2024] Open
Abstract
Cancer is a very aggressive disease and one of mankind's most important health problems, causing numerous deaths each year. Its etiology is complex, including genetic, gender-related, infectious diseases, dysbiosis, immunological imbalances, lifestyle, including dietary factors, pollution etc. Cancer patients also become immunosuppressed, frequently as side effects of chemotherapy and radiotherapy, and prone to infections, which further promote the proliferation of tumor cells. In recent decades, the role and importance of the microbiota in cancer has become a hot spot in human biology research, bringing together oncology and human microbiology. In addition to their roles in the etiology of different cancers, microorganisms interact with tumor cells and may be involved in modulating their response to treatment and in the toxicity of anti-tumor therapies. In this review, we present an update on the roles of microbiota in cancer with a focus on interference with anticancer treatments and anticancer potential.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology, Bucharest of Romanian Academy, Bucharest, Romania
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
- Romanian Academy of Scientists, Bucharest, Romania
| | | | - Coralia Bleotu
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Sorin Tudorache
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Suceava Emergency County Hospital, Suceava, Romania
| | | | - Gratiela Gradisteanu Pircalabioru
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Romanian Academy of Scientists, Bucharest, Romania
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| |
Collapse
|
34
|
Li H, Dong T, Tao M, Zhao H, Lan T, Yan S, Gong X, Hou Q, Ma X, Song Y. Fucoidan enhances the anti-tumor effect of anti-PD-1 immunotherapy by regulating gut microbiota. Food Funct 2024; 15:3463-3478. [PMID: 38456333 DOI: 10.1039/d3fo04807a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Currently, the clinical efficacy of anti-PD-1/PD-L1 monotherapy strategies against breast cancer is limited, and low response rates need to be improved. Gut microbiota plays a crucial role in the sensitization process of immunotherapy. As a natural dietary supplement, fucoidan has been reported to have immunomodulatory effects, while some studies have found that oral fucoidan may act as a potential prebiotic to modulate the gut microbiota. Therefore, this study investigated whether fucoidan could enhance the effects of anti-PD-1 monoclonal antibody antitumor immunotherapy by modulating gut microbiota and its metabolites. We found that the anti-tumor effect of the combination treatment was significantly enhanced, while fucoidan significantly improved the composition of the gut microbiota by increasing the number of potentially beneficial bacteria, such as Bifidobacterium, Faecalibaculum and Lactobacillus. Interference with the gut microbiota by antibiotics revealed impaired antitumor efficacy, confirming the necessity of gut microbiota in the antitumor effects of fucoidan in vivo. Metabolomics further revealed that fucoidan may have reversed the metabolic disturbances induced by the breast cancer model through tryptophan metabolism and glycerophospholipid metabolism pathways, with the most significant increase in the content of short-chain fatty acids, especially acetic and butyric acids. These modulations improved the function of effector T cells and suppressed Treg cell production. Thus, our findings suggest that fucoidan combined with the anti-PD-1 monoclonal antibody may be a novel strategy to sensitize breast cancer patients to anti-PD-1 monoclonal antibody immunotherapy. Meanwhile, the gut microbiota might serve as a new biomarker to predict the anti-PD-1 monoclonal antibody response to breast cancer immunotherapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Tieying Dong
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Meng Tao
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Haifeng Zhao
- Qingdao Institute of Food and Drug Inspection, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese, Medicine, China
| | - Tongtong Lan
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Shiyu Yan
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Xinyi Gong
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Qilong Hou
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Xuezhen Ma
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Yang Song
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
35
|
Li M, Li N, Dong Y, Zhang H, Bai Z, Zhang R, Fei Z, Zhu W, Xiao P, Sun X, Zhou D. Soil intake modifies the gut microbiota and alleviates Th2-type immune response in an ovalbumin-induced asthma mouse model. World Allergy Organ J 2024; 17:100897. [PMID: 38655570 PMCID: PMC11035114 DOI: 10.1016/j.waojou.2024.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Background A low-clean living environment (LCLE) can increase gut microbial diversity and prevent allergic diseases, whereas gut microbial dysbiosis is closely related to the pathogenesis of asthma. Our previous studies suggested that soil in the LCLE is a key factor in shaping intestinal microbiota. We aimed to explore whether sterilized soil intake as a prebiotic while being incubated with microbes in the air can attenuate mouse asthma inflammation by modifying gut microbiota. Methods 16S rRNA gene sequencing was used to analyze the gut microbial composition, in combination with immune parameters measured in the lung and serum samples. Results 16S rRNA gene sequencing results showed significant differences in the fecal microbiota composition between the test and control mice, with a higher abundance of Allobaculum, Alistipes, and Lachnospiraceae_UCG-001, which produce short-chain fatty acids and are beneficial for health in the test mice. Soil intake significantly downregulated the concentrations of IL-4 and IL-9 in serum and increased the expression of IFN-γ, which regulated the Th1/Th2 balance in the lung by polarizing the immune system toward Th1, alleviating ovalbumin-induced asthma inflammation. The effect of sensitization on gut microbiota was greater than that of air microbes and age together but weaker than that of soil. Conclusions Soil intake effectively reduced the expression of inflammatory cytokines in asthmatic mice, possibly by promoting the growth of multiple beneficial bacteria. The results indicated that the development of soil-based prebiotic products might be used for allergic asthma management, and our study provides further evidence for the hygiene hypothesis.
Collapse
Affiliation(s)
- Mengjie Li
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Na Li
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yangyang Dong
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Honglin Zhang
- College of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhimao Bai
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, China
| | - Rui Zhang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Zhongjie Fei
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Wenyong Zhu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Dongrui Zhou
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
36
|
Dai JH, Tan XR, Qiao H, Liu N. Emerging clinical relevance of microbiome in cancer: promising biomarkers and therapeutic targets. Protein Cell 2024; 15:239-260. [PMID: 37946397 PMCID: PMC10984626 DOI: 10.1093/procel/pwad052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
The profound influence of microbiota in cancer initiation and progression has been under the spotlight for years, leading to numerous researches on cancer microbiome entering clinical evaluation. As promising biomarkers and therapeutic targets, the critical involvement of microbiota in cancer clinical practice has been increasingly appreciated. Here, recent progress in this field is reviewed. We describe the potential of tumor-associated microbiota as effective diagnostic and prognostic biomarkers, respectively. In addition, we highlight the relationship between microbiota and the therapeutic efficacy, toxicity, or side effects of commonly utilized treatments for cancer, including chemotherapy, radiotherapy, and immunotherapy. Given that microbial factors influence the cancer treatment outcome, we further summarize some dominating microbial interventions and discuss the hidden risks of these strategies. This review aims to provide an overview of the applications and advancements of microbes in cancer clinical relevance.
Collapse
Affiliation(s)
- Jia-Hao Dai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| |
Collapse
|
37
|
Riveiro-Barciela M, Carballal S, Díaz-González Á, Mañosa M, Gallego-Plazas J, Cubiella J, Jiménez-Fonseca P, Varela M, Menchén L, Sangro B, Fernández-Montes A, Mesonero F, Rodríguez-Gandía MÁ, Rivera F, Londoño MC. Management of liver and gastrointestinal toxicity induced by immune checkpoint inhibitors: Position statement of the AEEH-AEG-SEPD-SEOM-GETECCU. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:401-432. [PMID: 38228461 DOI: 10.1016/j.gastrohep.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 01/18/2024]
Abstract
The development of the immune checkpoint inhibitors (ICI) is one of the most remarkable achievements in cancer therapy in recent years. However, their exponential use has led to an increase in immune-related adverse events (irAEs). Gastrointestinal and liver events encompass hepatitis, colitis and upper digestive tract symptoms accounting for the most common irAEs, with incidence rates varying from 2% to 40%, the latter in patients undergoing combined ICIs therapy. Based on the current scientific evidence derived from both randomized clinical trials and real-world studies, this statement document provides recommendations on the diagnosis, treatment and prognosis of the gastrointestinal and hepatic ICI-induced adverse events.
Collapse
Affiliation(s)
- Mar Riveiro-Barciela
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona (UAB), Department of Medicine, Spain.
| | - Sabela Carballal
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Gastroenterology Department, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Universitat de Barcelona, Spain
| | - Álvaro Díaz-González
- Gastroenterology Department, Grupo de Investigación Clínica y Traslacional en Enfermedades Digestivas, Instituto de Investigación Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Míriam Mañosa
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Joaquín Cubiella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Gastroenterology Department, Hospital Universitario de Ourense, Grupo de Investigación en Oncología Digestiva-Ourense, Spain
| | - Paula Jiménez-Fonseca
- Medical Oncology Department, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - María Varela
- Gastroenterology Department, Hospital Universitario Central de Asturias, IUOPA, ISPA, FINBA, University of Oviedo, Oviedo, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo - CEIMI, Instituto de Investigación Sanitaria Gregorio, Marañón, Spain; Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Bruno Sangro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Liver Unit, Cancer Center Clinica Universidad de Navarra, Pamplona-Madrid, Spain
| | - Ana Fernández-Montes
- Medical Oncology Department, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Francisco Mesonero
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Universidad de Alcalá de Henares, Spain
| | - Miguel Ángel Rodríguez-Gandía
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Fernando Rivera
- Medical Oncology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - María-Carlota Londoño
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat de Barcelona, Spain; Liver Unit, Hospital Clínic Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Spain
| |
Collapse
|
38
|
Manrique P, Montero I, Fernandez-Gosende M, Martinez N, Cantabrana CH, Rios-Covian D. Past, present, and future of microbiome-based therapies. MICROBIOME RESEARCH REPORTS 2024; 3:23. [PMID: 38841413 PMCID: PMC11149097 DOI: 10.20517/mrr.2023.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/07/2024]
Abstract
Technological advances in studying the human microbiome in depth have enabled the identification of microbial signatures associated with health and disease. This confirms the crucial role of microbiota in maintaining homeostasis and the host health status. Nowadays, there are several ways to modulate the microbiota composition to effectively improve host health; therefore, the development of therapeutic treatments based on the gut microbiota is experiencing rapid growth. In this review, we summarize the influence of the gut microbiota on the development of infectious disease and cancer, which are two of the main targets of microbiome-based therapies currently being developed. We analyze the two-way interaction between the gut microbiota and traditional drugs in order to emphasize the influence of gut microbial composition on drug effectivity and treatment response. We explore the different strategies currently available for modulating this ecosystem to our benefit, ranging from 1st generation intervention strategies to more complex 2nd generation microbiome-based therapies and their regulatory framework. Lastly, we finish with a quick overview of what we believe is the future of these strategies, that is 3rd generation microbiome-based therapies developed with the use of artificial intelligence (AI) algorithms.
Collapse
|
39
|
Jiang QY, Xue RY. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio: Markers predicting immune-checkpoint inhibitor efficacy and immune-related adverse events. World J Gastrointest Oncol 2024; 16:577-582. [PMID: 38577447 PMCID: PMC10989358 DOI: 10.4251/wjgo.v16.i3.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024] Open
Abstract
We conducted a comprehensive review of existing prediction models pertaining to the efficacy of immune-checkpoint inhibitor (ICI) and the occurrence of immune-related adverse events (irAEs). The predictive potential of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in determining ICI effectiveness has been extensively investigated, while limited research has been conducted on predicting irAEs. Furthermore, the combined model incorporating NLR and PLR, either with each other or in conjunction with additional markers such as carcinoembryonic antigen, exhibits superior predictive capabilities compared to individual markers alone. NLR and PLR are promising markers for clinical applications. Forthcoming models ought to incorporate established efficacious models and newly identified ones, thereby constituting a multifactor composite model. Furthermore, efforts should be made to explore effective clinical application approaches that enhance the predictive accuracy and efficiency.
Collapse
Affiliation(s)
- Qiu-Yu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032, China
| | - Ru-Yi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032, China
- Department of Gastroenterology and Hepatology, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 200940, China
| |
Collapse
|
40
|
Liu B, Liu Z, Jiang T, Gu X, Yin X, Cai Z, Zou X, Dai L, Zhang B. Univariable and multivariable Mendelian randomization study identified the key role of gut microbiota in immunotherapeutic toxicity. Eur J Med Res 2024; 29:161. [PMID: 38475836 DOI: 10.1186/s40001-024-01741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND In cancer patients receiving immune checkpoint inhibitors (ICIs), there is emerging evidence suggesting a correlation between gut microbiota and immune-related adverse events (irAEs). However, the exact roles of gut microbiota and the causal associations are yet to be clarified. METHODS To investigate this, we first conducted a univariable bi-directional two-sample Mendelian randomization (MR) analysis. Instrumental variables (IVs) for gut microbiota were retrieved from the MiBioGen consortium (18,340 participants). GWAS summary data for irAEs were gathered from an ICIs-treated cohort with 1,751 cancer patients. Various MR analysis methods, including inverse variance weighted (IVW), MR PRESSO, maximum likelihood (ML), weighted median, weighted mode, and cML-MA-BIC, were used. Furthermore, multivariable MR (MVMR) analysis was performed to account for possible influencing instrumental variables. RESULTS Our analysis identified fourteen gut bacterial taxa that were causally associated with irAEs. Notably, Lachnospiraceae was strongly associated with an increased risk of both high-grade and all-grade irAEs, even after accounting for the effect of BMI in the MVMR analysis. Akkermansia, Verrucomicrobiaceae, and Anaerostipes were found to exert protective roles in high-grade irAEs. However, Ruminiclostridium6, Coprococcus3, Collinsella, and Eubacterium (fissicatena group) were associated with a higher risk of developing high-grade irAEs. RuminococcaceaeUCG004, and DefluviitaleaceaeUCG011 were protective against all-grade irAEs, whereas Porphyromonadaceae, Roseburia, Eubacterium (brachy group), and Peptococcus were associated with an increased risk of all-grade irAEs. CONCLUSIONS Our analysis highlights a strong causal association between Lachnospiraceae and irAEs, along with some other gut microbial taxa. These findings provide potential modifiable targets for managing irAEs and warrant further investigation.
Collapse
Affiliation(s)
- Baike Liu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zheran Liu
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianxiang Jiang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiangshuai Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaonan Yin
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhaolun Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaoqiao Zou
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Bo Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
41
|
Elkrief A, Waters NR, Smith N, Dai A, Slingerland J, Aleynick N, Febles B, Gogia P, Socci ND, Lumish M, Giardina PA, Chaft JE, Eng J, Motzer RJ, Mendelsohn RB, Markey KA, Zhuang M, Li Y, Yang Z, Hollmann TJ, Rudin CM, van den Brink MR, Shia J, DeWolf S, Schoenfeld AJ, Hellmann MD, Babady NE, Faleck DM, Peled JU. Immune-Related Colitis Is Associated with Fecal Microbial Dysbiosis and Can Be Mitigated by Fecal Microbiota Transplantation. Cancer Immunol Res 2024; 12:308-321. [PMID: 38108398 PMCID: PMC10932930 DOI: 10.1158/2326-6066.cir-23-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Colitis induced by treatment with immune-checkpoint inhibitors (ICI), termed irColitis, is a substantial cause of morbidity complicating cancer treatment. We hypothesized that abnormal fecal microbiome features would be present at the time of irColitis onset and that restoring the microbiome with fecal transplant from a healthy donor would mitigate disease severity. Herein, we present fecal microbiota profiles from 18 patients with irColitis from a single center, 5 of whom were treated with healthy-donor fecal microbial transplantation (FMT). Although fecal samples collected at onset of irColitis had comparable α-diversity to that of comparator groups with gastrointestinal symptoms, irColitis was characterized by fecal microbial dysbiosis. Abundances of Proteobacteria were associated with irColitis in multivariable analyses. Five patients with irColitis refractory to steroids and biologic anti-inflammatory agents received healthy-donor FMT, with initial clinical improvement in irColitis symptoms observed in four of five patients. Two subsequently exhibited recurrence of irColitis symptoms following courses of antibiotics. Both received a second "salvage" FMT that was, again, followed by clinical improvement of irColitis. In summary, we observed distinct microbial community changes that were present at the time of irColitis onset. FMT was followed by clinical improvements in several cases of steroid- and biologic-agent-refractory irColitis. Strategies to restore or prevent microbiome dysbiosis in the context of immunotherapy toxicities should be further explored in prospective clinical trials.
Collapse
Affiliation(s)
- Arielle Elkrief
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas R. Waters
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Natalie Smith
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Angel Dai
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John Slingerland
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nathan Aleynick
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Binita Febles
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pooja Gogia
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas D. Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Melissa Lumish
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul A. Giardina
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jamie E. Chaft
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Juliana Eng
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Robert J. Motzer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Robin B. Mendelsohn
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Kate A. Markey
- Fred Hutchinson Cancer Center, Seattle, Washington; Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Mingqiang Zhuang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yanyun Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhifan Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Travis J. Hollmann
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Charles M. Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Marcel R.M. van den Brink
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jinru Shia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Adam J. Schoenfeld
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Matthew D. Hellmann
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - N. Esther Babady
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine and the Infectious Disease Service, Department of Medicine Memorial Sloan Kettering Cancer Center, New York, NY
| | - David M. Faleck
- Gastroenterology, Hepatology & Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Jonathan U. Peled
- Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
42
|
Kim HJ, Kim YH. Molecular Frontiers in Melanoma: Pathogenesis, Diagnosis, and Therapeutic Advances. Int J Mol Sci 2024; 25:2984. [PMID: 38474231 DOI: 10.3390/ijms25052984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma, a highly aggressive skin cancer, is characterized by rapid progression and high mortality. Recent advances in molecular pathogenesis have shed light on genetic and epigenetic changes that drive melanoma development. This review provides an overview of these developments, focusing on molecular mechanisms in melanoma genesis. It highlights how mutations, particularly in the BRAF, NRAS, c-KIT, and GNAQ/GNA11 genes, affect critical signaling pathways. The evolution of diagnostic techniques, such as genomics, transcriptomics, liquid biopsies, and molecular biomarkers for early detection and prognosis, is also discussed. The therapeutic landscape has transformed with targeted therapies and immunotherapies, improving patient outcomes. This paper examines the efficacy, challenges, and prospects of these treatments, including recent clinical trials and emerging strategies. The potential of novel treatment strategies, including neoantigen vaccines, adoptive cell transfer, microbiome interactions, and nanoparticle-based combination therapy, is explored. These advances emphasize the challenges of therapy resistance and the importance of personalized medicine. This review underlines the necessity for evidence-based therapy selection in managing the increasing global incidence of melanoma.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
43
|
McKenzie J, Sneath E, Trinh A, Nolan M, Spain L. Updates in the pathogenesis and management of immune-related enterocolitis, hepatitis and cardiovascular toxicities. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 21:100704. [PMID: 38357008 PMCID: PMC10865026 DOI: 10.1016/j.iotech.2024.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have become a cornerstone of treatment for many solid organ malignancies. Alongside increasing use, the occurrence of immune-related adverse events (irAEs) has also increased and remains a significant challenge when treating patients with ICI. The underlying pathophysiology of irAE development for many organ systems is yet to be elucidated, but may involve unmasking of latent autoimmunity, increased T-cell recognition of shared antigens on cancer and normal tissue and ICI-triggered immune dysregulation with overactivation of proinflammatory pathways and suppression of immune control pathways. Management strategies for irAEs have historically been borrowed from paradigms for conventional autoimmune conditions such as inflammatory bowel disease and autoimmune hepatitis; however, recent translational efforts have clearly demonstrated key differences in underlying immune signalling pathways. As we begin to understand these differences, we must adapt a more targeted approach to immunosuppression and exercise a more nuanced approach with the multiple biologic agents available to mitigate ICI-related toxicity without reversing the antitumour effect of ICI. In this review, we focus on three key immune-related toxicities where recent clinical and translational work has provided nuanced insights into pathogenesis and treatment strategies: enterocolitis, hepatitis and cardiovascular toxicity including myocarditis.
Collapse
Affiliation(s)
- J. McKenzie
- Department of Medical Oncology, Melbourne, Australia
| | - E. Sneath
- Department of Medical Oncology, Melbourne, Australia
| | - A. Trinh
- Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Australia
| | - M. Nolan
- Department of Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - L. Spain
- Department of Medical Oncology, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| |
Collapse
|
44
|
O'Leary CL, Pierce N, Patel SP, Naidoo J. Immune-Related Toxicity in NSCLC: Current State-of-the-Art and Emerging Clinical Challenges. J Thorac Oncol 2024; 19:395-408. [PMID: 38012985 DOI: 10.1016/j.jtho.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Immune checkpoint inhibitors have become standard-of-care for the treatment of NSCLC; however, their use brings with it the risk of a unique set of inflammatory side effects, termed immune-related adverse events (irAEs). The recognition, diagnosis, and management of irAEs have become essential to clinical practice, with the potential for high-grade toxicities affecting treatment decision-making. This manuscript provides a state-of-the-art review of irAEs as they pertain to patients with NSCLC, by summarizing the common and severe toxicities of the standard immune checkpoint inhibitor regimens and clinical treatment settings relevant to this disease and future directions.
Collapse
Affiliation(s)
- Caroline L O'Leary
- Department of Oncology, Beaumont Hospital, Beaumont RCSI Cancer Centre, Dublin, Ireland; RCSI University of Health Sciences, Dublin, Ireland
| | - Nicole Pierce
- Department of Oncology, Beaumont Hospital, Beaumont RCSI Cancer Centre, Dublin, Ireland; RCSI University of Health Sciences, Dublin, Ireland
| | - Sandip P Patel
- Department of Medicine, University of California San Diego, San Diego, California
| | - Jarushka Naidoo
- Department of Oncology, Beaumont Hospital, Beaumont RCSI Cancer Centre, Dublin, Ireland; RCSI University of Health Sciences, Dublin, Ireland; Department of Oncology, Sidney Kimmel Comprehensive Cancer Centre at Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
45
|
Mok K, Wu C, Chan S, Wong G, Wong VWS, Ma B, Lui R. Clinical Management of Gastrointestinal and Liver Toxicities of Immune Checkpoint Inhibitors. Clin Colorectal Cancer 2024; 23:4-13. [PMID: 38172003 DOI: 10.1016/j.clcc.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Immune checkpoint inhibitors have transformed the treatment paradigm for various types of cancer. Nonetheless, with the utilization of these groundbreaking treatments, immune-related adverse events (irAEs) are increasingly encountered. Colonic and hepatic involvement are among the most frequently encountered irAEs. Drug-induced side effects, infectious causes, and tumor-related symptoms are the key differentials for irAE complications. Potential risk factors for the development of irAEs include combination use of immune checkpoint inhibitors, past development of irAEs with other immunotherapy treatments, certain concomitant drugs, and a pre-existing personal or family history of autoimmune illness such as inflammatory bowel disease. The importance of early recognition, timely and proper management cannot be understated, as there are profound clinical implications on the overall cancer treatment plan and prognosis once these adverse events occur. Herein, we cover the clinical management of the well-established gastrointestinal irAEs of enterocolitis and hepatitis, and also provide an overview of several other emerging entities.
Collapse
Affiliation(s)
- Kevin Mok
- Department of Clinical Oncology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Claudia Wu
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stephen Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Wong
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brigette Ma
- Department of Clinical Oncology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rashid Lui
- Department of Clinical Oncology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China; Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
46
|
Yadav D, Sainatham C, Filippov E, Kanagala SG, Ishaq SM, Jayakrishnan T. Gut Microbiome-Colorectal Cancer Relationship. Microorganisms 2024; 12:484. [PMID: 38543535 PMCID: PMC10974515 DOI: 10.3390/microorganisms12030484] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 11/12/2024] Open
Abstract
Traditionally, the role of gut dysbiosis was thought to be limited to pathologies like Clostridioides difficile infection, but studies have shown its role in other intestinal and extraintestinal pathologies. Similarly, recent studies have surfaced showing the strong potential role of the gut microbiome in colorectal cancer, which was traditionally attributed mainly to sporadic or germline mutations. Given that it is the third most common cancer and the second most common cause of cancer-related mortality, 78 grants totaling more than USD 28 million have been granted to improve colon cancer management since 2019. Concerted efforts by several of these studies have identified specific bacterial consortia inducing a proinflammatory environment and promoting genotoxin production, causing the induction or progression of colorectal cancer. In addition, changes in the gut microbiome have also been shown to alter the response to cancer chemotherapy and immunotherapy, thus changing cancer prognosis. Certain bacteria have been identified as biomarkers to predict the efficacy of antineoplastic medications. Given these discoveries, efforts have been made to alter the gut microbiome to promote a favorable diversity to improve cancer progression and the response to therapy. In this review, we expand on the gut microbiome, its association with colorectal cancer, and antineoplastic medications. We also discuss the evolving paradigm of fecal microbiota transplantation in the context of colorectal cancer management.
Collapse
Affiliation(s)
- Devvrat Yadav
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Chiranjeevi Sainatham
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Evgenii Filippov
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Sai Gautham Kanagala
- Department of Internal Medicine, NYC Health + Hospital/Metropolitan, New York, NY 10029, USA
| | - Syed Murtaza Ishaq
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Thejus Jayakrishnan
- Division of Hematology and Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
47
|
Yan T, Yu L, Zhang J, Chen Y, Fu Y, Tang J, Liao D. Achilles' Heel of currently approved immune checkpoint inhibitors: immune related adverse events. Front Immunol 2024; 15:1292122. [PMID: 38410506 PMCID: PMC10895024 DOI: 10.3389/fimmu.2024.1292122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024] Open
Abstract
Immunotherapy has revolutionized the cancer treatment landscape by opening up novel avenues for intervention. As the use of immune checkpoint inhibitors (ICIs) has exponentially increased, so have immune-related adverse events (irAEs). The mechanism of irAEs may involve the direct damage caused by monoclonal antibodies and a sequence of immune responses triggered by T cell activation. Common side effects include dermatologic toxicity, endocrine toxicity, gastrointestinal toxicity, and hepatic toxicity. While relatively rare, neurotoxicity, cardiotoxicity, and pulmonary toxicity can be fatal. These toxicities pose a clinical dilemma regarding treatment discontinuation since they can result in severe complications and necessitate frequent hospitalization. Vigilant monitoring of irAEs is vital in clinical practice, and the principal therapeutic strategy entails the administration of oral or intravenous glucocorticoids (GSCs). It may be necessary to temporarily or permanently discontinue the use of ICIs in severe cases. Given that irAEs can impact multiple organs and require diverse treatment approaches, the involvement of a multidisciplinary team of experts is imperative. This review aims to comprehensively examine the pathogenesis, clinical manifestations, incidence, and treatment options for various irAEs.
Collapse
Affiliation(s)
- Ting Yan
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lun Yu
- Department of Positron Emission Tomography–Computed Tomography (PET-CT) Center, Chenzhou No. 1 People’s Hospital, Chenzhou, China
| | - Jiwen Zhang
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Yun Chen
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yilan Fu
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingyi Tang
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
48
|
Jiang H, Zhang Q. Gut microbiota influences the efficiency of immune checkpoint inhibitors by modulating the immune system (Review). Oncol Lett 2024; 27:87. [PMID: 38249807 PMCID: PMC10797324 DOI: 10.3892/ol.2024.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are commonly utilized in tumor treatment. However, they still have limitations, including insufficient effectiveness and unavoidable adverse events. It has been demonstrated that gut microbiota can influence the effectiveness of ICIs, although the precise mechanism remains unclear. Gut microbiota plays a crucial role in the formation and development of the immune system. Gut microbiota and their associated metabolites play a regulatory role in immune balance. Tumor occurrence and development are linked to their ability to evade recognition and destruction by the immune system. The purpose of ICIs treatment is to reinitiate the immune system's elimination of tumor cells. Thus, the immune system acts as a communication bridge between gut microbiota and ICIs. Varied composition and characteristics of gut microbiota result in diverse outcomes in ICIs treatment. Certain gut microbiota-related metabolites also influence the therapeutic efficacy of ICIs to some extent. The administration of antibiotics before or during ICIs treatment can diminish treatment effectiveness. The utilization of probiotics and fecal transplantation can partially alter the outcome of ICIs treatment. The present review synthesized previous studies to examine the association between gut microbiota and ICIs, elucidated the role of gut microbiota and its associated factors in ICIs treatment, and offered direction for future research.
Collapse
Affiliation(s)
- Haihong Jiang
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| | - Qinlu Zhang
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| |
Collapse
|
49
|
Riveiro-Barciela M, Carballal S, Díaz-González Á, Mañosa M, Gallgo-Plazas J, Cubiella J, Jiménez-Fonseca P, Varela M, Menchén L, Sangro B, Fernández-Montes A, Mesonero F, Rodríguez-Gandía MÁ, Rivera F, Londoño MC. Management of liver and gastrointestinal toxicity induced by immune checkpoint inhibitors: Position statement of the AEEH-AEG-SEPD-SEOM-GETECCU. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2024; 116:83-113. [PMID: 38226597 DOI: 10.17235/reed.2024.10250/2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The development of the immune checkpoint inhibitors (ICI) is one of the most remarkable achievements in cancer therapy in recent years. However, their exponential use has led to an increase in immune-related adverse events (irAEs). Gastrointestinal and liver events encompass hepatitis, colitis and upper digestive tract symptoms accounting for the most common irAEs, with incidence rates varying from 2 % to 40 %, the latter in patients undergoing combined ICIs therapy. Based on the current scientific evidence derived from both randomized clinical trials and real-world studies, this statement document provides recommendations on the diagnosis, treatment and prognosis of the gastrointestinal and hepatic ICI-induced adverse events.
Collapse
Affiliation(s)
| | | | | | - Miriam Mañosa
- Gastroenterology, Hospital Universitari Germans Trias i Pujol
| | | | | | | | - María Varela
- Gastroenterology, Hospital Universitario Central de Asturias
| | - Luis Menchén
- Digestive Diseases, Instituto de Investigación Sanitaria Gregorio Marañón
| | | | | | | | | | - Fernando Rivera
- Hospital Universitario Marqués de Valdecilla, Medical Oncology
| | | |
Collapse
|
50
|
Spalinger MR, Scharl M. Microbiota Manipulation as an Emerging Concept in Cancer Therapy. Visc Med 2024; 40:2-11. [PMID: 38312366 PMCID: PMC10836949 DOI: 10.1159/000534810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 02/06/2024] Open
Abstract
Background The human body is colonized by billions of bacteria that provide nutrients to the host, train our immune system, and importantly affect our heath. It has long been suggested that microbes might play a role in tumor pathogenesis; however, compelling evidence was only provided in the past decades when novel detection methods that do not depend on culturing techniques had been developed. Summary The microbiome impacts tumor development and anti-tumor therapies on various levels. Bacteria can promote or suppress tumor growth via direct interactions with cancer cells, production of metabolites that promote or inhibit tumor growth, and via stimulation or suppression of the local and systemic immune response. Cancer patients harbor a distinct microbiome when compared to healthy controls, which could potentially be employed to detect, identify, and treat cancer. Manipulation of the microbiome either via supplementation of single strains, bacterial consortia, fecal microbiota transfer or the use of pre- and probiotics has been suggested as therapeutic approach to directly target tumor growth or to enhance the efficacy of current state-of-the-art treatment options. Key Messages (1) Bacteria have a tremendous impact on anti-cancer immune responses. (2) Cancer patients harbor a distinct microbiome when compared to healthy controls. (3) The microbiome seems to be cancer-type specific. (4) Exploitation of bacteria to promote anti-tumor therapy is a novel, very promising venue in cancer treatment.
Collapse
Affiliation(s)
| | - Michael Scharl
- Department for Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|