1
|
Robinson AJ, McBeth C, Rahman R, Hague RJM, Rawson FJ. Bipolar electrochemical growth of conductive microwires for cancer spheroid integration: a step forward in conductive biological circuitry. Sci Rep 2024; 14:21012. [PMID: 39251666 PMCID: PMC11383952 DOI: 10.1038/s41598-024-71236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
The field of bioelectronics is developing exponentially. There is now a drive to interface electronics with biology for the development of new technologies to improve our understanding of electrical forces in biology. This builds on our recently published work in which we show wireless electrochemistry could be used to grow bioelectronic functional circuitry in 2D cell layers. To date our ability to merge electronics with in situ with biology is 3D limited. In this study, we aimed to further develop the wireless electrochemical approach for the self-assembly of microwires in situ with custom-designed and fabricated 3D cancer spheroids. Unlike traditional electrochemical methods that rely on direct electrical connections to induce currents, our technique utilises bipolar electrodes that operate independently of physical wired connections. These electrodes enable redox reactions through the application of an external electric field. Specifically, feeder electrodes connected to a power supply generate an electric field, while the bipolar electrodes, not physically connected to the feeder electrodes, facilitate the reduction of silver ions from the solution. This process occurs upon applying a voltage across the feeder electrodes, resulting in the formation of self-assembled microwires between the cancer spheroids.Thereby, creating interlinked bioelectronic circuitry with cancer spheroids. We demonstrate that a direct current was needed to stimulate the growth of conductive microwires in the presence of cell spheroids. Microwire growth was successful when using 50 V (0.5 kV/cm) of DC applied to a single spheroid of approximately 800 µm in diameter but could not be achieved with alternating currents. This represents the first proof of the concept of using wireless electrochemistry to grow conductive structures with 3D mammalian cell spheroids.
Collapse
Affiliation(s)
- Andie J Robinson
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Craig McBeth
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre (CBTRC), Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Richard J M Hague
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, NG8 1BB, UK
| | - Frankie J Rawson
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
2
|
Chen X, Xv H, Li C, Kong L, Li C, Li F. Fe-single-atom catalysts boosting electrochemiluminescence via bipolar electrode integrated with its peroxidase-like activity for bioanalysis. Biosens Bioelectron 2024; 258:116351. [PMID: 38705074 DOI: 10.1016/j.bios.2024.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Multifunctional single-atom catalysts (SACs) have been extensively investigated as outstanding signal amplifiers in bioanalysis field. Herein, a type of Fe single-atom catalysts with Fe-nitrogen coordination sites in nitrogen-doped carbon (Fe-N/C SACs) was synthesized and demonstrated to possess both catalase and peroxidase-like activity. Utilizing Fe-N/C SACs as dual signal amplifier, an efficient bipolar electrode (BPE)-based electrochemiluminescence (ECL) immunoassay was presented for determination of prostate-specific antigen (PSA). The cathode pole of the BPE-ECL platform modified with Fe-N/C SACs is served as the sensing side and luminol at the anode as signal output side. Fe-N/C SACs could catalyze decomposition of H2O2 via their high catalase-like activity and then increase the Faraday current, which can boost the ECL of luminol due to the electroneutrality in a closed BPE system. Meanwhile, in the presence of the target, glucose oxidase (GOx)-Au NPs-Ab2 was introduced through specific immunoreaction, which catalyzes the formation of H2O2. Subsequently, Fe-N/C SACs with peroxidase-like activity catalyze the reaction of H2O2 and 4-chloro-1-naphthol (4-CN) to generate insoluble precipitates, which hinders electron transfer and then inhibits the ECL at the anode. Thus, dual signal amplification of Fe-N/C SACs was achieved by increasing the initial ECL and inhibiting the ECL in the presence of target. The assay exhibits sensitive detection of PSA linearly from 1.0 pg/mL to 100 ng/mL with a detection limit of 0.62 pg/mL. The work demonstrated a new ECL enhancement strategy of SACs via BPE system and expands the application of SACs in bioanalysis field.
Collapse
Affiliation(s)
- Xiaodong Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Huijuan Xv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Can Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Linghui Kong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chunxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China.
| |
Collapse
|
3
|
Cao Y, Huang Y, Zheng J, Chen J, Zeng B, Cheng X, Wu C, Wang J, Tang J. Bipolar Photoelectrochemistry for Phase-Modulated Optoelectronic Hybrid Nanomotor. J Am Chem Soc 2024; 146:17931-17939. [PMID: 38877992 DOI: 10.1021/jacs.4c03810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Complex micro/nanorobots may be constructed by integrating several independent, controlled nanomotors for high degrees of freedom of maneuvering and manipulation. However, designing nanomotors with distinctive responses to the same global stimuli is challenging due to the nanomotors' simple structure and limited material composition. In this work, we demonstrate that a nanomotor can be designed with the same principles of electronic circuits, where the motion of semiconductor particles can be controlled with synchronized electric and optical signals. This technique relies on transient bipolar photoelectrochemistry in semiconductor microparticles, where the reaction site selectivity is realized by modulating the light pulse in the time domain. Due to the microparticles' intrinsic resistance and surface capacitance, the nanomotors can be designed as an electronic circuit, enabling distinctive responses to the global electric/optical field and achieving the desired movement or deflection/rotation. This work gives new insight into the manipulation technique for independent and untethered nanomotor control. Ultimately, it exploits the potential for particle sorting based on geometry in time and frequency domain modulation.
Collapse
Affiliation(s)
- Yingnan Cao
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yaxin Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingyuan Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Binglin Zeng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Xiang Cheng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, Hong Kong 999077, China
| |
Collapse
|
4
|
Imato K, Hino T, Kaneda N, Imae I, Shida N, Inagi S, Ooyama Y. Wireless Electrochemical Gel Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305067. [PMID: 37858925 DOI: 10.1002/smll.202305067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Soft actuators generate motion in response to external stimuli and are indispensable for soft robots, particularly future miniature robots with complex structure and motion. Similarly to conventional hard robots, electricity is suitable for the stimulation. However, previous electrochemical soft actuators require a tethered connection to a power supply, limiting their size, structure, and motion. Here, wireless electrochemical soft actuators composed of hydrogels and driven by bipolar electrochemistry are reported. Viologen, which dimerizes by one-electron reduction and dissociates by one-electron oxidation, is incorporated in the side chains of the gel networks and works as a reversible cross-link. Wireless and reversible electrochemical actuation of the hydrogels, i.e., muscle-like shrinking and swelling, is demonstrated at microscopic and even macroscopic scales.
Collapse
Affiliation(s)
- Keiichi Imato
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Taichi Hino
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Naoki Kaneda
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Ichiro Imae
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Naoki Shida
- Department of Chemistry and Life Science Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan
| | - Yousuke Ooyama
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| |
Collapse
|
5
|
Fuchigami T. Spiers Memorial Lecture: Old but new organic electrosynthesis: history and recent remarkable developments. Faraday Discuss 2023; 247:9-33. [PMID: 37622750 DOI: 10.1039/d3fd00129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Organic electrosynthesis has a long history. However, this chemistry is still new. Recently, we have seen its second renaissance with organic electrosynthesis being considered a typical green chemistry process. Therefore, a number of novel electrosynthetic methodologies have recently been developed. However, there are still many problems to be solved from a green and sustainable viewpoint. After an explanation of the historical survey of organic electrosynthesis, this paper focuses on recent remarkable developments in new electrosynthetic methodologies, such as novel electrodes, recyclable nonvolatile electrolytic solvents and recyclable supporting electrolytes, as well as new types of electrolytic flow cells. Furthermore, novel types of organic electrosynthetic reactions will be mentioned.
Collapse
Affiliation(s)
- Toshio Fuchigami
- Department of Electronic Chemistry, Tokyo Institute of Technology, Japan.
| |
Collapse
|
6
|
Chen H, Osman SY, Moose DL, Vanneste M, Anderson JL, Henry MD, Anand RK. Quantification of capture efficiency, purity, and single-cell isolation in the recovery of circulating melanoma cells from peripheral blood by dielectrophoresis. LAB ON A CHIP 2023; 23:2586-2600. [PMID: 37185977 PMCID: PMC10228177 DOI: 10.1039/d2lc01113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/31/2023] [Indexed: 05/17/2023]
Abstract
This paper describes a dielectrophoretic method for selection of circulating melanoma cells (CMCs), which lack reliable identifying surface antigens and are extremely rare in blood. This platform captures CMCs individually by dielectrophoresis (DEP) at an array of wireless bipolar electrodes (BPEs) aligned to overlying nanoliter-scale chambers, which isolate each cell for subsequent on-chip single-cell analysis. To determine the best conditions to employ for CMC isolation in this DEP-BPE platform, the static and dynamic dielectrophoretic response of established melanoma cell lines, melanoma cells from patient-derived xenografts (PDX) and peripheral blood mononuclear cells (PBMCs) were evaluated as a function of frequency using two established DEP platforms. Further, PBMCs derived from patients with advanced melanoma were compared with those from healthy controls. The results of this evaluation reveal that each DEP method requires a distinct frequency to achieve capture of melanoma cells and that the distribution of dielectric properties of PBMCs is more broadly varied in and among patients versus healthy controls. Based on this evaluation, we conclude that 50 kHz provides the highest capture efficiency on our DEP-BPE platform while maintaining a low rate of capture of unwanted PBMCs. We further quantified the efficiency of single-cell capture on the DEP-BPE platform and found that the efficiency diminished beyond around 25% chamber occupancy, thereby informing the minimum array size that is required. Importantly, the capture efficiency of the DEP-BPE platform for melanoma cells when using optimized conditions matched the performance predicted by our analysis. Finally, isolation of melanoma cells from contrived (spike-in) and clinical samples on our platform using optimized conditions was demonstrated. The capture and individual isolation of CMCs, confirmed by post-capture labeling, from patient-derived samples suggests the potential of this platform for clinical application.
Collapse
Affiliation(s)
- Han Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Sommer Y Osman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Devon L Moose
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Marion Vanneste
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Michael D Henry
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Pathology, Urology and Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
7
|
Cucchi M, Parker D, Stavrinidou E, Gkoupidenis P, Kleemann H. In Liquido Computation with Electrochemical Transistors and Mixed Conductors for Intelligent Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209516. [PMID: 36813270 DOI: 10.1002/adma.202209516] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Next-generation implantable computational devices require long-term-stable electronic components capable of operating in, and interacting with, electrolytic surroundings without being damaged. Organic electrochemical transistors (OECTs) emerged as fitting candidates. However, while single devices feature impressive figures of merit, integrated circuits (ICs) immersed in common electrolytes are hard to realize using electrochemical transistors, and there is no clear path forward for optimal top-down circuit design and high-density integration. The simple observation that two OECTs immersed in the same electrolytic medium will inevitably interact hampers their implementation in complex circuitry. The electrolyte's ionic conductivity connects all the devices in the liquid, producing unwanted and often unforeseeable dynamics. Minimizing or harnessing this crosstalk has been the focus of very recent studies. Herein, the main challenges, trends, and opportunities for realizing OECT-based circuitry in a liquid environment that could circumnavigate the hard limits of engineering and human physiology, are discussed. The most successful approaches in autonomous bioelectronics and information processing are analyzed. Elaborating on the strategies to circumvent and harness device crosstalk proves that platforms capable of complex computation and even machine learning (ML) can be realized in liquido using mixed ionic-electronic conductors (OMIECs).
Collapse
Affiliation(s)
- Matteo Cucchi
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Chemin des Mines 9, Geneva, 1202, Switzerland
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Helmholtzstr. 1, 01187, Dresden, Germany
| | - Daniela Parker
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | | | - Hans Kleemann
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Helmholtzstr. 1, 01187, Dresden, Germany
| |
Collapse
|
8
|
Chen Z, Zhou Y, Villani E, Shida N, Tomita I, Inagi S. AC-Bipolar Electropolymerization of 3,4-Ethylenedioxythiophene in Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4450-4455. [PMID: 36919992 PMCID: PMC10061915 DOI: 10.1021/acs.langmuir.3c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Recently, alternating current (AC)-bipolar electropolymerization of 3,4-ethylenedioxythiophene (EDOT) has been reported to produce poly(3,4-ethylenedioxythiophene) (PEDOT) fibers from the terminals of bipolar electrodes in acetonitrile solution (MeCN) containing low concentrations of supporting salts in a template-free manner. Here, we extend such methodology in ionic liquid (IL) media. Three kinds of ILs, diethylmethyl(2-methoxyethyl)ammonium tetrafluoroborate ([DEME][BF4]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), and diethylmethyl(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide ([DEME][TFSI]), with different electric field transmission efficiencies and diffusion coefficients were employed as solvents for the AC-bipolar electropolymerization of EDOT. A variety of PEDOT morphologies were obtained in these three ILs, showing a relationship with the physicochemical properties of the ILs. We successfully confirmed the growth of PEDOT fibers in ILs and systematically discussed the factors that influenced their growth.
Collapse
Affiliation(s)
- Zhenghao Chen
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yaqian Zhou
- College
of Chemistry and Materials Science, Northwest
University, Xi’an 710069, P. R. China
| | - Elena Villani
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Naoki Shida
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Ikuyoshi Tomita
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Shinsuke Inagi
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
9
|
Shi Y, Villani E, Chen Y, Zhou Y, Chen Z, Hussain A, Xu G, Inagi S. High-Throughput Electrosynthesis of Gradient Polypyrrole Film Using a Single-Electrode Electrochemical System. Anal Chem 2023; 95:1532-1540. [PMID: 36563173 DOI: 10.1021/acs.analchem.2c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As an effective approach for materials synthesis, bipolar electrochemistry has been earning a renewed interest nowadays thanks to its unique features compared to conventional electrochemistry. Indeed, the wireless mode of electrode reactions and the generation of a gradient potential distribution above the bipolar electrode are among the most appealing qualities of bipolar electrochemistry. In particular, the gradient potential distribution is a highly attractive characteristic for the fabrication of surfaces with gradients in their chemical properties or molecular functionalities. Herein, we report the high-throughput electrosynthesis of gradient polypyrrole films by means of a new electrochemical cell design named the single-electrode electrochemical system (SEES). SEESs are made by attaching an inert plastic board with holes onto an indium tin oxide electrode, constructing multiple microelectrochemical cells on the same electrode. This type of arrangement enables parallel electrochemical reactions to be carried out simultaneously and controlled in a contactless manner by a single electrode. Several experimental conditions for polypyrrole film growth were extensively investigated. Furthermore, the gradient property of the polymer films was evaluated by thickness determination, surface morphology analysis, and contact angle measurements. The use of SEES has been demonstrated as a convenient and cost-effective strategy for high-throughput electrosynthesis and electroanalytical applications and has opened up a new door for gradient film preparation via a rapid condition screening process.
Collapse
Affiliation(s)
- Yulin Shi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama226-8502, Japan.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
| | - Elena Villani
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama226-8502, Japan
| | - Yequan Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
| | - Yaqian Zhou
- College of Chemistry and Materials Science, Northwest University, Xi'an710069, P. R. China
| | - Zhenghao Chen
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama226-8502, Japan
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui230026, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei, Anhui230026, P. R. China
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama226-8502, Japan
| |
Collapse
|
10
|
A one-pot rotational DC-bipolar approach for fabricating artistic metallic carpets. Sci Rep 2022; 12:16537. [PMID: 36192474 PMCID: PMC9530174 DOI: 10.1038/s41598-022-20929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022] Open
Abstract
This is a brief report on the fabrication of concentric multi-element metallic carpets through a one-pot rotational bipolar electro-engineering procedure. A suspended piece of nickel foam as a bipolar electrode (BPE) is rotated in an aqueous solution containing a ternary mixture of metal ions when sufficient DC potential is applied to driving electrodes. The customizable tools of this art are potential gradient, rotation, and concentration/kinetic polarizations. Creating the multi-element radial gradient is typically tested in a one-pot artistic jewelry electroplating.
Collapse
|
11
|
Chen H, Anderson JL, Anand RK. Electropolymerization of Pyrrole-Based Ionic Liquids on Selected Wireless Bipolar Electrodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18087-18096. [PMID: 35417143 PMCID: PMC10578151 DOI: 10.1021/acsami.1c25230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper describes an electropolymerization-based on-chip valving system, accomplished by electrosynthesis of conductive polymeric ionic liquid (CPIL) films at selected points within an array of bipolar electrodes (BPEs), in which each of these wireless electrodes spans an IL-aqueous phase boundary. The low viscosity and high hydrophobicity of the CPIL precursor allow it to be patterned by established microfluidic methods. This advancement has the potential to impact microscale analysis because it allows on-demand creation of solid CPIL microstructures at locations specified by microfluidics, phase boundaries, and electrode potentials. To achieve this outcome, an imidazolium-based IL was functionalized with a pyrrole moiety, and the viscosity was tuned by choosing the appropriate counterion to form a CPIL with the desired viscosity, hydrophobicity, and oxidation potential. This monomer species was then introduced into a microfluidic device, which was prefilled with an aqueous buffer solution. The device comprised many parallel microchannels lined with nanoliter-scale chambers. BPEs interconnected the channels such that the BPE tips were each aligned to a chamber opening. The electrodes contacting the outermost channels were connected directly to a power supply and functioned as driving electrodes. The CPIL displaced the buffer in the channels and established a phase boundary at the opening of each chamber, thereby digitizing the aqueous phase. Finally, an alternating square waveform (under mode 1) was applied for 5 min to yield immobilized polymer films at a location defined by the BPE poles. In total, three modes were developed and three corresponding polymer film patterns were formed. Under mode 2, a DC power supply was used to achieve a dissymmetrical polymer film pattern, and, under mode 3, a regional polymer film pattern was formed under an AC potential with a DC offset. Our preliminary results demonstrate that the generated polymer films are immobile and sufficiently thick to seal the chambers at room temperature over the duration of our observation window (50 min), and this seal is maintained even at elevated temperatures that induce partial evaporation of the chamber contents. A key point is that this method is compatible with a preceding step─dielectrophoretic capture of single melanoma cells within the nanoliter-scale chambers.
Collapse
Affiliation(s)
- Han Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Jared L. Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Robbyn K. Anand
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
12
|
Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat Commun 2022; 13:2101. [PMID: 35440125 PMCID: PMC9018749 DOI: 10.1038/s41467-022-29773-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
The development of continuous conducting polymer fibres is essential for applications ranging from advanced fibrous devices to frontier fabric electronics. The use of continuous conducting polymer fibres requires a small diameter to maximize their electroactive surface, microstructural orientation, and mechanical strength. However, regularly used wet spinning techniques have rarely achieved this goal due primarily to the insufficient slenderization of rapidly solidified conducting polymer molecules in poor solvents. Here we report a good solvent exchange strategy to wet spin the ultrafine polyaniline fibres. The slow diffusion between good solvents distinctly decreases the viscosity of protofibers, which undergo an impressive drawing ratio. The continuously collected polyaniline fibres have a previously unattained diameter below 5 µm, high energy and charge storage capacities, and favorable mechanical performance. We demonstrated an ultrathin all-solid organic electrochemical transistor based on ultrafine polyaniline fibres, which operated as a tactile sensor detecting pressure and friction forces at different levels.
Collapse
|
13
|
Kumar A, Janzakova K, Coffinier Y, Pecqueur S, Alibart F. Theoretical modeling of dendrite growth from conductive wire electro-polymerization. Sci Rep 2022; 12:6395. [PMID: 35430578 PMCID: PMC9013362 DOI: 10.1038/s41598-022-10082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
Electropolymerization is a bottom-up materials engineering process of micro/nano-scale that utilizes electrical signals to deposit conducting dendrites morphologies by a redox reaction in the liquid phase. It resembles synaptogenesis in the brain, in which the electrical stimulation in the brain causes the formation of synapses from the cellular neural composites. The strategy has been recently explored for neuromorphic engineering by establishing link between the electrical signals and the dendrites’ shapes. Since the geometry of these structures determines their electrochemical properties, understanding the mechanisms that regulate polymer assembly under electrically programmed conditions is an important aspect. In this manuscript, we simulate this phenomenon using mesoscale simulations, taking into account the important features of spatial–temporal potential mapping based on the time-varying signal, the motion of charged particles in the liquid due to the electric field, and the attachment of particles on the electrode. The study helps in visualizing the motion of the charged particles in different electrical conditions, which is not possible to probe experimentally. Consistent with the experiments, the higher AC frequency of electrical activities favors linear wire-like growth, while lower frequency leads to more dense and fractal dendrites’ growth, and voltage offset leads to asymmetrical growth. We find that dendrites' shape and growth process systematically depend on particle concentration and random scattering. We discover that the different dendrites’ architectures are associated with different Laplace and diffusion fields, which govern the monomers’ trajectory and subsequent dendrites’ growth. Such unconventional engineering routes could have a variety of applications from neuromorphic engineering to bottom-up computing strategies.
Collapse
|
14
|
Su SY, Li EM, Li CX, Li B, Li F, He JB. Self-Motion of Water Droplets along a Spacing Gradient of Micropillar Arrays on Copper. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4111-4120. [PMID: 35312331 DOI: 10.1021/acs.langmuir.2c00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-driven droplet transport along an open gradient surface is increasingly becoming popular for various microfluidics applications. In this work, a gradient copper oxide layer is formed on a copper sheet (as a bipolar electrode, BPE) in a KOH solution by bipolar electrochemistry. The deposits at different positions present a rich variety of colors, compositions, and microstructures along the longitudinal axis of the BPE. More than half the length of the anodic pole is covered by a Cu(OH)2/CuO composite layer of several micrometers thick, which is composed of dense micropillars with a decreasing spacing gradient to the anodic direction. The micropillar arrays are superhydrophilic, and after modified with 1-dodecanethiol, the tops of the dense micropillars constitute a hydrophobic and microscopically discontinuous surface with a wettability gradient. On such a gradient surface water droplets can move spontaneously to more hydrophilic direction at a velocity of about 16 mm s-1. The superhydrophobicity of the modified micropillar arrays is discussed through a comparison with the wax tubules on a lotus leaf. Theoretical analysis of the driving force reveals that the concave surface effect of water at the spacings between the micropillars is the critical factor for driving the rolling motion of the droplets along the gradient micropillar arrays.
Collapse
Affiliation(s)
- Sheng-Ying Su
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Er-Mei Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao-Xiong Li
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Fuyang, Jieshou 236500, China
| | - Bing Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fang Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jian-Bo He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
15
|
Patterson C, Dietrich B, Wilson C, Mount AR, Adams DJ. Electrofabrication of large volume di- and tripeptide hydrogels via hydroquinone oxidation. SOFT MATTER 2022; 18:1064-1070. [PMID: 35022641 DOI: 10.1039/d1sm01626a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fabrication of protected peptide-based hydrogels on electrode surfaces can be achieved by employing the electrochemical oxidation of hydroquinone to benzoquinone, liberating protons at the electrode-solution interface. The localised reduction in pH below the dipeptide gelator molecules pKa initiates the neutralisation, self-assembly and formation of self-supporting hydrogels exclusively at the electrode surface. Previous examples have been on a nanometre to millimetre scale, using deposition times ranging from seconds to minutes. However, the maximum size to which these materials can grow and their subsequent mechanical properties have not yet been investigated. Here, we report the fabrication of the largest reported di- and tri-peptide based hydrogels using this electrochemical method, employing deposition times of two to five hours. To overcome the oxidation of hydroquinone in air, the fabrication process was performed under an inert nitrogen atmosphere. We show that this approach can be used to form multilayer gels, with the mechanical properties of each layer determined by gelator composition. We also describe examples where gel-to-crystal transitions and syneresis occur within the material.
Collapse
Affiliation(s)
| | - Bart Dietrich
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| | - Andrew R Mount
- EastCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
16
|
Flexible Neural Probes with Optical Artifact-Suppressing Modification and Biofriendly Polypeptide Coating. MICROMACHINES 2022; 13:mi13020199. [PMID: 35208323 PMCID: PMC8877708 DOI: 10.3390/mi13020199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 11/24/2022]
Abstract
The advent of optogenetics provides a well-targeted tool to manipulate neurons because of its high time resolution and cell-type specificity. Recently, closed-loop neural manipulation techniques consisting of optical stimulation and electrical recording have been widely used. However, metal microelectrodes exposed to light radiation could generate photoelectric noise, thus causing loss or distortion of neural signal in recording channels. Meanwhile, the biocompatibility of neural probes remains to be improved. Here, five kinds of neural interface materials are deposited on flexible polyimide-based neural probes and illuminated with a series of blue laser pulses to study their electrochemical performance and photoelectric noises for single-unit recording. The results show that the modifications can not only improve the electrochemical performance, but can also reduce the photoelectric artifacts. In particular, the double-layer composite consisting of platinum-black and conductive polymer has the best comprehensive performance. Thus, a layer of polypeptide is deposited on the entire surface of the double-layer modified neural probes to further improve their biocompatibility. The results show that the biocompatible polypeptide coating has little effect on the electrochemical performance of the neural probe, and it may serve as a drug carrier due to its special micromorphology.
Collapse
|
17
|
Salinas G, Arnaboldi S, Bouffier L, Kuhn A. Recent Advances in Bipolar Electrochemistry with Conducting Polymers. ChemElectroChem 2022. [DOI: 10.1002/celc.202101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| | - Serena Arnaboldi
- Dip. Di Chimica Univ. degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Laurent Bouffier
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| |
Collapse
|
18
|
Janzakova K, Ghazal M, Kumar A, Coffinier Y, Pecqueur S, Alibart F. Dendritic Organic Electrochemical Transistors Grown by Electropolymerization for 3D Neuromorphic Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102973. [PMID: 34716682 PMCID: PMC8693061 DOI: 10.1002/advs.202102973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Indexed: 05/16/2023]
Abstract
One of the major limitations of standard top-down technologies used in today's neuromorphic engineering is their inability to map the 3D nature of biological brains. Here, it is shown how bipolar electropolymerization can be used to engineer 3D networks of PEDOT:PSS dendritic fibers. By controlling the growth conditions of the electropolymerized material, it is investigated how dendritic fibers can reproduce structural plasticity by creating structures of controllable shape. Gradual topologies evolution is demonstrated in a multielectrode configuration. A detailed electrical characterization of the PEDOT:PSS dendrites is conducted through DC and impedance spectroscopy measurements and it is shown how organic electrochemical transistors (OECT) can be realized with these structures. These measurements reveal that quasi-static and transient response of OECTs can be adjusted by controlling dendrites' morphologies. The unique properties of organic dendrites are used to demonstrate short-term, long-term, and structural plasticity, which are essential features required for future neuromorphic hardware development.
Collapse
Affiliation(s)
- Kamila Janzakova
- Institut d’ÉlectroniqueMicroélectronique et Nanotechnologies (IEMN) ‐ CNRS UMR 8520 ‐ Université de Lilleboulevard PoincarréVilleneuve d'Ascq59652France
| | - Mahdi Ghazal
- Institut d’ÉlectroniqueMicroélectronique et Nanotechnologies (IEMN) ‐ CNRS UMR 8520 ‐ Université de Lilleboulevard PoincarréVilleneuve d'Ascq59652France
| | - Ankush Kumar
- Institut d’ÉlectroniqueMicroélectronique et Nanotechnologies (IEMN) ‐ CNRS UMR 8520 ‐ Université de Lilleboulevard PoincarréVilleneuve d'Ascq59652France
| | - Yannick Coffinier
- Institut d’ÉlectroniqueMicroélectronique et Nanotechnologies (IEMN) ‐ CNRS UMR 8520 ‐ Université de Lilleboulevard PoincarréVilleneuve d'Ascq59652France
| | - Sébastien Pecqueur
- Institut d’ÉlectroniqueMicroélectronique et Nanotechnologies (IEMN) ‐ CNRS UMR 8520 ‐ Université de Lilleboulevard PoincarréVilleneuve d'Ascq59652France
| | - Fabien Alibart
- Institut d’ÉlectroniqueMicroélectronique et Nanotechnologies (IEMN) ‐ CNRS UMR 8520 ‐ Université de Lilleboulevard PoincarréVilleneuve d'Ascq59652France
- Laboratoire Nanotechnologies Nanosystèmes (LN2) ‐ CNRS UMI‐3463 ‐ 3ITSherbrookeJ1K 0A5Canada
| |
Collapse
|
19
|
Janzakova K, Kumar A, Ghazal M, Susloparova A, Coffinier Y, Alibart F, Pecqueur S. Analog programing of conducting-polymer dendritic interconnections and control of their morphology. Nat Commun 2021; 12:6898. [PMID: 34824266 PMCID: PMC8617192 DOI: 10.1038/s41467-021-27274-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
Although materials and processes are different from biological cells', brain mimicries led to tremendous achievements in parallel information processing via neuromorphic engineering. Inexistent in electronics, we emulate dendritic morphogenesis by electropolymerization in water, aiming in operando material modification for hardware learning. Systematic study of applied voltage-pulse parameters details on tuning independently morphological aspects of micrometric dendrites': fractal number, branching degree, asymmetry, density or length. Growths time-lapse image processing shows spatial features to be dynamically dependent, and expand distinctively before and after conductive bridging with two electro-generated dendrites. Circuit-element analysis and impedance spectroscopy confirms their morphological control in temporal windows where growth kinetics is finely perturbed by the input frequency and duty cycle. By the emulation of one's most preponderant mechanisms for brain's long-term memory, its implementation in vicinity of sensing arrays, neural probes or biochips shall greatly optimize computational costs and recognition required to classify high-dimensional patterns from complex environments.
Collapse
Affiliation(s)
- Kamila Janzakova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000, Lille, France
| | - Ankush Kumar
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000, Lille, France
| | - Mahdi Ghazal
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000, Lille, France
| | - Anna Susloparova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000, Lille, France
| | - Yannick Coffinier
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000, Lille, France
| | - Fabien Alibart
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000, Lille, France
- Laboratoire Nanotechnologies & Nanosystèmes (LN2), CNRS, Université de Sherbrooke, Sherbrooke, QC, J1X0A5, Canada
| | - Sébastien Pecqueur
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000, Lille, France.
| |
Collapse
|
20
|
Takeuchi R, Asoh H. Effects of size and position of an unconnected aluminum electrode on bipolar anodization in an AC electric field. Sci Rep 2021; 11:22496. [PMID: 34795292 PMCID: PMC8602422 DOI: 10.1038/s41598-021-01633-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
The effects of the size and position of an aluminum bipolar electrode (BPE) on the uniformity of formation of anodic porous alumina in an alternating current electric field were investigated. Anodized specimens were dyed, and the resistance was measured after the specimens were anodized again. Phenomena observed during film formation indicated that the BPEs had unique potential distributions that strongly depended on their length and width. The color variations and electrical resistance of the BPEs were symmetrical and varied from the centers of the BPEs to their ends. When multiple BPEs were processed at the same time, their position in the non-uniform electric field was demonstrated to be an important factor for controlling the uniformity of film formation. The best results were obtained when the BPE was placed at the center of the defined space.
Collapse
Affiliation(s)
- Ryo Takeuchi
- Department of Applied Chemistry, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, 192-0015, Japan
| | - Hidetaka Asoh
- Department of Applied Chemistry, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
21
|
Cucchi M, Gruener C, Petrauskas L, Steiner P, Tseng H, Fischer A, Penkovsky B, Matthus C, Birkholz P, Kleemann H, Leo K. Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification. SCIENCE ADVANCES 2021; 7:7/34/eabh0693. [PMID: 34407948 PMCID: PMC8373129 DOI: 10.1126/sciadv.abh0693] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Early detection of malign patterns in patients' biological signals can save millions of lives. Despite the steady improvement of artificial intelligence-based techniques, the practical clinical application of these methods is mostly constrained to an offline evaluation of the patients' data. Previous studies have identified organic electrochemical devices as ideal candidates for biosignal monitoring. However, their use for pattern recognition in real time was never demonstrated. Here, we produce and characterize brain-inspired networks composed of organic electrochemical transistors and use them for time-series predictions and classification tasks using the reservoir computing approach. To show their potential use for biofluid monitoring and biosignal analysis, we classify four classes of arrhythmic heartbeats with an accuracy of 88%. The results of this study introduce a previously unexplored paradigm for biocompatible computational platforms and may enable development of ultralow-power consumption hardware-based artificial neural networks capable of interacting with body fluids and biological tissues.
Collapse
Affiliation(s)
- Matteo Cucchi
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Christopher Gruener
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Lautaro Petrauskas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
- Chair for Circuit Design and Network Theory (CCN), Technische Universität Dresden, Helmholtzstr. 18, 01069 Dresden, Germany
| | - Peter Steiner
- Institute for Acoustics and Speech Communication (IAS), Technische Universität Dresden, Helmholtzstr. 18, 01069 Dresden, Germany
| | - Hsin Tseng
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Axel Fischer
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Bogdan Penkovsky
- National University of Kyiv-Mohyla Academy, Skovorody Str. 2, 04655 Kyiv, Ukraine
- Alysophil SAS, Bio Parc, 850 Boulevard Sebastien Brant, BP 30170 F, 67405, Illkirch CEDEX, France
| | - Christian Matthus
- Chair for Circuit Design and Network Theory (CCN), Technische Universität Dresden, Helmholtzstr. 18, 01069 Dresden, Germany
| | - Peter Birkholz
- Institute for Acoustics and Speech Communication (IAS), Technische Universität Dresden, Helmholtzstr. 18, 01069 Dresden, Germany
| | - Hans Kleemann
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| |
Collapse
|
22
|
Holmes J, Witt CE, Keen D, Buchanan AM, Batey L, Hersey M, Hashemi P. Glutamate Electropolymerization on Carbon Increases Analytical Sensitivity to Dopamine and Serotonin: An Auspicious In Vivo Phenomenon in Mice? Anal Chem 2021; 93:10762-10771. [PMID: 34328714 DOI: 10.1021/acs.analchem.0c04316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon is the material of choice for electroanalysis of biological systems, being particularly applicable to neurotransmitter analysis as carbon fiber microelectrodes (CFMs). CFMs are most often applied to dopamine detection; however, the scope of CFM analysis has rapidly expanded over the last decade with our laboratory's focus being on improving serotonin detection at CFMs, which we achieved in the past via Nafion modification. We began this present work by seeking to optimize this modification to gain increased analytical sensitivity toward serotonin under the assumption that exposure of bare carbon to the in vivo environment rapidly deteriorates analytical performance. However, we were unable to experimentally verify this assumption and found that electrodes that had been exposed to the in vivo environment were more sensitive to evoked and ambient dopamine. We hypothesized that high in vivo concentrations of ambient extracellular glutamate could polymerize with a negative charge onto CFMs and facilitate response to dopamine. We verified this polymerization electrochemically and characterized the mechanisms of deposition with micro- and nano-imaging. Importantly, we identified that the application of 1.3 V as a positive upper waveform limit is a crucial factor for facilitating glutamate polymerization, thus improving analytical performance. Critically, information gained from these dopamine studies were extended to an in vivo environment where a 2-fold increase in sensitivity to evoked serotonin was achieved. Thus, we present here the novel finding that innate aspects of the in vivo environment are auspicious for detection of dopamine and serotonin at carbon fibers, offering a solution to our goal of an improved fast-scan cyclic voltammetry serotonin detection paradigm.
Collapse
Affiliation(s)
- Jordan Holmes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States
| | - Colby E Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States
| | - Deanna Keen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, South Carolina, 29209 United States
| | - Lauren Batey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, South Carolina, 29209 United States
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| |
Collapse
|
23
|
Zozoulenko I, Franco-Gonzalez JF, Gueskine V, Mehandzhiyski A, Modarresi M, Rolland N, Tybrandt K. Electronic, Optical, Morphological, Transport, and Electrochemical Properties of PEDOT: A Theoretical Perspective. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | | | - Viktor Gueskine
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | | | - Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, PO Box 91775-1436, Iran
| | - Nicolas Rolland
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
24
|
Long- and Short-Term Conductance Control of Artificial Polymer Wire Synapses. Polymers (Basel) 2021; 13:polym13020312. [PMID: 33478163 PMCID: PMC7835966 DOI: 10.3390/polym13020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 11/16/2022] Open
Abstract
Networks in the human brain are extremely complex and sophisticated. The abstract model of the human brain has been used in software development, specifically in artificial intelligence. Despite the remarkable outcomes achieved using artificial intelligence, the approach consumes a huge amount of computational resources. A possible solution to this issue is the development of processing circuits that physically resemble an artificial brain, which can offer low-energy loss and high-speed processing. This study demonstrated the synaptic functions of conductive polymer wires linking arbitrary electrodes in solution. By controlling the conductance of the wires, synaptic functions such as long-term potentiation and short-term plasticity were achieved, which are similar to the manner in which a synapse changes the strength of its connections. This novel organic artificial synapse can be used to construct information-processing circuits by wiring from scratch and learning efficiently in response to external stimuli.
Collapse
|
25
|
Gibney S, Hicks JM, Robinson A, Jain A, Sanjuan-Alberte P, Rawson FJ. Toward nanobioelectronic medicine: Unlocking new applications using nanotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1693. [PMID: 33442962 DOI: 10.1002/wnan.1693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine aims to interface electronic technology with biological components and design more effective therapeutic and diagnostic tools. Advances in nanotechnology have moved the field forward improving the seamless interaction between biological and electronic components. In the lab many of these nanobioelectronic devices have the potential to improve current treatment approaches, including those for cancer, cardiovascular disorders, and disease underpinned by malfunctions in neuronal electrical communication. While promising, many of these devices and technologies require further development before they can be successfully applied in a clinical setting. Here, we highlight recent work which is close to achieving this goal, including discussion of nanoparticles, carbon nanotubes, and nanowires for medical applications. We also look forward toward the next decade to determine how current developments in nanotechnology could shape the growing field of bioelectronic medicine. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Steven Gibney
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jacqueline M Hicks
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andie Robinson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Paola Sanjuan-Alberte
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.,Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
26
|
Asoh H, Takeuchi R, Hashimoto H. Unusual surfaces with structural gradients: Investigation of potential gradients on bipolar electrodes during bipolar anodization of aluminum. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
27
|
Zhou Y, Shida N, Koizumi Y, Endo K, Tomita I, Inagi S. Fabrication of One-Dimensional Polymer Nanowires by Templated Bipolar Electropolymerization Promoted by Electrophoretic Effect. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaqian Zhou
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Naoki Shida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yuki Koizumi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Kaoru Endo
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
28
|
Wang W, Ouaras K, Rutz AL, Li X, Gerigk M, Naegele TE, Malliaras GG, Huang YYS. Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. SCIENCE ADVANCES 2020; 6:eaba0931. [PMID: 32998891 PMCID: PMC7527227 DOI: 10.1126/sciadv.aba0931] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/14/2020] [Indexed: 05/18/2023]
Abstract
Scalability and device integration have been prevailing issues limiting our ability in harnessing the potential of small-diameter conducting fibers. We report inflight fiber printing (iFP), a one-step process that integrates conducting fiber production and fiber-to-circuit connection. Inorganic (silver) or organic {PEDOT:PSS [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate]} fibers with 1- to 3-μm diameters are fabricated, with the fiber arrays exhibiting more than 95% transmittance (350 to 750 nm). The high surface area-to-volume ratio, permissiveness, and transparency of the fiber arrays were exploited to construct sensing and optoelectronic architectures. We show the PEDOT:PSS fibers as a cell-interfaced impedimetric sensor, a three-dimensional (3D) moisture flow sensor, and noncontact, wearable/portable respiratory sensors. The capability to design suspended fibers, networks of homo cross-junctions and hetero cross-junctions, and coupling iFP fibers with 3D-printed parts paves the way to additive manufacturing of fiber-based 3D devices with multilatitude functions and superior spatiotemporal resolution, beyond conventional film-based device architectures.
Collapse
Affiliation(s)
- Wenyu Wang
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Karim Ouaras
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Alexandra L Rutz
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Xia Li
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Magda Gerigk
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Tobias E Naegele
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - George G Malliaras
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| |
Collapse
|
29
|
Davies CD, Crooks RM. Focusing, sorting, and separating microplastics by serial faradaic ion concentration polarization. Chem Sci 2020; 11:5547-5558. [PMID: 32874498 PMCID: PMC7441690 DOI: 10.1039/d0sc01931c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
In this article, we report continuous sorting of two microplastics in a trifurcated microfluidic channel using a new method called serial faradaic ion concentration polarization (fICP). fICP is an electrochemical method for forming ion depletion zones and their corresponding locally elevated electric fields in microchannels. By tuning the interplay between the forces of electromigration and convection during a fICP experiment, it is possible to control the flow of charged objects in microfluidic channels. The key findings of this report are threefold. First, fICP at two bipolar electrodes, configured in series and operated with a single power supply, yields two electric field gradients within a single microfluidic channel (i.e., serial fICP). Second, complex flow variations that adversely impact separations during fICP can be mitigated by minimizing convection by electroosmotic flow in favor of pressure-driven flow. Finally, serial fICP within a trifurcated microchannel is able to continuously and quantitatively focus, sort, and separate microplastics. These findings demonstrate that multiple local electric field gradients can be generated within a single microfluidic channel by simply placing metal wires at strategic locations. This approach opens a vast range of new possibilities for implementing membrane-free separations.
Collapse
Affiliation(s)
- Collin D Davies
- Department of Chemistry and Texas Materials Institute , The University of Texas at Austin , 105 E. 24th St., Stop A5300 , Austin , Texas , 78712-1224 , USA . ; Tel: +1-512-475-8674
| | - Richard M Crooks
- Department of Chemistry and Texas Materials Institute , The University of Texas at Austin , 105 E. 24th St., Stop A5300 , Austin , Texas , 78712-1224 , USA . ; Tel: +1-512-475-8674
| |
Collapse
|
30
|
Goyal A, Bairagi PK, Verma N. Mathematical Modelling of a Non‐enzymatic Amperometric Electrochemical Biosensor for Cholesterol. ELECTROANAL 2020. [DOI: 10.1002/elan.201900354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arpit Goyal
- Department of Chemical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Pallab Kumar Bairagi
- Department of Chemical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Nishith Verma
- Department of Chemical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
- Center for Environmental Science and EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
31
|
Ino K, Yaegaki R, Hiramoto K, Nashimoto Y, Shiku H. Closed Bipolar Electrode Array for On-Chip Analysis of Cellular Respiration by Cell Aggregates. ACS Sens 2020; 5:740-745. [PMID: 31997640 DOI: 10.1021/acssensors.9b02061] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell aggregates have attracted much attention owing to their potential applications in tissue engineering and drug screening. To evaluate cellular respiration of individual cell aggregates in these applications, noninvasive and on-chip high-throughput analytical tools are necessary. Electrochemical methods for detecting oxygen concentrations are useful because of their noninvasiveness. However, these conventional methods may be unsuitable for high-throughput detection because it is difficult to prepare many electrodes on a small chip owing to the limitation of area for connecting electrodes. Alternatively, a bipolar electrode (BPE) system offers clear advantages. In this system, electrochemical reactions are induced at both ends of a BPE without complex wiring. In this study, we present a BPE array for detecting the respiratory activity of cell aggregates. Oxygen concentrations near cell aggregates at cathodic poles of BPEs were converted to electrochemiluminescence (ECL) signals of [Ru(bpy)3]2+/tripropylamine at anodic poles of BPEs. To separate ECL chemicals from cell aggregates, we fabricated a closed BPE device containing analytical and reporter chambers. As a proof of concept, 32 BPEs were controlled wirelessly using a pair of driving electrodes, and the respiratory activities of individual MCF-7 cell aggregates as a cancer model were successfully detected by monitoring ECL signals. Compared with conventional electrode arrays for cell analysis, the wiring of the current device was simple because the multiple BPEs functioned with only a single power supply. To the best of our knowledge, this is the first study of on-chip analysis of cellular activity using a BPE system.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Ryosuke Yaegaki
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
32
|
Shao P, Yao R, Li G, Zhang M, Yuan S, Wang X, Zhu Y, Zhang X, Zhang L, Feng X, Wang B. Molecular‐Sieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by In Situ Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengpeng Shao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Ruxin Yao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of EducationSchool of Chemistry and Materials ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Ge Li
- Engineering Research Center of Membrane and Water Treatment Technology of MOECollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Mengxi Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Shuai Yuan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaoqi Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yuhao Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xianming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of EducationSchool of Chemistry and Materials ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment Technology of MOECollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
33
|
Ino K, Ozawa F, Dang N, Hiramoto K, Hino S, Akasaka R, Nashimoto Y, Shiku H. Biofabrication Using Electrochemical Devices and Systems. ACTA ACUST UNITED AC 2020; 4:e1900234. [DOI: 10.1002/adbi.201900234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/01/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| | - Fumisato Ozawa
- Institute of Industrial Science The University of Tokyo 4‐6‐1 Komaba Meguro‐ku Tokyo 153–8505 Japan
| | - Ning Dang
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement CNRS‐Université de Lorraine Villers‐lès‐Nancy 54600 France
| | - Kaoru Hiramoto
- Graduate School of Environmental Studies Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| | - Shodai Hino
- Graduate School of Environmental Studies Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| | - Rise Akasaka
- School of Engineering Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| | - Yuji Nashimoto
- Graduate School of Engineering Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
- Frontier Research Institute for Interdisciplinary Sciences Tohoku University 6‐3 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8578 Japan
| | - Hitoshi Shiku
- Graduate School of Engineering Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| |
Collapse
|
34
|
Shao P, Yao R, Li G, Zhang M, Yuan S, Wang X, Zhu Y, Zhang X, Zhang L, Feng X, Wang B. Molecular‐Sieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by In Situ Polymerization. Angew Chem Int Ed Engl 2020; 59:4401-4405. [DOI: 10.1002/anie.201913360] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/29/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Pengpeng Shao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Ruxin Yao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of EducationSchool of Chemistry and Materials ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Ge Li
- Engineering Research Center of Membrane and Water Treatment Technology of MOECollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Mengxi Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Shuai Yuan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaoqi Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yuhao Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xianming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of EducationSchool of Chemistry and Materials ScienceShanxi Normal University Linfen 041004 P. R. China
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment Technology of MOECollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster ScienceMinistry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
35
|
Shida N, Inagi S. Bipolar electrochemistry in synergy with electrophoresis: electric field-driven electrosynthesis of anisotropic polymeric materials. Chem Commun (Camb) 2020; 56:14327-14336. [DOI: 10.1039/d0cc06204a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synergistic effect of bipolar electrochemistry and electrophoresis enables facile access to various anisotropic functional materials.
Collapse
Affiliation(s)
- Naoki Shida
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Yokohama 226-8502
- Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Yokohama 226-8502
- Japan
| |
Collapse
|
36
|
Shida N, Zhou Y, Inagi S. Bipolar Electrochemistry: A Powerful Tool for Electrifying Functional Material Synthesis. Acc Chem Res 2019; 52:2598-2608. [PMID: 31436076 DOI: 10.1021/acs.accounts.9b00337] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electrosynthesis is a powerful method for the synthesis of organic, inorganic, and polymeric materials based on electron-transfer-driven reactions at the substrate/electrode interface. The use of electricity for synthetic reactions without the need for hazardous chemical oxidants and reductants is recognized as a green and sustainable method. Other advantages include control of the reaction selectivity by tuning the electrode potentials. A different mode for driving electrochemical reactions has recently been proposed, in which bipolar electrodes (BPEs) are available as wireless electrodes that undergo anodic and cathodic reactions simultaneously. Bipolar electrochemistry is an old technology that has recently garnered renewed attention because of the interesting features of BPEs: (i) the wireless nature of a BPE is useful for sensors and material synthesis; (ii) the gradient potential distribution on BPEs is a powerful tool for the preparation of gradient surfaces and materials; and (iii) electrophoresis is available for effective electrolysis. In addition to these unique features, a BPE system only requires a small amount of supporting electrolyte in principle, whereas a large amount of electrolyte is necessary in conventional electrochemistry. Hence, bipolar electrochemistry is an inherently green and sustainable chemical process for the synthesis of materials. In this Account, recent progress in bipolar electrochemistry for the electrosynthesis of functional materials is summarized. The wireless nature of BPEs was utilized for symmetry breaking to produce anisotropic materials based on the site-selective modification of conductive objects by electrodeposition and electropolymerization. Potential gradients on a BPE interface have been successfully used as controllable templates to form molecular or polymeric gradient materials, which are potentially applicable for high throughput analytical equipment or as biomimetic materials. The electric field necessary to drive BPEs is also potentially useful to induce the directed migration of charged species. The synergetic effects of electrophoresis and electrolysis were also successfully demonstrated to obtain various functional materials. These features of bipolar electrochemistry and the various combinations of techniques have the potential to change the methodologies of material synthesis. Furthermore, the fundamental principle of bipolar electrochemistry infers that very small amounts of supporting electrolyte are necessary for an electrode system, which is expected to lead new methods of sustainable organic electrosynthesis.
Collapse
Affiliation(s)
- Naoki Shida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yaqian Zhou
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
- PRESTO, Japan Science and Technology Agency (JST) 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
37
|
|
38
|
Sandford C, Edwards MA, Klunder KJ, Hickey DP, Li M, Barman K, Sigman MS, White HS, Minteer SD. A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chem Sci 2019; 10:6404-6422. [PMID: 31367303 PMCID: PMC6615219 DOI: 10.1039/c9sc01545k] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
Monitoring reactive intermediates can provide vital information in the study of synthetic reaction mechanisms, enabling the design of new catalysts and methods. Many synthetic transformations are centred on the alteration of oxidation states, but these redox processes frequently pass through intermediates with short life-times, making their study challenging. A variety of electroanalytical tools can be utilised to investigate these redox-active intermediates: from voltammetry to in situ spectroelectrochemistry and scanning electrochemical microscopy. This perspective provides an overview of these tools, with examples of both electrochemically-initiated processes and monitoring redox-active intermediates formed chemically in solution. The article is designed to introduce synthetic organic and organometallic chemists to electroanalytical techniques and their use in probing key mechanistic questions.
Collapse
Affiliation(s)
- Christopher Sandford
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Martin A Edwards
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Kevin J Klunder
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - David P Hickey
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Min Li
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Koushik Barman
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Matthew S Sigman
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Henry S White
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Shelley D Minteer
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| |
Collapse
|
39
|
Inagi S. Site-selective anisotropic modification of conductive objects by bipolar electropolymerization. Polym J 2019. [DOI: 10.1038/s41428-019-0223-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Eickenscheidt M, Singler E, Stieglitz T. Pulsed electropolymerization of PEDOT enabling controlled branching. Polym J 2019. [DOI: 10.1038/s41428-019-0213-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Soto-Bustamante EA, Vásquez SO, Romero-Hasler P. Methyl methacrylate reactivity under electric field in view of an electrically induced polymerization process. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Sanjuan-Alberte P, Saleh E, Shaw AJ, Lacalendola N, Willmott G, Vaithilingam J, Alexander MR, Hague RJM, Rawson FJ. Remotely Controlled in Situ Growth of Silver Microwires Forming Bioelectronic Interfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8928-8936. [PMID: 30735349 DOI: 10.1021/acsami.8b22075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is a pressing need to advance our ability to construct three-dimensional (3D) functional bioelectronic interfaces. Additionally, to ease the transition to building cellular electronic systems, a remote approach to merge electrical components with biology is desirable. By combining 3D digital inkjet printing with bipolar electrochemistry, we remotely control and fabricate conductive wires, forming a first of its kind contactless bionic manufacturing procedure. It enables controlled fabrication of conductive wires in a three-dimensional configuration. Moreover, we demonstrate that this technology could be used to grow and interface conductive conduits in situ with mammalian cells, offering a new strategy to engineering bioelectronic interfaces. This represents a step change in the production of functional complex circuitry and considerably increases the manufacturing capabilities of merging cells with electronics. This approach provides a platform to construct bioelectronics in situ offering a potential paradigm shift in the methods for building bioelectronics with potential applications in biosensing and bioelectronic medicine.
Collapse
Affiliation(s)
| | | | | | - Nicola Lacalendola
- The MacDiarmid Institute for Advanced Materials and Technology, Department of Physics and Chemistry , The University of Auckland , Auckland 1010 , New Zealand
| | - Geoff Willmott
- The MacDiarmid Institute for Advanced Materials and Technology, Department of Physics and Chemistry , The University of Auckland , Auckland 1010 , New Zealand
| | | | | | | | | |
Collapse
|
43
|
Park CS, Jung EY, Jang HJ, Bae GT, Shin BJ, Tae HS. Synthesis and Properties of Plasma-Polymerized Methyl Methacrylate via the Atmospheric Pressure Plasma Polymerization Technique. Polymers (Basel) 2019; 11:E396. [PMID: 30960380 PMCID: PMC6473653 DOI: 10.3390/polym11030396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 01/21/2023] Open
Abstract
Pinhole free layers are needed in order to prevent oxygen and water from damaging flexible electrical and bio-devices. Although polymerized methyl methacrylate (polymethyl methacrylate, PMMA) for the pinhole free layer has been studied extensively in the past, little work has been done on synthesizing films of this material using atmospheric pressure plasma-assisted electro-polymerization. Herein, we report the synthesis and properties of plasma-PMMA (pPMMA) synthesized using the atmospheric pressure plasma-assisted electro-polymerization technique at room temperature. According to the Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and time of flight-secondary ion mass spectrometry (ToF-SIMS) results, the characteristic peaks from the pPMMA polymer chain were shown to have been detected. The results indicate that the percentage of hydrophobic groups (C⁻C and C⁻H) is greater than that of hydrophilic groups (C⁻O and O⁻C=O). The field emission-scanning electron microscope (FE-SEM) and thickness measurement results show that the surface morphology is quite homogenous and amorphous in nature, and the newly proposed pPMMA film at a thickness of 1.5 µm has high transmittance (about 93%) characteristics. In addition, the results of water contact angle tests show that pPMMA thin films can improve the hydrophobicity.
Collapse
Affiliation(s)
- Choon-Sang Park
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Eun Young Jung
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Hyo Jun Jang
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Gyu Tae Bae
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Bhum Jae Shin
- Department of Electronics Engineering, Sejong University, Seoul 05006, Korea.
| | - Heung-Sik Tae
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
44
|
Gamero-Quijano A, Molina-Osorio AF, Peljo P, Scanlon MD. Closed bipolar electrochemistry in a four-electrode configuration. Phys Chem Chem Phys 2019; 21:9627-9640. [DOI: 10.1039/c9cp00774a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The thermodynamic theory underpinning closed bipolar electrochemistry in a 4-electrode configuration is presented; a technique applicable to spectro-electroanalysis, energy storage, electrocatalysis and electrodeposition.
Collapse
Affiliation(s)
- Alonso Gamero-Quijano
- The Bernal Institute and Department of Chemical Sciences
- School of Natural Sciences
- University of Limerick (UL)
- Limerick V94 T9PX
- Ireland
| | - Andrés F. Molina-Osorio
- The Bernal Institute and Department of Chemical Sciences
- School of Natural Sciences
- University of Limerick (UL)
- Limerick V94 T9PX
- Ireland
| | - Pekka Peljo
- Research Group of Physical Electrochemistry and Electrochemical Physics
- Department of Chemistry and Materials Science
- Aalto University
- 00076 Aalto
- Finland
| | - Micheál D. Scanlon
- The Bernal Institute and Department of Chemical Sciences
- School of Natural Sciences
- University of Limerick (UL)
- Limerick V94 T9PX
- Ireland
| |
Collapse
|
45
|
Gholami F, Navaee A, Salimi A, Ahmadi R, Korani A, Hallaj R. Direct Enzymatic Glucose/O 2 Biofuel Cell based on Poly-Thiophene Carboxylic Acid alongside Gold Nanostructures Substrates Derived through Bipolar Electrochemistry. Sci Rep 2018; 8:15103. [PMID: 30305656 PMCID: PMC6180125 DOI: 10.1038/s41598-018-32893-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Bipolar electrochemistry (BPE) has been lately explored as a simple, reliable and novel electrochemical technique for the adjustment of various conductive substrates. Herein, BPE is performed to derive both of cathode and anode electrodes for the development of mediatorless/membraneless biofuel cell (BFC). On one hand, a preferable substrate for immobilization of bilirubin oxidase enzyme is prepared based on the electropolymerization of thiophene-3-carboxcylic acid (TCA) on an Au microfilm as a bipolar electrode. The resulted biocathode as novel bioelectrocatalyst offers a high electrocatalytic activity toward direct oxygen reduction reaction (ORR) with onset potential and current density of 0.55 V (vs. Ag/AgCl) and 867 μA cm-2, respectively. On the other hand, another analogous Au bipolar electrode is electroplated through BPE to derive Au nanostructures (AuNSs). This modified Au electrode is utilized as an anodic platform for immobilization of flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) enzyme aimed at electrocatalytic glucose oxidation. The prepared bioanode displays a current density of 2.7 mA cm-2 with onset potential of -0.03 V. Finally, the proposed bioanode and biocacthode in an assembled membraneless glucose/O2 BFC offers a power output of 146 μW cm-2 with open circuit voltage of 0.54 V. This novel BPE method provides disposable electrochemical platforms for design of novel sensors, biosensors or other devices.
Collapse
Affiliation(s)
- Fereshte Gholami
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Aso Navaee
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran. .,Research Centre for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Rezgar Ahmadi
- Research Centre for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Azam Korani
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.,Vice chancellor for Food and Drug, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.,Research Centre for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran
| |
Collapse
|
46
|
Koizumi Y, Ohira M, Watanabe T, Nishiyama H, Tomita I, Inagi S. Synthesis of Poly(3,4-ethylenedioxythiophene)-Platinum and Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Hybrid Fibers by Alternating Current Bipolar Electropolymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7598-7603. [PMID: 29889536 DOI: 10.1021/acs.langmuir.8b00408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alternating current (ac) bipolar electropolymerization of 3,4-ethylenedioxythiophene (EDOT) was performed in the presence of hexachloroplatinate ([PtCl6]2-) or poly(styrenesulfonate) (PSS). We demonstrated that both [PtCl6]2- and PSS were successfully incorporated into electrogenerated poly(3,4-ethylenedioxythiophene) (PEDOT) as dopants to offer hybrid fibers composed of (i) PEDOT and platinum nanoparticles (PtNPs) (PEDOT-Pt hybrid fibers) and (ii) PEDOT and PSS (PEDOT-PSS hybrid fibers), respectively, in one step, grown from the very edges of Au wires used as bipolar electrodes (BPEs).
Collapse
|
47
|
Mitsudo K, Kurimoto Y, Yoshioka K, Suga S. Miniaturization and Combinatorial Approach in Organic Electrochemistry. Chem Rev 2018; 118:5985-5999. [DOI: 10.1021/acs.chemrev.7b00532] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuji Kurimoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazuki Yoshioka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
48
|
Watanabe T, Ohira M, Koizumi Y, Nishiyama H, Tomita I, Inagi S. In-Plane Growth of Poly(3,4-ethylenedioxythiophene) Films on a Substrate Surface by Bipolar Electropolymerization. ACS Macro Lett 2018; 7:551-555. [PMID: 35632929 DOI: 10.1021/acsmacrolett.8b00170] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alternating current (AC) bipolar electropolymerization of 3,4-ethylenedioxythiophene (EDOT) using a gold (Au) wire as a bipolar electrode (BPE) on a substrate surface resulted in gradual growth of the corresponding poly(3,4-ethylenedioxythiophene) (PEDOT) thin film from the terminals of the Au wire on the substrate. Studies to clarify the polymerization behavior were conducted under various electrolytic conditions, including monomer concentration, applied frequency, monomer structure, and substrate material. This method could be used to draw conducting polymer films on a nonconductive substrate, guided by an applied external electric field, and thus has potential for circuit patterning in organic electronic devices.
Collapse
Affiliation(s)
- Tempei Watanabe
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Masato Ohira
- Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yuki Koizumi
- Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Hiroki Nishiyama
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
49
|
Hermanová S, Pumera M. Polymer platforms for micro- and nanomotor fabrication. NANOSCALE 2018; 10:7332-7342. [PMID: 29638234 DOI: 10.1039/c8nr00836a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Artificial, self-propelled micro- and nanomotors are small devices capable of autonomous movement, which are a powerful scientific innovation for solving various medical and environmental issues. Their design is frequently inspired by complex biological structures which are composed of biopolymers and their composites. The choice of materials for nano- and micromachines is crucial for their shape, mechanism and efficiency of propulsion. In this review, we discuss the utilization and fabrication of polymers as soft components of micro- and nanomotors.
Collapse
Affiliation(s)
- Soňa Hermanová
- Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | | |
Collapse
|
50
|
Aashish A, Sadanandhan NK, Ganesan KP, Saraswathy Hareesh UN, Muthusamy S, Devaki SJ. Flexible Electrochemical Transducer Platform for Neurotransmitters. ACS OMEGA 2018; 3:3489-3500. [PMID: 30023871 PMCID: PMC6044868 DOI: 10.1021/acsomega.7b02055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/14/2018] [Indexed: 05/28/2023]
Abstract
We have designed a flexible electrochemical transducer film based on PEDOT-titania-poly(dimethylsiloxane) (PTS) for the simultaneous detection of neurotransmitters. PTS films were characterized using various techniques such as transmission electron microscopy, scanning electron microscopy, atomic force microscopy, four probe electrical conductivity, ac-impedance, and thermomechanical stability. The electrocatalytic behavior of the flexible PTS film toward the oxidation of neurotransmitters was investigated using cyclic voltammetry and differential pulse voltammetry. The fabricated transducer measured a limit of detection of 100 nm ± 5 with a response time of 15 s and a sensitivity of 63 μA mM-1 cm-2. The fabricated transducer film demonstrated for the simultaneous determination of epinephrine, dopamine, ascorbic acid, and uric acid with no interference between the analyte molecules. Further, transducer performance is validated by performing with real samples. The results suggested that the fabricated flexible PTS transducer with superior electrocatalytic activity, stability, and low response time can be explored for the sensing of neurotransmitters and hence can be exploited at in vitro and in vivo conditions for the early detection of the various diseases.
Collapse
Affiliation(s)
- Aravindan Aashish
- Chemical
Sciences and Technology Division, Materials Science and Technology
Division, and Academy of Scientific and Innovative Research (CSIR-NIIST Campus), CSIR-National Institute for Interdisciplinary Science
and Technology, Trivandrum 695019, India
| | - Neethu Kalloor Sadanandhan
- Chemical
Sciences and Technology Division, Materials Science and Technology
Division, and Academy of Scientific and Innovative Research (CSIR-NIIST Campus), CSIR-National Institute for Interdisciplinary Science
and Technology, Trivandrum 695019, India
| | - Krishna Priya Ganesan
- ISRO
Satellite Centre, Old
Airport Road, Vimanapura Post, Bengaluru 560017, Karnataka, India
| | - Unnikrishnan Nair Saraswathy Hareesh
- Chemical
Sciences and Technology Division, Materials Science and Technology
Division, and Academy of Scientific and Innovative Research (CSIR-NIIST Campus), CSIR-National Institute for Interdisciplinary Science
and Technology, Trivandrum 695019, India
| | - Sankaran Muthusamy
- ISRO
Satellite Centre, Old
Airport Road, Vimanapura Post, Bengaluru 560017, Karnataka, India
| | - Sudha J. Devaki
- Chemical
Sciences and Technology Division, Materials Science and Technology
Division, and Academy of Scientific and Innovative Research (CSIR-NIIST Campus), CSIR-National Institute for Interdisciplinary Science
and Technology, Trivandrum 695019, India
| |
Collapse
|