1
|
Smith OER, Bharat TAM. Architectural dissection of adhesive bacterial cell surface appendages from a "molecular machines" viewpoint. J Bacteriol 2024; 206:e0029024. [PMID: 39499080 PMCID: PMC7616799 DOI: 10.1128/jb.00290-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
The ability of bacteria to interact with and respond to their environment is crucial to their lifestyle and survival. Bacterial cells routinely need to engage with extracellular target molecules, in locations spatially separated from their cell surface. Engagement with distant targets allows bacteria to adhere to abiotic surfaces and host cells, sense harmful or friendly molecules in their vicinity, as well as establish symbiotic interactions with neighboring cells in multicellular communities such as biofilms. Binding to extracellular molecules also facilitates transmission of information back to the originating cell, allowing the cell to respond appropriately to external stimuli, which is critical throughout the bacterial life cycle. This requirement of bacteria to bind to spatially separated targets is fulfilled by a myriad of specialized cell surface molecules, which often have an extended, filamentous arrangement. In this review, we compare and contrast such molecules from diverse bacteria, which fulfil a range of binding functions critical for the cell. Our comparison shows that even though these extended molecules have vastly different sequence, biochemical and functional characteristics, they share common architectural principles that underpin bacterial adhesion in a variety of contexts. In this light, we can consider different bacterial adhesins under one umbrella, specifically from the point of view of a modular molecular machine, with each part fulfilling a distinct architectural role. Such a treatise provides an opportunity to discover fundamental molecular principles governing surface sensing, bacterial adhesion, and biofilm formation.
Collapse
Affiliation(s)
- Olivia E. R. Smith
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
2
|
Hvorecny KL, Interlandi G, Veth TS, Aprikian P, Manchenko A, Tchesnokova VL, Dickinson MS, Quispe JD, Riley NM, Klevit RE, Magala P, Sokurenko EV, Kollman JM. Antibodies disrupt bacterial adhesion by ligand mimicry and allosteric interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627246. [PMID: 39713463 PMCID: PMC11661100 DOI: 10.1101/2024.12.06.627246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A critical step in infections is the attachment of many microorganisms to host cells using lectins that bind surface glycans, making lectins promising antimicrobial targets. Upon binding mannosylated glycans, FimH, the most studied lectin adhesin of type 1 fimbriae in E. coli, undergoes an allosteric transition from an inactive to an active conformation that can act as a catch-bond. Monoclonal antibodies that alter FimH glycan binding in various ways are available, but the mechanisms of these antibodies remain unclear. Here, we use cryoEM, mass spectrometry, binding assays, and molecular dynamics simulations to determine the structure-function relationships underlying antibody-FimH binding. Our study reveals four distinct antibody mechanisms of action: ligand mimicry by an N-linked, high-mannose glycan; stabilization of the ligand pocket in the inactive state; conformational trapping of the active and inactive states; and locking of the ligand pocket through long-range allosteric effects. These structures reveal multiple mechanisms of antibody responses to an allosteric protein and provide blueprints for new antimicrobial that target adhesins.
Collapse
Affiliation(s)
| | | | - Tim S. Veth
- Department of Chemistry, University of Washington, Seattle, WA
| | - Pavel Aprikian
- Department of Microbiology, University of Washington, Seattle, WA
| | - Anna Manchenko
- Department of Microbiology, University of Washington, Seattle, WA
| | | | | | - Joel D. Quispe
- Department of Biochemistry, University of Washington, Seattle, WA
| | | | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA
| | - Pearl Magala
- Department of Biochemistry, University of Washington, Seattle, WA
| | | | | |
Collapse
|
3
|
Caliskan-Aydogan O, Zaborney Kline C, Alocilja EC. Carbapenem-Resistant E. coli Adherence to Magnetic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2010. [PMID: 39728546 DOI: 10.3390/nano14242010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Carbapenem-resistant Enterobacterales (CRE) is an emerging global concern. Specifically, carbapenemase-producing (CP) E. coli strains in CRE have recently been found in clinical, environmental, and food samples worldwide, causing many hospitalizations and deaths. Their rapid identification and characterization are paramount in control, management options, and treatment choices. Thus, this study aimed to characterize the cell surface properties of carbapenem-resistant (R) E. coli isolates and their interaction with glycan-coated magnetic nanoparticles (gMNPs) compared with carbapenem-susceptible (S) E coli. This study used two groups of bacteria: The first group included E. coli (R) isolates harboring carbapenemases and had no antibiotic exposure. Their initial gMNP-cell binding capacity, with cell surface characteristics, was assessed. In the second group, one of the E. coli (R) isolates and E. coli (S) had long-term serial antibiotic exposure, which we used to observe their cell surface characteristics and gMNP interactions. Initially, cell surface characteristics (cell morphology and cell surface charge) of the E. coli isolates were evaluated using confocal laser scanning microscope (LSCM) and a Zetasizer, respectively. The interaction of gMNPs with the E. coli isolates was assessed through LSCM and transmission electron microscope (TEM). Further, the gMNP-cell attachment was quantified as a concentration factor (CF) through the standard plating method. The results showed that the CF values of all E. coli (R) were significantly different from those of E. coli (S), which could be due to the differences in cell characteristics. The E. coli (R) isolates displayed heterogeneous cell shapes (rod and round cells) and lower negative zeta potential (cell surface charge) values compared to E. coli (S). Further, this research identified the differences in the cell surface characteristics of E. coli (S) under carbapenem exposure, compared to unexposed E. coli (S) that impact their attachment capacity. The gMNPs captured more E. coli (S) cells compared to carbapenem-exposed E. coli (S) and all E. coli (R) isolates. This study clearly found that differences in cell surface characteristics impact their interaction with magnetic nanoparticles. The gained insights aid in further understanding adhesion mechanisms to develop or improve bacterial isolation techniques and diagnostic and treatment methods for CRE.
Collapse
Affiliation(s)
- Oznur Caliskan-Aydogan
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lansing, MI 48824, USA
| | - Chloe Zaborney Kline
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C Alocilja
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
van Galen M, Bok A, Peshkovsky T, van der Gucht J, Albada B, Sprakel J. De novo DNA-based catch bonds. Nat Chem 2024; 16:1943-1950. [PMID: 38914727 PMCID: PMC11611730 DOI: 10.1038/s41557-024-01571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
All primary chemical interactions weaken under mechanical stress, which imposes fundamental mechanical limits on the materials constructed from them. Biological materials combine plasticity with strength, for which nature has evolved a unique solution-catch bonds, supramolecular interactions that strengthen under tension. Biological catch bonds use force-gated conformational switches to convert weak bonds into strong ones. So far, catch bonds remain exclusive to nature, leaving their potential as mechanoadaptive elements in synthetic systems untapped. Here we report the design and realization of artificial catch bonds. Starting from a minimal set of thermodynamic design requirements, we created a molecular motif capable of catch bonding. It consists of a DNA duplex featuring a cryptic domain that unfolds under tension to strengthen the interaction. We show that these catch bonds recreate force-enhanced rolling adhesion, a hallmark feature of biological catch bonds in bacteria and leukocytes. This Article introduces catch bonds into the synthetic domain, and could lead to the creation of artificial catch-bonded materials.
Collapse
Affiliation(s)
- Martijn van Galen
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, Netherlands
| | - Annemarie Bok
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Taieesa Peshkovsky
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, Netherlands.
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands.
| |
Collapse
|
5
|
Guan X, Bian Y, Guo Z, Zhang J, Cao Y, Li W, Wang W. Bidirectional Allostery Mechanism in Catch-Bond Formation of CD44 Mediated Cell Adhesion. J Phys Chem Lett 2024; 15:10786-10794. [PMID: 39432012 DOI: 10.1021/acs.jpclett.4c02598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Catch-bonds, whereby noncovalent ligand-receptor interactions are counterintuitively reinforced by tensile forces, play a major role in cell adhesion under mechanical stress. A basic prerequisite for catch-bond formation, as implicated in classic catch-bond models, is that force-induced remodeling of the ligand binding interface occurs prior to bond rupture. However, what strategy receptor proteins utilize to meet such specific kinetic control remains elusive. Here we report a bidirectional allostery mechanism of catch-bond formation based on theoretical and molecular dynamics simulation studies. Binding of ligand allosterically reduces the threshold force for unlocking of otherwise stably folded force-sensing element (i.e., forward allostery), so that a much smaller tensile force can trigger the conformational switching of receptor protein to high binding-strength state via backward allosteric coupling before bond rupture. Such bidirectional allostery fulfills the specific kinetic control required by catch-bond formation and is likely to be commonly utilized in cell adhesion. The essential thermodynamic and kinetic features of receptor proteins essential for catch-bond formation were identified.
Collapse
Affiliation(s)
- Xingyue Guan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Yunqiang Bian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Zilong Guo
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jian Zhang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
7
|
Bitter RM, Zimmerman MI, Summers BT, Pinkner JS, Dodson KW, Hultgren SJ, Yuan P. Structural basis for adhesin secretion by the outer-membrane usher in type 1 pili. Proc Natl Acad Sci U S A 2024; 121:e2410594121. [PMID: 39316053 PMCID: PMC11459180 DOI: 10.1073/pnas.2410594121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Gram-negative bacteria produce chaperone-usher pathway pili, which are extracellular protein fibers tipped with an adhesive protein that binds to a receptor with stereochemical specificity to determine host and tissue tropism. The outer-membrane usher protein, together with a periplasmic chaperone, assembles thousands of pilin subunits into a highly ordered pilus fiber. The tip adhesin in complex with its cognate chaperone activates the usher to allow extrusion across the outer membrane. The structural requirements to translocate the adhesin through the usher pore from the periplasm to the extracellular space remains incompletely understood. Here, we present a cryoelectron microscopy structure of a quaternary tip complex in the type 1 pilus system from Escherichia coli, which consists of the usher FimD, chaperone FimC, adhesin FimH, and the tip adapter FimF. In this structure, the usher FimD is caught in the act of secreting its cognate adhesin FimH. Comparison with previous structures depicting the adhesin either first entering or having completely exited the usher pore reveals remarkable structural plasticity of the two-domain adhesin during translocation. Moreover, a piliation assay demonstrated that the structural plasticity, enabled by a flexible linker between the two domains, is a prerequisite for adhesin translocation through the usher pore and thus pilus biogenesis. Overall, this study provides molecular details of adhesin translocation across the outer membrane and elucidates a unique conformational state adopted by the adhesin during stepwise secretion through the usher pore. This study elucidates fundamental aspects of FimH and usher dynamics critical in urinary tract infections and is leading to antibiotic-sparing therapeutics.
Collapse
Affiliation(s)
- Ryan M. Bitter
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Maxwell I. Zimmerman
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO63110
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, MO63110
| | - Brock T. Summers
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO63110
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO63110
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO63110
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
| |
Collapse
|
8
|
Murphy PV, Dhara A, Fitzgerald LS, Hever E, Konda S, Mandal K. Small lectin ligands as a basis for applications in glycoscience and glycomedicine. Chem Soc Rev 2024; 53:9428-9445. [PMID: 39162695 DOI: 10.1039/d4cs00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Glycan recognition by lectins mediates important biological events. This Tutorial Review aims to introduce lectin-ligand interactions and show how these molecular recognition events inspire innovations such as: (i) glycomimetic ligands; (ii) multivalent ligand agonists/antagonists; (iii) ligands for precision delivery of therapies to cells, where therapies include vaccines, siRNA and LYTACs (iv) development of diagnostics. A small number of case studies are selected to demonstrate principles for development of new ligands for applications inspired by knowledge of natural glycan ligand structure and function.
Collapse
Affiliation(s)
- Paul V Murphy
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Ashis Dhara
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
| | - Liam S Fitzgerald
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Eoin Hever
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| | - Saidulu Konda
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| | - Kishan Mandal
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| |
Collapse
|
9
|
Lopatto EDB, Pinkner JS, Sanick DA, Potter RF, Liu LX, Bazán Villicaña J, Tamadonfar KO, Ye Y, Zimmerman MI, Gualberto NC, Dodson KW, Janetka JW, Hunstad DA, Hultgren SJ. Conformational ensembles in Klebsiella pneumoniae FimH impact uropathogenesis. Proc Natl Acad Sci U S A 2024; 121:e2409655121. [PMID: 39288182 PMCID: PMC11441496 DOI: 10.1073/pnas.2409655121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Klebsiella pneumoniae is an important pathogen causing difficult-to-treat urinary tract infections (UTIs). Over 1.5 million women per year suffer from recurrent UTI, reducing quality of life and causing substantial morbidity and mortality, especially in the hospital setting. Uropathogenic E. coli (UPEC) is the most prevalent cause of UTI. Like UPEC, K. pneumoniae relies on type 1 pili, tipped with the mannose-binding adhesin FimH, to cause cystitis. However, K. pneumoniae FimH is a poor binder of mannose, despite a mannose-binding pocket identical to UPEC FimH. FimH is composed of two domains that are in an equilibrium between tense (low-affinity) and relaxed (high-affinity) conformations. Substantial interdomain interactions in the tense conformation yield a low-affinity, deformed mannose-binding pocket, while domain-domain interactions are broken in the relaxed state, resulting in a high-affinity binding pocket. Using crystallography, we identified the structural basis by which domain-domain interactions direct the conformational equilibrium of K. pneumoniae FimH, which is strongly shifted toward the low-affinity tense state. Removal of the pilin domain restores mannose binding to the lectin domain, thus showing that poor mannose binding by K. pneumoniae FimH is not an inherent feature of the mannose-binding pocket. Phylogenetic analyses of K. pneumoniae genomes found that FimH sequences are highly conserved. However, we surveyed a collection of K. pneumoniae isolates from patients with long-term indwelling catheters and identified isolates that possessed relaxed higher-binding FimH variants, which increased K. pneumoniae fitness in bladder infection models, suggesting that long-term residence within the urinary tract may select for higher-binding FimH variants.
Collapse
Affiliation(s)
- Edward D. B. Lopatto
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Denise A. Sanick
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Robert F. Potter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
| | - Lily X. Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Jesús Bazán Villicaña
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Kevin O. Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Yijun Ye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Maxwell I. Zimmerman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Nathaniel C. Gualberto
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - James W. Janetka
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - David A. Hunstad
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
10
|
Carlucci LA, Johnson KC, Thomas WE. FimH-mannose noncovalent bonds survive minutes to hours under force. Biophys J 2024; 123:3038-3050. [PMID: 38961621 PMCID: PMC11427783 DOI: 10.1016/j.bpj.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
The adhesin FimH is expressed by commensal Escherichia coli and is implicated in urinary tract infections, where it mediates adhesion to mannosylated glycoproteins on urinary and intestinal epithelial cells in the presence of a high-shear fluid environment. The FimH-mannose bond exhibits catch behavior in which bond lifetime increases with force, because tensile force induces a transition in FimH from a compact native to an elongated activated conformation with a higher affinity to mannose. However, the lifetime of the activated state of FimH has not been measured under force. Here we apply multiplexed magnetic tweezers to apply a preload force to activate FimH bonds with yeast mannan, then we measure the lifetime of these activated bonds under a wide range of forces above and below the preload force. A higher fraction of FimH-mannan bonds were activated above than below a critical preload force, confirming the FimH catch bond behavior. Once activated, FimH detached from mannose with multi-state kinetics, suggesting the existence of two bound states with a 20-fold difference in dissociation rates. The average lifetime of activated FimH-mannose bonds was 1000 to 10,000 s at forces of 30-70 pN. Structural explanations of the two bound states and the high force resistance provide insights into structural mechanisms for long-lived, force-resistant biomolecular interactions.
Collapse
Affiliation(s)
- Laura A Carlucci
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Keith C Johnson
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington.
| |
Collapse
|
11
|
Hatton NE, Wilson LG, Baumann CG, Fascione MA. Synthesis of colicin Ia neoglycoproteins: tools towards glyco-engineering of bacterial cell surfaces. RSC Adv 2024; 14:29106-29112. [PMID: 39282067 PMCID: PMC11394469 DOI: 10.1039/d4ra04774e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024] Open
Abstract
Colicins are antimicrobial proteins produced by certain strains of Escherichia coli that function as offensive weapons against closely-related competitor strains. Their bactericidal properties and narrow bacterial targeting range has made them of therapeutic interest. Furthermore, the applications of engineered non-bactericidal colicins are of interest as a cell surface-directed protein anchor for decorating E. coli with biomolecules. We previously demonstrated that an engineered non-bacteriocidal colicin E9 could be used to label bacterial cells with multiple biomolecules including glycans. Herein we extend our approach to colicin Ia, constructing mannose-presenting colicin la neoglycoproteins, through N-terminal organocatalyst-mediated protein aldol ligation (OPAL), or maleimide ligation targeting an internal cysteine. This work further highlights the potential utility of engineered colicins for non-genetic glyco-engineering of the E. coli cell surface.
Collapse
Affiliation(s)
| | - Laurence G Wilson
- School of Engineering, Physics and Technology, University of York York YO10 5DD UK
| | | | | |
Collapse
|
12
|
Carter MD, Tran TM, Cope-Arguello ML, Weinstein S, Li H, Hendrich CG, Prom JL, Li J, Chu LT, Bui L, Manikantan H, Lowe-Power TM, Allen C. Lectins and polysaccharide EPS I have flow-responsive roles in the attachment and biofilm mechanics of plant pathogenic Ralstonia. PLoS Pathog 2024; 20:e1012358. [PMID: 39312573 PMCID: PMC11449490 DOI: 10.1371/journal.ppat.1012358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Bacterial biofilm formation and attachment to hosts are mediated by carbohydrate-binding lectins, exopolysaccharides, and their interactions in the extracellular matrix (ECM). During tomato infection Ralstonia pseudosolanacearum (Rps) GMI1000 highly expresses three lectins: LecM, LecF, and LecX. The latter two are uncharacterized. We evaluated the roles in bacterial wilt disease of LecF, a fucose-binding lectin, LecX, a xylose-binding lectin, and the Rps exopolysaccharide EPS I. Interestingly, single and double lectin mutants attached to tomato roots better and formed more biofilm under static conditions in vitro. Consistent with this finding, static bacterial aggregation was suppressed by heterologous expression of lecFGMI1000 and lecXGMI1000 in other Ralstonia strains that naturally lack these lectins. Crude ECM from a ΔlecF/X double mutant was more adhesive than the wild-type ECM, and LecF and LecX increased Rps attachment to ECM. The enhanced adhesiveness of the ΔlecF/X ECM could explain the double mutant's hyper-attachment in static conditions. Unexpectedly, mutating lectins decreased Rps attachment and biofilm viscosity under shear stress, which this pathogen experiences in plant xylem. LecF, LecX, and EPS I were all essential for biofilm development in xylem fluid flowing through cellulose-coated microfluidic channels. These results suggest that under shear stress, LecF and LecX increase Rps attachment by interacting with the ECM and plant cell wall components like cellulose. In static conditions such as on root surfaces and in clogged xylem vessels, the same lectins suppress attachment to facilitate pathogen dispersal. Thus, Rps lectins have a dual biological function that depends on the physical environment.
Collapse
Affiliation(s)
- Mariama D. Carter
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tuan M. Tran
- Department of Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Matthew L. Cope-Arguello
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Sofia Weinstein
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hanlei Li
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Connor G. Hendrich
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica L. Prom
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jiayu Li
- Department of Chemical Engineering, University of California-Davis, Davis, California, United States of America
| | - Lan Thanh Chu
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Loan Bui
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Harishankar Manikantan
- Department of Chemical Engineering, University of California-Davis, Davis, California, United States of America
| | - Tiffany M. Lowe-Power
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
13
|
Qi X, Zhu F, Chang Z, Deng Y. Engineered E. coli for Long-Term Oral Enzyme Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16172-16179. [PMID: 39042860 DOI: 10.1021/acs.langmuir.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Intestinal flora shows excellent affinity in the gut, and the adhesive property is borrowed for oral drug delivery. A facile strategy for bacteria engineering has been successfully developed by introducing metal-organic framework (MOF) mineralization. The MOF exoskeleton serves as an extendable platform for accommodating various cargoes with good Escherichia coli morphology maintained. The artificial exoskeleton surrounding E. coli is employed for encapsulating macromolecules as a therapeutic cargo, maintaining good bioactivity with high immobilization efficiency (60%) after systematic optimization of the MOF precursor. Leveraging the natural affinity of E. coli in the gut, the in-vivo tracking of MOF-engineered E. coli in the gastrointestinal tract confirmed excellent adhesion to the GI mucosa and a 17.9-fold increase in the gut retention half-time, demonstrating significant advantages in retention capability. In comparison, the control group without E. coli equipment resulted in quick gut passage. Furthermore, the artificially engineered E. coli serves as an effective carrier for macromolecules without notable oral toxicity, as evidenced by biocompatibility evaluations in cells and animals. Overall, the MOF-engineered E. coli provides an extendable platform for loading on-demand cargoes in versatile therapeutic functions with promising clinical transnationality for long-term applications.
Collapse
Affiliation(s)
- Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Fengyuan Zhu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Hatton N, Nabarro J, Yates NDJ, Parkin A, Wilson LG, Baumann CG, Fascione MA. Mannose-Presenting "Glyco-Colicins" Convert the Bacterial Cell Surface into a Multivalent Adsorption Site for Adherent Bacteria. JACS AU 2024; 4:2122-2129. [PMID: 38938796 PMCID: PMC11200225 DOI: 10.1021/jacsau.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Biofilm formation is integral to the pathogenesis of numerous adherent bacteria and contributes to antimicrobial resistance (AMR). The rising threat of AMR means the need to develop novel nonbactericidal antiadhesion approaches against such bacteria is more urgent than ever. Both adherent-invasive Escherichia coli (AIEC, implicated in inflammatory bowel disease) and uropathogenic E. coli (UPEC, responsible for ∼80% of urinary tract infections) adhere to terminal mannose sugars on epithelial glycoproteins through the FimH adhesin on their type 1 pilus. Although mannose-based inhibitors have previously been explored to inhibit binding of adherent bacteria to epithelial cells, this approach has been limited by monovalent carbohydrate-protein interactions. Herein, we pioneer a novel approach to this problem through the preparation of colicin E9 bioconjugates that bind to the abundant BtuB receptor in the outer membrane of bacteria, which enables multivalent presentation of functional motifs on the cell surface. We show these bioconjugates label the surface of live E. coli and furthermore demonstrate that mannose-presenting "glyco-colicins" induce E. coli aggregation, thereby using the bacteria, itself, as a multivalent platform for mannose display, which triggers binding to adjacent FimH-presenting bacteria.
Collapse
Affiliation(s)
- Natasha
E. Hatton
- Department
of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Joe Nabarro
- Department
of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | | | - Alison Parkin
- Department
of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Laurence G. Wilson
- Department
of Physics, University of York, York, YO10 5DD, United Kingdom
| | | | - Martin A. Fascione
- Department
of Chemistry, University of York, York, YO10 5DD, United Kingdom
| |
Collapse
|
15
|
Jamoussi B, Al-Sharif MNM, Gzara L, Organji H, Almeelbi TB, Chakroun R, Al-Mur BA, Al Makishah NHM, Madkour MHF, Aloufi FA, Halawani RF. Hybrid Zinc Phthalocyanine/PVDF-HFP System for Reducing Biofouling in Water Desalination: DFT Theoretical and MolDock Investigations. Polymers (Basel) 2024; 16:1738. [PMID: 38932087 PMCID: PMC11207365 DOI: 10.3390/polym16121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Fouling and biofouling remain significant challenges in seawater desalination plants. One practical approach to address these issues is to develop anti-biofouling membranes. Therefore, novel hybrid zinc phthalocyanine/polyvinylidene fluoride-co-hexafluoropropylene (Zn(4-PPOx)4Pc/PVDF-HFP) membranes were prepared by electrospinning to evaluate their properties against biofouling. The hybrid nanofiber membrane was characterized by atomic force microscopy (AFM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle measurements. The theoretical calculations of PVDF-HFP, Zn(4-PPOx)4Pc), and Zn(4-PPOx)4Pc/PVDF-HFP nanofibers were performed using a hybrid functional RB3LYP and the 6-31 G (d,p) basis set, employing Gaussian 09. DFT calculations illustrated that the calculated physical and electronic parameters ensured the feasibility of the interaction of PVDF-HFP with Zn(4-PPOx)4Pc via a halogen-hydrogen bond, resulting in a highly stable and remarkably reactive structure. Moreover, molecular electrostatic potential (MEP) maps were drawn to identify the reactive regions of the Zn(4-PPOx)4Pc and PVDF-HFP/Zn(4-PPOx)4Pc nanofibers. Molecular docking analysis revealed that Zn(4-PPOx)4Pc has highest binding affinity (-8.56 kcal/mol) with protein from S. aureus (1N67) mainly with ten amino acids (ASP405, LYS374, GLU446, ASN406, ALA441, TYR372, LYS371, TYR448, LYS374, and ALA442). These findings highlight the promising potential of Zn(4-PPOx) 4Pc/PVDF-HFP nanocomposite membranes in improving the efficiency of water desalination by reducing biofouling and providing antibacterial properties.
Collapse
Affiliation(s)
- Bassem Jamoussi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.M.A.-S.); (T.B.A.); (R.C.); (B.A.A.-M.); (N.H.M.A.M.); (M.H.F.M.); (F.A.A.); (R.F.H.)
| | - Mohhamed Naif M. Al-Sharif
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.M.A.-S.); (T.B.A.); (R.C.); (B.A.A.-M.); (N.H.M.A.M.); (M.H.F.M.); (F.A.A.); (R.F.H.)
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (L.G.); (H.O.)
| | - Hussam Organji
- Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (L.G.); (H.O.)
| | - Talal B. Almeelbi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.M.A.-S.); (T.B.A.); (R.C.); (B.A.A.-M.); (N.H.M.A.M.); (M.H.F.M.); (F.A.A.); (R.F.H.)
| | - Radhouane Chakroun
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.M.A.-S.); (T.B.A.); (R.C.); (B.A.A.-M.); (N.H.M.A.M.); (M.H.F.M.); (F.A.A.); (R.F.H.)
| | - Bandar A. Al-Mur
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.M.A.-S.); (T.B.A.); (R.C.); (B.A.A.-M.); (N.H.M.A.M.); (M.H.F.M.); (F.A.A.); (R.F.H.)
| | - Naief H. M. Al Makishah
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.M.A.-S.); (T.B.A.); (R.C.); (B.A.A.-M.); (N.H.M.A.M.); (M.H.F.M.); (F.A.A.); (R.F.H.)
| | - Mohamed H. F. Madkour
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.M.A.-S.); (T.B.A.); (R.C.); (B.A.A.-M.); (N.H.M.A.M.); (M.H.F.M.); (F.A.A.); (R.F.H.)
| | - Fahed A. Aloufi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.M.A.-S.); (T.B.A.); (R.C.); (B.A.A.-M.); (N.H.M.A.M.); (M.H.F.M.); (F.A.A.); (R.F.H.)
| | - Riyadh F. Halawani
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.N.M.A.-S.); (T.B.A.); (R.C.); (B.A.A.-M.); (N.H.M.A.M.); (M.H.F.M.); (F.A.A.); (R.F.H.)
| |
Collapse
|
16
|
Monteiro ADSS, Cordeiro SM, Reis JN. Virulence Factors in Klebsiella pneumoniae: A Literature Review. Indian J Microbiol 2024; 64:389-401. [PMID: 39011017 PMCID: PMC11246375 DOI: 10.1007/s12088-024-01247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 07/17/2024] Open
Abstract
Klebsiella pneumoniae, a member of the autochthonous human gut microbiota, utilizes a variety of virulence factors for survival and pathogenesis. Consequently, it is responsible for several human infections, including urinary tract infections, respiratory tract infections, liver abscess, meningitis, bloodstream infections, and medical device-associated infections. The main studied virulence factors in K. pneumoniae are capsule-associated, fimbriae, siderophores, Klebsiella ferric iron uptake, and the ability to metabolize allantoin. They are crucial for virulence and were associated with specific infections in the mice infection model. Notably, these factors are also prevalent in strains from the same infections in humans. However, the type and quantity of virulence factors may vary between strains, which defines the degree of pathogenicity. In this review, we summarize the main virulence factors investigated in K. pneumoniae from different human infections. We also cover the specific identification genes and their prevalence in K. pneumoniae, especially in hypervirulent strains.
Collapse
Affiliation(s)
- Adriano de Souza Santos Monteiro
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
| | | | - Joice Neves Reis
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia Brazil
| |
Collapse
|
17
|
La Guidara C, Adamo R, Sala C, Micoli F. Vaccines and Monoclonal Antibodies as Alternative Strategies to Antibiotics to Fight Antimicrobial Resistance. Int J Mol Sci 2024; 25:5487. [PMID: 38791526 PMCID: PMC11122364 DOI: 10.3390/ijms25105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the most critical threats to global public health in the 21st century, causing a large number of deaths every year in both high-income and low- and middle-income countries. Vaccines and monoclonal antibodies can be exploited to prevent and treat diseases caused by AMR pathogens, thereby reducing antibiotic use and decreasing selective pressure that favors the emergence of resistant strains. Here, differences in the mechanism of action and resistance of vaccines and monoclonal antibodies compared to antibiotics are discussed. The state of the art for vaccine technologies and monoclonal antibodies are reviewed, with a particular focus on approaches validated in clinical studies. By underscoring the scope and limitations of the different emerging technologies, this review points out the complementary of vaccines and monoclonal antibodies in fighting AMR. Gaps in antigen discovery for some pathogens, as well as challenges associated with the clinical development of these therapies against AMR pathogens, are highlighted.
Collapse
Affiliation(s)
- Chiara La Guidara
- Magnetic Resonance Center CERM, University of Florence, 50019 Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.R.L. (GVGH), 53100 Siena, Italy
| |
Collapse
|
18
|
Liu Z, Liu H, Vera AM, Yang B, Tinnefeld P, Nash MA. Engineering an artificial catch bond using mechanical anisotropy. Nat Commun 2024; 15:3019. [PMID: 38589360 PMCID: PMC11001878 DOI: 10.1038/s41467-024-46858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Catch bonds are a rare class of protein-protein interactions where the bond lifetime increases under an external pulling force. Here, we report how modification of anchor geometry generates catch bonding behavior for the mechanostable Dockerin G:Cohesin E (DocG:CohE) adhesion complex found on human gut bacteria. Using AFM single-molecule force spectroscopy in combination with bioorthogonal click chemistry, we mechanically dissociate the complex using five precisely controlled anchor geometries. When tension is applied between residue #13 on CohE and the N-terminus of DocG, the complex behaves as a two-state catch bond, while in all other tested pulling geometries, including the native configuration, it behaves as a slip bond. We use a kinetic Monte Carlo model with experimentally derived parameters to simulate rupture force and lifetime distributions, achieving strong agreement with experiments. Single-molecule FRET measurements further demonstrate that the complex does not exhibit dual binding mode behavior at equilibrium but unbinds along multiple pathways under force. Together, these results show how mechanical anisotropy and anchor point selection can be used to engineer artificial catch bonds.
Collapse
Affiliation(s)
- Zhaowei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
- Department of Bionanoscience, Delft University of Technology, 2629HZ, Delft, the Netherlands
| | - Haipei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Andrés M Vera
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Byeongseon Yang
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
- Botnar Research Centre for Child Health, 4051, Basel, Switzerland
- National Center for Competence in Research (NCCR) Molecular Systems Engineering, 4058, Basel, Switzerland
| | - Philip Tinnefeld
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
- Botnar Research Centre for Child Health, 4051, Basel, Switzerland.
- National Center for Competence in Research (NCCR) Molecular Systems Engineering, 4058, Basel, Switzerland.
- Swiss Nanoscience Institute, 4056, Basel, Switzerland.
| |
Collapse
|
19
|
Zyla DS, Wiegand T, Bachmann P, Zdanowicz R, Giese C, Meier BH, Waksman G, Hospenthal MK, Glockshuber R. The assembly platform FimD is required to obtain the most stable quaternary structure of type 1 pili. Nat Commun 2024; 15:3032. [PMID: 38589417 PMCID: PMC11001860 DOI: 10.1038/s41467-024-47212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Type 1 pili are important virulence factors of uropathogenic Escherichia coli that mediate bacterial attachment to epithelial cells in the urinary tract. The pilus rod is comprised of thousands of copies of the main structural subunit FimA and is assembled in vivo by the assembly platform FimD. Although type 1 pilus rods can self-assemble from FimA in vitro, this reaction is slower and produces structures with lower kinetic stability against denaturants compared to in vivo-assembled rods. Our study reveals that FimD-catalysed in vitro-assembled type 1 pilus rods attain a similar stability as pilus rods assembled in vivo. Employing structural, biophysical and biochemical analyses, we show that in vitro assembly reactions lacking FimD produce pilus rods with structural defects, reducing their stability against dissociation. Overall, our results indicate that FimD is not only required for the catalysis of pilus assembly, but also to control the assembly of the most stable quaternary structure.
Collapse
Affiliation(s)
- Dawid S Zyla
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
- La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA, 92037, USA
| | - Thomas Wiegand
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Paul Bachmann
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Rafal Zdanowicz
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Christoph Giese
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Beat H Meier
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 7HX, UK
| | - Manuela K Hospenthal
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland.
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 7HX, UK.
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| |
Collapse
|
20
|
Sonnert ND, Rosen CE, Ghazi AR, Franzosa EA, Duncan-Lowey B, González-Hernández JA, Huck JD, Yang Y, Dai Y, Rice TA, Nguyen MT, Song D, Cao Y, Martin AL, Bielecka AA, Fischer S, Guan C, Oh J, Huttenhower C, Ring AM, Palm NW. A host-microbiota interactome reveals extensive transkingdom connectivity. Nature 2024; 628:171-179. [PMID: 38509360 DOI: 10.1038/s41586-024-07162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 02/05/2024] [Indexed: 03/22/2024]
Abstract
The myriad microorganisms that live in close association with humans have diverse effects on physiology, yet the molecular bases for these impacts remain mostly unknown1-3. Classical pathogens often invade host tissues and modulate immune responses through interactions with human extracellular and secreted proteins (the 'exoproteome'). Commensal microorganisms may also facilitate niche colonization and shape host biology by engaging host exoproteins; however, direct exoproteome-microbiota interactions remain largely unexplored. Here we developed and validated a novel technology, BASEHIT, that enables proteome-scale assessment of human exoproteome-microbiome interactions. Using BASEHIT, we interrogated more than 1.7 million potential interactions between 519 human-associated bacterial strains from diverse phylogenies and tissues of origin and 3,324 human exoproteins. The resulting interactome revealed an extensive network of transkingdom connectivity consisting of thousands of previously undescribed host-microorganism interactions involving 383 strains and 651 host proteins. Specific binding patterns within this network implied underlying biological logic; for example, conspecific strains exhibited shared exoprotein-binding patterns, and individual tissue isolates uniquely bound tissue-specific exoproteins. Furthermore, we observed dozens of unique and often strain-specific interactions with potential roles in niche colonization, tissue remodelling and immunomodulation, and found that strains with differing host interaction profiles had divergent interactions with host cells in vitro and effects on the host immune system in vivo. Overall, these studies expose a previously unexplored landscape of molecular-level host-microbiota interactions that may underlie causal effects of indigenous microorganisms on human health and disease.
Collapse
Affiliation(s)
- Nicole D Sonnert
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Connor E Rosen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew R Ghazi
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - John D Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yi Yang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tyler A Rice
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Mytien T Nguyen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Deguang Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Cao
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Anjelica L Martin
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Agata A Bielecka
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Suzanne Fischer
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Changhui Guan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Aaron M Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Mohammed AF, Othman SA, Abou-Ghadir OF, Kotb AA, Mostafa YA, El-Mokhtar MA, Abdu-Allah HHM. Design, synthesis, biological evaluation and docking study of some new aryl and heteroaryl thiomannosides as FimH antagonists. Bioorg Chem 2024; 145:107258. [PMID: 38447463 DOI: 10.1016/j.bioorg.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
FimH is a mannose-recognizing lectin that is expressed by Escherichia coli guiding its ability to adhere and infect cells. It is involved in pathogenesis of urinary tract infections and Chron's disease. Several X-ray structure-guided ligand design studies were extensively utilized in the discovery and optimization of small molecule aryl mannoside FimH antagonists. These antagonists retain key specific interactions of the mannose scaffolds with the FimH carbohydrate recognition domains. Thiomannosides are attractive and stable scaffolds, and this work reports the synthesis of some of their new aryl and heteroaryl derivatives as FimH antagonists. FimH-competitive binding assays as well as biofilm inhibition of the new compounds (24-32) were determined in comparison with the reference n-heptyl α-d-mannopyranoside (HM). The affinity among these compounds was found to be governed by the structure of the aryl and heteroarylf aglycones. Two compounds 31 and 32 revealed higher activity than HM. Molecular docking and total hydrophobic to topological polar surface area ratio calculations attributed to explain the obtained biological results. Finally, the SAR study suggested that introducing an aryl or heteroaryl aglycone of sufficient hydrophobicity and of proper orientation within the tyrosine binding site considerably enhance binding affinity. The potent and synthetically feasible FimH antagonists described herein hold potential as leads for the development of sensors for detection of E. coli and treatment of its diseases.
Collapse
Affiliation(s)
- Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Shimaa A Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed A Kotb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
22
|
Cramer J, Pero B, Jiang X, Bosko C, Silbermann M, Rabbani S, Wilke S, Nemli DD, Ernst B, Peczuh MW. Does size matter? - Comparing pyranoses with septanoses as ligands of the bacterial lectin FimH. Eur J Med Chem 2024; 268:116225. [PMID: 38367495 PMCID: PMC10964925 DOI: 10.1016/j.ejmech.2024.116225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
The pharmacological modulation of disease-relevant carbohydrate-protein interactions represents an underexplored area of medicinal chemistry. One particular challenge in the design of glycomimetic compounds is the inherent instability of the glycosidic bond toward enzymatic cleavage. This problem has traditionally been approached by employing S-, N-, or C-glycosides with reduced susceptibility toward glycosidases. The application of ring-extended glycomimetics is an innovative approach to circumvent this issue. On the example of the bacterial adhesin FimH, it was explored how design principles from pyranose glycomimetics transfer to analogous septanose structures. A series of ring-extended FimH antagonists exhibiting the well-proven pharmacophore necessary for targeting the tyrosine-gate of FimH was synthesized. The resulting septanoses were evaluated for their affinity to the conformationally rigid isolated lectin domain of FimH (FimHLD), as well as a structurally flexible full-length FimH (FimHFL) construct. Some elements of potent mannoside-based FimH antagonists could be successfully transferred to septanose-based ligands, ultimately resulting in a 32-fold increase in binding affinity. Interestingly, the canonical ca. 100-fold loss of binding affinity between FimHLD and FimHFL is partly mitigated by the more flexible septanose antagonists, hinting at potentially differing interaction features of the flexible glycomimetics with intermediately populated states during the conformational transition of FimHFL.
Collapse
Affiliation(s)
- Jonathan Cramer
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland; Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Bryant Pero
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, U3060, Storrs, CT, 06269, USA
| | - Xiaohua Jiang
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Cristin Bosko
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, U3060, Storrs, CT, 06269, USA
| | - Marleen Silbermann
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Said Rabbani
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Sebastian Wilke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Dilara D Nemli
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Beat Ernst
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Mark W Peczuh
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, U3060, Storrs, CT, 06269, USA.
| |
Collapse
|
23
|
Barkan CO, Bruinsma RF. Topology of molecular deformations induces triphasic catch bonding in selectin-ligand bonds. Proc Natl Acad Sci U S A 2024; 121:e2315866121. [PMID: 38294934 PMCID: PMC10861892 DOI: 10.1073/pnas.2315866121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Among the long-standing efforts to elucidate the physical mechanisms of protein-ligand catch bonding, particular attention has been directed at the family of selectin proteins. Selectins exhibit slip, catch-slip, and slip-catch-slip bonding, with minor structural modifications causing major changes in selectins' response to force. How can a single structural mechanism allow interconversion between these various behaviors? We present a unifying theory of selectin-ligand catch bonding, using a structurally motivated free energy landscape to show how the topology of force-induced deformations of the molecular system produces the full range of observed behaviors. We find that the pathway of bond rupture deforms in non-trivial ways, such that unbinding dynamics depend sensitively on force. This implies a severe breakdown of Bell's theory-a paradigmatic theory used widely in catch bond modeling-raising questions about the suitability of Bell's theory in modeling other catch bonds. Our approach can be applied broadly to other protein-ligand systems.
Collapse
Affiliation(s)
- Casey O. Barkan
- Department of Physics and Astronomy, University of California, Los Angeles, CA90095
| | - Robijn F. Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, CA90095
| |
Collapse
|
24
|
Interlandi G. Rate limiting step of the allosteric activation of the bacterial adhesin FimH investigated by molecular dynamics simulations. Proteins 2024; 92:117-133. [PMID: 37700555 PMCID: PMC10873117 DOI: 10.1002/prot.26588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
The bacterial adhesin FimH is a model for the study of protein allostery because its structure has been resolved in multiple configurations, including the active and the inactive state. FimH consists of a pilin domain (PD) that anchors it to the rest of the fimbria and an allosterically regulated lectin domain (LD) that binds mannose on the surface of infected cells. Under normal conditions, the two domains are docked to each other and LD binds mannose weakly. However, in the presence of tensile force generated by shear the domains separate and conformational changes propagate across LD resulting in a stronger bond to mannose. Recently, the crystallographic structure of a variant of FimH has been resolved, calledFimH FocH , where PD contains 10 mutations near the inter-domain interface. Although the X-ray structures of FimH andFimH FocH are almost identical, experimental evidence shows thatFimH FocH is activated even in the absence of shear. Here, molecular dynamics simulations combined with the Jarzynski equality were used to investigate the discrepancy between the crystallographic structures and the functional assays. The results indicate that the free energy barrier of the unbinding process between LD and PD is drastically reduced inFimH FocH . Rupture of inter-domain hydrogen bonds involving R166 constitutes a rate limiting step of the domain separation process and occurs more readily inFimH FocH than FimH. In conclusion, the mutations inFimH FocH shift the equilibrium toward an equal occupancy of bound and unbound states for LD and PD by reducing a rate limiting step.
Collapse
Affiliation(s)
- Gianluca Interlandi
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Flores C, Ling J, Loh A, Maset RG, Aw A, White IJ, Fernando R, Rohn JL. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. SCIENCE ADVANCES 2023; 9:eadi9834. [PMID: 37939183 PMCID: PMC10631729 DOI: 10.1126/sciadv.adi9834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Urinary tract infection is among the most common infections worldwide, typically studied in animals and cell lines with limited uropathogenic strains. Here, we assessed diverse bacterial species in a human urothelial microtissue model exhibiting full stratification, differentiation, innate epithelial responses, and urine tolerance. Several uropathogens invaded intracellularly, but also commensal Escherichia coli, suggesting that invasion is a shared survival strategy, not solely a virulence hallmark. The E. coli adhesin FimH was required for intracellular bacterial community formation, but not for invasion. Other shared lifestyles included filamentation (Gram-negatives), chaining (Gram-positives), and hijacking of exfoliating cells, while biofilm-like aggregates were formed mainly with Pseudomonas and Proteus. Urothelial cells expelled invasive bacteria in Rab-/LC3-decorated structures, while highly cytotoxic/invasive uropathogens, but not commensals, disrupted host barrier function and strongly induced exfoliation and cytokine production. Overall, this work highlights diverse species-/strain-specific infection strategies and corresponding host responses in a human urothelial microenvironment, providing insights at the microtissue, cell, and molecular level.
Collapse
Affiliation(s)
- Carlos Flores
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Jefferson Ling
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Amanda Loh
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ramón G. Maset
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Angeline Aw
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | - Raymond Fernando
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
- Royal Free London NHS Foundation Trust & Anthony Nolan Laboratories, NW3 2QG London, UK
| | - Jennifer L. Rohn
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| |
Collapse
|
26
|
Su Y, Luo Z, Sun D, Yang B, Li Q. The Force-Dependent Mechanism of an Integrin α4β7-MAdCAM-1 Interaction. Int J Mol Sci 2023; 24:16062. [PMID: 38003252 PMCID: PMC10670920 DOI: 10.3390/ijms242216062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The interaction between integrin α4β7 and mucosal vascular addressin cell-adhesion molecule-1 (MAdCAM-1) facilitates the adhesion of circulating lymphocytes to the surface of high endothelial venules in inflammatory bowel diseases (IBDs). Lymphocyte adhesion is a multistep cascade involving the tethering, rolling, stable adhesion, crawling, and migration of cells, with integrin α4β7 being involved in rolling and stable adhesions. Targeting the integrin α4β7-MAdCAM-1 interaction may help decrease inflammation in IBDs. This interaction is regulated by force; however, the underlying mechanism remains unknown. Here, we investigate this mechanism using a parallel plate flow chamber and atomic force microscopy. The results reveal an initial increase in the lifetime of the integrin α4β7-MAdCAM-1 interaction followed by a decrease with an increasing force. This was manifested in a two-state curve regulated via a catch-bond-slip-bond conversion regardless of Ca2+ and/or Mg2+ availability. In contrast, the mean rolling velocity of cells initially decreased and then increased with the increasing force, indicating the flow-enhanced adhesion. Longer tether lifetimes of single bonds and lower rolling velocities mediated by multiple bonds were observed in the presence of Mg2+ rather than Ca2+. Similar results were obtained when examining the adhesion to substrates co-coated with chemokine CC motif ligand 25 and MAdCAM-1, as opposed to substrates coated with MAdCAM-1 alone. In conclusion, the integrin α4β7-MAdCAM-1 interaction occurs via ion- and cytokine-dependent flow-enhanced adhesion processes and is regulated via a catch-bond mechanism.
Collapse
Affiliation(s)
- Youmin Su
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; (Y.S.); (Z.L.); (D.S.)
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
| | - Zhiqing Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; (Y.S.); (Z.L.); (D.S.)
| | - Dongshan Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; (Y.S.); (Z.L.); (D.S.)
| | - Bishan Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; (Y.S.); (Z.L.); (D.S.)
| | - Quhuan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; (Y.S.); (Z.L.); (D.S.)
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Yanagisawa H, Kita Y, Oda T, Kikkawa M. Cryo-EM elucidates the uroplakin complex structure within liquid-crystalline lipids in the porcine urothelial membrane. Commun Biol 2023; 6:1018. [PMID: 37805589 PMCID: PMC10560298 DOI: 10.1038/s42003-023-05393-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023] Open
Abstract
The urothelium, a distinct epithelial tissue lining the urinary tract, serves as an essential component in preserving urinary tract integrity and thwarting infections. The asymmetric unit membrane (AUM), primarily composed of the uroplakin complex, constitutes a critical permeability barrier in fulfilling this role. However, the molecular architectures of both the AUM and the uroplakin complex have remained enigmatic due to the paucity of high-resolution structural data. In this study, we utilized cryo-electron microscopy to elucidate the three-dimensional structure of the uroplakin complex within the porcine AUM. While the global resolution achieved was 3.5 Å, we acknowledge that due to orientation bias, the resolution in the vertical direction was determined to be 6.3 Å. Our findings unveiled that the uroplakin complexes are situated within hexagonally arranged crystalline lipid membrane domains, rich in hexosylceramides. Moreover, our research rectifies a misconception in a previous model by confirming the existence of a domain initially believed to be absent, and pinpointing the accurate location of a crucial Escherichia coli binding site implicated in urinary tract infections. These discoveries offer valuable insights into the molecular underpinnings governing the permeability barrier function of the urothelium and the orchestrated lipid phase formation within the plasma membrane.
Collapse
Affiliation(s)
- Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshihiro Kita
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
28
|
Belyaev AV, Fedotova IV. Molecular mechanisms of catch bonds and their implications for platelet hemostasis. Biophys Rev 2023; 15:1233-1256. [PMID: 37974999 PMCID: PMC10643804 DOI: 10.1007/s12551-023-01144-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023] Open
Abstract
Adhesive molecular bonds between blood cells are essential for thrombosis and hemostasis as they provide means for platelet adhesion, aggregation, and signaling in flowing blood. According to the nowadays conventional definition, a "catch" bond is a type of non-covalent bio-molecular bridge, whose dissociation lifetime counter-intuitively increases with applied tensile force. Following recent experimental findings, such receptor-ligand protein bonds are vital to the blood cells involved in the prevention of bleeding (hemostatic response) and infection (immunity). In this review, we examine the up-to-date experimental discoveries and theoretical insights about catch bonds between the blood cells, their biomechanical principles at the molecular level, and their role in platelet thrombosis and hemostasis.
Collapse
Affiliation(s)
- Aleksey V. Belyaev
- Faculty of Physics, M.V.Lomonosov Moscow State University, 1, Leninskiye Gory, build.2, Moscow, 119991 Russia
| | - Irina V. Fedotova
- Faculty of Physics, M.V.Lomonosov Moscow State University, 1, Leninskiye Gory, build.2, Moscow, 119991 Russia
| |
Collapse
|
29
|
Caliskan-Aydogan O, Sharief SA, Alocilja EC. Rapid Isolation of Low-Level Carbapenem-Resistant E. coli from Water and Foods Using Glycan-Coated Magnetic Nanoparticles. BIOSENSORS 2023; 13:902. [PMID: 37887095 PMCID: PMC10605215 DOI: 10.3390/bios13100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
Carbapenem-resistant Enterobacterales (CRE) are one of the major global issues needing attention. Among them, carbapenemase-producing (CP) E. coli strains are commonly found in clinical and biological samples. Rapid and cost-effective detection of such strains is critical in minimizing their deleterious impact. While promising progress is being made in rapid detection platforms, separation and enrichment of bacteria are required to ensure the detection of low bacterial counts. The current separation methods, such as centrifugation, filtration, electrophoresis, and immunomagnetic separation, are often tedious, expensive, or ineffective for clinical and biological samples. Further, the extraction and concentration of antimicrobial-resistant bacteria (ARB) are not well documented. Thus, this study assessed the applicability of cost-effective glycan-coated magnetic nanoparticles (gMNPs) for simple and rapid extraction of CP E. coli. The study included two resistant (R)strains: Klebsiella pneumoniae carbapenemase (KPC)-producing E. coli (R: KPC) and New Delhi metallo-β-lactamase (NDM)-producing E. coli (R: NDM). A susceptible E. coli (S) strain was used as a control, a reference bacterium. The gMNPs successfully extracted and concentrated E. coli (R) and E. coli (S) at low concentrations from large volumes of buffer solution, water, and food samples. The gMNPs concentrated up to two and five times their initial concentration for E. coli (R) and E. coli (S) in the buffer solution, respectively. In water and food samples, the concentration of E. coli (S) and E. coli (R) were similar and ranged 1-3 times their initial inoculation. A variation in the concentration from different food samples was seen, displaying the impact of food microstructure and natural microflora. The cost-effective and rapid bacterial cell capture by gMNPs was achieved in 15 min, and its successful binding to the bacterial cells in the buffer solution and food matrices was also confirmed using Transmission Electron Microscopy (TEM). These results show promising applications of gMNPs to extract pathogens and ARB from biological samples.
Collapse
Affiliation(s)
- Oznur Caliskan-Aydogan
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (O.C.-A.); (S.A.S.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Saad Asadullah Sharief
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (O.C.-A.); (S.A.S.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C. Alocilja
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (O.C.-A.); (S.A.S.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
30
|
Palmioli A, Moretti L, Vezzoni CA, Legnani L, Sperandeo P, Baldini L, Sansone F, Airoldi C, Casnati A. Multivalent calix[4]arene-based mannosylated dendrons as new FimH ligands and inhibitors. Bioorg Chem 2023; 138:106613. [PMID: 37224739 DOI: 10.1016/j.bioorg.2023.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
We report the synthesis and biological characterization of a novel class of multivalent glycoconjugates as hit compounds for the design of new antiadhesive therapies against urogenital tract infections (UTIs) caused by uropathogenic E. coli strains (UPEC). The first step of UTIs is the molecular recognition of high mannose N-glycan expressed on the surface of urothelial cells by the bacterial lectin FimH, allowing the pathogen adhesion required for mammalian cell invasion. The inhibition of FimH-mediated interactions is thus a validated strategy for the treatment of UTIs. To this purpose, we designed and synthesized d-mannose multivalent dendrons supported on a calixarene core introducing a significant structural change from a previously described family of dendrimers bearing the same dendrons units on a flexible pentaerythritol scaffold core. The new molecular architecture increased the inhibitory potency against FimH-mediated adhesion processes by about 16 times, as assessed by yeast agglutination assay. Moreover, the direct molecular interaction of the new compounds with FimH protein was assessed by on-cell NMR experiments acquired in the presence of UPEC cells.
Collapse
Affiliation(s)
- Alessandro Palmioli
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy
| | - Luca Moretti
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy
| | - Carlo Alberto Vezzoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Laura Legnani
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Laura Baldini
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Cristina Airoldi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy.
| |
Collapse
|
31
|
Crocetto F, Balsamo R, Amicuzi U, De Luca L, Falcone A, Mirto BF, Giampaglia G, Ferretti G, Capone F, Machiella F, Varriale D, Sicignano E, Pagano G, Lombardi A, Lucarelli G, Lasorsa F, Busetto GM, Del Giudice F, Ferro M, Imbimbo C, Barone B. Novel Key Ingredients in Urinary Tract Health-The Role of D-mannose, Chondroitin Sulphate, Hyaluronic Acid, and N-acetylcysteine in Urinary Tract Infections (Uroial PLUS ®). Nutrients 2023; 15:3573. [PMID: 37630763 PMCID: PMC10459296 DOI: 10.3390/nu15163573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Urinary tract infections represent a common and significant health concern worldwide. The high rate of recurrence and the increasing antibiotic resistance of uropathogens are further worsening the current scenario. Nevertheless, novel key ingredients such as D-mannose, chondroitin sulphate, hyaluronic acid, and N-acetylcysteine could represent an important alternative or adjuvant to the prevention and treatment strategies of urinary tract infections. Several studies have indeed evaluated the efficacy and the potential use of these compounds in urinary tract health. In this review, we aimed to summarize the characteristics, the role, and the application of the previously reported compounds, alone and in combination, in urinary tract health, focusing on their potential role in urinary tract infections.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Raffaele Balsamo
- Urology Unit, AORN Ospedali dei Colli, Monaldi Hospital, 80131 Naples, Italy;
| | - Ugo Amicuzi
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy;
| | - Luigi De Luca
- Division of Urology, Department of Surgical Multispecialty, AORN Antonio Cardarelli, 80131 Naples, Italy;
| | - Alfonso Falcone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Benito Fabio Mirto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Gaetano Giampaglia
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Gianpiero Ferretti
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Federico Capone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Fabio Machiella
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Domenico Varriale
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Enrico Sicignano
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Giovanni Pagano
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Alessandro Lombardi
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.L.); (F.L.)
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.L.); (F.L.)
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, 71121 Foggia, Italy;
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy;
| | - Matteo Ferro
- Department of Urology, IEO—European Institute of Oncology, IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy;
| | - Ciro Imbimbo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Biagio Barone
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy;
| |
Collapse
|
32
|
Yanagisawa H, Kita Y, Oda T, Kikkawa M. Unveiling Liquid-Crystalline Lipids in the Urothelial Membrane through Cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542358. [PMID: 37398191 PMCID: PMC10312457 DOI: 10.1101/2023.05.29.542358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The urothelium, a distinct epithelial tissue lining the urinary tract, serves as an essential component in preserving urinary tract integrity and thwarting infections. The asymmetric unit membrane (AUM), primarily composed of the uroplakin complex, constitutes a critical permeability barrier in fulfilling this role. However, the molecular architectures of both the AUM and the uroplakin complex have remained enigmatic due to the paucity of high-resolution structural data. In this study, we utilized cryo-electron microscopy to elucidate the three-dimensional structure of the uroplakin complex within the porcine AUM. While the global resolution achieved was 3.5 Å, we acknowledge that due to orientation bias, the resolution in the vertical direction was determined to be 6.3 Å. Our findings unveiled that the uroplakin complexes are situated within hexagonally arranged crystalline lipid membrane domains, rich in hexosylceramides. Moreover, our research rectifies a misconception in a previous model by confirming the existence of a domain initially believed to be absent, and pinpointing the accurate location of a crucial Escherichia coli binding site implicated in urinary tract infections. These discoveries offer valuable insights into the molecular underpinnings governing the permeability barrier function of the urothelium and the orchestrated lipid phase formation within the plasma membrane.
Collapse
Affiliation(s)
- Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshihiro Kita
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
33
|
Oda T, Yanagisawa H, Kikkawa M, Kita Y. Unveiling Liquid-Crystalline Lipids in the Urothelial Membrane through Cryo-EM. RESEARCH SQUARE 2023:rs.3.rs-3080731. [PMID: 37503277 PMCID: PMC10371089 DOI: 10.21203/rs.3.rs-3080731/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The urothelium, a distinct epithelial tissue lining the urinary tract, serves as an essential component in preserving urinary tract integrity and thwarting infections. The asymmetric unit membrane (AUM), primarily composed of the uroplakin complex, constitutes a critical permeability barrier in fulfilling this role. However, the molecular architectures of both the AUM and the uroplakin complex have remained enigmatic due to the paucity of high-resolution structural data. In this investigation, we employed cryo-electron microscopy to elucidate the three-dimensional structure of the uroplakin complex embedded within the porcine AUM at a resolution of 3.5 Å. Our findings unveiled that the uroplakin complexes are situated within hexagonally arranged crystalline lipid membrane domains, rich in hexosylceramides. Moreover, our research rectifies a misconception in a previous model by confirming the existence of a domain initially believed to be absent, and pinpointing the accurate location of a crucial Escherichia coli binding site implicated in urinary tract infections. These discoveries offer valuable insights into the molecular underpinnings governing the permeability barrier function of the urothelium and the orchestrated lipid phase formation within the plasma membrane.
Collapse
|
34
|
Languin-Cattoën O, Sterpone F, Stirnemann G. Binding site plasticity regulation of the FimH catch-bond mechanism. Biophys J 2023; 122:2744-2756. [PMID: 37264571 PMCID: PMC10397818 DOI: 10.1016/j.bpj.2023.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The bacterial fimbrial adhesin FimH is a remarkable and well-studied catch-bond protein found at the tip of E. coli type 1 pili, which allows pathogenic strains involved in urinary tract infections to bind high-mannose glycans exposed on human epithelia. The catch-bond behavior of FimH, where the strength of the interaction increases when a force is applied to separate the two partners, enables the bacteria to resist clearance when they are subjected to shear forces induced by urine flow. Two decades of experimental studies performed at the single-molecule level, as well as x-ray crystallography and modeling studies, have led to a consensus picture whereby force separates the binding domain from an inhibitor domain, effectively triggering an allosteric conformational change in the former. This force-induced allostery is thought to be responsible for an increased binding affinity at the core of the catch-bond mechanism. However, some important questions remain, the most challenging one being that the crystal structures corresponding to these two allosteric states show almost superimposable binding site geometries, which questions the molecular origin for the large difference in affinity. Using molecular dynamics with a combination of enhanced-sampling techniques, we demonstrate that the static picture provided by the crystal structures conceals a variety of binding site conformations that have a key impact on the apparent affinity. Crucially, the respective populations in each of these conformations are very different between the two allosteric states of the binding domain, which can then be related to experimental affinity measurements. We also evidence a previously unappreciated but important effect: in addition to the well-established role of the force as an allosteric regulator via domain separation, application of force tends to directly favor the high-affinity binding site conformations. We hypothesize that this additional "local" catch-bond effect could delay unbinding between the bacteria and the host cell before the "global" allosteric transition occurs, as well as stabilizing the complex even more once in the high-affinity allosteric state.
Collapse
Affiliation(s)
- Olivier Languin-Cattoën
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Cité, PSL University, Paris, France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Cité, PSL University, Paris, France.
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Cité, PSL University, Paris, France.
| |
Collapse
|
35
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
36
|
Overstreet AMC, Anderson B, Burge M, Zhu X, Tao Y, Cham CM, Michaud B, Horam S, Sangwan N, Dwidar M, Liu X, Santos A, Finney C, Dai Z, Leone VA, Messer JS. HMGB1 acts as an agent of host defense at the gut mucosal barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542477. [PMID: 37398239 PMCID: PMC10312563 DOI: 10.1101/2023.05.30.542477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mucosal barriers provide the first line of defense between internal body surfaces and microbial threats from the outside world. 1 In the colon, the barrier consists of two layers of mucus and a single layer of tightly interconnected epithelial cells supported by connective tissue and immune cells. 2 Microbes colonize the loose, outer layer of colonic mucus, but are essentially excluded from the tight, epithelial-associated layer by host defenses. 3 The amount and composition of the mucus is calibrated based on microbial signals and loss of even a single component of this mixture can destabilize microbial biogeography and increase the risk of disease. 4-7 However, the specific components of mucus, their molecular microbial targets, and how they work to contain the gut microbiota are still largely unknown. Here we show that high mobility group box 1 (HMGB1), the prototypical damage-associated molecular pattern molecule (DAMP), acts as an agent of host mucosal defense in the colon. HMGB1 in colonic mucus targets an evolutionarily conserved amino acid sequence found in bacterial adhesins, including the well-characterized Enterobacteriaceae adhesin FimH. HMGB1 aggregates bacteria and blocks adhesin-carbohydrate interactions, inhibiting invasion through colonic mucus and adhesion to host cells. Exposure to HMGB1 also suppresses bacterial expression of FimH. In ulcerative colitis, HMGB1 mucosal defense is compromised, leading to tissue-adherent bacteria expressing FimH. Our results demonstrate a new, physiologic role for extracellular HMGB1 that refines its functions as a DAMP to include direct, virulence limiting effects on bacteria. The amino acid sequence targeted by HMGB1 appears to be broadly utilized by bacterial adhesins, critical for virulence, and differentially expressed by bacteria in commensal versus pathogenic states. These characteristics suggest that this amino acid sequence is a novel microbial virulence determinant and could be used to develop new approaches to diagnosis and treatment of bacterial disease that precisely identify and target virulent microbes.
Collapse
|
37
|
Mu M, Liu S, DeFlorio W, Hao L, Wang X, Salazar KS, Taylor M, Castillo A, Cisneros-Zevallos L, Oh JK, Min Y, Akbulut M. Influence of Surface Roughness, Nanostructure, and Wetting on Bacterial Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5426-5439. [PMID: 37014907 PMCID: PMC10848269 DOI: 10.1021/acs.langmuir.3c00091] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Indexed: 05/11/2023]
Abstract
Bacterial fouling is a persistent problem causing the deterioration and failure of functional surfaces for industrial equipment/components; numerous human, animal, and plant infections/diseases; and energy waste due to the inefficiencies at internal and external geometries of transport systems. This work gains new insights into the effect of surface roughness on bacterial fouling by systematically studying bacterial adhesion on model hydrophobic (methyl-terminated) surfaces with roughness scales spanning from ∼2 nm to ∼390 nm. Additionally, a surface energy integration framework is developed to elucidate the role of surface roughness on the energetics of bacteria and substrate interactions. For a given bacteria type and surface chemistry; the extent of bacterial fouling was found to demonstrate up to a 75-fold variation with surface roughness. For the cases showing hydrophobic wetting behavior, both increased effective surface area with increasing roughness and decreased activation energy with increased surface roughness was concluded to enhance the extent of bacterial adhesion. For the cases of superhydrophobic surfaces, the combination of factors including (i) the surpassing of Laplace pressure force of interstitial air over bacterial adhesive force, (ii) the reduced effective substrate area for bacteria wall due to air gaps to have direct/solid contact, and (iii) the reduction of attractive van der Waals force that holds adhering bacteria on the substrate were summarized to weaken the bacterial adhesion. Overall, this study is significant in the context of designing antifouling coatings and systems as well as explaining variations in bacterial contamination and biofilm formation processes on functional surfaces.
Collapse
Affiliation(s)
- Minchen Mu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Shuhao Liu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - William DeFlorio
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Li Hao
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou, Guangdong 510225, P. R. China
| | - Xunhao Wang
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Karla Solis Salazar
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Matthew Taylor
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Alejandro Castillo
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Luis Cisneros-Zevallos
- Department
of Horticultural Sciences, Texas A&M
University, College Station, Texas 77843, United States
| | - Jun Kyun Oh
- Department
of Polymer Science and Engineering, Dankook
University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Younjin Min
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Mustafa Akbulut
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
38
|
Nasi GI, Georgakopoulou KI, Theodoropoulou MK, Papandreou NC, Chrysina ED, Tsiolaki PL, Iconomidou VA. Bacterial Lectin FimH and Its Aggregation Hot-Spots: An Alternative Strategy against Uropathogenic Escherichia coli. Pharmaceutics 2023; 15:pharmaceutics15031018. [PMID: 36986878 PMCID: PMC10058141 DOI: 10.3390/pharmaceutics15031018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Type I fimbriae are the main adhesive organelles of uropathogenic Escherichia coli (UPEC), consisting of four different subunits. Their component with the most important role in establishing bacterial infections is the FimH adhesin located at the fimbrial tip. This two-domain protein mediates adhesion to host epithelial cells through interaction with terminal mannoses on epithelial glycoproteins. Here, we propose that the amyloidogenic potential of FimH can be exploited for the development of therapeutic agents against Urinary Tract Infections (UTIs). Aggregation-prone regions (APRs) were identified via computational methods, and peptide-analogues corresponding to FimH lectin domain APRs were chemically synthesized and studied with the aid of both biophysical experimental techniques and molecular dynamic simulations. Our findings indicate that these peptide-analogues offer a promising set of antimicrobial candidate molecules since they can either interfere with the folding process of FimH or compete for the mannose-binding pocket.
Collapse
Affiliation(s)
- Georgia I Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina I Georgakopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Marilena K Theodoropoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Paraskevi L Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
39
|
Kavela S, Vyas P, CP J, Kushwaha SK, Majumdar SS, Faisal SM. Use of an Integrated Multi-Omics Approach To Identify Molecular Mechanisms and Critical Factors Involved in the Pathogenesis of Leptospira. Microbiol Spectr 2023; 11:e0313522. [PMID: 36853003 PMCID: PMC10100824 DOI: 10.1128/spectrum.03135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Leptospirosis, a bacterial zoonosis caused by pathogenic Leptospira spp., is prevalent worldwide and has become a serious threat in recent years. Limited understanding of Leptospira pathogenesis and host response has hampered the development of effective vaccine and diagnostics. Although Leptospira is phagocytosed by innate immune cells, it resists its destruction, and the evading mechanism involved is unclear. In the present study, we used an integrative multi-omics approach to identify the critical molecular factors of Leptospira involved in pathogenesis during interaction with human macrophages. Transcriptomic and proteomic analyses were performed at 24 h postinfection of human macrophages (phorbol-12-myristate-13-acetate differentiated THP-1 cells) with the pathogenic Leptospira interrogans serovar Icterohaemorrhagiae strain RGA (LEPIRGA). Our results identified a total of 1,528 transcripts and 871 proteins that were significantly expressed with an adjusted P value of <0.05. The correlations between the transcriptomic and proteomic data were above average (r = 0.844), suggesting the role of the posttranscriptional processes during host interaction. The conjoint analysis revealed the expression of several virulence-associated proteins such as adhesins, invasins, and secretory and chemotaxis proteins that might be involved in various processes of attachment and invasion and as effectors during pathogenesis in the host. Further, the interaction of bacteria with the host cell (macrophages) was a major factor in the differential expression of these proteins. Finally, eight common differentially expressed RNA-protein pairs, predicted as virulent, outer membrane/extracellular proteins were validated by quantitative PCR. This is the first report using integrated multi-omics approach to identify critical factors involved in Leptospira pathogenesis. Validation of these critical factors may lead to the identification of target antigens for the development of improved diagnostics and vaccines against leptospirosis. IMPORTANCE Leptospirosis is a zoonotic disease of global importance. It is caused by a Gram-negative bacterial spirochete of the genus Leptospira. The current challenge is to detect the infection at early stage for treatment or to develop potent vaccines that can induce cross-protection against various pathogenic serovars. Understanding host-pathogen interactions is important to identify the critical factors involved in pathogenesis and host defense for developing improved vaccines and diagnostics. Utilizing an integrated multi-omics approach, our study provides important insight into the interaction of Leptospira with human macrophages and identifies a few critical factors (such as virulence-associated proteins) involved in pathogenesis. These factors can be exploited for the development of novel tools for the detection, treatment, or prevention of leptospirosis.
Collapse
Affiliation(s)
- Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jusail CP
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep K. Kushwaha
- Bioinformatics Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Subeer S. Majumdar
- Gene and Protein Engineering Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
40
|
Liu J, Amaral LAN, Keten S. A new approach for extracting information from protein dynamics. Proteins 2023; 91:183-195. [PMID: 36094321 PMCID: PMC9844508 DOI: 10.1002/prot.26421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/19/2023]
Abstract
Increased ability to predict protein structures is moving research focus towards understanding protein dynamics. A promising approach is to represent protein dynamics through networks and take advantage of well-developed methods from network science. Most studies build protein dynamics networks from correlation measures, an approach that only works under very specific conditions, instead of the more robust inverse approach. Thus, we apply the inverse approach to the dynamics of protein dihedral angles, a system of internal coordinates, to avoid structural alignment. Using the well-characterized adhesion protein, FimH, we show that our method identifies networks that are physically interpretable, robust, and relevant to the allosteric pathway sites. We further use our approach to detect dynamical differences, despite structural similarity, for Siglec-8 in the immune system, and the SARS-CoV-2 spike protein. Our study demonstrates that using the inverse approach to extract a network from protein dynamics yields important biophysical insights.
Collapse
Affiliation(s)
- Jenny Liu
- Department of Mechanical Engineering, Northwestern University
| | - Luís A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University
| |
Collapse
|
41
|
Luo H, Chen Y, Kuang X, Wang X, Yang F, Cao Z, Wang L, Lin S, Wu F, Liu J. Chemical reaction-mediated covalent localization of bacteria. Nat Commun 2022; 13:7808. [PMID: 36528693 PMCID: PMC9759558 DOI: 10.1038/s41467-022-35579-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Methods capable of manipulating bacterial colonization are of great significance for modulating host-microbiota relationships. Here, we describe a strategy of in-situ chemical reaction-mediated covalent localization of bacteria. Through a simple one-step imidoester reaction, primary amino groups on bacterial surface can be converted to free thiols under cytocompatible conditions. Surface thiolation is applicable to modify diverse strains and the number of introduced thiols per bacterium can be easily tuned by varying feed ratios. These chemically reactive bacteria are able to spontaneously bond with mucous layer by catalyst-free thiol-disulfide exchange between mucin-associated disulfides and newly converted thiols on bacterial surface and show thiolation level-dependent attachment. Bacteria optimized with 9.3 × 107 thiols per cell achieve 170-fold higher attachment in mucin-enriched jejunum, a challenging location for gut microbiota to colonize. As a proof-of-concept application for microbiota transplantation, covalent bonding-assisted localization of an oral probiotic in the jejunum generates an improved remission of jejunal mucositis. Our findings demonstrate that transforming bacteria with a reactive surface provides an approach to chemically control bacterial localization, which is highly desirable for developing next-generation bacterial living bioagents.
Collapse
Affiliation(s)
- Huilong Luo
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Yanmei Chen
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Xiao Kuang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Xinyue Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Fengmin Yang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Zhenping Cao
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Lu Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Sisi Lin
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Feng Wu
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Jinyao Liu
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| |
Collapse
|
42
|
Petracchini S, Hamaoui D, Doye A, Asnacios A, Fage F, Vitiello E, Balland M, Janel S, Lafont F, Gupta M, Ladoux B, Gilleron J, Maia TM, Impens F, Gagnoux-Palacios L, Daugaard M, Sorensen PH, Lemichez E, Mettouchi A. Optineurin links Hace1-dependent Rac ubiquitylation to integrin-mediated mechanotransduction to control bacterial invasion and cell division. Nat Commun 2022; 13:6059. [PMID: 36229487 PMCID: PMC9561704 DOI: 10.1038/s41467-022-33803-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular matrix (ECM) elasticity is perceived by cells via focal adhesion structures, which transduce mechanical cues into chemical signalling to conform cell behavior. Although the contribution of ECM compliance to the control of cell migration or division is extensively studied, little is reported regarding infectious processes. We study this phenomenon with the extraintestinal Escherichia coli pathogen UTI89. We show that UTI89 takes advantage, via its CNF1 toxin, of integrin mechanoactivation to trigger its invasion into cells. We identify the HACE1 E3 ligase-interacting protein Optineurin (OPTN) as a protein regulated by ECM stiffness. Functional analysis establishes a role of OPTN in bacterial invasion and integrin mechanical coupling and for stimulation of HACE1 E3 ligase activity towards the Rac1 GTPase. Consistent with a role of OPTN in cell mechanics, OPTN knockdown cells display defective integrin-mediated traction force buildup, associated with limited cellular invasion by UTI89. Nevertheless, OPTN knockdown cells display strong mechanochemical adhesion signalling, enhanced Rac1 activation and increased cyclin D1 translation, together with enhanced cell proliferation independent of ECM stiffness. Together, our data ascribe a new function to OPTN in mechanobiology.
Collapse
Affiliation(s)
- Serena Petracchini
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, F-75015 Paris, France
| | - Daniel Hamaoui
- grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Microbial Toxins in Host-Pathogen Interactions, Nice, France ,Equipe Labellisée Ligue Contre le Cancer, Nice, France
| | - Anne Doye
- grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Microbial Toxins in Host-Pathogen Interactions, Nice, France ,Equipe Labellisée Ligue Contre le Cancer, Nice, France
| | - Atef Asnacios
- grid.463714.3Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes, UMR7057, F-75013 Paris, France
| | - Florian Fage
- grid.463714.3Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes, UMR7057, F-75013 Paris, France
| | - Elisa Vitiello
- grid.462689.70000 0000 9272 9931Université Grenoble Alpes, CNRS, LiPhy, F-38000 Grenoble, France
| | - Martial Balland
- grid.462689.70000 0000 9272 9931Université Grenoble Alpes, CNRS, LiPhy, F-38000 Grenoble, France
| | - Sebastien Janel
- grid.410463.40000 0004 0471 8845Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Frank Lafont
- grid.410463.40000 0004 0471 8845Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Mukund Gupta
- grid.461913.80000 0001 0676 2143Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Benoit Ladoux
- grid.461913.80000 0001 0676 2143Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Jerôme Gilleron
- grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Cellular and Molecular Pathophysiology of Obesity and Diabetes, Nice, France
| | - Teresa M. Maia
- grid.511525.7VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Ghent, Belgium ,grid.11486.3a0000000104788040VIB Proteomics Core, VIB, Ghent, Belgium
| | - Francis Impens
- grid.511525.7VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Ghent, Belgium ,grid.11486.3a0000000104788040VIB Proteomics Core, VIB, Ghent, Belgium
| | - Laurent Gagnoux-Palacios
- grid.461605.0Université Côte d’Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Mads Daugaard
- grid.412541.70000 0001 0684 7796Vancouver Prostate Centre, Vancouver, BC V6H 3Z6 Canada ,grid.17091.3e0000 0001 2288 9830Department of Urologic Sciences, University of British Columbia, Vancouver, BC Canada
| | - Poul H. Sorensen
- grid.17091.3e0000 0001 2288 9830Department of Molecular Oncology, BC Cancer Research Center, University of British Columbia, Vancouver, BC V5Z1L3 Canada
| | - Emmanuel Lemichez
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, F-75015 Paris, France ,grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Microbial Toxins in Host-Pathogen Interactions, Nice, France ,Equipe Labellisée Ligue Contre le Cancer, Nice, France
| | - Amel Mettouchi
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, F-75015 Paris, France ,grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Microbial Toxins in Host-Pathogen Interactions, Nice, France ,Equipe Labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
43
|
The long and the short of Periscope Proteins. Biochem Soc Trans 2022; 50:1293-1302. [PMID: 36196877 DOI: 10.1042/bst20220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Bacteria sense, interact with, and modify their environmental niche by deploying a molecular ensemble at the cell surface. The changeability of this exposed interface, combined with extreme changes in the functional repertoire associated with lifestyle switches from planktonic to adherent and biofilm states necessitate dynamic variability. Dynamic surface changes include chemical modifications to the cell wall; export of diverse extracellular biofilm components; and modulation of expression of cell surface proteins for adhesion, co-aggregation and virulence. Local enrichment for highly repetitive proteins with high tandem repeat identity has been an enigmatic phenomenon observed in diverse bacterial species. Preliminary observations over decades of research suggested these repeat regions were hypervariable, as highly related strains appeared to express homologues with diverse molecular mass. Long-read sequencing data have been interrogated to reveal variation in repeat number; in combination with structural, biophysical and molecular dynamics approaches, the Periscope Protein class has been defined for cell surface attached proteins that dynamically expand and contract tandem repeat tracts at the population level. Here, I review the diverse high-stability protein folds and coherent interdomain linkages culminating in the formation of highly anisotropic linear repeat arrays, so-called rod-like protein 'stalks', supporting roles in bacterial adhesion, biofilm formation, cell surface spatial competition, and immune system modulation. An understanding of the functional impacts of dynamic changes in repeat arrays and broader characterisation of the unusual protein folds underpinning this variability will help with the design of immunisation strategies, and contribute to synthetic biology approaches including protein engineering and microbial consortia construction.
Collapse
|
44
|
A multi-state dynamic process confers mechano-adaptation to a biological nanomachine. Nat Commun 2022; 13:5327. [PMID: 36088344 PMCID: PMC9464220 DOI: 10.1038/s41467-022-33075-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Adaptation is a defining feature of living systems. The bacterial flagellar motor adapts to changes in the external mechanical load by adding or removing torque-generating (stator) units. But the molecular mechanism behind this mechano-adaptation remains unclear. Here, we combine single motor eletrorotation experiments and theoretical modeling to show that mechano-adaptation of the flagellar motor is enabled by multiple mechanosensitive internal states. Dwell time statistics from experiments suggest the existence of at least two bound states with a high and a low unbinding rate, respectively. A first-passage-time analysis of a four-state model quantitatively explains the experimental data and determines the transition rates among all four states. The torque generated by bound stator units controls their effective unbinding rate by modulating the transition between the bound states, possibly via a catch bond mechanism. Similar force-mediated feedback enabled by multiple internal states may apply to adaptation in other macromolecular complexes. Combining experiments with modeling, Wadhwa et al. propose a model for mechano-adaptation in the bacterial flagellar motor, finding that load-dependent transitions between multiple internal states govern the binding and unbinding of subunits.
Collapse
|
45
|
Marbach S, Holmes-Cerfon M. Mass Changes the Diffusion Coefficient of Particles with Ligand-Receptor Contacts in the Overdamped Limit. PHYSICAL REVIEW LETTERS 2022; 129:048003. [PMID: 35939031 DOI: 10.1103/physrevlett.129.048003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/29/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Inertia does not generally affect the long-time diffusion of passive overdamped particles in fluids. Yet a model starting from the Langevin equation predicts a surprising property of particles coated with ligands that bind reversibly to surface receptors: heavy particles diffuse more slowly than light ones of the same size. We show this by simulation and by deriving an analytic formula for the mass-dependent diffusion coefficient in the overdamped limit. We estimate the magnitude of this effect for a range of biophysical ligand-receptor systems, and find it is potentially observable for tailored micronscale DNA-coated colloids.
Collapse
Affiliation(s)
- Sophie Marbach
- Courant Institute of Mathematical Sciences, New York University, New York 10012, USA
- CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | - Miranda Holmes-Cerfon
- Courant Institute of Mathematical Sciences, New York University, New York 10012, USA
| |
Collapse
|
46
|
Ma Q, Lei H, Cao Y. Intramolecular covalent bonds in Gram-positive bacterial surface proteins. Chembiochem 2022; 23:e202200316. [PMID: 35801833 DOI: 10.1002/cbic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Gram-positive bacteria experience considerable mechanical perturbation when adhering to host surfaces during colonization and infection. They have evolved various adhesion proteins that are mechanically robust to ensure strong surface adhesion. Recently, it was discovered that these adhesion proteins contain rare, extra intramolecular covalent bonds that stabilize protein structures and participate in surface bonding. These intramolecular covalent bonds include isopeptides, thioesters, and ester bonds, which often form spontaneously without the need for additional enzymes. With the development of single-molecule force spectroscopy techniques, the detailed mechanical roles of these intramolecular covalent bonds have been revealed. In this review, we summarize the recent advances in this area of research, focusing on the link between the mechanical stability and function of these covalent bonds in Gram-positive bacterial surface proteins. We also highlight the potential impact of these discoveries on the development of novel antibiotics and chemical biology tools.
Collapse
Affiliation(s)
- Quan Ma
- Nanjing University, Department of Physics, CHINA
| | - Hai Lei
- Nanjing University, Department of Physics, CHINA
| | - Yi Cao
- Nanjing University, Department of Physics, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
47
|
Sokurenko EV, Tchesnokova V, Interlandi G, Klevit R, Thomas WE. Neutralizing antibodies against allosteric proteins: insights from a bacterial adhesin. J Mol Biol 2022; 434:167717. [DOI: 10.1016/j.jmb.2022.167717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
|
48
|
Wang F, Cvirkaite-Krupovic V, Krupovic M, Egelman EH. Archaeal bundling pili of Pyrobaculum calidifontis reveal similarities between archaeal and bacterial biofilms. Proc Natl Acad Sci U S A 2022; 119:e2207037119. [PMID: 35727984 PMCID: PMC9245690 DOI: 10.1073/pnas.2207037119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
While biofilms formed by bacteria have received great attention due to their importance in pathogenesis, much less research has been focused on the biofilms formed by archaea. It has been known that extracellular filaments in archaea, such as type IV pili, hami, and cannulae, play a part in the formation of archaeal biofilms. We have used cryo-electron microscopy to determine the atomic structure of a previously uncharacterized class of archaeal surface filaments from hyperthermophilic Pyrobaculum calidifontis. These filaments, which we call archaeal bundling pili (ABP), assemble into highly ordered bipolar bundles. The bipolar nature of these bundles most likely arises from the association of filaments from at least two different cells. The component protein, AbpA, shows homology, both at the sequence and structural level, to the bacterial protein TasA, a major component of the extracellular matrix in bacterial biofilms, contributing to biofilm stability. We show that AbpA forms very stable filaments in a manner similar to the donor-strand exchange of bacterial TasA fibers and chaperone-usher pathway pili where a β-strand from one subunit is incorporated into a β-sheet of the next subunit. Our results reveal likely mechanistic similarities and evolutionary connection between bacterial and archaeal biofilms, and suggest that there could be many other archaeal surface filaments that are as yet uncharacterized.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903
| | | | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 75015 Paris, France
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
49
|
León ED, Francino MP. Roles of Secretory Immunoglobulin A in Host-Microbiota Interactions in the Gut Ecosystem. Front Microbiol 2022; 13:880484. [PMID: 35722300 PMCID: PMC9203039 DOI: 10.3389/fmicb.2022.880484] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
In the gastrointestinal tract (GIT), the immune system interacts with a variety of microorganisms, including pathogens as well as beneficial symbionts that perform important physiological functions for the host and are crucial to sustain intestinal homeostasis. In normal conditions, secretory immunoglobulin A (SIgA) is the principal antibody produced by B cells in the GIT mucosa. Polyreactivity provides certain SIgA molecules with the ability of binding different antigens in the bacterial surface, such as O-antigens and teichoic acids, while cross-species reactivity allows them to recognize and interact with different types of bacteria. These functions may be crucial in allowing SIgA to modulate the complex gut microbiota in an efficient manner. Several studies suggest that SIgA can help with the retention and proliferation of helpful members of the gut microbiota. Gut microbiota alterations in people with IgA deficiency include the lack of some species that are known to be normally coated by SIgA. Here, we discuss the different ways in which SIgA behaves in relation to pathogens and beneficial bacteria of the gut microbiota and how the immune system might protect and facilitate the establishment and maintenance of certain gut symbionts.
Collapse
Affiliation(s)
- E Daniel León
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - M Pilar Francino
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
50
|
Recombinant FimH Adhesin Demonstrates How the Allosteric Catch Bond Mechanism Can Support Fast and Strong Bacterial Attachment in the Absence of Shear. J Mol Biol 2022; 434:167681. [PMID: 35697293 DOI: 10.1016/j.jmb.2022.167681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an 'inactive' conformation with fast binding to mannose to an 'active' conformation with slow detachment from mannose. Because mechanical tensile force favors separation of the domains and, thus, FimH activation, it has been thought that the catch bonds can only be manifested in a fluidic shear-dependent mode of adhesion. Here, we used recombinant FimH variants with a weakened inter-domain interaction and show that a fast and sustained allosteric activation of FimH can also occur under static, non-shear conditions. Moreover, it appears that lectin domain conformational activation happens intrinsically at a constant rate, independently from its ability to interact with the pilin domain or mannose. However, the latter two factors control the rate of FimH deactivation. Thus, the allosteric catch bond mechanism can be a much broader phenomenon involved in both fast and strong cell-pathogen attachments under a broad range of hydrodynamic conditions. This concept that allostery can enable more effective receptor-ligand interactions is fundamentally different from the conventional wisdom that allostery provides a mechanism to turn binding off under specific conditions.
Collapse
|