1
|
Kindala TJ, Yano K, Takatori K, Mizukami M, Nagumo S. Chemodivergent Reactions of Aromatic Ring-Annulated Hexahydrocyclopentafurans with Various Aldehydes. Org Lett 2024. [PMID: 39523800 DOI: 10.1021/acs.orglett.4c03734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hexahydro-2H-cyclopenta[b]furan fused to electron-rich aromatic rings reacts with various aromatic aldehydes in different modes to build diverse frameworks. The reaction of a dimethoxybenzene-fused cyclopentafuran generated diquinanes fused with a hydrofuran ring, indenopyrans, or diarylindanes depending upon the type of aromatic aldehydes, whereas an indole-annulated cyclopentafuran generated another type of diquinane fused with hydrofuran ring or benzylidenecyclopentafuran. The chemodivergence is due to the different properties between indole- and dimethoxybenzene-fused hydrocyclopentafurans. Namely, Lewis acid-promoted furan-ring opening of the substrates resulted in the formation of an electrophilic or a nucleophilic intermediate, respectively. Additionally, the observed chemodivergence can be attributed to the distinctive electronic properties of three classified aromatic aldehydes. Of particular interest is that 2,4-dimethoxybenzaldehyde reacted with the dimethoxybenzene-fused cyclopentafuran at the benzene ring, whereas it reacted with the indole-fused cyclopentafuran at the formyl group.
Collapse
Affiliation(s)
- Tinatina Junior Kindala
- Applied Chemistry and Chemical Engineering, Graduate School of Engineering, Kogakuin University, Nakano 2665-1, Hachioji, Tokyo 192-0015, Japan
| | - Kaede Yano
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Nakano 2665-1, Hachioji, Tokyo 192-0015, Japan
| | - Kazuhiko Takatori
- Department of Synthetic Organic Chemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo 204-8588, Japan
| | - Megumi Mizukami
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Maeda 15-4-1, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Shinji Nagumo
- Applied Chemistry and Chemical Engineering, Graduate School of Engineering, Kogakuin University, Nakano 2665-1, Hachioji, Tokyo 192-0015, Japan
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Nakano 2665-1, Hachioji, Tokyo 192-0015, Japan
| |
Collapse
|
2
|
Yoo JY, Choi Y, Kim H, Park SB. Revisiting Pyrimidine-Embedded Molecular Frameworks to Probe the Unexplored Chemical Space for Protein-Protein Interactions. Acc Chem Res 2024. [PMID: 39480992 DOI: 10.1021/acs.accounts.4c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
ConspectusProtein-protein interactions (PPIs) are essential in numerous biological processes and diseases, making them attractive yet challenging drug targets. While many advances have been made in traditional drug discovery, targeting PPIs has been difficult due to a lack of specialized chemical libraries designed to modulate these interactions. Current libraries mainly focus on conventional target proteins like enzymes or receptors as substrate analogs rather than small-molecule modulators targeting PPIs. These traditional drug targets behave differently from PPIs. Conventional druggable targets have relatively small surfaces and binding pockets that have allowed them to be targeted with current libraries, but PPIs behave differently than these traditional drug targets. As a result, there is an urgent need for an innovative approach to expand the druggable space.To address this, we developed a privileged substructure-based diversity-oriented synthesis (pDOS) strategy, aimed at creating maximal skeletal diversity to explore broader biochemical space. Pyrimidine serves as the privileged substructure in our approach, which employs several strategies: (i) silver-catalyzed or iodine-mediated tandem cyclizations to generate pyrimidine-embedded polyheterocycles; (ii) diverse pairing strategies to produce pyrimidodiazepine-containing polyheterocyclic skeletons with enhanced scaffold saturation; (iii) skeletal transformation to develop pyrimidine-fused medium-sized azacycles via chemoselective cleavages or migrations of N-N or C-N bond; (iv) design of small-molecule peptidomimetics that systematically mimic three pivotal protein secondary structures using pyrimidodiazepine-based scaffolds; and (v) identification of pyrimidodiazepine-based small-molecules that allosterically inhibits the interaction between human ACE2 and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to block viral entry into host cells.Through these approaches, we generated 39 distinct pyrimidine-embedded frameworks, demonstrating significant molecular diversity validated by chemoinformatic analyses such as Tanimoto similarity and principal moment of inertia (PMI) analysis. This molecular diversity extends pyrimidine structures beyond traditional linear or bicyclic forms, creating polyheterocycles with enhanced 3D structural diversity. These novel frameworks overcome the limitation of simpler privileged scaffolds, offering promising tools for modulating PPIs.Our pDOS approach highlights how privileged structure-embedded polyheterocycles, particularly those based on pyrimidine, can effectively target previously undruggable PPIs. This strategy provides a new direction for drug discovery, allowing for the development of small molecules that operate beyond traditional drug-like rules. In addition to expanding the chemical space for PPI modulation, our pDOS strategy enables the creation of scaffolds that are particularly suited for targeting complex and dynamic protein interfaces. This innovation could significantly impact therapeutic development, offering solutions for previously intractable drug targets. By expanding the scope of pyrimidine-based scaffolds, we have opened up new possibilities for targeting PPIs and advancing chemical biology.This perspective demonstrates the potential outlines of our pDOS strategy in creating structurally diverse frameworks, offering a platform for the discovery of PPI modulators and facilitating the exploration of untapped biochemical spaces in drug development, potentially transforming the way we approach these complex biological interactions.
Collapse
Affiliation(s)
- Jeong Yeon Yoo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea (South)
| | - Yoona Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea (South)
| | - Heejun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea (South)
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea (South)
| |
Collapse
|
3
|
Amire N, Almagambetova KM, Turlykul A, Taishybay A, Nuroldayeva G, Belyaev A, Peshkov AA, Utepbergenov D, Peshkov VA. Triflic acid-promoted post-Ugi condensation for the assembly of 2,6-diarylmorpholin-3-ones. Org Biomol Chem 2024. [PMID: 39479940 DOI: 10.1039/d4ob01270d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
We report a two-step one-pot synthesis of the 2,6-diarylmorpholin-3-one core based on the Ugi reaction of 2-oxoaldehyde with 2-hydroxycarboxylic acid, a primary amine and tert-butyl isocyanide followed by a triflic acid-promoted intramolecular condensation accompanied by the loss of the isocyanide-originated amide moiety. The overall transformation proceeds with complete retention of stereoconfiguration at the 2-hydroxycarboxylic acid-derived chiral center, allowing the target morpholin-3-ones to be obtained in an enantiopure form. Subsequent double bond hydrogenation and amide reduction allow the degree of unsaturation to be reduced, providing a convenient entry to the cis-2,6-diphenylmorpholine motif.
Collapse
Affiliation(s)
- Niyaz Amire
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan.
| | - Kamila M Almagambetova
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan.
| | - Assel Turlykul
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan.
| | - Aidyn Taishybay
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan.
| | - Gulzat Nuroldayeva
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan.
| | - Andrey Belyaev
- Department of Chemistry, University of Jyväskylä, FI-40014, Finland
- Department of Chemistry, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Anatoly A Peshkov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan.
| | - Darkhan Utepbergenov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan.
| | - Vsevolod A Peshkov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan.
- Department of Chemistry, University of Jyväskylä, FI-40014, Finland
| |
Collapse
|
4
|
Schultz DC, Chávez-Riveros A, Goertzen MG, Brummel BR, Paes RA, Santos NM, Tenneti S, Abboud KA, Rocca JR, Seabra G, Li C, Chakrabarti D, Huigens RW. Chloroformate-mediated ring cleavage of indole alkaloids leads to re-engineered antiplasmodial agents. Org Biomol Chem 2024; 22:8423-8436. [PMID: 39113550 DOI: 10.1039/d4ob00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Natural product ring distortion strategies have enabled rapid access to unique libraries of stereochemically complex compounds to explore new chemical space and increase our understanding of biological processes related to human disease. Herein is described the development of a ring-cleavage strategy using the indole alkaloids yohimbine, apovincamine, vinburnine, and reserpine that were reacted with a diversity of chloroformates paired with various alcohol/thiol nucleophiles to enable the rapid synthesis of 47 novel small molecules. Ring cleavage reactions of yohimbine and reserpine produced two diastereomeric products in moderate to excellent yields, whereas apovincamine and vinburnine produced a single diastereomeric product in significantly lower yields. Free energy calculations indicated that diastereoselectivity regarding select ring cleavage reactions from yohimbine and apovincamine is dictated by the geometry and three-dimensional structure of reactive cationic intermediates. These compounds were screened for antiplasmodial activity due to the need for novel antimalarial agents. Reserpine derivative 41 was found to exhibit interesting antiplasmodial activities against Plasmodium falciparum parasites (EC50 = 0.50 μM against Dd2 cultures), while its diastereomer 40 was found to be three-fold less active (EC50 = 1.78 μM). Overall, these studies demonstrate that the ring distortion of available indole alkaloids can lead to unique compound collections with re-engineered biological activities for exploring and potentially treating human disease.
Collapse
Affiliation(s)
- Daniel C Schultz
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Alejandra Chávez-Riveros
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Michael G Goertzen
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Beau R Brummel
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Raphaella A Paes
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Natalia M Santos
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Srinivasarao Tenneti
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, USA
| | - James R Rocca
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
- McKnight Brain Institute, J H Miller Health Center, University of Florida, Gainesville, Florida 32610, USA
| | - Gustavo Seabra
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Chenglong Li
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
5
|
Gambuti F, Pizzorno J, Lambruschini C, Riva R, Moni L. Synthesis of spiroindolenines through a one-pot multistep process mediated by visible light. Beilstein J Org Chem 2024; 20:2722-2731. [PMID: 39498445 PMCID: PMC11533113 DOI: 10.3762/bjoc.20.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Spiro-heterocyclic indolenines are privileged scaffolds widely present in numerous indole alkaloids. Here, we develop a novel approach for the one-pot multistep synthesis of different spiro[indole-isoquinolines]. The protocol proposed involves the visible light mediated oxidation of N-aryl tertiary amines using bromochloroform with the generation of a reactive iminium species, which reacts with an isocyanide and an electron-rich aniline in a three-component Ugi-type reaction to give an α-aminoamidine. This compound might undergo an additional visible light-mediated oxidation to furnish a second iminium intermediate, which acts as electrophile in an intramolecular electrophilic aromatic substitution giving the final spiro-indolenine. The scope of the process has been investigated with respect to all three components. Simple operations, mild conditions, and good yields make this strategy a convenient and sustainable way to obtain novel spiro-indolenine derivatives.
Collapse
Affiliation(s)
- Francesco Gambuti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 1646 Genova, Italy
| | - Jacopo Pizzorno
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 1646 Genova, Italy
| | - Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 1646 Genova, Italy
| | - Renata Riva
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 1646 Genova, Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 1646 Genova, Italy
| |
Collapse
|
6
|
Jackson PA, Kisty E, Pradhan V, Swank C, Bohrer L, Nolan TL, Weerapana E, Lapinsky DJ. Appendage- and Scaffold-Diverse Electrophilic and Photoreactive Probes for Integrated Phenotypic Screening-Target Identification Campaigns via a Minimalist Bifunctional Isocyanide. ACS OMEGA 2024; 9:42557-42570. [PMID: 39431108 PMCID: PMC11483914 DOI: 10.1021/acsomega.4c06879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
One of the grand challenges in chemical biology is identifying a small-molecule modulator for all proteins within a proteome. To expand the variety and number of ligandable proteins for drug discovery, the objective of this study was to synthesize and evaluate the protein target profiles of electrophilic and photoreactive fully functionalized small-molecule probes (FFSMPs) featuring increased scaffold-, appendage-, and protein-reactive functional group (PRFG) diversity. FFSMPs contain: (1) a protein-binding motif, (2) an electrophilic or photoreactive PRFG for target protein capture, and (3) a terminal alkyne for click chemistry-based proteomic applications. These compounds can be directly applied in phenotypic screening programs to identify ligand-protein pairs in cells unbiasedly. Herein, we highlight 17 examples from 34 structurally diverse FFSMPs featuring five electrophiles, three photoreactive groups, and 15 chemical scaffolds. Essential to the synthesis of the FFSMPs was a new minimalist bifunctional isocyanide in an "isocyanide-based multicomponent reaction-Boc deprotection-arming" synthetic sequence. To the best of our knowledge, this is the first report concerning the preparation of appendage- and scaffold-diverse FFSMPs for integrated phenotypic screening-target identification campaigns with the ability to examine either electrophilic or photoreactive PRFGs. In contrast, the status quo for such studies has been appendage-diverse FFSMPs comprised of a single chemical scaffold and a single PRFG, which limits efficient target protein capture and/or chemical space sampling significantly in the quest for discovering new drug targets and/or compounds with novel mechanisms of action. Phenotypic screening of the electrophilic members of our library identified several FFSMPs with potent antiproliferative activity against MCF10CA1a breast cancer cells. One of these FFSMPs (Compound 4a) covalently targeted and potently inhibited protein disulfide isomerase A1 (PDIA1). This study supports the continued use of minimalist bifunctional isocyanides as valuable building blocks for preparing structurally diverse FFSMPs for integrated phenotypic screening-target identification campaigns.
Collapse
Affiliation(s)
- Paul A. Jackson
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Eleni Kisty
- Department
of Chemistry, Boston College, Merkert Chemistry
Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02464, United States
| | - Vandan Pradhan
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Christopher Swank
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Luke Bohrer
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Tammy L. Nolan
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Eranthie Weerapana
- Department
of Chemistry, Boston College, Merkert Chemistry
Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02464, United States
| | - David J. Lapinsky
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
7
|
Gritti A, Brambilla E, Nania I, Turba F, Pirovano V, Abbiati G. Investigating chemical diversity: o-propargylphenols as key compounds in the divergent synthesis of 2-substituted benzofurans and chromenes. Org Biomol Chem 2024; 22:7895-7904. [PMID: 39248021 DOI: 10.1039/d4ob01272k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
In this study, we explored and optimized a MW-enhanced divergent approach for the synthesis of 2-substituted benzofurans and chromenes, starting from seventeen substituted o-propargylphenols characterized by a monoaryl substitution on the propargylic sp3 carbon. Firstly, we developed a robust platform for the preparation of a library of o-propargylphenols. Under basic conditions, o-propargylphenols reacted regioselectively to yield benzofurans in yields ranging from 43% to 100%. Conversely, under cationic gold catalysis, we were able to obtain the corresponding 4H-chromenes, albeit in more variable yields (from 25% to 93%) and slightly lower regioselectively. We also proposed plausible mechanisms to explain the divergent outcomes observed. Our findings underscore the potential of diversity-oriented synthesis in the investigation of molecular complexity. Our neglected o-propargylphenols have proven to be versatile and strategic starting materials for accessing oxygen-containing heterocyclic scaffolds through intramolecular cyclization reactions.
Collapse
Affiliation(s)
- Alessandra Gritti
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | - Elisa Brambilla
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| | - Ilaria Nania
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| | - Federico Turba
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| | - Valentina Pirovano
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| | - Giorgio Abbiati
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| |
Collapse
|
8
|
De S, Sahu R, Palei S, Narayan Nanda L. Synthesis, SAR, and application of JQ1 analogs as PROTACs for cancer therapy. Bioorg Med Chem 2024; 112:117875. [PMID: 39178586 DOI: 10.1016/j.bmc.2024.117875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
JQ1 is a wonder therapeutic molecule that selectively inhibits the BRD4 signaling pathway and is thus widely used in the anticancer drug discovery program. Due to its unique selective BRD4 binding property, its applications are further extended in the design and synthesis of bi-functional PROTAC molecules. This BRD4 targeting PROTAC molecule selectively degrades the protein by proteolysis. There are several modifications of JQ1 known to date and extensively explored for their applications in PROTAC technology by several research groups in academia as well as industry for targeting oncogenic genes. In this review, we have covered the discovery and synthesis of the JQ1 molecule. The SAR of the JQ1 analogs will help researchers develop potent JQ1 compounds with improved inhibitory properties against malignant cells. Furthermore, we explored the potential application of JQ1 analogs in PROTAC technology. The brief history of the bromodomain family of proteins, as well as the obstacles connected with PROTAC technology, can help comprehend the context of the current research, which has the potential to improve the drug development process. Overall, this review comprehensively appraises JQ1 molecules and their prior implementation in PROTAC technology and cancer therapy.
Collapse
Affiliation(s)
- Soumik De
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India
| | - Raghaba Sahu
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Shubhendu Palei
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Laxmi Narayan Nanda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Harvard Medical School, Cambridge 02142, United States; P.G. Department of Chemistry, Government Autonomous College, Utkal University, Angul 759143, Odisha, India.
| |
Collapse
|
9
|
Devi N, Pathania AS, Singh V, Sharma S. Synthesis, biological activities, and structure-activity relationships of Morita-Baylis-Hillman adducts: An update. Arch Pharm (Weinheim) 2024; 357:e2400372. [PMID: 38963326 DOI: 10.1002/ardp.202400372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
The Morita-Baylis-Hillman (MBH) reaction is a unique C-C bond-forming technique for the generation of multifunctional allylic alcohols (MBH adducts) in a single operation. In recent years, these MBH adducts have emerged as a novel class of compounds with significant biological potential, including anticancer, anti-leishmanial, antibacterial, antifungal, anti-herbicidal effects and activity against Chagas disease, and so on. The aim of this review is to assimilate the literature findings from 2011 onwards related to the synthesis and biological potential of MBH adducts, with an emphasis on their structure-activity relationships (SAR). Although insight into the biological mechanisms of action for this recently identified pharmacophore is currently in its nascent stages, the mechanisms described so far are reviewed herein.
Collapse
Affiliation(s)
- Nisha Devi
- Department of Chemistry, DAV University, Jalandhar, Punjab, India
| | | | - Virender Singh
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Shubham Sharma
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
10
|
Wright BA, Sarpong R. Molecular complexity as a driving force for the advancement of organic synthesis. Nat Rev Chem 2024; 8:776-792. [PMID: 39251714 DOI: 10.1038/s41570-024-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 09/11/2024]
Abstract
The generation of molecular complexity is a primary goal in the field of synthetic chemistry. In the context of retrosynthetic analysis, the concept of molecular complexity is central to identifying productive disconnections and the development of efficient total syntheses. However, this field-defining concept is frequently invoked on an intuitive basis without precise definition or appreciation of its subtleties. Methods for quantifying molecular complexity could prove useful for characterizing the state of synthesis in a more rigorous, reliable and reproducible fashion. As a first step to evaluating the importance of these methods to the state of the field, here we present our perspective on the development of molecular complexity quantification and its implications for chemical synthesis. The extension and application of these methods beyond computer-aided synthesis planning and medicinal chemistry to the traditional practice of 'complex molecule' synthesis could have the potential to unearth new opportunities and more efficient approaches for synthesis.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, USA.
| |
Collapse
|
11
|
Dash A, Vaddamanu G, Hawsawi MB, Alluhaibi MS, Gurijala PK, Mulakayala N. Design, synthesis, and high-throughput in vitro anti-cancer evaluation of novel 4-aminopyrazolo[3,4- d]pyrimidine derivatives: potential anti-cancer candidates against UO-31 renal cancer cells. RSC Adv 2024; 14:30938-30953. [PMID: 39346525 PMCID: PMC11428193 DOI: 10.1039/d4ra05136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
A novel series of 20 compounds containing 4-aminopyrazolo[3,4-d]pyrimidine core were synthesized, characterized and their chemical structures confirmed using spectroscopic techniques such as 1H NMR, 13C NMR, IR, and HRMS. The compound's growth inhibitory activities were evaluated against 60 human tumor cell lines from nine panels: leukemia, non-small cell lung cancer (NSCLC), colon, central nervous system (CNS), melanoma, ovarian, renal, prostate, and breast cancer. Among all the compounds, 11, 12c, 12d, 12f, and 12j are active against different cancer cell lines. Between all the cell lines, compounds 12c, 12d, 12f, 12j, and 11 showed good inhibitory activity against renal cancer cell lines. From the five-dose study, based on IC50 values, the order of activity of compounds against renal cancer cell lines was found to be 12c > 12f > 12c > 12j > 11 with 12c being the most potent, was better than sunitinib and sorafenib. Having been recognized as initial hits, these substances need additional pharmacological investigation.
Collapse
Affiliation(s)
- Amitananda Dash
- Sri Sathya Sai Institute of Higher Learning Anantapur - 515 001 Andhra Pradesh India
| | - Guruswamy Vaddamanu
- SVAK Life Sciences ALEAP Industrial Area, Pragathi Nagar Hyderabad - 500090 India
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Mustafa S Alluhaibi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | | | - Naveen Mulakayala
- SVAK Life Sciences ALEAP Industrial Area, Pragathi Nagar Hyderabad - 500090 India
| |
Collapse
|
12
|
Geng H, Fu R, Zhou TT, Li M, Liu YC, Li XN, Liu Y, Zheng Y, Li SH. Selenium dioxide promoted selenylation/cyclization of leucosceptrane sesterterpenoids. Chem Commun (Camb) 2024; 60:10512-10515. [PMID: 39225283 DOI: 10.1039/d4cc03674c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel selenium dioxide promoted selenylation/cyclization of leucosceptrane sesterterpenoids was reported. Two types of leucosceptrane derivatives with different valence states of selenium atoms (Se2+ and Se4+) were obtained. The mechanisms of these two processes were proposed, and the selenium-containing derivates may serve as intermediates of Riley oxidation that could be trapped with appropriate substrates. Immunosuppressive activity screening revealed that 10 and 11 had obvious inhibitory effects on IFN-γ production, with IC50 values of 5.29 and 17.60 μM, respectively, which were more active than their precursor leucosceptroid A.
Collapse
Affiliation(s)
- Hao Geng
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Ran Fu
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ting-Ting Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Man Li
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Yan-Chun Liu
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Nian Li
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yu Zheng
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Sheng-Hong Li
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
13
|
Lee S, Kim W, Kim I. Divergent Annulation Modes of ( Z)-4-Aryl-4-oxo-2-(pyridin-2-yl)but-2-enenitrile and Methyl Nitroacetate: Selective Access to 2-Acyl-4 H-quinolizin-4-one, Isoxazole, and 2-Acylindolizine. ACS OMEGA 2024; 9:38126-38141. [PMID: 39281917 PMCID: PMC11391543 DOI: 10.1021/acsomega.4c05375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
Three different annulation modes of (Z)-4-aryl-4-oxo-2-(pyridin-2-yl)but-2-enenitrile in the reaction with methyl nitroacetate were discovered, allowing selective access to diverse heterocycles such as quinolizin-4-one, isoxazole, and indolizine with unique substitution patterns in good yields. Ease of operation, good chemical yields, and good functional group tolerance of our protocol enabled us to rapidly construct a number of synthetic analogs based on each scaffold under three reaction conditions.
Collapse
Affiliation(s)
- Sunhee Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Woojin Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| |
Collapse
|
14
|
Gurram DP, Marri G, Jothimani N, Chen YR, Lin W. Diversity-oriented synthesis of chromone inden-1-one-fused cyclopentadienylides and C-acylated chromone adducts via allylic phosphorus ylides. Chem Commun (Camb) 2024; 60:9817-9820. [PMID: 39171397 DOI: 10.1039/d4cc03210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
An organophosphine-controlled diversity-oriented synthesis of chromone inden-1-one-fused cyclopentadienylides and C-acylated 2-((chromone-3-yl)methylene)-indandiones is reported. Key attributes of the methodology are the in situ generation of an allylic P-ylide and subsequent regio- and chemoselective intramolecular cyclization reactions that preferentially result in the aforementioned chromone adducts.
Collapse
Affiliation(s)
- Durga Prasad Gurram
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| | - Gangababu Marri
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| | - Naveen Jothimani
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China.
| |
Collapse
|
15
|
El Bouakher A, Lhoste J, Martel A, Comesse S. 2,3-Epoxyamide-alcohols in Domino Reactions: En Route to Molecular Diversity. ChemistryOpen 2024; 13:e202400115. [PMID: 38752792 DOI: 10.1002/open.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 10/12/2024] Open
Abstract
The synthesis of polycyclic γ- and δ-lactams bearing up to four contiguous fully controlled stereocenters is presented. For that purpose, we developed an original approach based on the use of 2,3-epoxyamides in domino reactions by taking advantage of the nucleophilic nitrogen atom and electrophilic epoxide. In reaction with enol ethers bearing gem bis-electrophiles on the double bond as Michael acceptors, four different reaction pathways were observed. They all started with a domino oxa-Michael/aza-Michael/epoxide opening sequence and depending on substrates engaged could be followed either by a lactonization or a hemiketalization/retro-aldol cascade. Thus, four original fully-substituted piperidine- or pyrrolidine-2-one scaffolds were selectively synthesized in good to high yields. Moreover, these polycyclic lactams were obtained in high stereo- and chemo-selectively highlighting the efficiency and molecular diversity offered by this new methodology that should offer various synthetic opportunities in the future.
Collapse
Affiliation(s)
| | - Jérôme Lhoste
- IMMM, UMR, 6283 CNRS, Le Mans Université, 72085, Le Mans, France
| | - Arnaud Martel
- IMMM, UMR, 6283 CNRS, Le Mans Université, 72085, Le Mans, France
| | - Sébastien Comesse
- Normandie Univ, UNILEHAVRE FR 3038 CNRS, URCOM, 76600, Le Havre, France
| |
Collapse
|
16
|
Das S. Visible-Light-Induced Dearomative Annulation of Indoles toward Stereoselective Formation of Fused- and Spiro Indolines. ACS OMEGA 2024; 9:36023-36042. [PMID: 39220487 PMCID: PMC11360027 DOI: 10.1021/acsomega.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Dearomatization approaches are attractive for their abilities to transform simple, planar arenes into complex, three-dimensional architectures. In particular, visible-light driven dearomatization strategies are significant because of their mild, green, and sustainable nature, enabling the fabrication of new chemical bonds via an electron transfer or energy transfer process. Indole compounds, being potentially bioactive and readily accessible, can be employed efficiently as building blocks for constructing diverse annulated frameworks under photocatalysis. Highly stereoselective radical cascade reactions of appropriate indole systems can provide complex cyclic scaffolds bearing multiple stereocenters. In fact, the past few years have witnessed the renaissance of dearomative cycloadditions of indoles via visible-light-induced photocatalysis. The present review highlights recent advances (2019-mid 2024) in visible-light-driven dearomative annulation of indoles leading to formation of polycyclic indolines, including angularly fused and spiro indolines. Most of the reactions described in this review are simple, providing quick access to the desired products. Additionally, characteristic reaction mechanisms are offered to provide an understand of how indole scaffolds show distinctive reactivity under photocatalytic conditions.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, North 24 Parganas, West Bengal 743165, India
| |
Collapse
|
17
|
Ives RA, Maturi W, Gill MT, Rankine C, McGonigal PR. A guide to bullvalene stereodynamics. Chem Sci 2024; 15:d4sc03700f. [PMID: 39220163 PMCID: PMC11358867 DOI: 10.1039/d4sc03700f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Here, we analyze the stereodynamic properties of bullvalenes using principal moments of inertia and exit vector plots to draw comparisons with commonly used ring systems in medicinal chemistry. To aid analyses, we first classify (i) the four elementary rearrangement steps available to substituted bullvalenes, which (ii) can be described by applying positional descriptors (α, β, γ, and δ) to the substituents. We also (iii) derive an intuitive equation to calculate the number of isomers for a given bullvalene system. Using DFT-modelled structures for di-, tri-, and tetrasubstituted bullvalenes, generated using a newly developed computational tool (bullviso), we show that their 3D shapes and the exit vectors available from the bullvalene scaffold make them comparable to other bioisosteres currently used to replace planar aromatic ring systems in drug discovery. Unlike conventional ring systems, the shapeshifting valence isomerism of bullvalenes gives rise to numerous shapes and substituent relationships attainable as a concentration-independent dynamic covalent library from a single compound. We visualize this property by applying population weightings to the principal moments of inertia and exit vector analyses to reflect the relative thermodynamic stabilities of the available isomers.
Collapse
Affiliation(s)
- Robert A Ives
- Department of Chemistry, University of York Heslington York YO10 5DD UK
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| | - William Maturi
- Department of Chemistry, University of York Heslington York YO10 5DD UK
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| | - Matthew T Gill
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Conor Rankine
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Paul R McGonigal
- Department of Chemistry, University of York Heslington York YO10 5DD UK
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| |
Collapse
|
18
|
Scharnow A, Solinski AE, Rowe S, Drechsel I, Zhang H, Shaw E, Page JE, Wu H, Sieber SA, Wuest WM. In Situ Biofilm Affinity-Based Protein Profiling Identifies the Streptococcal Hydrolase GbpB as the Target of a Carolacton-Inspired Chemical Probe. J Am Chem Soc 2024; 146:23449-23456. [PMID: 39133525 PMCID: PMC11345752 DOI: 10.1021/jacs.4c06658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Natural products are important precursors for antibiotic drug design. These chemical scaffolds serve as synthetic inspiration for chemists who leverage their structures to develop novel antibacterials and chemical probes. We have previously studied carolacton, a natural product macrolactone fromSorangium cellulosum, and discovered a simplified derivative, A2, that maintained apparent biofilm inhibitory activity, although the biological target was unknown. Herein, we utilize affinity-based protein profiling (AfBPP) in situ during biofilm formation to identify the protein target using a photoexcitable cross-linking derivative of A2. From these studies, we identified glucan binding protein B (GbpB), a peptidoglycan hydrolase, as the primary target of A2. Further characterization of the interaction between A2 and GbpB, as well as PcsB, a closely related homologue from the more pathogenic S. pneumoniae, revealed binding to the catalytic CHAP (cysteine, histidine, aminopeptidase) domain. To the best of our knowledge, this is the first report of a small-molecule binder of a conserved and essential bacterial CHAP hydrolase, revealing its potential as an antibiotic target. This work also highlights A2 as a useful tool compound for streptococci and as an initial scaffold for the design of more potent CHAP binders.
Collapse
Affiliation(s)
- Amber
M. Scharnow
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Amy E. Solinski
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sebastian Rowe
- Department
of Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ines Drechsel
- Department
of Chemistry, Center for Functional Protein Assemblies, Technical University of Munich, Garching D-85747, Germany
| | - Hua Zhang
- Departments
of Pediatric Dentistry, Microbiology, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham 35294, Alabama, United States
| | - Elana Shaw
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Julia E. Page
- Department
of Microbiology, Blavatnik Institute, Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Hui Wu
- Departments
of Pediatric Dentistry, Microbiology, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham 35294, Alabama, United States
| | - Stephan A. Sieber
- Department
of Chemistry, Center for Functional Protein Assemblies, Technical University of Munich, Garching D-85747, Germany
| | - William M. Wuest
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Wang MY, Zeng WL, Chen L, Yuan YF, Li W. Umpolung-Enabled Divergent Dearomative Carbonylations. Angew Chem Int Ed Engl 2024; 63:e202403917. [PMID: 38818640 DOI: 10.1002/anie.202403917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Although dearomative functionalizations enable the direct conversion of flat aromatics into precious three-dimensional architectures, the case for simple arenes remains largely underdeveloped owing to the high aromatic stabilization energy. We herein report a dearomative sequential addition of two nucleophiles to arene π-bonds through umpolung of chromium-arene complexes. This mode enables divergent dearomative carbonylation reactions of benzene derivatives by tolerating various nucleophiles in combination with alcohols or amines under CO-gas-free conditions, thus providing modular access to functionalized esters or amides. The tunable synthesis of 1,3- or 1,4-cyclohexadienes as well as the construction of carbon quaternary centers further highlight the versatility of this dearomatization. Diverse late-stage modifications and derivatizations towards synthetically challenging and bioactive molecules reveal the synthetic utility. A possible mechanism was proposed based on control experiments and intermediate tracking.
Collapse
Affiliation(s)
- Ming-Yang Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Long Zeng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Fei Yuan
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
20
|
Selepe MA. Isoflavone Derivatives as Potential Anticancer Agents: Synthesis and Bioactivity Studies. ChemMedChem 2024:e202400420. [PMID: 39091268 DOI: 10.1002/cmdc.202400420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
Isoflavones are phenolic natural compounds with a C6C3C6 framework. They possess a plethora of biological activities that are associated with putative benefits to human health. In particular, the cancer chemopreventive and chemotherapeutic potential of isoflavones has attracted the interest of researchers. Several isoflavone derivatives have been synthesised and probed for their anticancer activities. The isoflavone analogues are mainly synthesised by molecular hybridisation and other strategies that enable diversification through early or late-stage functionalisation of A-, B- and C-rings of the isoflavones. This has resulted in the discovery of isoflavone analogues with improved antiproliferative activities against several cancer cells and different mechanisms of action. In this review, the synthesis of isoflavone derivatives and their anticancer activity studies are discussed.
Collapse
Affiliation(s)
- Mamoalosi A Selepe
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private bag X 20, Hatfield, 0028, South Africa
| |
Collapse
|
21
|
Pantelic L, Skaro Bogojevic S, Andrejević TP, Pantović BV, Marković VR, Ašanin DP, Milanović Ž, Ilic-Tomic T, Nikodinovic-Runic J, Glišić BĐ, Lazic J. Copper(II) and Zinc(II) Complexes with Bacterial Prodigiosin Are Targeting Site III of Bovine Serum Albumin and Acting as DNA Minor Groove Binders. Int J Mol Sci 2024; 25:8395. [PMID: 39125963 PMCID: PMC11313072 DOI: 10.3390/ijms25158395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The negative environmental and social impacts of food waste accumulation can be mitigated by utilizing bio-refineries' approach where food waste is revalorized into high-value products, such as prodigiosin (PG), using microbial bioprocesses. The diverse biological activities of PG position it as a promising compound, but its high production cost and promiscuous bioactivity hinder its wide application. Metal ions can modulate the electronic properties of organic molecules, leading to novel mechanisms of action and increased target potency, while metal complex formation can improve the stability, solubility and bioavailability of the parent compound. The objectives of this study were optimizing PG production through bacterial fermentation using food waste, allowing good quantities of the pure natural product for further synthesizing and evaluating copper(II) and zinc(II) complexes with it. Their antimicrobial and anticancer activities were assessed, and their binding affinity toward biologically important molecules, bovine serum albumin (BSA) and DNA was investigated by fluorescence emission spectroscopy and molecular docking. The yield of 83.1 mg/L of pure PG was obtained when processed meat waste at 18 g/L was utilized as the sole fermentation substrate. The obtained complexes CuPG and ZnPG showed high binding affinity towards target site III of BSA, and molecular docking simulations highlighted the affinity of the compounds for DNA minor grooves.
Collapse
Affiliation(s)
- Lena Pantelic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| | - Tina P. Andrejević
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (T.P.A.); (B.V.P.); (V.R.M.)
| | - Bojana V. Pantović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (T.P.A.); (B.V.P.); (V.R.M.)
| | - Violeta R. Marković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (T.P.A.); (B.V.P.); (V.R.M.)
| | - Darko P. Ašanin
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.P.A.); (Ž.M.)
| | - Žiko Milanović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.P.A.); (Ž.M.)
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| | - Biljana Đ. Glišić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia; (T.P.A.); (B.V.P.); (V.R.M.)
| | - Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia; (L.P.); (S.S.B.); (T.I.-T.); (J.N.-R.)
| |
Collapse
|
22
|
Fan Y, Feng R, Zhang X, Wang ZL, Xiong F, Zhang S, Zhong ZF, Yu H, Zhang QW, Zhang Z, Wang Y, Li G. Encoding and display technologies for combinatorial libraries in drug discovery: The coming of age from biology to therapy. Acta Pharm Sin B 2024; 14:3362-3384. [PMID: 39220863 PMCID: PMC11365444 DOI: 10.1016/j.apsb.2024.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 09/04/2024] Open
Abstract
Drug discovery is a sophisticated process that incorporates scientific innovations and cutting-edge technologies. Compared to traditional bioactivity-based screening methods, encoding and display technologies for combinatorial libraries have recently advanced from proof-of-principle experiments to promising tools for pharmaceutical hit discovery due to their high screening efficiency, throughput, and resource minimization. This review systematically summarizes the development history, typology, and prospective applications of encoding and displayed technologies, including phage display, ribosomal display, mRNA display, yeast cell display, one-bead one-compound, DNA-encoded, peptide nucleic acid-encoded, and new peptide-encoded technologies, and examples of preclinical and clinical translation. We discuss the progress of novel targeted therapeutic agents, covering a spectrum from small-molecule inhibitors and nonpeptidic macrocycles to linear, monocyclic, and bicyclic peptides, in addition to antibodies. We also address the pending challenges and future prospects of drug discovery, including the size of screening libraries, advantages and disadvantages of the technology, clinical translational potential, and market space. This review is intended to establish a comprehensive high-throughput drug discovery strategy for scientific researchers and clinical drug developers.
Collapse
Affiliation(s)
- Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Xinya Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Zhen-Liang Wang
- Geriatric Medicine, First People's Hospital of XinXiang and the Fifth Affiliated Hospital of Xinxiang Medical College, Xinxiang 453100, China
| | - Feng Xiong
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518000, China
| | - Shuihua Zhang
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518000, China
| | - Zhang-Feng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Yu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Department of Pharmacy, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| |
Collapse
|
23
|
Wang X, Gao R, Li X. Catalytic Asymmetric Construction of Chiral Polysubstituted 3-Azabicyclo[3.1.1]heptanes by Copper-Catalyzed Stereoselective Formal [4π+2σ] Cycloaddition. J Am Chem Soc 2024. [PMID: 39011580 DOI: 10.1021/jacs.4c06436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The direct construction of bioisosteric compounds enriched in Csp3 content represents an attractive and dependable approach to imbuing biologically active molecules with enhanced three-dimensional characteristics, finding wide utility across the synthetic and medicinal chemistry community. Despite recent advancements in the synthesis of (aza)-bicyclo[3.1.1]heptanes (BCHeps and aza-BCHeps), which serve as meta-substituted (aza)-arene bioisosteres, the enantioselective assembly of chiral 3-aza-BCHeps remains a coveted goal yet to be achieved. Here, we disclose an unprecedented copper-catalyzed asymmetric formal [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes (BCBs) and azomethine ylides, furnishing a diverse array of enantioenriched 3-aza-BCHeps with exceptional levels of diastereo- and enantioselectivites (51 examples, all >20:1 dr, mostly 97-99% ee). Both mono- and disubstituted BCBs are well compatible with this protocol, offering an enticing route for the efficient synthesis of challenging tetrasubstituted bicyclic products bearing two quaternary centers. The synthetic significance of this methodology is further demonstrated by the successful preparation of several piperidine drug analogues.
Collapse
Affiliation(s)
- Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Rongkai Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Suzhou Institute of Shandong University, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu 215123, China
| |
Collapse
|
24
|
Nothias-Esposito M, Roussi F, Paolini J, Litaudon M, Desrat S. A Fast and Efficient Molecular Networking Approach for Reactivity of Natural Products Exploration in Plant Extracts: Application to Diterpene Esters from Euphorbia dendroides. JOURNAL OF NATURAL PRODUCTS 2024; 87:1574-1581. [PMID: 38789921 DOI: 10.1021/acs.jnatprod.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Natural products represent a rich source of bioactive compounds, covering a large chemical space. Even if challenging, this diversity can be extended by applying chemical modifications. However, these studies generally require multigram amounts of isolated natural products and face frequent testing failures. To overcome this limitation, we propose a rapid and efficient approach that uses molecular networking (MN) to visualize the new chemical diversity generated by simple chemical modifications of natural extracts. Moreover, the strategy deployed enables the most appropriate reagents to be defined quickly upstream of a reaction on a pure compound, in order to maximize chemical diversity. This methodology was applied to the latex extract of Euphorbia dendroides to follow the reactivity toward a series of Brønsted and Lewis acids of three class of diterpene esters identified in this species: jatrophane, terracinolide, and phorbol. Through the molecular networking interpretation, with the aim to illustrate our approach, BF3·OEt2 was selected for chemical modification on isolated jatrophane esters. Three rearranged compounds (3-5) were obtained, showing that the most appropriate reagents can be selected by MN interpretation.
Collapse
Affiliation(s)
- Mélissa Nothias-Esposito
- Laboratory of Natural Products Chemistry, UMR CNRS SPE 6134, University of Corsica, 20250 Corte, France
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Fanny Roussi
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Julien Paolini
- Laboratory of Natural Products Chemistry, UMR CNRS SPE 6134, University of Corsica, 20250 Corte, France
| | - Marc Litaudon
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Sandy Desrat
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
25
|
Bokam R, Munipalle K, Appa Rao Annam SCV, Gundoju N, Raju Chowhan L, Ponnapalli MG. A one-pot ultrasound-assisted regio and stereoselective synthesis of indenoquinoxaline engrafted spiropyrrolidines. Org Biomol Chem 2024; 22:5150-5158. [PMID: 38856015 DOI: 10.1039/d4ob00288a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A catalyst free ultrasound-assisted regio-/stereoselective modular approach was accomplished for the synthesis of highly constrained indenoquinoxaline engrafted spiro pyrrolidines from easily available substrates. This one-pot strategy utilizes 1,3-dipolar cycloaddition from a four component reaction of ninhydrin, 1,2-phenylenediamine, β-nitrostyrene and benzylamine or amino acids under ultrasound irradiation. The transformation is mild and operationally simple, providing architecturally complex fused spiro polycyclic heterocycles. This synthesis was confined to follow the group-assistant-purification (GAP) chemistry process, which can avoid chromatographic purifications and use of catalysts and allows easy access to a novel class of spiro engrafted polyheterocyclic scaffolds, which may be beneficial in biomedical research/materials science in the near future. This opens an era for the formation of a single exo product, when compared with reported protocols, by merely switching over reaction conditions to US irradiation.
Collapse
Affiliation(s)
- Ramesh Bokam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
| | - Kiran Munipalle
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Ch V Appa Rao Annam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
| | - Narayanarao Gundoju
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
| | - L Raju Chowhan
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mangala Gowri Ponnapalli
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
26
|
Jin YH, Wang XP, Ning LW, Wang RJ, Li Y, Zhang Y, Chen LY. Organocatalyzed Asymmetric Michael Addition of 3-Fluorooxindole to Vinylidene Bisphosphonates. J Org Chem 2024; 89:8435-8446. [PMID: 38843406 DOI: 10.1021/acs.joc.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Both the 3-fluorooxindole and germinal bisphosphonate structural motifs are prevalent in bioactive molecules because of their associated biological activities. We describe an approach to accessing 3,3-disubstituted 3-fluorooxindoles bearing a geminal bisphosphate fragment through a highly enantioselective Michael addition reaction between 3-fluorooxindoles and vinylidene bisphosphonates. These reactions are catalyzed by a commercially available cinchona alkaloid catalyst, have a broad substrate scope concerning 3-fluorooxindoles, and provide the corresponding addition products in a yield of up to 95% with an enantiomeric excess of up to 95%. A reasonable reaction pathway to explain the observed stereochemistry is also proposed.
Collapse
Affiliation(s)
- Yi-Hu Jin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Xiao-Ping Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Li-Wen Ning
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Ren-Jie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Ya Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Youcan Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Ling-Yan Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| |
Collapse
|
27
|
Belikov MY, Milovidova AG, Ievlev MY, Fedoseev SV. Synthesis of the first 4-oxobutane-1,1,2,2-tetracarbonitriles containing a phenol fragment and their transformation into cyano-substituted pyrrol-2-ones showing three-position molecular switching. Org Biomol Chem 2024; 22:4757-4765. [PMID: 38804092 DOI: 10.1039/d4ob00612g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The first example of the synthesis of 4-oxobutane-1,1,2,2-tetracarbonitriles (OTCs) containing a phenolic moiety has been described. The synthesis is based on the reaction between tetracyanoethylene and 4-hydroxyphenyl-substituted ketones under mild conditions. Due to the presence of a phenolic hydroxyl group, these compounds are more functionalized derivatives of the well-known OTC substrates used for diversity-oriented synthesis (DOS). The preserved synthetic potential of the OTCs for the preparation of phenol-containing derivatives with enhanced capabilities for tuning optical properties has been shown using the targeted synthesis of 2-(2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)malononitriles. Based on the obtained pyrroles and a model amine (pyrrolidine) a previously unknown type of thermosensitive three-position molecular switch is described. Reversible color changes of the dye are shown in both solution and on filter paper. The results reveal a new research branch of the OTC-based DOS strategy to access functionalized phenol-containing derivatives.
Collapse
Affiliation(s)
- Mikhail Yu Belikov
- Ulyanov Chuvash State University, Moskovsky pr., 15, Cheboksary, Russia.
| | | | - Mikhail Yu Ievlev
- Ulyanov Chuvash State University, Moskovsky pr., 15, Cheboksary, Russia.
| | - Sergey V Fedoseev
- Ulyanov Chuvash State University, Moskovsky pr., 15, Cheboksary, Russia.
| |
Collapse
|
28
|
Harada Y, Maeda S, Shen J, Misonou T, Hori H, Nakamura S. Regression Study of Odorant Chemical Space, Molecular Structural Diversity, and Natural Language Description. ACS OMEGA 2024; 9:25054-25062. [PMID: 38882175 PMCID: PMC11170723 DOI: 10.1021/acsomega.4c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Odor is analyzed on the human olfactometry systems in various steps. The mapping from chemical structures to olfactory perceptions of smell is an extremely challenging task. Scientists have been unable to find a measure to distinguish the perceptual similarity between odorants. In this study, we report regression analysis and visualization based on the odorant chemical space. We discuss the relation between the odor descriptors and their structural diversity for odorants groups associated with each odor descriptor. We studied the influence of structural diversity on the odor descriptor predictability. The results suggest that the diversity of molecular structures, which is associated with the same odor descriptor, is related to the resolutional confusion with the odor descriptor.
Collapse
Affiliation(s)
- Yuki Harada
- Priority Organization for Innovation and Excellence Laboratory for Data Sciences, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shuichi Maeda
- Priority Organization for Innovation and Excellence Laboratory for Data Sciences, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Junwei Shen
- Priority Organization for Innovation and Excellence Laboratory for Data Sciences, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Taku Misonou
- Emeritus Professors of University of Yamanashi, Takeda 4-4-37, Kofu 400-8510, Japan
| | - Hirokazu Hori
- Emeritus Professors of University of Yamanashi, Takeda 4-4-37, Kofu 400-8510, Japan
| | - Shinichiro Nakamura
- Priority Organization for Innovation and Excellence Laboratory for Data Sciences, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
29
|
Huang YT, Huang WW, Huang YT, Chen HR, Barve IJ, Sun CM. Substrate-Controlled Divergent Synthesis of Benzimidazole-Fused Quinolines and Spirocyclic Benzimidazole-Fused Isoindoles. J Org Chem 2024; 89:7513-7520. [PMID: 38722245 PMCID: PMC11165576 DOI: 10.1021/acs.joc.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
A Rh(III)-catalyzed annulation of 2-arylbenzimidazoles with α-diazo carbonyl compounds via C-H activation/carbene insertion/intramolecular cyclization is explored. The switchable product selectivity is achieved by the use of distinct α-diazo carbonyl compounds. Benzimidazole-fused quinolines are obtained through [4 + 2] annulation exclusively when 2-diazocyclohexane-1,3-diones are used, where they act as a C2 synthon. Alternatively, diazonaphthalen-1(2H)-ones merely function as a one-carbon unit synthon to generate a quaternary center through [4 + 1] cyclization to afford spirocyclic benzimidazole-fused isoindole naphthalen-2-ones. A thorough mechanistic study reveals the course of the reaction.
Collapse
Affiliation(s)
- Ying-Ti Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
| | - Wan-Wen Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
| | - Yi-Ting Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
| | - Hong-Ren Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
| | - Indrajeet J. Barve
- Department
of Chemistry, MES Abasaheb Garware College, Pune 411004, Maharashtra India
| | - Chung-Ming Sun
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, 100,
Shih-Chuan first Road, Kaohsiung 807-08, Taiwan ROC
| |
Collapse
|
30
|
Otsuka H, Nakai K, Shimizu E, Yamaguchi T, Yamano M, Sasaki H, Koyama K, Kinoshita K. Photoreaction products of extract from the fruiting bodies of Polyozellus multiplex. J Nat Med 2024; 78:547-557. [PMID: 38509426 DOI: 10.1007/s11418-024-01790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Photochemical reactions are powerful tools for synthesizing organic molecules. The input of energy provided by light offers a means to produce strained and unique molecules that cannot be assembled using thermal protocols, allowing for the production of immense molecular complexity in a single chemical step. Furthermore, unlike thermal reactions, photochemical reactions do not require active reagents such as acids, bases, metals, or enzymes. Photochemical reactions play a central role in green chemistry. This article reports the isolation and structure determination of four new compounds (1-4) from the photoreaction products of the Polyozellus multiplex MeOH ext. The structures of the new compounds were elucidated using MS, IR, comprehensive NMR measurements and microED. The four compounds were formed by deacetylation of polyozellin, the main secondary metabolite of P. multiplex, and addition of singlet oxygen generated by sunlight. To develop drugs for treating Alzheimer's disease (AD) on the basis of the amyloid cascade hypothesis, the compounds (1-4) obtained by photoreaction were evaluated for BACE1 inhibitory activity. The hydrolysates (5 and 6) of polyozellin, the main secondary metabolites of P. multiplex, were also evaluated. The photoreaction products (3 and 4) and hydrolysates (5 and 6) of polyozellin showed BACE1 inhibitory activity (IC50: 2.2, 16.4, 23.3, and 5.3 μM, respectively).
Collapse
Affiliation(s)
- Hayato Otsuka
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Keiyo Nakai
- Department of Chemistry, Chemical R&D Laboratory, SPERA PHARMA, Inc, 17-85, Jusohonmachi 2-Chome, Yodogawa-Ku, Osaka, 532-0024, Japan
| | - Emi Shimizu
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Takamasa Yamaguchi
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Mitsuhisa Yamano
- Department of Chemistry, Chemical R&D Laboratory, SPERA PHARMA, Inc, 17-85, Jusohonmachi 2-Chome, Yodogawa-Ku, Osaka, 532-0024, Japan
| | - Hiroaki Sasaki
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Kiyotaka Koyama
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Kaoru Kinoshita
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan.
| |
Collapse
|
31
|
Kaveti B, Rentería-Gómez MA, Corona-Díaz A, Pharande SG, Rentería-Gómez Á, Gámez-Montaño R. Isocyanide-Based Multicomponent Reactions Coupled One-Pot Process: Efficient Tools to Diversity-Oriented Synthesis of Structural Peptidomimetics. Chempluschem 2024; 89:e202300633. [PMID: 38350019 DOI: 10.1002/cplu.202300633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/15/2024]
Abstract
Multicomponent diversity-oriented synthesis (DOS) of conformationally anchored structural peptidomimetics like 2,5-diketopiperazines (2,5-DKP) containing heterocyclic bioisosteres of the amide bond, such as 1,2,3-triazoles and 1,5-disubstituted tetrazoles (1,5-DS-T) is described. Structural peptidomimetics are synthesized from similar available starting materials, via a strategy based on isocyanide-based multicomponent reactions (IMCRs): Ugi-4CR and Ugi-Azide (UA), followed by a one-pot process: SN2/intramolecular alkyne-azide cycloaddition (IAAC). The sequential aligning of two powerful synthetic tools (IMCR and IAAC) has parallelly contributed to generate anchored conformation and complexity in target molecules, which are considered structural peptidomimetics of 2,5-DKP. Herein, the 1,2,3-triazole ring plays a key role in the preference for the boat conformation. Furthermore, the use of UA reaction generates scaffold diversity at the N-1 α-carbon of the pyrazinone ring, replacing a linear amide bond with a heterocyclic bioisostere such as 1,5-DS-T leading to the synthesis of novel tricyclic peptidomimetics. The DFT calculations confirmed the boat conformation of the synthesized molecules.
Collapse
Affiliation(s)
- Bhavna Kaveti
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P., 36050, Gto., México
| | - Manuel A Rentería-Gómez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P., 36050, Gto., México
| | - Alejandro Corona-Díaz
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P., 36050, Gto., México
| | - Shrikant G Pharande
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P., 36050, Gto., México
| | - Ángel Rentería-Gómez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P., 36050, Gto., México
| | - Rocío Gámez-Montaño
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P., 36050, Gto., México
| |
Collapse
|
32
|
Huang Y, Li X, Mai BK, Tonogai EJ, Smith AJ, Hergenrother PJ, Liu P, Hoveyda AH. A catalytic process enables efficient and programmable access to precisely altered indole alkaloid scaffolds. Nat Chem 2024; 16:1003-1014. [PMID: 38374457 PMCID: PMC11328697 DOI: 10.1038/s41557-024-01455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024]
Abstract
A compound's overall contour impacts its ability to elicit biological response, rendering access to distinctly shaped molecules desirable. A natural product's framework can be modified, but only if it is abundant and contains suitably modifiable functional groups. Here we introduce a programmable strategy for concise synthesis of precisely altered scaffolds of scarce bridged polycyclic alkaloids. Central to our approach is a scalable catalytic multi-component process that delivers diastereo- and enantiomerically enriched tertiary homoallylic alcohols bearing differentiable alkenyl moieties. We used one product to launch progressively divergent syntheses of a naturally occurring alkaloid and its precisely expanded, contracted and/or distorted framework analogues (average number of steps/scaffold of seven). In vitro testing showed that a skeleton expanded by one methylene in two regions is cytotoxic against four types of cancer cell line. Mechanistic and computational studies offer an account for several unanticipated selectivity trends.
Collapse
Affiliation(s)
- Youming Huang
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Xinghan Li
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily J Tonogai
- Department of Chemistry, Carl Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Amanda J Smith
- Department of Chemistry, Carl Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Paul J Hergenrother
- Department of Chemistry, Carl Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois, Urbana, IL, USA.
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amir H Hoveyda
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France.
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
33
|
Horst B, van Duijnen N, Janssen E, Hansen T, Ruijter E. Modular Divergent Synthesis of Indole Alkaloid Derivatives by an Atypical Ugi Multicomponent Reaction. Chemistry 2024; 30:e202400477. [PMID: 38498145 DOI: 10.1002/chem.202400477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
We present an Ugi multicomponent approach to explore the chemical space around Aspidosperma-type monoterpene indole alkaloids. By variation of the isocyanide and carboxylic acid inputs we demonstrate the rapid generation of molecular diversity and the possibility to introduce handles for further modification. The key Ugi three-component reaction showed full diastereoselectivity towards the cis-fused ring system, which can be rationalized by DFT calculations that moreover indicate that the reaction proceeds via a Passerini-type hydrogen bonding mechanism. Several post-Ugi modifications were also performed, including Pictet-Spengler cyclization to highly complex nonacyclic natural product hybrid scaffolds.
Collapse
Affiliation(s)
- Brendan Horst
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Niels van Duijnen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Elwin Janssen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Thomas Hansen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| |
Collapse
|
34
|
Liu Z, Fang S, Li H, Xiao C, Xiao K, Su Z, Wang T. Organocatalytic skeletal reorganization for enantioselective synthesis of S-stereogenic sulfinamides. Nat Commun 2024; 15:4348. [PMID: 38777853 PMCID: PMC11111665 DOI: 10.1038/s41467-024-48727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The enantioselective synthesis of S-stereogenic sulfinamides has garnered considerable attention due to their structural and physicochemical properties. However, catalytic asymmetric synthesis of sulfinamides still remains daunting challenges, impeding their broad application in drug discovery and development. Here, we present an approach for the synthesis of S-stereogenic sulfinamides through peptide-mimic phosphonium salt-catalyzed asymmetric skeletal reorganization of simple prochiral and/or racemic sulfoximines. This methodology allows for the facile access to a diverse array of substituted sulfinamides with excellent enantioselectivities, accommodating various substituent patterns through desymmetrization or parallel kinetic resolution process. Mechanistic experiments, coupled with density functional theory calculations, clarify a stepwise pathway involving ring-opening and ring-closing processes, with the ring-opening step identified as crucial for achieving stereoselective control. Given the prevalence of S-stereogenic centers in pharmaceuticals, we anticipate that this protocol will enhance the efficient and precise synthesis of relevant chiral molecules and their analogs, thereby contributing to advancements in drug discovery.
Collapse
Affiliation(s)
- Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610041, Chengdu, P. R. China
| | - Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610041, Chengdu, P. R. China
| | - Haoze Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610041, Chengdu, P. R. China
| | - Chunxiu Xiao
- Precision Medicine Research Center & Sichuan Provincial Key Laboratory of Precision Medicine, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Kai Xiao
- Precision Medicine Research Center & Sichuan Provincial Key Laboratory of Precision Medicine, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610041, Chengdu, P. R. China.
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610041, Chengdu, P. R. China.
- Beijing National Laboratory for Molecular Sciences, 100190, Beijing, China.
| |
Collapse
|
35
|
Shamsi A, Shahwan M, Anwar S, Ashames A, Khan MS, Yadav DK. Understanding the interactions between repurposed drugs sertindole and temoporfin with receptor for advanced glycation endproducts: Therapeutic implications in cancer and metabolic diseases. J Mol Model 2024; 30:170. [PMID: 38753123 DOI: 10.1007/s00894-024-05967-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
CONTEXT In the pursuit of novel therapeutic possibilities, repurposing existing drugs has gained prominence as an efficient strategy. The findings from our study highlight the potential of repurposed drugs as promising candidates against receptor for advanced glycation endproducts (RAGE) that offer therapeutic implications in cancer, neurodegenerative conditions and metabolic syndromes. Through careful analyses of binding affinities and interaction patterns, we identified a few promising candidates, ultimately focusing on sertindole and temoporfin. These candidates exhibited exceptional binding affinities, efficacy, and specificity within the RAGE binding pocket. Notably, they displayed a pronounced propensity to interact with the active site of RAGE. Our investigation further revealed that sertindole and temoporfin possess desirable pharmacological properties that highlighted them as attractive candidates for targeted drug development. Overall, our integrated computational approach provides a comprehensive understanding of the interactions between repurposed drugs, sertindole and temoporfin and RAGE that pave the way for future experimental validation and drug development endeavors. METHODS We present an integrated approach utilizing molecular docking and extensive molecular dynamics (MD) simulations to evaluate the potential of FDA-approved drugs, sourced from DrugBank, against RAGE. To gain deeper insights into the binding mechanisms of the elucidated candidate repurposed drugs, sertindole and temoporfin with RAGE, we conducted extensive all-atom MD simulations, spanning 500 nanoseconds (ns). These simulations elucidated the conformational dynamics and stability of the RAGE-sertindole and RAGE-temoporfin complexes.
Collapse
Affiliation(s)
- Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Akram Ashames
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
36
|
Lystsova EA, Novokshonova AD, Khramtsov PV, Novikov AS, Dmitriev MV, Maslivets AN, Khramtsova EE. Reaction of Pyrrolobenzothiazines with Schiff Bases and Carbodiimides: Approach to Angular 6/5/5/5-Tetracyclic Spiroheterocycles. Molecules 2024; 29:2089. [PMID: 38731580 PMCID: PMC11085407 DOI: 10.3390/molecules29092089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
1H-Pyrrole-2,3-diones, fused at [e]-side with a heterocycle, are suitable platforms for the synthesis of various angular polycyclic alkaloid-like spiroheterocycles. Recently discovered sulfur-containing [e]-fused 1H-pyrrole-2,3-diones (aroylpyrrolobenzothiazinetriones) tend to exhibit unusual reactivity. Based on these peculiar representatives of [e]-fused 1H-pyrrole-2,3-diones, we have developed an approach to an unprecedented 6/5/5/5-tetracyclic alkaloid-like spiroheterocyclic system of benzo[d]pyrrolo[3',4':2,3]pyrrolo[2,1-b]thiazole via their reaction with Schiff bases and carbodiimides. The experimental results have been supplemented with DFT computational studies. The synthesized alkaloid-like 6/5/5/5-tetracyclic compounds have been tested for their biotechnological potential as growth stimulants in the green algae Chlorella vulgaris.
Collapse
Affiliation(s)
- Ekaterina A. Lystsova
- Department of Chemistry, Perm State University, ul. Bukireva, 15, 614990 Perm, Russia; (E.A.L.); (M.V.D.); (A.N.M.)
| | - Anastasia D. Novokshonova
- Department of Biology, Perm State University, ul. Bukireva, 15, 614990 Perm, Russia; (A.D.N.); (P.V.K.)
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, The Ural Branch of Russian Academy of Sciences, ul. Goleva, 13, 614081 Perm, Russia
| | - Pavel V. Khramtsov
- Department of Biology, Perm State University, ul. Bukireva, 15, 614990 Perm, Russia; (A.D.N.); (P.V.K.)
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, The Ural Branch of Russian Academy of Sciences, ul. Goleva, 13, 614081 Perm, Russia
| | - Alexander S. Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), ul. Miklukho-Maklaya, 6, 117198 Moscow, Russia
| | - Maksim V. Dmitriev
- Department of Chemistry, Perm State University, ul. Bukireva, 15, 614990 Perm, Russia; (E.A.L.); (M.V.D.); (A.N.M.)
| | - Andrey N. Maslivets
- Department of Chemistry, Perm State University, ul. Bukireva, 15, 614990 Perm, Russia; (E.A.L.); (M.V.D.); (A.N.M.)
| | - Ekaterina E. Khramtsova
- Department of Chemistry, Perm State University, ul. Bukireva, 15, 614990 Perm, Russia; (E.A.L.); (M.V.D.); (A.N.M.)
| |
Collapse
|
37
|
Shields JD, Howells R, Lamont G, Leilei Y, Madin A, Reimann CE, Rezaei H, Reuillon T, Smith B, Thomson C, Zheng Y, Ziegler RE. AiZynth impact on medicinal chemistry practice at AstraZeneca. RSC Med Chem 2024; 15:1085-1095. [PMID: 38665822 PMCID: PMC11042116 DOI: 10.1039/d3md00651d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 04/28/2024] Open
Abstract
AstraZeneca chemists have been using the AI retrosynthesis tool AiZynth for three years. In this article, we present seven examples of how medicinal chemists using AiZynth positively impacted their drug discovery programmes. These programmes run the gamut from early-stage hit confirmation to late-stage route optimisation efforts. We also discuss the different use cases for which AI retrosynthesis tools are best suited.
Collapse
Affiliation(s)
- Jason D Shields
- Early Oncology R&D, AstraZeneca 35 Gatehouse Drive Waltham MA 02451 USA
| | - Rachel Howells
- Early Oncology R&D, AstraZeneca 1 Francis Crick Avenue Cambridge CB2 0AA UK
| | - Gillian Lamont
- Early Oncology R&D, AstraZeneca 1 Francis Crick Avenue Cambridge CB2 0AA UK
| | - Yin Leilei
- Pharmaron Beijing Co., Ltd. 6 Taihe Road BDA Beijing 100176 P.R. China
| | - Andrew Madin
- Discovery Sciences, AstraZeneca 1 Francis Crick Avenue Cambridge CB2 0AA UK
| | | | - Hadi Rezaei
- Early Oncology R&D, AstraZeneca 35 Gatehouse Drive Waltham MA 02451 USA
| | - Tristan Reuillon
- Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca Pepparedsleden 1 43183 Mölndal Sweden
| | - Bryony Smith
- Early Oncology R&D, AstraZeneca 1 Francis Crick Avenue Cambridge CB2 0AA UK
| | - Clare Thomson
- Early Oncology R&D, AstraZeneca 1 Francis Crick Avenue Cambridge CB2 0AA UK
| | - Yuting Zheng
- Pharmaron Beijing Co., Ltd. 6 Taihe Road BDA Beijing 100176 P.R. China
| | - Robert E Ziegler
- Early Oncology R&D, AstraZeneca 35 Gatehouse Drive Waltham MA 02451 USA
| |
Collapse
|
38
|
Xiang G, Wang Y, Lu L, Zhang X, Huang Q. Diversity-Oriented Synthesis of Indole-Fused Polycyclic Scaffolds via Rhodium-Catalyzed NH-Indole-Directed C-H Coupling of 2-Phenyl-1 H-indoles with Propargylic Alcohol Derivatives. J Org Chem 2024; 89:5589-5605. [PMID: 38576240 DOI: 10.1021/acs.joc.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Diversity-oriented synthesis strategy for the efficient assembly of indole-fused polycyclic scaffolds via rhodium-catalyzed NH-indole-directed C-H coupling with propargylic alcohol derivatives in a regioselective manner was developed. Five 2-phenyl-1H-indole-embedded core skeletons were synthesized. In particular, three different indole-fused exo-olefin-containing polycycles were realized, which may be manipulated for further chemistry.
Collapse
Affiliation(s)
- Guijiao Xiang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Yanqiao Wang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Leipeng Lu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
39
|
Khalifa H, Rasheed S, Haupenthal J, Herrmann J, Mandour YM, Abadi AH, Engel M, Müller R, Hirsch AKH, Abdel-Halim M, Hamed MM. Development and evaluation of 2,4-disubstituted-5-aryl pyrimidine derivatives as antibacterial agents. Arch Pharm (Weinheim) 2024; 357:e2300656. [PMID: 38304944 DOI: 10.1002/ardp.202300656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Designing novel candidates as potential antibacterial scaffolds has become crucial due to the lack of new antibiotics entering the market and the persistent rise in multidrug resistance. Here, we describe a new class of potent antibacterial agents based on a 5-aryl-N2,N4-dibutylpyrimidine-2,4-diamine scaffold. Structural optimization focused on the 5-aryl moiety and the bioisosteric replacement of the side chain linker atom. Screening of the synthesized compounds focused on a panel of bacterial strains, including gram-positive Staphylococcus aureus strains (Newman MSSA, methicillin- and vancomycin-resistant), and the gram-negative Escherichia coli (ΔAcrB strain). Several compounds showed broad-spectrum antibacterial activity with compound 12, bearing a 4-chlorophenyl substituent, being the most potent among this series of compounds. This frontrunner compound revealed a minimum inhibitory concentration (MIC) value of 1 µg/mL against the S. aureus strain (Mu50 methicillin-resistant S. aureus/vancomycin-intermediate S. aureus) and an MIC of 2 µg/mL against other tested strains. The most potent derivatives were further tested against a wider panel of bacteria and evaluated for their cytotoxicity, revealing further potent activities toward Streptococcus pneumoniae, Enterococcus faecium, and Enterococcus faecalis. To explore the mode of action, compound 12 was tested in a macromolecule inhibition assay. The obtained data were supported by the safety profile of compound 12, which possessed an IC50 of 12.3 µg/mL against HepG2 cells. The current results hold good potential for a new class of extended-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Hend Khalifa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Saarbrucken, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Saarbrucken, Germany
| | - Yasmine M Mandour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Saarbrucken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz International Lab for Anti-infectives, Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Saarbrucken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz International Lab for Anti-infectives, Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken, Germany
| |
Collapse
|
40
|
Lee H, Kim J, Koh M. Medium-Sized Ring Expansion Strategies: Enhancing Small-Molecule Library Development. Molecules 2024; 29:1562. [PMID: 38611841 PMCID: PMC11013129 DOI: 10.3390/molecules29071562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The construction of a small molecule library that includes compounds with medium-sized rings is increasingly essential in drug discovery. These compounds are essential for identifying novel therapeutic agents capable of targeting "undruggable" targets through high-throughput and high-content screening, given their structural complexity and diversity. However, synthesizing medium-sized rings presents notable challenges, particularly with direct cyclization methods, due to issues such as transannular strain and reduced degrees of freedom. This review presents an overview of current strategies in synthesizing medium-sized rings, emphasizing innovative approaches like ring-expansion reactions. It highlights the challenges of synthesis and the potential of these compounds to diversify the chemical space for drug discovery, underscoring the importance of medium-sized rings in developing new bioactive compounds.
Collapse
Affiliation(s)
- Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea;
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
41
|
Ohno I, Kanemoto K, Furuya S, Suzuki Y, Fukuzawa SI. Construction of Diverse Pyrrolidine-Based Skeletons through the Ag-Catalyzed Stereoselective Addition-Elimination Reaction of Azomethine Ylides with Nitroallyl Acetates. Org Lett 2024; 26:1880-1885. [PMID: 38417450 DOI: 10.1021/acs.orglett.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Because scaffold diversity has a pronounced impact on biological screening, the efficient and expedient construction of skeletally diverse compound collections is a fundamental demand in drug discovery. In this regard, we report here an asymmetric tandem conjugate addition-elimination reaction of pyrroline esters with nitroallyl acetates and its application to the construction of various types of fused or spirocyclic pyrrolidines. A AgOAc/(R,Sp)-ThioClickFerrophos (TCF) catalyst efficiently promotes the addition-elimination reaction, setting vicinal chiral stereocenters featuring a tetrasubstituted carbon with excellent enantio- and diastereoselectivity while leaving the versatile nitroolefin moiety. The broad substrate scope of this reaction and the transformability of the resulting nitroolefin, imine, and ester moieties allow for the construction of diverse pyrrolidine-based fused or spiro bicyclic skeletons in optically active forms by various intramolecular cyclization processes.
Collapse
Affiliation(s)
- Itsuki Ohno
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuya Kanemoto
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shohei Furuya
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuko Suzuki
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Shin-Ichi Fukuzawa
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
42
|
Yan Q, Zhuang Z, Fan R, Wang J, Yao T, Tan J. Access to N-Aryl (Iso)quinolones via Aryne-Induced Three-Component Coupling Reaction. Org Lett 2024; 26:1840-1844. [PMID: 38412291 DOI: 10.1021/acs.orglett.3c04385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
N-Aryl (iso)quinolones are of increasing interest in material and medicinal chemistry, although general routes for their provision remain underexplored, especially when compared with its N-alkyl counterparts. Herein, we report a modular and transition-metal-free, aryne-induced three-component coupling protocol that allows the facile synthesis of structurally diverse N-aryl (iso)quinolones from readily accessible halo-(iso)quinolines in the presence of water. Preliminary results highlight the applicability of our method through scale-up synthesis, downstream derivatization, and flexible synthesis involving other types of aryne precursors.
Collapse
Affiliation(s)
- Qiang Yan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhe Zhuang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Rong Fan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Jingwen Wang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Tuanli Yao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiajing Tan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
43
|
Zhang M, Zheng Y, Jin Y, Jiang H, Wu W. Palladium-catalyzed ligand-regulated divergent synthesis of pyrrole[2,3- b]indoles and ureas from 2-ethynylanilines and isocyanides. Chem Commun (Camb) 2024; 60:2950-2953. [PMID: 38375635 DOI: 10.1039/d3cc05387c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Herein, a palladium-catalyzed and ligand-controlled protocol for the divergent synthesis of pyrrole[2,3-b]indole and urea derivatives has been described. Pyrrole[2,3-b]indoles ("cyclization on" products) via tandem cyclization of o-alkynylanilines with isocyanides in the absence of a ligand and ureas ("cyclization off" products) via oxidative amination of anilines with isocyanides in the presence of a ligand were obtained both in moderate to good yields with high selectivity. In this chemistry, cyclic and acyclic products were easily accessed with the same starting materials under the regulation of the ligand.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yongpeng Zheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yangbin Jin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
44
|
Han W, Xu X, Fan Q, Yan Y, Zhang Y, Chen Y, Liu H. In silico construction of a focused fragment library facilitating exploration of chemical space. Mol Inform 2024; 43:e202300256. [PMID: 38193642 DOI: 10.1002/minf.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 01/06/2024] [Indexed: 01/10/2024]
Abstract
Fragment-based drug design (FBDD) has emerged as a captivating subject in the realm of computer-aided drug design, enabling the generation of novel molecules through the rearrangement of ring systems within known compounds. The construction of focused fragment library plays a pivotal role in FBDD, necessitating the compilation of all potential bioactive ring systems capable of interacting with a specific target. In our study, we propose a workflow for the development of a focused fragment library and combinatorial compound library. The fragment library comprises seed fragments and collected fragments. The extraction of seed fragments is guided by receptor information, serving as a prerequisite for establishing a focused libraries. Conversely, collected fragments are obtained using the feature graph method, which offers a simplified representation of fragments and strikes a balance between diversity and similarity when categorizing different fragments. The utilization of feature graph facilitates the rational partitioning of chemical space at fragment level, enabling the exploration of desired chemical space and enhancing the efficiency of screening compound library. Analysis demonstrates that our workflow enables the enumeration of a greater number of entirely new potential compounds, thereby aiding in the rational design of drugs.
Collapse
Affiliation(s)
- Weijie Han
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Xiaohe Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Qing Fan
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yingchao Yan
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - YanMin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| |
Collapse
|
45
|
Splandesci M, Wróbel MZ, Madura ID, Dawidowski M. Ugi 5-center-4-component reaction of α-amino aldehydes and its application in synthesis of 2-oxopiperazines. Mol Divers 2024; 28:229-248. [PMID: 38104301 PMCID: PMC10876754 DOI: 10.1007/s11030-023-10760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
A synthetic route leading to densely functionalized 2-oxopiperazines is presented. The strategy employs a 5-center-4-component variant of Ugi multicomponent reaction followed by a deprotection/cyclization sequence. N-Boc-α-amino aldehydes were used for the first time as carbonyl components in a key Ugi 5-center-4-component reaction (U-5C-4CR). It is shown that the presented synthetic route can lead to rigid, heterocyclic scaffolds, as demonstrated by the synthesis of tetrahydro-2H-pyrazino[1,2-a]pyrazine-3,6,9(4H)-trione β-turn mimetic and derivatives of 1,6-dioxooctahydropyrrolo[1,2-a]pyrazine and 3,8-dioxohexahydro-3H-oxazolo[3,4-a]pyrazine.
Collapse
Affiliation(s)
- Marta Splandesci
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Martyna Z Wróbel
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Izabela D Madura
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland.
| |
Collapse
|
46
|
Dobrydnev AV, Popova MV, Volovenko YM. Cyclic Sulfinamides. CHEM REC 2024; 24:e202300221. [PMID: 37594737 DOI: 10.1002/tcr.202300221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The literature on cyclic sulfinamides (put simply, sultims) published from 1989 to 2022 has been summarized and reviewed. The information is divided into two sections: the analysis of synthetic methods on the preparation of cyclic sulfinamides and the discussion of the chemical properties of cyclic sulfinamides focusing on their reactions and applications. The survey of the reaction conditions, provided in the most detailed way, and a critical view of the reaction mechanisms add an extra dimension to the text. The data presented will be useful to specialists in different areas, especially those who work in the field of synthetic organic and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Alexey V Dobrydnev
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01033, Ukraine
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine
| | - Maria V Popova
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01033, Ukraine
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Yulian M Volovenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01033, Ukraine
| |
Collapse
|
47
|
Stanković M, Kljun J, Stevanović NL, Lazic J, Skaro Bogojevic S, Vojnovic S, Zlatar M, Nikodinovic-Runic J, Turel I, Djuran MI, Glišić BĐ. Silver(I) complexes containing antifungal azoles: significant improvement of the anti- Candida potential of the azole drug after its coordination to the silver(I) ion. Dalton Trans 2024; 53:2218-2230. [PMID: 38193719 DOI: 10.1039/d3dt03010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Inspired by the emergence of resistance to currently available antifungal therapy and by the great potential of metal complexes for the treatment of various diseases, we synthesized three new silver(I) complexes containing clinically used antifungal azoles as ligands, [Ag(ecz)2]SbF6 (1, ecz is econazole), {[Ag(vcz)2]SbF6}n (2, vcz is voriconazole), and [Ag(ctz)2]SbF6 (3, ctz is clotrimazole), and investigated their antimicrobial properties. The synthesized complexes were characterized by mass spectrometry, IR, UV-vis and 1H NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction analysis. In the mononuclear complexes 1 and 3 with ecz and ctz, respectively, the silver(I) ion has the expected linear geometry, in which the azoles are monodentately coordinated to this metal center through the N3 imidazole nitrogen atom. In contrast, the vcz-containing complex 2 has a polymeric structure in the solid state in which the silver(I) ions are coordinated by four nitrogen atoms in a distorted tetrahedral geometry. DFT calculations were done to predict the most favorable structures of the studied complexes in DMSO solution. All the studied silver(I) complexes have shown excellent antifungal and good to moderate antibacterial activities with minimal inhibitory concentration (MIC) values in the ranges of 0.01-27.1 and 2.61-47.9 μM on the selected panel of fungi and bacteria, respectively. Importantly, the complexes 1-3 have exhibited a significantly improved antifungal activity compared to the free azoles, with the most pronounced effect observed in the case of complex 2 compared to the parent vcz against Candida glabrata with an increase of activity by five orders of magnitude. Moreover, the silver(I)-azole complexes 2 and 3 significantly inhibited the formation of C. albicans hyphae and biofilms at the subinhibitory concentration of 50% MIC. To investigate the impact of the complex 3 more thoroughly on Candida pathogenesis, its effect on the adherence of C. albicans to A549 cells (human adenocarcinoma alveolar basal epithelial cells), as an initial step of the invasion of host cells, was studied.
Collapse
Affiliation(s)
- Mia Stanković
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jakob Kljun
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Nevena Lj Stevanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jelena Lazic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sanja Skaro Bogojevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sandra Vojnovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Matija Zlatar
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Iztok Turel
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
48
|
Li W, Garcia-Rivera EM, Mitchell DC, Chick JM, Maetani M, Knapp JM, Matthews GM, Shirasaki R, de Matos Simoes R, Viswanathan V, Pulice JL, Rees MG, Roth JA, Gygi SP, Mitsiades CS, Kadoch C, Schreiber SL, Ostrem JML. Highly specific intracellular ubiquitination of a small molecule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577493. [PMID: 38328167 PMCID: PMC10849632 DOI: 10.1101/2024.01.26.577493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ubiquitin is a small, highly conserved protein that acts as a posttranslational modification in eukaryotes. Ubiquitination of proteins frequently serves as a degradation signal, marking them for disposal by the proteasome. Here, we report a novel small molecule from a diversity-oriented synthesis library, BRD1732, that is directly ubiquitinated in cells, resulting in dramatic accumulation of inactive ubiquitin monomers and polyubiquitin chains causing broad inhibition of the ubiquitin-proteasome system. Ubiquitination of BRD1732 and its associated cytotoxicity are stereospecific and dependent upon two homologous E3 ubiquitin ligases, RNF19A and RNF19B. Our finding opens the possibility for indirect ubiquitination of a target through a ubiquitinated bifunctional small molecule, and more broadly raises the potential for posttranslational modification in trans .
Collapse
|
49
|
Fu C, He L, Xu H, Zhang Z, Chang X, Dang Y, Dong XQ, Wang CJ. Modular access to chiral bridged piperidine-γ-butyrolactones via catalytic asymmetric allylation/aza-Prins cyclization/lactonization sequences. Nat Commun 2024; 15:127. [PMID: 38167331 PMCID: PMC10762176 DOI: 10.1038/s41467-023-44336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Chiral functionalized piperidine and lactone heterocycles are widely spread in natural products and drug candidates with promising pharmacological properties. However, there remains no general asymmetric methodologies that enable rapid assemble both critical biologically important units into one three-dimensional chiral molecule. Herein, we describe a straightforward relay strategy for the construction of enantioenriched bridged piperidine-γ-butyrolactone skeletons incorporating three skipped stereocenters via asymmetric allylic alkylation and aza-Prins cyclization/lactonization sequences. The excellent enantioselectivity control in asymmetric allylation with the simplest allylic precursor is enabled by the synergistic Cu/Ir-catalyzed protocol; the success of aza-Prins cyclization/lactonization can be attributed to the pivotal role of the ester substituent, which acts as a preferential intramolecular nucleophile to terminate the aza-Prins intermediacy of piperid-4-yl cation species. The resulting chiral piperidine-γ-butyrolactone bridged-heterocyclic products show impressive preliminary biological activities against a panel of cancer cell lines.
Collapse
Affiliation(s)
- Cong Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Ling He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Zongpeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China.
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
50
|
Shim SY. Late-Stage C-H Activation of Drug (Derivative) Molecules with Pd(ll) Catalysis. Chemistry 2023; 29:e202302620. [PMID: 37846586 DOI: 10.1002/chem.202302620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
This review comprehensively analyses representative examples of Pd(II)-catalyzed late-stage C-H activation reactions and demonstrates their efficacy in converting C-H bonds at multiple positions within drug (derivative) molecules into diverse functional groups. These transformative reactions hold immense potential in medicinal chemistry, enabling the efficient and selective functionalization of specific sites within drug molecules, thereby enhancing their pharmacological activity and expanding the scope of potential drug candidates. Although notable articles have focused on late-stage C-H functionalization reactions of drug-like molecules using transition-metal catalysts, reviews specifically focusing on late-stage C-H functionalization reactions of drug (derivative) molecules using Pd(II) catalysts are required owing to their prominence as the most widely utilized metal catalysts for C-H activation and their ability to introduce a myriad of functional groups at specific C-H bonds. The utilization of Pd-catalyzed C-H activation methodologies demonstrates impressive success in introducing various functional groups, such as cyano (CN), fluorine (F), chlorine (Cl), aromatic rings, olefin, alkyl, alkyne, and hydroxyl groups, to drug (derivative) molecules with high regioselectivity and functional-group tolerance. These breakthroughs in late-stage C-H activation reactions serve as invaluable tools for drug discovery and development, thereby offering strategic options to optimize drug candidates and drive the exploration of innovative therapeutic solutions.
Collapse
Affiliation(s)
- Su Yong Shim
- Infectious Diseases Therapeutic Research Center Division of Medicinal Chemistry and Pharmacology Korea Research Institute of Chemical Technology (KRICT) KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| |
Collapse
|