1
|
Miton L, Antonetti É, García-López D, Nava P, Robert V, Albalat M, Vanthuyne N, Martinez A, Cotelle Y. A Cyclotriveratrylene Solvent-Dependent Chiral Switch. Chemistry 2024; 30:e202303294. [PMID: 37955588 DOI: 10.1002/chem.202303294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/14/2023]
Abstract
Chiral molecular switches are attracting attention as they could pave the way to chiral molecular machines. Herein, we report on the design and synthesis of a single molecule chiral switch based on a cyclotriveratrylene scaffold, in which the chirality inversion is controlled by the solvent. Hemicryptophanes are built around a C3 cyclotriveratrylene chiral unit, with either M or P handedness, connected to another tripod and usually displaying an "out" configuration. Here, we demonstrate that solvents are able to control the "in" and "out" configurations of the CTV unit, creating a chiral molecular switch from (M/P)"in" to (P/M)"out" handedness. The full characterization of the "in" and "out" configurations and of the chirality switch were made possible by combining NMR, HPLC, ECD, DFT and molecular dynamics. Interestingly, bulky aromatic solvents such as 2-t-butylphenol favor the "in" configuration while polar aprotic solvents such as acetone favor the "out" configuration. This chiral switch was found to be fully reversible allowing the system to oscillate between two different M and P configurations several times upon the action of solvents stimuli.
Collapse
Affiliation(s)
- Louise Miton
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Élise Antonetti
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Diego García-López
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Paola Nava
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Vincent Robert
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, Strasbourg, France
| | - Muriel Albalat
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Alexandre Martinez
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Yoann Cotelle
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| |
Collapse
|
2
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
3
|
D'haese LCG, Daugey N, Pitrat D, Brotin T, Kapitán J, Liégeois V. Understanding the surrounding effects on Raman optical activity signatures of a chiral cage system: Cryptophane-PP-111. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123484. [PMID: 37898056 DOI: 10.1016/j.saa.2023.123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/18/2023] [Accepted: 10/01/2023] [Indexed: 10/30/2023]
Abstract
Cryptophane molecules are cage-like structures consisting in two hemispheres, each made of three benzene rings. These hemispheres are bound together with three O(CH2)nOlinkers of various lengths giving rise to a plethora of cryptophane derivatives. Moreover, they are able to encapsulate neutral guests: CH2Cl2, CHCl3, …; and charged species: Cs+, Tl+, …. Finally, they exhibit chiroptical properties thanks to the anti arrangement of the linkers between the hemispheres. This work focuses on the Raman optical activity (ROA) signatures of Cryptophane-111 (n=1 for each linker). More specifically, we aim at simulating accurately its ROA spectra with and without a xenon atom inside its cavity. Experimental data (Buffeteau et al., 2017) have already demonstrated the effect of the encapsulation in the low-wavenumbers region. To generate the initial structures, we rely on the novel Conformer-Rotamer Ensemble Sampling Tool (CREST) program, developed by S. Grimme and co-workers. This is required due to the flexibility provided by the linkers. The CREST algorithm seems promising and has already been used to sample the potential energy surface (PES) of target systems before the simulation of their vibrational spectroscopies (Eikås et al., 2022). We observe large similarities between the two sets of conformers (one with and one without Xe encapsulated), demonstrating the robustness of the CREST algorithm. For corresponding structures, the presence of xenon pushed the two hemispheres slightly further apart. After optimization at the DFT level, only one unique conformer has a Boltzmann population ratio greater than 1%, pointing out the relative rigidity of the cage. Based on this unique conformer, our simulations are in good agreement with the experimental data. Regarding xenon encapsulation, the (experimental and theoretical) ROA signatures at low wavenumbers are impacted: slight shifts in wavenumbers are observed as well as a decrease in relative ROA intensity for bands around 150 cm-1. The wavenumber shifts were very well reproduced by our simulations, but the experimental decrease in the ROA intensity was unfortunately not reproduced.
Collapse
Affiliation(s)
- Lou C G D'haese
- Theoretical Chemistry Laboratory (LCT), Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium.
| | - Nicolas Daugey
- Groupe Spectroscopie Moléculaire (GSM), Institut des Sciences Moléculaires (ISM), UMR-5255 CNRS, University of Bordeaux, 33405 Talence, France
| | - Delphine Pitrat
- Laboratoire de Chimie de l'ENSL, UMR-5182 CNRS, University of Lyon, 69342 Lyon, France
| | - Thierry Brotin
- Laboratoire de Chimie de l'ENSL, UMR-5182 CNRS, University of Lyon, 69342 Lyon, France
| | - Josef Kapitán
- Department of Optics, Palacký University of Olomouc, 77146 Olomouc, Czech Republic
| | - Vincent Liégeois
- Theoretical Chemistry Laboratory (LCT), Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| |
Collapse
|
4
|
Hilla P, Vaara J. NMR chemical shift of confined 129Xe: coordination number, paramagnetic channels and molecular dynamics in a cryptophane-A biosensor. Phys Chem Chem Phys 2023; 25:22719-22733. [PMID: 37606522 DOI: 10.1039/d3cp02695g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Advances in hyperpolarisation and indirect detection have enabled the development of xenon nuclear magnetic resonance (NMR) biosensors (XBSs) for molecule-selective sensing in down to picomolar concentration. Cryptophanes (Crs) are popular cages for hosting the Xe "spy". Understanding the microscopic host-guest chemistry has remained a challenge in the XBS field. While early NMR computations of XBSs did not consider the important effects of host dynamics and explicit solvent, here we model the motionally averaged, relativistic NMR chemical shift (CS) of free Xe, Xe in a prototypic CrA cage and Xe in a water-soluble CrA derivative, each in an explicit H2O solvent, over system configurations generated at three different levels of molecular dynamics (MD) simulations. We confirm the "contact-type" character of the Xe CS, arising from the increased availability of paramagnetic channels, magnetic couplings between occupied and virtual orbitals through the short-ranged orbital hyperfine operator, when neighbouring atoms are in contact with Xe. Remarkably, the Xe CS in the present, highly dynamic and conformationally flexible situations is found to depend linearly on the coordination number of the Xe atom. We interpret the high- and low-CS situations in terms of the magnetic absorption spectrum and choose our preference among the used MD methods based on comparison with the experimental CS. We check the role of spin-orbit coupling by comparing with fully relativistic CS calculations. The study outlines the computational workflow required to realistically model the CS of Xe confined in dynamic cavity structures under experimental conditions, and contributes to microscopic understanding of XBSs.
Collapse
Affiliation(s)
- Perttu Hilla
- NMR Research Unit, P.O. Box 3000, FI-90014 University of Oulu, Finland.
| | - Juha Vaara
- NMR Research Unit, P.O. Box 3000, FI-90014 University of Oulu, Finland.
| |
Collapse
|
5
|
Du K, Dmochowski IJ. Thermally Tunable Adsorption of Xenon in Crystalline Molecular Sorbent. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:13810-13816. [PMID: 39027347 PMCID: PMC11257604 DOI: 10.1021/acs.jpcc.3c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The thermostability of encapsulated xenon is investigated in a series of isostructural crystalline sorbents. These sorbents consist of metal-organic capsules, with the general formula of [ConFe4-nL6]4- (n = 1, 2, 3 and 4), where L2- is an organic linker with two sulfonate groups. In the crystalline sorbent, guanidinium cations form H-bond networks with the peripheral sulfonate groups in the solid state and trap xenon in the molecular cavities, which are at least 2.7 times the volume of xenon. When heated, the sorbent retains xenon up to 561 K, i.e., 396 K higher than the boiling point of xenon. Furthermore, the thermostability of trapped xenon can be modulated by varying the ratio of Co:Fe in the crystalline sorbent. Elemental analysis on a single crystal by energy dispersive X-ray spectroscopy confirms the homogeneous distribution of Co and Fe in the sorbent. Structural analyses reveal that the expansion of capsule cavity is proportional to the Co:Fe ratio, with increases of 0.049(1) Å and 6.4(8) Å3 in metal-metal distance and cavity volume, per substitution of Fe by Co center. Steric repulsion between peripheral sulfonate groups is found to render a hypothetical face-centered cubic structure of (C(NH2)3)4[Fe4L6] not accessible, which would have trapped xenon with exceptional thermostability. The stable and tunable trapping of xenon in crystalline sorbents by over-sized molecular cavities suggests a new strategy for separation and storage of xenon, through introduction of kinetic barriers, such as H-bond networks.
Collapse
Affiliation(s)
- Kang Du
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
6
|
He J, Dmochowski IJ. Local Xenon-Protein Interaction Produces Global Conformational Change and Allosteric Inhibition in Lysozyme. Biochemistry 2023; 62:1659-1669. [PMID: 37192381 PMCID: PMC10821772 DOI: 10.1021/acs.biochem.3c00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Noble gases have well-established biological effects, yet their molecular mechanisms remain poorly understood. Here, we investigated, both experimentally and computationally, the molecular modes of xenon (Xe) action in bacteriophage T4 lysozyme (T4L). By combining indirect gassing methods with a colorimetric lysozyme activity assay, a reversible, Xe-specific (20 ± 3)% inhibition effect was observed. Accelerated molecular dynamic simulations revealed that Xe exerts allosteric inhibition on the protein by expanding a C-terminal hydrophobic cavity. Xe-induced cavity expansion results in global conformational changes, with long-range transduction distorting the active site where peptidoglycan binds. Interestingly, the peptide substrate binding site that enables lysozyme specificity does not change conformation. Two T4L mutants designed to reshape the C-terminal Xe cavity established a correlation between cavity expansion and enzyme inhibition. This work also highlights the use of Xe flooding simulations to identify new cryptic binding pockets. These results enrich our understanding of Xe-protein interactions at the molecular level and inspire further biochemical investigations with noble gases.
Collapse
Affiliation(s)
- Jiayi He
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
7
|
Schmidt P, Vogel A, Schwarze B, Seufert F, Licha K, Wycisk V, Kilian W, Hildebrand PW, Mitschang L. Towards Probing Conformational States of Y2 Receptor Using Hyperpolarized 129Xe NMR. Molecules 2023; 28:molecules28031424. [PMID: 36771089 PMCID: PMC9919357 DOI: 10.3390/molecules28031424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors can adopt many different conformational states, each of them exhibiting different restraints towards downstream signaling pathways. One promising strategy to identify and quantify this conformational landscape is to introduce a cysteine at a receptor site sensitive to different states and label this cysteine with a probe for detection. Here, the application of NMR of hyperpolarized 129Xe for the detection of the conformational states of human neuropeptide Y2 receptor is introduced. The xenon trapping cage molecule cryptophane-A attached to a cysteine in extracellular loop 2 of the receptor facilitates chemical exchange saturation transfer experiments without and in the presence of native ligand neuropeptide Y. High-quality spectra indicative of structural states of the receptor-cage conjugate were obtained. Specifically, five signals could be assigned to the conjugate in the apo form. After the addition of NPY, one additional signal and subtle modifications in the persisting signals could be detected. The correlation of the spectroscopic signals and structural states was achieved with molecular dynamics simulations, suggesting frequent contact between the xenon trapping cage and the receptor surface but a preferred interaction with the bound ligand.
Collapse
Affiliation(s)
- Peter Schmidt
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Alexander Vogel
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Benedikt Schwarze
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Florian Seufert
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Virginia Wycisk
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Wolfgang Kilian
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Peter W. Hildebrand
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Lorenz Mitschang
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
- Correspondence:
| |
Collapse
|
8
|
Xenon Induces Its Own Preferred Heterochiral Host from Exclusive Homochiral Assembly. J Am Chem Soc 2022; 144:22884-22889. [PMID: 36480928 DOI: 10.1021/jacs.2c12202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xenon binding represents a formidable challenge, and efficient hosts remain rare. Here we report our findings that while enantiomeric bis(urea)-bis(thiourea) macrocycles form exclusive homochiral dimeric assemblies, xenon is able to overcome the narcissism and induces an otherwise-nonobservable heterochiral assembly as its preferred host. An experimental approach and fitting model were developed to obtain binding constants associated with the invisible assembly species. The determined xenon binding affinity with the heterochiral capsule reaches 1600 M-1, which is 15 times higher than that with the homochiral capsule and represents the highest record for an assembled host. The origin of the large difference in xenon affinity between the two subtle diastereotopic assemblies was revealed by single-crystal analysis. In the heterochiral capsule with S4 symmetry, the xenon atom is more tightly enclosed by van der Waals surroundings of the four thiourea groups arranged in a spherical cross-array, superior to the antiparallel array in the homochiral capsule with D2 symmetry.
Collapse
|
9
|
Zhao Z, Rudman NA, He J, Dmochowski IJ. Programming xenon diffusion in maltose-binding protein. Biophys J 2022; 121:4635-4643. [PMID: 36271622 PMCID: PMC9748359 DOI: 10.1016/j.bpj.2022.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2022] Open
Abstract
Protein interiors contain void space that can bind small gas molecules. Determination of gas pathways and kinetics in proteins has been an intriguing and challenging task. Here, we combined computational methods and the hyperpolarized xenon-129 chemical exchange saturation transfer (hyper-CEST) NMR technique to investigate xenon (Xe) exchange kinetics in maltose-binding protein (MBP). A salt bridge ∼9 Å from the Xe-binding site formed upon maltose binding and slowed the Xe exchange rate, leading to a hyper-CEST 129Xe signal from maltose-bound MBP. Xe dissociation occurred faster than dissociation of the salt bridge, as shown by 13C NMR spectroscopy and variable-B1 hyper-CEST experiments. "Xe flooding" molecular dynamics simulations identified a surface hydrophobic site, V23, that has good Xe binding affinity. Mutations at this site confirmed its role as a secondary exchange pathway in modulating Xe diffusion. This shows the possibility for site-specifically controlling xenon protein-solvent exchange. Analysis of the available MBP structures suggests a biological role of MBP's large hydrophobic cavity to accommodate structural changes associated with ligand binding and protein-protein interactions.
Collapse
Affiliation(s)
- Zhuangyu Zhao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nathan A Rudman
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiayi He
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Tomasini M, Caporaso L, Trouvé J, Poater J, Gramage‐Doria R, Poater A. Unravelling Enzymatic Features in a Supramolecular Iridium Catalyst by Computational Calculations. Chemistry 2022; 28:e202201970. [PMID: 35788999 PMCID: PMC9804516 DOI: 10.1002/chem.202201970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 01/05/2023]
Abstract
Non-biological catalysts following the governing principles of enzymes are attractive systems to disclose unprecedented reactivities. Most of those existing catalysts feature an adaptable molecular recognition site for substrate binding that are prone to undergo conformational selection pathways. Herein, we present a non-biological catalyst that is able to bind substrates via the induced fit model according to in-depth computational calculations. The system, which is constituted by an inflexible substrate-recognition site derived from a zinc-porphyrin in the second coordination sphere, features destabilization of ground states as well as stabilization of transition states for the relevant iridium-catalyzed C-H bond borylation of pyridine. In addition, this catalyst appears to be most suited to tightly bind the transition state rather than the substrate. Besides these features, which are reminiscent of the action modes of enzymes, new elementary catalytic steps (i. e. C-B bond formation and catalyst regeneration) have been disclosed owing to the unique distortions encountered in the different intermediates and transition states.
Collapse
Affiliation(s)
- Michele Tomasini
- Institut de Química Computacional i CatàlisiDepartament de QuímicaUniversitat de Gironac/Mª Aurèlia Capmany 6917003GironaCataloniaSpain,Department of ChemistryUniversity of SalernoVia Ponte Don Melillo84084FiscianoItaly
| | - Lucia Caporaso
- Department of ChemistryUniversity of SalernoVia Ponte Don Melillo84084FiscianoItaly
| | | | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUBUniversitat de Barcelona08028BarcelonaSpain,ICREA08010BarcelonaSpain
| | | | - Albert Poater
- Institut de Química Computacional i CatàlisiDepartament de QuímicaUniversitat de Gironac/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| |
Collapse
|
11
|
Hilla P, Vaara J. Energetics and exchange of xenon and water in a prototypic cryptophane-A biosensor structure. Phys Chem Chem Phys 2022; 24:17946-17950. [PMID: 35748333 DOI: 10.1039/d2cp01889f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microscopic description of the energetics and dynamics of xenon NMR biosensors can be experimentally difficult to achieve. We conduct molecular dynamics and metadynamics simulations of a prototypical Xe@cryptophane-A biosensor in an explicit water solvent. We compute the non-covalent Xe binding energy, identify the complexation mechanism of Xe, and calculate the exchange dynamics of water molecules between the solution and the host. Three distinct, hitherto unreported Xe exchange processes are identified, and water molecules initialize each one. The obtained binding energies support the existing literature. The residence times and energetics of water guests are reported. An empty host does not remain empty, but is occupied by water. The results contribute to the understanding and development of Xe biosensors based on cryptophane derivatives and alternative host structures.
Collapse
Affiliation(s)
- Perttu Hilla
- NMR Research Unit, P.O. Box 3000, FI-90014 University of Oulu, Finland.
| | - Juha Vaara
- NMR Research Unit, P.O. Box 3000, FI-90014 University of Oulu, Finland.
| |
Collapse
|
12
|
Lin Y, Gau MR, Carroll PJ, Dmochowski IJ. Counteranions at Peripheral Sites Tune Guest Affinity for a Protonated Hemicryptophane. J Org Chem 2022; 87:5158-5165. [PMID: 35333529 PMCID: PMC9017572 DOI: 10.1021/acs.joc.1c03128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/29/2022]
Abstract
The affinity of small molecules for biomolecular cavities is tuned through a combination of primary and secondary interactions. It has been challenging to mimic these features in organic synthetic host molecules, however, where the cavities tend to be highly symmetric and nonpolar, and less amenable to chemical manipulation. Here, a host molecule composed of a TREN ligand and cyclotriveratrylene moiety was investigated. Size-matched polar guests were encapsulated within the cavity via triple protonation of the TREN moiety with various sulfonic acids. X-ray crystallography confirmed guest encapsulation and identified three methanesulfonates, p-toluenesulfonates, or 2-naphthalenesulfonates hydrogen-bonded with H3TREN at the periphery of the cavity. These structurally diverse counteranions were shown by 1H NMR spectroscopy to differentially regulate guest access at the three portals, and to undergo competitive displacement in solution. This work reveals "counteranion tuning" to be a simple and powerful strategy for modulating host-guest affinity, as applied here in a TREN-hemicryptophane.
Collapse
Affiliation(s)
- Yannan Lin
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Michael R. Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
13
|
Nilam M, Hennig A. Enzyme assays with supramolecular chemosensors - the label-free approach. RSC Adv 2022; 12:10725-10748. [PMID: 35425010 PMCID: PMC8984408 DOI: 10.1039/d1ra08617k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
Enzyme activity measurements are essential for many research areas, e.g., for the identification of inhibitors in drug discovery, in bioengineering of enzyme mutants for biotechnological applications, or in bioanalytical chemistry as parts of biosensors. In particular in high-throughput screening (HTS), sensitive optical detection is most preferred and numerous absorption and fluorescence spectroscopy-based enzyme assays have been developed, which most frequently require time-consuming fluorescent labelling that may interfere with biological recognition. The use of supramolecular chemosensors, which can specifically signal analytes with fluorescence-based read-out methods, affords an attractive and label-free alternative to more established enzyme assays. We provide herein a comprehensive review that summarizes the current state-of-the-art of supramolecular enzyme assays ranging from early examples with covalent chemosensors to the most recent applications of supramolecular tandem enzyme assays, which utilize common and often commercially available combinations of macrocyclic host molecules (e.g. cyclodextrins, calixarenes, and cucurbiturils) and fluorescent dyes as self-assembled reporter pairs for assaying enzyme activity.
Collapse
Affiliation(s)
- Mohamed Nilam
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| | - Andreas Hennig
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| |
Collapse
|
14
|
Abstract
The use of magnetic resonance imaging (MRI) and spectroscopy (MRS) in the clinical setting enables the acquisition of valuable anatomical information in a rapid, non-invasive fashion. However, MRI applications for identifying disease-related biomarkers are limited due to low sensitivity at clinical magnetic field strengths. The development of hyperpolarized (hp) 129Xe MRI/MRS techniques as complements to traditional 1H-based imaging has been a burgeoning area of research over the past two decades. Pioneering experiments have shown that hp 129Xe can be encapsulated within host molecules to generate ultrasensitive biosensors. In particular, xenon has high affinity for cryptophanes, which are small organic cages that can be functionalized with affinity tags, fluorophores, solubilizing groups, and other moieties to identify biomedically relevant analytes. Cryptophane sensors designed for proteins, metal ions, nucleic acids, pH, and temperature have achieved nanomolar-to-femtomolar limits of detection via a combination of 129Xe hyperpolarization and chemical exchange saturation transfer (CEST) techniques. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI.![]()
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| |
Collapse
|
15
|
Pavlović RZ, Lalisse RF, Hansen AL, Waudby CA, Lei Z, Güney M, Wang X, Hadad CM, Badjić JD. From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angew Chem Int Ed Engl 2021; 60:19942-19948. [PMID: 34125989 DOI: 10.1002/anie.202107091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Two limiting cases of molecular recognition, induced fit (IF) and conformational selection (CS), play a central role in allosteric regulation of natural systems. The IF paradigm states that a substrate "instructs" the host to change its shape after complexation, while CS asserts that a guest "selects" the optimal fit from an ensemble of preexisting host conformations. With no studies that quantitatively address the interplay of two limiting pathways in abiotic systems, we herein and for the first time describe the way by which twisted capsule M-1, encompassing two conformers M-1(+) and M-1(-), trap CX4 (X=Cl, Br) to give CX4 ⊂M-1(+) and CX4 ⊂M-1(-), with all four states being in thermal equilibrium. With the assistance of 2D EXSY, we found that CBr4 would, at its lower concentrations, bind M-1 via a M-1(+)→M-1(-)→CBr4 ⊂M-1(-) pathway corresponding to conformational selection. For M-1 complexing CCl4 though, data from 2D EXSY measurements and 1D NMR line-shape analysis suggested that lower CCl4 concentrations would favor CS while the IF pathway prevailed at higher proportions of the guest. Since CS and IF are not mutually exclusive, we reason that our work sets the stage for characterizing the dynamics of a wide range of already existing hosts to broaden our fundamental understanding of their action. The objective is to master the way in which encapsulation takes place for designing novel and allosteric sequestering agents, catalysts and chemosensors akin to those found in nature.
Collapse
Affiliation(s)
- Radoslav Z Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Remy F Lalisse
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Murat Güney
- Agri Ibrahim Çeçen University, Department of Chemistry, 04100, Agri, Turkey
| | - Xiuze Wang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Christopher M Hadad
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Jovica D Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
16
|
Pavlović RZ, Lalisse RF, Hansen AL, Waudby CA, Lei Z, Güney M, Wang X, Hadad CM, Badjić JD. From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Remy F. Lalisse
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Alexandar L. Hansen
- Campus Chemical Instrument Center The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Christopher A. Waudby
- Institute of Structural and Molecular Biology University College London London WC1E 6BT UK
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Murat Güney
- Agri Ibrahim Çeçen University Department of Chemistry 04100 Agri Turkey
| | - Xiuze Wang
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Christopher M. Hadad
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| |
Collapse
|
17
|
Doll M, Berthault P, Léonce E, Boutin C, Buffeteau T, Daugey N, Vanthuyne N, Jean M, Brotin T, De Rycke N. Are the Physical Properties of Xe@Cryptophane Complexes Easily Predictable? The Case of syn- and anti-Tris-aza-Cryptophanes. J Org Chem 2021; 86:7648-7658. [PMID: 34033483 DOI: 10.1021/acs.joc.1c00701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the synthesis and optical resolution of C3-symmetrical tris-aza-cryptophanes anti-3 and syn-4, as well as the study of their interaction with xenon via hyperpolarized 129Xe NMR. These molecular cages are close structural analogues of the two well-known cryptophane-A (1; chiral) and cryptophane-B (2; achiral) diastereomers since these new compounds differ only by the presence of three nitrogen atoms grafted onto the same cyclotribenzylene unit. The assignment of their relative (syn vs anti) and absolute configurations was made possible, thanks to the combined use of quantum calculations at the density functional theory level and vibrational circular dichroism spectroscopy. More importantly, our results show that despite the large structural similarities with cryptophane-A (1) and -B (2), these two new compounds show a very different behavior in the presence of xenon in organic solutions. These results demonstrate that prediction of the physical properties of the xenon@cryptophane complexes, only based on structural parameters, remains extremely difficult.
Collapse
Affiliation(s)
- Martin Doll
- Laboratoire de Chimie de l'ENS Lyon, (UMR 5182 CNRS-ENS-Université), Université Claude Bernard Lyon 1, F69342 Lyon, France
| | - Patrick Berthault
- Université Paris-Saclay, CNRS, CEA, Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (UMR 3685 CEA-CNRS), 91191 Gif-sur-Yvette, France
| | - Estelle Léonce
- Université Paris-Saclay, CNRS, CEA, Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (UMR 3685 CEA-CNRS), 91191 Gif-sur-Yvette, France
| | - Céline Boutin
- Université Paris-Saclay, CNRS, CEA, Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (UMR 3685 CEA-CNRS), 91191 Gif-sur-Yvette, France
| | - Thierry Buffeteau
- Institut des Sciences Moléculaires (UMR 5255-Université-CNRS), Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France
| | - Nicolas Daugey
- Institut des Sciences Moléculaires (UMR 5255-Université-CNRS), Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Marion Jean
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Thierry Brotin
- Laboratoire de Chimie de l'ENS Lyon, (UMR 5182 CNRS-ENS-Université), Université Claude Bernard Lyon 1, F69342 Lyon, France
| | - Nicolas De Rycke
- Laboratoire de Chimie de l'ENS Lyon, (UMR 5182 CNRS-ENS-Université), Université Claude Bernard Lyon 1, F69342 Lyon, France
| |
Collapse
|
18
|
Yang Y, Zhang Y, Wang B, Guo Q, Yuan Y, Jiang W, Shi L, Yang M, Chen S, Lou X, Zhou X. Coloring ultrasensitive MRI with tunable metal-organic frameworks. Chem Sci 2021; 12:4300-4308. [PMID: 34163694 PMCID: PMC8179523 DOI: 10.1039/d0sc06969h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As one of the most important imaging modalities, magnetic resonance imaging (MRI) still faces relatively low sensitivity to monitor low-abundance molecules. A newly developed technology, hyperpolarized 129Xe magnetic resonance imaging (MRI), can boost the signal sensitivity to over 10 000-fold compared with that under conventional MRI conditions, and this technique is referred to as ultrasensitive MRI. However, there are few methods to visualize complex mixtures in this field due to the difficulty in achieving favorable “cages” to capture the signal source, namely, 129Xe atoms. Here, we proposed metal–organic frameworks (MOFs) as tunable nanoporous hosts to provide suitable cavities for xenon. Due to the widely dispersed spectroscopic signals, 129Xe in different MOFs was easily visualized by assigning each chemical shift to a specific color. The results illustrated that the pore size determined the exchange rate, and the geometric structure and elemental composition influenced the local charge experienced by xenon. We confirmed that a complex mixture was first differentiated by specific colors in ultrasensitive MRI. The introduction of MOFs helps to overcome long-standing obstacles in ultrasensitive, multiplexed MRI. Metal organic frameworks with tunable pore structures are able to provide varied chemical environments for hyperpolarized 129Xe atom hosting, which results in distinguishing magnetic resonance signals, and stains ultra-sensitive magnetic resonance imaging (MRI) with diverse colors.![]()
Collapse
Affiliation(s)
- Yuqi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yingfeng Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China
| | - Baolong Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiping Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Shi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Shizhen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital Beijing 100039 China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
19
|
Kunth M, Witte C, Schröder L. Mapping of Absolute Host Concentration and Exchange Kinetics of Xenon Hyper-CEST MRI Agents. Pharmaceuticals (Basel) 2021; 14:79. [PMID: 33494166 PMCID: PMC7909792 DOI: 10.3390/ph14020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Xenon magnetic resonance imaging (MRI) provides excellent sensitivity through the combination of spin hyperpolarization and chemical exchange saturation transfer (CEST). To this end, molecular hosts such as cryptophane-A or cucurbit[n]urils provide unique opportunities to design switchable MRI reporters. The concentration determination of such xenon binding sites in samples of unknown dilution remains, however, challenging. Contrary to 1H CEST agents, an internal reference of a certain host (in this case, cryptophane-A) at micromolar concentration is already sufficient to resolve the entire exchange kinetics information, including an unknown host concentration and the xenon spin exchange rate. Fast echo planar imaging (EPI)-based Hyper-CEST MRI in combination with Bloch-McConnell analysis thus allows quantitative insights to compare the performance of different emerging ultra-sensitive MRI reporters.
Collapse
Affiliation(s)
- Martin Kunth
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
| | - Christopher Witte
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
- Translational Molecular Imaging, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Xenon binding by a tight yet adaptive chiral soft capsule. Nat Commun 2020; 11:6257. [PMID: 33288758 PMCID: PMC7721739 DOI: 10.1038/s41467-020-20081-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/11/2020] [Indexed: 11/08/2022] Open
Abstract
Xenon binding has attracted interest due to the potential for xenon separation and emerging applications in magnetic resonance imaging. Compared to their covalent counterparts, assembled hosts that are able to effectively bind xenon are rare. Here, we report a tight yet soft chiral macrocycle dimeric capsule for efficient and adaptive xenon binding in both crystal form and solution. The chiral bisurea-bisthiourea macrocycle can be easily synthesized in multi-gram scale. Through assembly, the flexible macrocycles are locked in a bowl-shaped conformation and buckled to each other, wrapping up a tight, completely sealed yet adjustable cavity suitable for xenon, with a very high affinity for an assembled host. A slow-exchange process and drastic spectral changes are observed in both 1H and 129Xe NMR. With the easy synthesis, modification and reversible characteristics, we believe the robust yet adaptive assembly system may find applications in xenon sequestration and magnetic resonance imaging-based biosensing.
Collapse
|
21
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
22
|
Ćoćić D, Puchta R, van Eldik R. Noble guests in organic cages – encapsulation of noble gases by cryptophane. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1820494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Dušan Ćoćić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Ralph Puchta
- Department of Chemistry and Pharmacy, Inorganic Chemistry, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Chemistry and Pharmacy, Computer Chemistry Center, University of Erlangen-Nuremberg, Erlangen, Germany
- Central Institute for Scientific Computing (ZISC), University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, Inorganic Chemistry, University of Erlangen-Nuremberg, Erlangen, Germany
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
- Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
23
|
Sakata Y, Tamiya M, Okada M, Akine S. Switching of Recognition First and Reaction First Mechanisms in Host–Guest Binding Associated with Chemical Reactions. J Am Chem Soc 2019; 141:15597-15604. [DOI: 10.1021/jacs.9b06926] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan
| | - Munehiro Tamiya
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masahiro Okada
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
24
|
Zeng H, Xie M, Huang Y, Zhao Y, Xie X, Bai J, Wan M, Krishna R, Lu W, Li D. Induced Fit of C
2
H
2
in a Flexible MOF Through Cooperative Action of Open Metal Sites. Angew Chem Int Ed Engl 2019; 58:8515-8519. [DOI: 10.1002/anie.201904160] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Heng Zeng
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Mo Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yong‐Liang Huang
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yifang Zhao
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Xiao‐Jing Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Jian‐Ping Bai
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Meng‐Yan Wan
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Weigang Lu
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| |
Collapse
|
25
|
Zeng H, Xie M, Huang Y, Zhao Y, Xie X, Bai J, Wan M, Krishna R, Lu W, Li D. Induced Fit of C
2
H
2
in a Flexible MOF Through Cooperative Action of Open Metal Sites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Heng Zeng
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Mo Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yong‐Liang Huang
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yifang Zhao
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Xiao‐Jing Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Jian‐Ping Bai
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Meng‐Yan Wan
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Weigang Lu
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| |
Collapse
|
26
|
Thorp-Greenwood FL, Howard MJ, Kuhn LT, Hardie MJ. Fully Collapsed Imploded Cryptophanes in Solution and in the Solid State. Chemistry 2019; 25:3536-3540. [PMID: 30746781 DOI: 10.1002/chem.201900269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 11/06/2022]
Abstract
Cryptophanes with flexible linkers derived from (±)-tris-(4-formyl-phenyl)-cyclotriguaiacylene with either bisoxydi(ethylamine) or bis(aminopropyl)ether were isolated as single crystals, the crystal structures of which showed the proposed, but previously uncharacterised, out-in conformation, in which both cyclotriguaiacylene fragments adopt a crown conformation with one crown sitting inside the other. The usual cage-like out-out conformation of the cryptophanes was observed when crystals were dissolved upon heating, and the molecules collapsed back to the out-in isomers over time. In contrast, a cryptophane also derived from (±)-tris-(4-formyl-phenyl)-cyclotriguaiacylene but with rigid dibenzalhydrazine linkers was isolated as the more usual out-out isomer.
Collapse
Affiliation(s)
| | - Mark J Howard
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Lars T Kuhn
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
27
|
Madhu S, Gonnade RG, Das T, Vanka K, Sanjayan GJ. Twelve-Armed Hexaphenylbenzene-Based Giant Supramolecular Framework for Entrapping Guest Molecules. Chempluschem 2018; 83:1032-1037. [PMID: 31950723 DOI: 10.1002/cplu.201800478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 11/11/2022]
Abstract
Host-guest chemistry is a functional model in supramolecular chemistry for understanding specific process occurring in biological systems. Herein, we describe a rationally designed giant multiarmed hexaphenylbenzene (HPB)-based supramolecular frameworks which encapsulate a variety of guest molecules in the voids of their crystal lattice through the cooperative interplay of multivalency, noncovalent forces and backbone rigidity. In this connection, pseudo-axially substituted twelve-armed hexaphenylbenzene was synthesized and its molecular entrapping nature was studied by varying number of H-bond donor-acceptor sites in the arms. The per-methyl esterified HPB acted as a cavitand to include nonpolar and polar aprotic guests in its crystal structure via C-H⋅⋅⋅π, C-H⋅⋅⋅O and C-H⋅⋅⋅N interactions. The corresponding amidated HPB showed unprecedented inclusion of ammonia and segregation of the guest molecules according to their polarity in the lattice. Furthermore, this molecular entrapping system has been used to obtain the crystal structure of a hitherto unproven 2-azaallenium intermediate, which had been proposed to be involved in aminomethylation of activated arenes.
Collapse
Affiliation(s)
- Suresh Madhu
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| | - Rajesh G Gonnade
- Center for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Tamal Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Gangadhar J Sanjayan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| |
Collapse
|
28
|
Zhiquan L, Xie H, Border SE, Gallucci J, Pavlović RZ, Badjić JD. A Stimuli-Responsive Molecular Capsule with Switchable Dynamics, Chirality, and Encapsulation Characteristics. J Am Chem Soc 2018; 140:11091-11100. [PMID: 30099876 DOI: 10.1021/jacs.8b06190] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lei Zhiquan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Han Xie
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sarah E. Border
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Judith Gallucci
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
29
|
Zemerov SD, Roose BW, Greenberg ML, Wang Y, Dmochowski IJ. Cryptophane Nanoscale Assemblies Expand 129Xe NMR Biosensing. Anal Chem 2018; 90:7730-7738. [PMID: 29782149 PMCID: PMC6050516 DOI: 10.1021/acs.analchem.8b01630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cryptophane-based biosensors are promising agents for the ultrasensitive detection of biomedically relevant targets via 129Xe NMR. Dynamic light scattering revealed that cryptophanes form water-soluble aggregates tens to hundreds of nanometers in size. Acridine orange fluorescence quenching assays allowed quantitation of the aggregation state, with critical concentrations ranging from 200 nM to 600 nM, depending on the cryptophane species in solution. The addition of excess carbonic anhydrase (CA) protein target to a benzenesulfonamide-functionalized cryptophane biosensor (C8B) led to C8B disaggregation and produced the expected 1:1 C8B-CA complex. C8B showed higher affinity at 298 K for the cytoplasmic isozyme CAII than the extracellular CAXII isozyme, which is a biomarker of cancer. Using hyper-CEST NMR, we explored the role of stoichiometry in detecting these two isozymes. Under CA-saturating conditions, we observed that isozyme CAII produces a larger 129Xe NMR chemical shift change (δ = 5.9 ppm, relative to free biosensor) than CAXII (δ = 2.7 ppm), which indicates the strong potential for isozyme-specific detection. However, stoichiometry-dependent chemical shift data indicated that biosensor disaggregation contributes to the observed 129Xe NMR chemical shift change that is normally assigned to biosensor-target binding. Finally, we determined that monomeric cryptophane solutions improve hyper-CEST saturation contrast, which enables ultrasensitive detection of biosensor-protein complexes. These insights into cryptophane-solution behavior support further development of xenon biosensors, but will require reinterpretation of the data previously obtained for many water-soluble cryptophanes.
Collapse
Affiliation(s)
- Serge D. Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| | - Benjamin W. Roose
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| | | | | | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| |
Collapse
|
30
|
Korchak S, Riemer T, Kilian W, Mitschang L. Quantitative biosensor detection by chemically exchanging hyperpolarized 129Xe. Phys Chem Chem Phys 2018; 20:1800-1808. [DOI: 10.1039/c7cp07051a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative modeling and evaluation of biosensor detection by hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST).
Collapse
Affiliation(s)
- S. Korchak
- Physikalisch-Technische Bundesanstalt (PTB)
- 10587 Berlin
- Germany
| | - T. Riemer
- University of Leipzig
- Medical Department
- Institute of Medical Physics and Biophysics
- 04107 Leipzig
- Germany
| | - W. Kilian
- Physikalisch-Technische Bundesanstalt (PTB)
- 10587 Berlin
- Germany
| | - L. Mitschang
- Physikalisch-Technische Bundesanstalt (PTB)
- 10587 Berlin
- Germany
| |
Collapse
|
31
|
Demissie TB, Ruud K, Hansen JH. Cryptophanes for Methane and Xenon Encapsulation: A Comparative Density Functional Theory Study of Binding Properties and NMR Chemical Shifts. J Phys Chem A 2017; 121:9669-9677. [PMID: 29178799 DOI: 10.1021/acs.jpca.7b10595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The host-guest chemistry of cryptophanes is an active research area because of its applications in sensor design, targeting small molecules and atoms in environmental and medical sciences. As such, the computational prediction of binding energies and nuclear magnetic resonance (NMR) properties of different cryptophane complexes are of interest to both theoreticians and experimentalists working in host-guest based sensor development. Herein we present a study of 10 known and some newly proposed cryptophanes using density functional theory (DFT) calculations. We benchmark the description of nonbonding interactions by different DFT functionals against spin-component-scaled, second-order Møller-Plesset theory (SCS-MP2) and predict novel host molecules with enhanced affinity toward methane and Xenon, two representative systems of high interest. We demonstrate the power and limitations of the different computational methods in describing the binding and NMR properties of these established and novel host systems. The results show the importance of including dispersion corrections in the DFT functionals. The overall analysis of the dispersion corrections indicated that results obtained from pure DFT functionals should be used cautiously when conclusions are drawn for molecular systems with considerable weak interactions. Proposed analogues of cryptophane-A, where the alkoxy bridges are replaced by alkyl chains, are predicted to display enhanced affinity toward both methane and Xenon.
Collapse
Affiliation(s)
- Taye B Demissie
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway , 9037 Tromsø, Norway.,Organic Chemistry Group, Department of Chemistry, UiT The Arctic University of Norway , 9037 Tromsø, Norway
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway , 9037 Tromsø, Norway
| | - Jørn H Hansen
- Organic Chemistry Group, Department of Chemistry, UiT The Arctic University of Norway , 9037 Tromsø, Norway
| |
Collapse
|
32
|
Satha P, Illa GT, Hazra S, Purohit CS. Syn/Anti
Pair of Triazole-Bridged Cryptophanes: Synthesis, Characterization with Crystal Structures. ChemistrySelect 2017. [DOI: 10.1002/slct.201702086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pardhasaradhi Satha
- School of Chemical Sciences; NISER, HBNI, Bhubaneswar, PO:Jatni; Khurda 752050, Odissa India
| | - Giri Teja Illa
- School of Chemical Sciences; NISER, HBNI, Bhubaneswar, PO:Jatni; Khurda 752050, Odissa India
| | - Sohan Hazra
- School of Chemical Sciences; NISER, HBNI, Bhubaneswar, PO:Jatni; Khurda 752050, Odissa India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences; NISER, HBNI, Bhubaneswar, PO:Jatni; Khurda 752050, Odissa India
| |
Collapse
|
33
|
Riggle BA, Greenberg ML, Wang Y, Wissner RF, Zemerov SD, Petersson EJ, Dmochowski IJ. A cryptophane-based "turn-on" 129Xe NMR biosensor for monitoring calmodulin. Org Biomol Chem 2017; 15:8883-8887. [PMID: 29058007 PMCID: PMC5681859 DOI: 10.1039/c7ob02391j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We present the first cryptophane-based "turn-on" 129Xe NMR biosensor, employing a peptide-functionalized cryptophane to monitor the activation of calmodulin (CaM) protein in solution. In the absence of CaM binding, interaction between the peptide and cryptophane completely suppresses the hyperpolarized 129Xe-cryptophane NMR signal. Biosensor binding to Ca2+-activated CaM produces the expected 129Xe-cryptophane NMR signal.
Collapse
Affiliation(s)
- Brittany A Riggle
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Dhall M, Madan AK. Comparison of cyclodextrins and urea as hosts for inclusion of drugs. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0748-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Zhang D, Cochrane JR, Di Pietro S, Guy L, Gornitzka H, Dutasta JP, Martinez A. "Breathing" Motion of a Modulable Molecular Cavity. Chemistry 2017; 23:6495-6498. [PMID: 28158931 DOI: 10.1002/chem.201700395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Indexed: 01/18/2023]
Abstract
A class of hemicryptophane cages that adopt imploded conformations in solution and in the solid state has been described and studied by NMR spectroscopy and X-ray crystallography. It is reported that the degree of collapse of the molecular cavity can be controlled by changing the stereochemistry of the chiral elements of the hemicryptophanes, leading to a modulation of their physical and chemical properties. Upon the binding of an oxidovanadium unit, the collapsed molecular cavity can inflate to give an expanded conformation. Removal of the vanadium core by an ancillary complexing ligand restores the initial folded structure. Thus, coordination/de-coordination of the metal ion controls the dynamic motions of the cage, leading to a reversible nanomechanical process. This controlled motion between a collapsed and expanded cavity can be seen as that of a breathable molecular cage.
Collapse
Affiliation(s)
- Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, 200062, Shanghai, P. R. China.,Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 allée d'Italie, 69364, Lyon, France
| | - James Robert Cochrane
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 allée d'Italie, 69364, Lyon, France
| | - Sebastiano Di Pietro
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 allée d'Italie, 69364, Lyon, France
| | - Laure Guy
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 allée d'Italie, 69364, Lyon, France
| | - Heinz Gornitzka
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, BP 44099, Université de Toulouse, UPS, INPT, 31077, Toulouse, Cedex 4, France
| | - Jean-Pierre Dutasta
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 allée d'Italie, 69364, Lyon, France
| | - Alexandre Martinez
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 allée d'Italie, 69364, Lyon, France.,Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
36
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|
37
|
Pitrat D, Daugey N, Jean M, Vanthuyne N, Wien F, Ducasse L, Calin N, Buffeteau T, Brotin T. Unusual Chiroptical Properties of the Cryptophane-222 Skeleton. J Phys Chem B 2016; 120:12650-12659. [DOI: 10.1021/acs.jpcb.6b09771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Delphine Pitrat
- Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon 1 University, 69364 Lyon, France
| | - Nicolas Daugey
- Institut des Sciences Moléculaires, CNRS UMR 5255, Bordeaux University, 33405 Talence, France
| | - Marion Jean
- Centrale Marseille, CNRS, iSm2, Aix-Marseille University, 13397 Marseille, France
| | - Nicolas Vanthuyne
- Centrale Marseille, CNRS, iSm2, Aix-Marseille University, 13397 Marseille, France
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme
des Merisiers, 91192 Gif sur Yvette, France
| | - Laurent Ducasse
- Institut des Sciences Moléculaires, CNRS UMR 5255, Bordeaux University, 33405 Talence, France
| | - Nathalie Calin
- Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon 1 University, 69364 Lyon, France
| | - Thierry Buffeteau
- Institut des Sciences Moléculaires, CNRS UMR 5255, Bordeaux University, 33405 Talence, France
| | - Thierry Brotin
- Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon 1 University, 69364 Lyon, France
| |
Collapse
|
38
|
Abstract
![]()
Molecular imaging holds considerable promise for elucidating biological
processes in normal physiology as well as disease states, by determining
the location and relative concentration of specific molecules of interest.
Proton-based magnetic resonance imaging (1H MRI) is nonionizing
and provides good spatial resolution for clinical imaging but lacks
sensitivity for imaging low-abundance (i.e., submicromolar) molecular
markers of disease or environments with low proton densities. To address
these limitations, hyperpolarized (hp) 129Xe NMR spectroscopy
and MRI have emerged as attractive complementary methodologies. Hyperpolarized
xenon is nontoxic and can be readily delivered to patients via inhalation
or injection, and improved xenon hyperpolarization technology makes
it feasible to image the lungs and brain for clinical applications. In order to target hp 129Xe to biomolecular targets
of interest, the concept of “xenon biosensing” was first
proposed by a Berkeley team in 2001. The development of xenon biosensors
has since focused on modifying organic host molecules (e.g., cryptophanes)
via diverse conjugation chemistries and has brought about numerous
sensing applications including the detection of peptides, proteins,
oligonucleotides, metal ions, chemical modifications, and enzyme activity.
Moreover, the large (∼300 ppm) chemical shift window for hp 129Xe bound to host molecules in water makes possible the simultaneous
identification of multiple species in solution, that is, multiplexing.
Beyond hyperpolarization, a 106-fold signal enhancement
can be achieved through a technique known as hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST), which shows
great potential to meet the sensitivity requirement in many applications. This Account highlights an expanded palette of hyper-CEST biosensors,
which now includes cryptophane and cucurbit[6]uril (CB[6]) small-molecule
hosts, as well as genetically encoded gas vesicles and single proteins.
In 2015, we reported picomolar detection of commercially available
CB[6] via hyper-CEST. Inspired by the versatile host–guest
chemistry of CB[6], our lab and others developed “turn-on”
strategies for CB[6]-hyper-CEST biosensing, demonstrating detection
of protein analytes in complex media and specific chemical events.
CB[6] is starting to be employed for in vivo imaging
applications. We also recently determined that TEM-1 β-lactamase
can function as a single-protein reporter for hyper-CEST and observed
useful saturation contrast for β-lactamase expressed in bacterial
and mammalian cells. These newly developed small-molecule and genetically
encoded xenon biosensors offer significant potential to extend the
scope of hp 129Xe toward molecular MRI.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Santolini V, Tribello GA, Jelfs KE. Predicting solvent effects on the structure of porous organic molecules. Chem Commun (Camb) 2016; 51:15542-5. [PMID: 26352051 DOI: 10.1039/c5cc05344g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A computational approach for the prediction of the open, metastable, conformations of porous organic molecules in the presence of solvent is developed.
Collapse
Affiliation(s)
- Valentina Santolini
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | | | | |
Collapse
|
40
|
Korchak S, Kilian W, Schröder L, Mitschang L. Design and comparison of exchange spectroscopy approaches to cryptophane-xenon host-guest kinetics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 265:139-145. [PMID: 26896869 DOI: 10.1016/j.jmr.2016.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 06/05/2023]
Abstract
Exchange spectroscopy is used in combination with a variation of xenon concentration to disentangle the kinetics of the reversible binding of xenon to cryptophane-A. The signal intensity of either free or crytophane-bound xenon decays in a manner characteristic of the underlying exchange reactions when the spins in the other pool are perturbed. Three experimental approaches, including the well-known Hyper-CEST method, are shown to effectively entail a simple linear dependence of the signal depletion rate, or of a related quantity, on free xenon concentration. This occurs when using spin pool saturation or inversion followed by free exchange. The identification and quantification of contributions to the binding kinetics is then straightforward: in the depletion rate plot, the intercept at the vanishing free xenon concentration represents the kinetic rate coefficient for xenon detachment from the host by dissociative processes while the slope is indicative of the kinetic rate coefficient for degenerate exchange reactions. Comparing quantified kinetic rates for hyperpolarized xenon in aqueous solution reveals the high accuracy of each approach but also shows differences in the precision of the numerical results and in the requirements for prior knowledge. Because of their broad range of applicability the proposed exchange spectroscopy experiments can be readily used to unravel the kinetics of complex formation of xenon with host molecules in the various situations appearing in practice.
Collapse
Affiliation(s)
- Sergey Korchak
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Division of Medical Physics and Metrological Information Technology, Abbestr. 2 - 12, 10587 Berlin, Germany
| | - Wolfgang Kilian
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Division of Medical Physics and Metrological Information Technology, Abbestr. 2 - 12, 10587 Berlin, Germany
| | - Leif Schröder
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Lorenz Mitschang
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Division of Medical Physics and Metrological Information Technology, Abbestr. 2 - 12, 10587 Berlin, Germany.
| |
Collapse
|
41
|
Schaly A, Rousselin Y, Chambron JC, Aubert E, Espinosa E. The Stereoselective Self-Assembly of Chiral Metallo-Organic Cryptophanes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501446] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Blanco V, Abella D, Rama T, Alvariño C, García MD, Peinador C, Quintela JM. Guest-induced stereoselective self-assembly of quinoline-containing PdII and PtII metallacycles. RSC Adv 2016. [DOI: 10.1039/c6ra14909j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The inclusion of aromatics within atropisomeric metallacycles induced stereoselectivity on the self-assembly. This selectivity is influenced by the size of the guests, the C–H⋯π interactions and the π-acceptor and hydrophobic character of the host.
Collapse
Affiliation(s)
- Víctor Blanco
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Granada
- Campus Fuentenueva s/n
- Granada
| | - Dolores Abella
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- A Coruña
- Spain
| | - Tamara Rama
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- A Coruña
- Spain
| | - Cristina Alvariño
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- A Coruña
- Spain
| | - Marcos D. García
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- A Coruña
- Spain
| | - Carlos Peinador
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- A Coruña
- Spain
| | - José M. Quintela
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- A Coruña
- Spain
| |
Collapse
|
43
|
The complexation between ‘Texas sized’ molecular box and linear n-aliphate dianion: en route to supramolecular organic frameworks (SOFs) for selectively CO2 absorption. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.11.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Programming A Molecular Relay for Ultrasensitive Biodetection through 129
Xe NMR. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Wang Y, Roose BW, Philbin JP, Doman JL, Dmochowski IJ. Programming A Molecular Relay for Ultrasensitive Biodetection through (129)Xe NMR. Angew Chem Int Ed Engl 2015; 55:1733-6. [PMID: 26692420 DOI: 10.1002/anie.201508990] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Indexed: 01/13/2023]
Abstract
A supramolecular strategy for detecting specific proteins in complex media by using hyperpolarized (129) Xe NMR is reported. A cucurbit[6]uril (CB[6])-based molecular relay was programmed for three sequential equilibrium conditions by designing a two-faced guest (TFG) that initially binds CB[6] and blocks the CB[6]-Xe interaction. The protein analyte recruits the TFG and frees CB[6] for Xe binding. TFGs containing CB[6]- and carbonic anhydrase II (CAII)-binding domains were synthesized in one or two steps. X-ray crystallography confirmed TFG binding to Zn(2+) in the deep CAII active-site cleft, which precludes simultaneous CB[6] binding. The molecular relay was reprogrammed to detect avidin by using a different TFG. Finally, Xe binding by CB[6] was detected in buffer and in E. coli cultures expressing CAII through ultrasensitive (129) Xe NMR spectroscopy.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Benjamin W Roose
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - John P Philbin
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Jordan L Doman
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA.
| |
Collapse
|
46
|
Henkelis JJ, Blackburn AK, Dale EJ, Vermeulen NA, Nassar MS, Stoddart JF. Allosteric Modulation of Substrate Binding within a Tetracationic Molecular Receptor. J Am Chem Soc 2015; 137:13252-5. [DOI: 10.1021/jacs.5b08656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- James J. Henkelis
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anthea K. Blackburn
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Edward J. Dale
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicolaas A. Vermeulen
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Majed S. Nassar
- Joint
Centre of Excellence in Integrated Nano-Systems, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
47
|
Gao L, Liu W, Lee OS, Dmochowski IJ, Saven JG. Xe affinities of water-soluble cryptophanes and the role of confined water. Chem Sci 2015; 6:7238-7248. [PMID: 29861959 PMCID: PMC5950801 DOI: 10.1039/c5sc02401c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/21/2015] [Indexed: 11/29/2022] Open
Abstract
Simulations provide molecular insight on the aqueous binding of Xe to cryptophanes.
Given their relevance to drug design and chemical sensing, host–guest interactions are of broad interest in molecular science. Natural and synthetic host molecules provide vehicles for understanding selective molecular recognition in aqueous solution. Here, cryptophane–Xe host–guest systems are considered in aqueous media as a model molecular system that also has important applications. 129Xe–cryptophane systems can be used in the creation of biosensors and powerful contrast agents for magnetic resonance imaging applications. Detailed molecular information on the determinants of Xe affinity is difficult to obtain experimentally. Thus, molecular simulation and free energy perturbation methods were applied to estimate the affinities of Xe for six water-soluble cryptophanes. The calculated affinities correlated well with the previously measured experimental values. The simulations provided molecular insight on the differences in affinities and the roles of conformational fluctuations, solvent, and counter ions on Xe binding to these host molecules. Displacement of confined water from the host interior cavity is a key component of the binding equilibrium, and the average number of water molecules within the host cavity is correlated with the free energy of Xe binding to the different cryptophanes. The findings highlight roles for molecular simulation and design in modulating the relative strengths of host–guest and host–solvent interactions.
Collapse
Affiliation(s)
- Lu Gao
- Department of Chemistry , University of Pennsylvania , 231 S. 34th Street , Philadelphia , PA 19104 , USA .
| | - Wenhao Liu
- Department of Chemistry , University of Pennsylvania , 231 S. 34th Street , Philadelphia , PA 19104 , USA .
| | - One-Sun Lee
- Qatar Environment and Energy Research Institute , Hamad Bin Khalifa University , Qatar Foundation , Doha , Qatar
| | - Ivan J Dmochowski
- Department of Chemistry , University of Pennsylvania , 231 S. 34th Street , Philadelphia , PA 19104 , USA .
| | - Jeffery G Saven
- Department of Chemistry , University of Pennsylvania , 231 S. 34th Street , Philadelphia , PA 19104 , USA .
| |
Collapse
|
48
|
Steiner E, Brotin T, Takacs Z, Kowalewski J. Chemical Shielding Anisotropies for Chloroform Exchanging between a Free Site and a Complex with Cryptophane-D: A Cross-Correlated NMR Relaxation Study. J Phys Chem B 2015; 119:11760-7. [PMID: 26266582 DOI: 10.1021/acs.jpcb.5b05218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The case of (13)C-labeled chloroform exchanging between a free site in solution and the encaged site within the cryptophane-D cavity is investigated using the measurements of longitudinal cross-correlated relaxation rates, involving the interference of the dipole-dipole and chemical shielding anisotropy interactions. A compact theoretical expression is provided, along with an experimental protocol, based on INEPT (insensitive nuclei enhanced by polarization)-enhanced double-quantum-filtered inversion recovery measurements. The analysis of the build-up curves results in a set of cross-correlated relaxation rates for both the (13)C and (1)H spins at the two sites. It is demonstrated that the results can be given a consistent interpretation in terms of molecular-level properties, such as rotational correlation times, the Lipari-Szabo order parameter, and interaction strength constants. The analysis yields the bound-site carbon-13 chemical shielding anisotropy, ΔσC = -58 ± 8 ppm, in good agreement with most recent liquid-crystal measurements and the corresponding proton shielding anisotropy, ΔσH = 14 ± 2 ppm.
Collapse
Affiliation(s)
- Emilie Steiner
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Thierry Brotin
- Laboratoire de Chimie, (CNRS-UMR 5182) Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, F-69364 Lyon cedex 07, France
| | - Zoltan Takacs
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Jozef Kowalewski
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
49
|
Steiner E, Mathew R, Zimmermann I, Brotin T, Edén M, Kowalewski J. Investigation of chloromethane complexes of cryptophane-A analogue with butoxy groups using ¹³C NMR in the solid state and solution along with single crystal X-ray diffraction. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:596-602. [PMID: 26095611 PMCID: PMC4832841 DOI: 10.1002/mrc.4265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Host-guest complexes between cryptophane-A analogue with butoxy groups (cryptophane-But) and chloromethanes (chloroform, dichloromethane) were investigated in the solid state by means of magic-angle spinning (13)C NMR spectroscopy. The separated local fields method with (13)C-(1)H dipolar recoupling was used to determine the residual dipolar coupling for the guest molecules encaged in the host cavity. In the case of chloroform guest, the residual dipolar interaction was estimated to be about 19 kHz, consistent with a strongly restricted mobility of the guest in the cavity, while no residual interaction was observed for encaged dichloromethane. In order to rationalize this unexpected result, we performed single crystal X-ray diffraction studies, which confirmed that both guest molecules indeed were present inside the cryptophane cavity, with a certain level of disorder. To improve the insight in the dynamics, we performed a (13)C NMR spin-lattice relaxation study for the dichloromethane guest in solution. The system was characterized by chemical exchange, which was slow on the chemical shift time scale but fast with respect to the relaxation rates. Despite these disadvantageous conditions, we demonstrated that the data could be analyzed and that the results were consistent with an isotropic reorientation of dichloromethane within the cryptophane cavity.
Collapse
Affiliation(s)
- Emilie Steiner
- Department of Materials and Environmental Chemistry, Arrhenius LaboratoryStockholm UniversitySE‐106 91StockholmSweden
| | - Renny Mathew
- Department of Materials and Environmental Chemistry, Arrhenius LaboratoryStockholm UniversitySE‐106 91StockholmSweden
| | - Iwan Zimmermann
- Department of Materials and Environmental Chemistry, Arrhenius LaboratoryStockholm UniversitySE‐106 91StockholmSweden
| | - Thierry Brotin
- Laboratoire de Chimie(CNRS‐UMR 5182) Ecole Normale Supérieure de Lyon46 Allée d' ItalieF‐69364Lyon Cedex 07France
| | - Mattias Edén
- Department of Materials and Environmental Chemistry, Arrhenius LaboratoryStockholm UniversitySE‐106 91StockholmSweden
| | - Jozef Kowalewski
- Department of Materials and Environmental Chemistry, Arrhenius LaboratoryStockholm UniversitySE‐106 91StockholmSweden
| |
Collapse
|
50
|
Abstract
A lack of molecular contrast agents has slowed the application of ultrasensitive hyperpolarized (129)Xe NMR methods. Here, we report that commercially available cucurbit[6]uril (CB[6]) undergoes rapid xenon exchange kinetics at 300 K, and is detectable by Hyper-CEST NMR at 1.8 pM in PBS and at 1 μM in human plasma where many molecules, including polyamines, can compete with xenon for CB[6] binding.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|