1
|
An Y, Zhang Y, Luo X, Lan Y, Geng M, Duan W, Xie Z, Zhang H. Discovery of indole derivatives as STING degraders. Eur J Med Chem 2025; 294:117747. [PMID: 40398154 DOI: 10.1016/j.ejmech.2025.117747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/23/2025]
Abstract
Aberrant activation of the stimulator of interferon genes (STING) pathway is associated with the development of various inflammatory and autoimmune diseases. Targeting STING for degradation represents a novel strategy for the treatment of these diseases. In this study, we designed and synthesized a series of STING-PROTACs based on a nitro-free covalent warhead and different E3 ligase binders. The representative compound 2h specifically degraded STING protein through the proteasome pathway with a DC50 value of 3.23 μM and exhibited sustained degradation activity over 72 h. Further biological studies demonstrated that compound 2h inhibited STING signaling and effectively suppressed immune-inflammatory cytokines both in vitro and in vivo. Moreover, compound 2h offered better safety compared to its warhead molecule and SP23. Collectively, compound 2h is a potent nitro-free covalent STING degrader and warrants further investigation.
Collapse
Affiliation(s)
- Yuxiang An
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Xin Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Nanjing, Jiangsu, 210023, China
| | - Yaohan Lan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Nanjing, Jiangsu, 210023, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Wenhu Duan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Hefeng Zhang
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| |
Collapse
|
2
|
Fu Y, Wang C, Sun W, Kong H, Liang W, Shi T, Li Q, Jia M, Zhao W, Song H. MINT3 promotes STING activation and facilitates antiviral immune responses. Cell Signal 2025; 132:111825. [PMID: 40254147 DOI: 10.1016/j.cellsig.2025.111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/02/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Stimulator-of-interferon genes (STING) translocation is the rate-limiting step in the cGAS-STING signaling which detects cytosolic DNA and produces type I interferons. However, the mechanism by which this process is modulated remains to be further clarified. In the present study, we identified munc18-1-interacting protein 3 (MINT3) as a positive regulator of STING signaling. MINT3 promotes type I interferons production induced by herpes simplex virus-1 (HSV-1) infection and ISD or cGAMP stimulation in mouse peritoneal macrophages. Deficiency of Mint3 greatly inhibited STING and IRF3 activation in macrophages. Mint3 knockdown also attenuated STING and IRF3 activation in macrophages, human THP-1 cells, and RAW264.7 cells. Mechanistically, MINT3 interacted with STING, selectively enhanced its K63-linked polyubiquitination and facilitated STING translocation to the Golgi, resulting in the enhancement of the STING and TBK1 interaction. Furthermore, MINT3 also facilitated HSV-1-induced innate antiviral immune responses and impaired HSV-1 replication in vitro and in vivo. Interestingly, we showed that the expression of MINT3 was dramatically elevated during HSV-1 infection, and ISD stimulation in macrophages. Thus, we have revealed a feedback mechanism for the regulation of the cGAS-STING pathway, providing a promising therapeutic target for the treatment of disorders triggered by aberrant STING activity.
Collapse
Affiliation(s)
- Yue Fu
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Caiwei Wang
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenyue Sun
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongyi Kong
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenbo Liang
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tongrui Shi
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qizhao Li
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mutian Jia
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Song
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Wu K, Xu Y, Liu P, Chen K, Zhao Y. STING inhibitors and degraders: Potential therapeutic agents in inflammatory diseases. Eur J Med Chem 2025; 291:117632. [PMID: 40262301 DOI: 10.1016/j.ejmech.2025.117632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
The regulation of the STING (stimulator of interferon genes) pathway represents a promising target for a range of inflammatory diseases. This review provides an overview of the structure of STING and discusses the mechanisms by which the cyclic GMP-AMP synthase (cGAS)-STING pathway is associated with various autoinflammatory and autoimmune diseases. We explore how targeting STING inhibition or degradation can alleviate excessive inflammatory signaling and improve efficacy. Emerging strategies include inhibiting STING expression by covalently binding compounds or using ligands that target the binding pocket. In addition, selective degradation of STING via the ubiquitin-proteasome system or the lysosomal pathway shows promise. In addition, we explore the implications of modulating the cGAS-STING pathway in the context of various inflammatory diseases. Finally, we summarize the chemical properties of recently developed STING compounds and their potential clinical applications. By comprehensively reviewing the current understanding of the role of STING in inflammation and the therapeutic potential of targeting STING, we aim to identify new avenues of intervention that could improve outcomes for patients with inflammatory diseases. This review highlights the important role of STING in the regulation of inflammation and its potential as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Kerong Wu
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xu
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peizhao Liu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Kexin Chen
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Zhao
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Wang L, Hou P, Ma W, Jin R, Wei X, Li X, He H, Wang H. Unveiling EXOC4/SEC8: a key player in enhancing antiviral immunity by inhibiting the FBXL19-STING1-SQSTM1 signaling axis. Autophagy 2025. [PMID: 40413753 DOI: 10.1080/15548627.2025.2511077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/14/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025] Open
Abstract
As a core aptamer for anti-DNA viral immunity, STING1 (stimulator of interferon response cGAMP interactor 1) is tightly regulated to ensure the proper functioning of the natural antiviral immune response. However, many mechanisms underlying the regulation of STING1 remain largely unknown. In this study, we identify EXOC4/SEC8 (exocyst complex component 4) as a novel positive regulator of DNA virus-triggered type I interferon signaling responses through stabilizing STING1, thereby inhibiting DNA viral replication. Mechanistically, EXOC4 suppresses K27-linked ubiquitination of STING1 at K338, K347, and K370 catalyzed by the E3 ligase FBXL19 (F-box and leucine rich repeat protein 19), thereby preventing ubiquitinated-STING1 from recognition by SQSTM1 (sequestosome 1) for autophagic degradation. Importantly, mice conditionally knocked out for Exoc4/Sec8 are more susceptible to herpes simplex virus type 1 (HSV-1) infection and exhibit more severe lung pathology compared to control mice. This further confirms the important role of EXOC4/SEC8 in antiviral natural immunity. Taken together, our study reveals the importance of EXOC4/SEC8 in promoting STING1-centered antiviral natural immunity and highlights its potential as an anti-DNA viral therapeutic target.
Collapse
Affiliation(s)
- Lin Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Peili Hou
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Wenqing Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Rong Jin
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xinxin Wei
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xingyu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
5
|
Kaur A, Aran KR. Unraveling the cGAS-STING pathway in Alzheimer's disease: A new Frontier in neuroinflammation and therapeutic strategies. Neuroscience 2025; 573:430-441. [PMID: 40185388 DOI: 10.1016/j.neuroscience.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent type of neurological disorder characterized by cognitive decline and memory loss, marked by the accumulation of amyloid beta (Aβ) plaques and hyperphosphorylated tau protein, causing extensive neuronal death and neuroinflammation. There is growing evidence that AD development extends beyond the neuronal compartment and has a major impact on the immunological functions of the brain. The cyclic GMP-AMP synthase (cGAS) detects cytosolic DNA, including pathogenic foreign DNA and self-DNA from cellular injury, triggering a type I interferon (IFN-I) response through activation of the stimulator of interferon genes (STING). The activation of the cGAS-STING pathway in response to mitochondrial dysfunction drives neuroinflammation in AD, which is mediated by the release of IFN-I cytokines. Furthermore, the release of oxidized mtDNA is necessary for the stimulation of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome, which is a family of protein complexes that macrophages can produce to induce inflammation. AD becomes severe by the stimulation of the cGAS-STING pathway, which results in sterile inflammation and microglial dysfunction. This review aims to explore the potential impact of the cGAS-STING signaling pathway in the pathogenesis and progression of AD. Additionally; after overviewing recent findings, this article highlights the molecular mechanism involved in the onset of disease and its modulation regarding the therapeutic approach of AD. Finally, deliberated a deep insight, the cGAS-STING axis could provide novel therapeutic avenues for slowing or halting the progression of AD, thereby offering new prospects for treatment development.
Collapse
Affiliation(s)
- Arshdeep Kaur
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India.
| |
Collapse
|
6
|
Xu M, Xu B. Protein lipidation in the tumor microenvironment: enzymology, signaling pathways, and therapeutics. Mol Cancer 2025; 24:138. [PMID: 40335986 PMCID: PMC12057185 DOI: 10.1186/s12943-025-02309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/18/2025] [Indexed: 05/09/2025] Open
Abstract
Protein lipidation is a pivotal post-translational modification that increases protein hydrophobicity and influences their function, localization, and interaction network. Emerging evidence has shown significant roles of lipidation in the tumor microenvironment (TME). However, a comprehensive review of this topic is lacking. In this review, we present an integrated and in-depth literature review of protein lipidation in the context of the TME. Specifically, we focus on three major lipidation modifications: S-prenylation, S-palmitoylation, and N-myristoylation. We emphasize how these modifications affect oncogenic signaling pathways and the complex interplay between tumor cells and the surrounding stromal and immune cells. Furthermore, we explore the therapeutic potential of targeting lipidation mechanisms in cancer treatment and discuss prospects for developing novel anticancer strategies that disrupt lipidation-dependent signaling pathways. By bridging protein lipidation with the dynamics of the TME, our review provides novel insights into the complex relationship between them that drives tumor initiation and progression.
Collapse
Affiliation(s)
- Mengke Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China.
| |
Collapse
|
7
|
Yi L, Song J, Zhang Z, Li L, Wu Y, Xue M, Zheng C, Liu C. Palmitoyl-transferase 3 promotes mitochondrial antiviral signaling protein degradation by modulating its ubiquitination. Int J Biol Macromol 2025; 310:143609. [PMID: 40300684 DOI: 10.1016/j.ijbiomac.2025.143609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
The innate antiviral immunity of humans serves as their first line of defence against viral and microbial illnesses. The retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway requires the mitochondrial antiviral signaling protein (MAVS) to function properly. ZDHHCs, a family of acyltransferases, regulate diverse biological processes via interactions with numerous mammalian proteins and viral proteins. However, the role of ZDHHCs in antiviral innate immunity against RNA viruses remains largely elusive. Here, we show that ZDHHC3 downregulates the RLR signaling pathway. Ectopic ZDHHC3 expression reduces RIG-IN- and SeV-mediated IFN-β promoter activity, IRF3 nuclear transduction, and transcription of the IFN-β and ISG genes. Furthermore, ectopic expression of ZDHHC3 decreases MAVS stability by promoting proteasomal degradation, which can be reversed by MG132 but not CQ. ZDHHC3 interacts with MAVS and promotes its breakdown by increasing K48-linked ubiquitination rather than K63-linked ubiquitination. ZDHHC3 deletion resulted in increased IFN-β promoter activity and transcription of the IFN-β and ISG genes. ZDHHC3 knockdown promotes subsequent antiviral signaling and reduces viral replication, indicating the role of ZDHHC3 in antiviral innate immunity. In addition, the catalytically inactive mutant ZDHHC3 C157S efficiently reversed the IFN-β promoter activity produced by RIG-IN, which was consistent with the results of 2-BP treatment. Collectively, these data show that ZDHHC3 inhibits the RNA virus-triggered signaling cascade by targeting MAVS and provides new insights into the role of ZDHHC3 in antiviral innate immunity.
Collapse
Affiliation(s)
- Li Yi
- Department of Clinical Laboratory, Yiyang Central Hospital, Yiyang, Hunan 413099, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zheng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Longping Li
- Department of Clinical Laboratory, Yiyang Central Hospital, Yiyang, Hunan 413099, China
| | - Yongqing Wu
- Shanwei Academy of Agricultural Sciences, Shanwei, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases University of Calgary, Calgary, Alberta, Canada.
| | - Chenggang Liu
- Shanwei Academy of Agricultural Sciences, Shanwei, China.
| |
Collapse
|
8
|
Zhang M, Wu C, Lu D, Wang X, Shang G. cGAS-STING: mechanisms and therapeutic opportunities. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1309-1323. [PMID: 39821837 DOI: 10.1007/s11427-024-2808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
The cGAS-STING pathway plays a crucial role in the innate immune system by detecting mislocalized double-stranded DNA (dsDNA) in the cytoplasm and triggering downstream signal transduction. Understanding the mechanisms by which cGAS and STING operate is vital for gaining insights into the biology of this pathway. This review provides a detailed examination of the structural features of cGAS and STING proteins, with a particular emphasis on their activation and inhibition mechanisms. We also discuss the novel discovery of STING functioning as an ion channel. Furthermore, we offer an overview of key agonists and antagonists of cGAS and STING, shedding light on their mechanisms of action. Deciphering the molecular intricacies of the cGAS-STING pathway holds significant promise for the development of targeted therapies aimed at maintaining immune homeostasis within both innate and adaptive immunity.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Changxin Wu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Defen Lu
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Guijun Shang
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
9
|
Lang J, Bergner T, Zinngrebe J, Lepelley A, Vill K, Leiz S, Wlaschek M, Wagner M, Scharffetter-Kochanek K, Fischer-Posovszky P, Read C, Crow YJ, Hirschenberger M, Sparrer KMJ. Distinct pathogenic mutations in ARF1 allow dissection of its dual role in cGAS-STING signalling. EMBO Rep 2025; 26:2232-2261. [PMID: 40128408 PMCID: PMC7617634 DOI: 10.1038/s44319-025-00423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Tight control of cGAS-STING-mediated DNA sensing is crucial to avoid auto-inflammation. The GTPase ADP-ribosylation factor 1 (ARF1) is crucial to maintain cGAS-STING homeostasis and various pathogenic ARF1 variants are associated with type I interferonopathies. Functional ARF1 inhibits STING activity by maintaining mitochondrial integrity and facilitating COPI-mediated retrograde STING trafficking and deactivation. Yet the factors governing the two distinct functions of ARF1 remained unexplored. Here, we dissect ARF1's dual role by a comparative analysis of disease-associated ARF1 variants and their impact on STING signalling. We identify a de novo heterozygous s.55 C > T/p.R19C ARF1 variant in a patient with type I interferonopathy symptoms. The GTPase-deficient variant ARF1 R19C selectively disrupts COPI binding and retrograde transport of STING, thereby prolonging innate immune activation without affecting mitochondrial integrity. Treatment of patient fibroblasts in vitro with the STING signalling inhibitors H-151 and amlexanox reduces chronic interferon signalling. Summarizing, our data reveal the molecular basis of a ARF1-associated type I interferonopathy allowing dissection of the two roles of ARF1, and suggest that pharmacological targeting of STING may alleviate ARF1-associated auto-inflammation.
Collapse
Affiliation(s)
- Johannes Lang
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Tim Bergner
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Alice Lepelley
- Institut Imagine-Inserm UMR1163, Laboratory of Neurogenetics and Neuroinflammation, Université Paris Cité, Paris, France
| | - Katharina Vill
- Department of Pediatric Neurology and Developmental Medicine, Dr. von Hauner Children's Hospital, LMU-University of Munich, Munich, Germany
| | - Steffen Leiz
- Division of Neuropediatrics, Klinikum Dritter Orden, Munich, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, Ulm, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum Munich, Munich, Germany
| | | | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner site Ulm, Ulm, Germany
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Yanick J Crow
- Institut Imagine-Inserm UMR1163, Laboratory of Neurogenetics and Neuroinflammation, Université Paris Cité, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|
10
|
Zhao S, Sun D, Yu H, Wang M, Xu B, Wang Y, Hu F, Wang X, Zhang J, Wang Y, Chai J. Oxaliplatin accelerates immunogenic cell death by activating the cGAS/STING/TBK1/IRF5 pathway in gastric cancer. FEBS J 2025. [PMID: 40260556 DOI: 10.1111/febs.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 11/11/2024] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Immunogenic cell death is a tumor cell death involving both innate and adaptive immune responses. Given the published findings that oxaliplatin causes the secretion of high mobility group box 1 (HMGB1) from cancer cells, which is necessary for the initiation of immunogenic cell death, we investigated whether oxaliplatin plays an anticancer role in gastric cancer by inducing immunogenic cell death and further explored its mechanism. We found that oxaliplatin inhibited viability and induced pyroptosis, immunogenic cell death, the production of reactive oxygen species, mitochondrial permeability transition pore (mPTP) opening, and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis activation in gastric cancer cells. Suppressing mPTP opening (cyclosporine treatment), depleting mitochondrial DNA (mtDNA; ethidium bromide treatment), or STING downregulation (H151 or si-STING treatment) reversed cGAS/STING pathway activation and the increased immunogenic cell death induced by oxaliplatin in MKN-45 and AGS cells. Moreover, oxaliplatin induced immunogenic cell death via activating the cGAS/STING/TANK-binding kinase 1 (TBK1; also known as serine/threonine-protein kinase TBK1)/interferon regulatory factor 5 (IRF5) pathway. In conclusion, oxaliplatin treatment could induce immunogenic cell death and mPTP opening and activate the cGAS/STING/TBK1/IRF5 pathway in gastric cancer cells.
Collapse
Affiliation(s)
- Siwei Zhao
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dong Sun
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hang Yu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Menglin Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, China
| | - Botao Xu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yufei Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fangqi Hu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiazi Zhang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yongsheng Wang
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
11
|
CHEN W, PANG L, LAN Y, SHI Y, WEN B, ZHANG B. [Research Progress and Applications of ZDHHC-mediated Protein Palmitoylation
in the Development and Immune Escape of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:319-324. [PMID: 40404480 PMCID: PMC12096089 DOI: 10.3779/j.issn.1009-3419.2025.102.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Indexed: 05/24/2025]
Abstract
Non-small cell lung cancer (NSCLC), a leading cause of cancer-related deaths worldwide, remains a significant clinical challenge despite advances in immune checkpoint inhibitors therapy, with drug resistance persisting as a major obstacle. Palmitoylation, a critical post-translational modification (PTM) primarily catalyzed by palmitoyltransferases of the zinc finger DHHC-type (ZDHHC), has recently demonstrated important implications in NSCLC. This review aims to elucidate the mechanisms and clinical potential of ZDHHC-mediated protein palmitoylation in NSCLC progression and immune escape.
.
Collapse
|
12
|
Chen X, Zhuo SH, Li YM. Oligomerization of STING and Chemical Regulatory Strategies. Chembiochem 2025; 26:e202400888. [PMID: 39900536 DOI: 10.1002/cbic.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
Stimulator of interferon genes (STING) plays a crucial role in innate immunity. Upon the recognition of cytosolic dsDNA, STING undergoes several structural changes, with oligomerization playing a key role in initiating a cascade of immune responses. Therefore, controlling the STING pathway by manipulating STING oligomerization is a practical strategy. This review focuses on the detailed mechanism of STING oligomerization, highlighting its decisive role. It also describes oligomerization-based strategies to regulate STING protein, such as the use of small-molecule agonists and biomacromolecules, highlighting their interaction modes and potential therapeutic applications. This knowledge may lead to the development of innovative approaches for treating cancer and immune disorders.
Collapse
Affiliation(s)
- Xi Chen
- Zhili College, Tsinghua University, Beijing, 100084, P. R. China
| | - Shao-Hua Zhuo
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yan-Mei Li
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
- Beijing Institute for Brain Disorders, Beijing, 100084, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
13
|
Jiang T, Fei L. cGAS-STING signaling in melanoma: regulation and therapeutic targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04141-8. [PMID: 40223035 DOI: 10.1007/s00210-025-04141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Melanocytes are the source of the skin cancer known as melanoma. It usually affects the viscera, mucous membranes, and skin. Even so, melanoma only makes for 7% of all skin cancer occurrences. By triggering the generation of type I interferons (IFN-I) and inflammatory cytokines upon identifying microbial DNA, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway promotes anti-microbial innate immunity. A growing body of research indicates that antitumor immunity depends on the cGAS-STING axis being activated. The cGAS-STING-regulated downstream cytokines, particularly IFN-I, act as linkages between adaptive and innate immunity. As a result, an increasing amount of research has concentrated on the synthesis and screening of agonists of the STING pathway. As a result, an increasing amount of research has concentrated on the synthesis and screening of agonists of the STING pathway. The many implications of the cGAS-STING pathway in the pathophysiology and therapy of melanoma are thoroughly examined in this study. Our research highlights the significance of the cGAS-STING pathway in melanoma and identifies it as a key target for boosting immunity against tumors.
Collapse
Affiliation(s)
- Ting Jiang
- Cancer Center, The First Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Lixue Fei
- Cancer Center, The First Bethune Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
14
|
Wang S, Qin L, Liu F, Zhang Z. Unveiling the crossroads of STING signaling pathway and metabolic reprogramming: the multifaceted role of the STING in the TME and new prospects in cancer therapies. Cell Commun Signal 2025; 23:171. [PMID: 40197235 PMCID: PMC11977922 DOI: 10.1186/s12964-025-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
The cGAS-STING signaling pathway serves as a critical link between DNA sensing and innate immunity, and has tremendous potential to improve anti-tumor immunity by generating type I interferons. However, STING agonists have shown decreasing biotherapeutic efficacy in clinical trials. Tumor metabolism, characterized by aberrant nutrient utilization and energy production, is a fundamental hallmark of tumorigenesis. And modulating metabolic pathways in tumor cells has been discovered as a therapeutic strategy for tumors. As research concerning STING progressed, emerging evidence highlights its role in metabolic reprogramming, independent its immune function, indicating metabolic targets as a strategy for STING activation in cancers. In this review, we delve into the interplay between STING and multiple metabolic pathways. We also synthesize current knowledge on the antitumor functions of STING, and the metabolic targets within the tumor microenvironment (TME) that could be exploited for STING activation. This review highlights the necessity for future research to dissect the complex metabolic interactions with STING in various cancer types, emphasizing the potential for personalized therapeutic strategies based on metabolic profiling.
Collapse
Affiliation(s)
- Siwei Wang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Ministry of Education, Huazhong University of Science and Technology), Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
15
|
Cancado de Faria R, Silva L, Teodoro-Castro B, McCommis KS, Shashkova EV, Gonzalo S. A non-canonical cGAS-STING pathway drives cellular and organismal aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.645994. [PMID: 40236012 PMCID: PMC11996560 DOI: 10.1101/2025.04.03.645994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Accumulation of cytosolic DNA has emerged as a hallmark of aging, inducing sterile inflammation. STING (Stimulator of Interferon Genes) protein translates the sensing of cytosolic DNA by cGAS (cyclic-GMP-AMP synthase) into an inflammatory response. However, the molecular mechanisms whereby cytosolic DNA-induced cGAS-STING pathway leads to aging remain poorly understood. We show that STING does not follow the canonical pathway of activation in human fibroblasts passaged (aging) in culture, senescent fibroblasts, or progeria fibroblasts (from Hutchinson Gilford Progeria Syndrome patients). Despite cytosolic DNA buildup, features of the canonical cGAS-STING pathway like increased cGAMP production, STING phosphorylation, and STING trafficking to perinuclear compartment are not observed in progeria/senescent/aging fibroblasts. Instead, STING localizes at endoplasmic reticulum, nuclear envelope, and chromatin. Despite the non-conventional STING behavior, aging/senescent/progeria cells activate inflammatory programs such as the senescence-associated secretory phenotype (SASP) and the interferon (IFN) response, in a cGAS and STING-dependent manner, revealing a non-canonical pathway in aging. Importantly, progeria/aging/senescent cells are hindered in their ability to activate the canonical cGAS-STING pathway with synthetic DNA, compared to young cells. This deficiency is rescued by activating vitamin D receptor signaling, unveiling new mechanisms regulating the cGAS-STING pathway in aging. Significantly, in HGPS, inhibition of the non-canonical cGAS-STING pathway ameliorates cellular hallmarks of aging, reduces tissue degeneration, and extends the lifespan of progeria mice. Our study reveals that a new feature of aging is the progressively reduced ability to activate the canonical cGAS-STING pathway in response to cytosolic DNA, triggering instead a non-canonical pathway that drives senescence/aging phenotypes. Significance Statement Our study provides novel insights into the mechanisms driving sterile inflammation in aging and progeria. We reveal a previously unrecognized characteristic of aging cells: the progressive loss of ability to activate the canonical response to foreign or self-DNA at the cytoplasm. Instead, aging, senescent, and progeria cells activate inflammatory programs via a non-conventional pathway driven by cGAS and the adaptor protein STING. Importantly, pharmacological inhibition of the non-canonical cGAS-STING pathway ameliorates cellular, tissue and organismal decline in a devastating accelerated aging disease (Hutchinson Gilford Progeria Syndrome), highlighting it as a promising therapeutic target for age-related pathologies.
Collapse
|
16
|
Vasiyani H, Wadhwa B. STING activation and overcoming the challenges associated with STING agonists using ADC (antibody-drug conjugate) and other delivery systems. Cell Signal 2025; 128:111647. [PMID: 39922441 DOI: 10.1016/j.cellsig.2025.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
In current immunotherapy cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway considered as most focused area after CAR-T cell. Exploitation of host immunity against cancer using STING agonists generates the most interest as a therapeutic target. Classically cGAS activation through cytoplasmic DNA generates 2'3'cGAMP that is naturally identified STING agonist. Activation of STING leads to activation of type-1 interferon response and pro-inflammatory cytokines through TBK/IRF-3, TBK/NF-κB pathways. Pro-inflammatory cytokines attract immune cells to the tumor microenvironment and type-1 interferon exposes tumor antigens to T cells and NK cells, which leads to the activation of cellular immunity against tumor cells and eliminates tumor cells. Initially bacterial-derived c-di-AMP and c-di-GMP were identified as CDNs (Cyclic-dinucleotide) STING agonists. Moreover, chemically modified CDNs and completely synthetic STING agonists have been developed. Even though the breakthrough preclinical development none of the STING agonists were approved the by FDA for cancer therapy. All identified natural CDNs have poor pharmacokinetic properties due to high hydrophilicity and negative charge. Moreover, phosphodiester bonds in CDNs are most vulnerable to enzymatic degradation. Synthetic STING agonists have an off-target effect that generates autoimmunity and cytokine storm. STING agonist needs to improve for pharmacokinetics, efficacy, and safety. In this scenario delivery systems can overcome the challenges associated with STING agonists. Here, we highlight the ways of STING agonisms as direct and indirect, and further, we also discuss the existing STING agonists associated challenges and ongoing efforts for delivery of STING agonists in the tumor microenvironment (TME) via different non-targeted carriers like Nanoparticle, Hydrogel, Micelle, Liposome. We also discussed the most advanced targeted deliveries of ADC (Antibody-drug conjugate) and aptamers-based delivery.
Collapse
Affiliation(s)
- Hitesh Vasiyani
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA-23284, USA.
| | - Bhumika Wadhwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| |
Collapse
|
17
|
Li X, Xu S, Su Z, Shao Z, Huang X. Unleashing the Potential of Metal Ions in cGAS-STING Activation: Advancing Nanomaterial-Based Tumor Immunotherapy. ACS OMEGA 2025; 10:11723-11742. [PMID: 40191377 PMCID: PMC11966298 DOI: 10.1021/acsomega.4c10865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 04/09/2025]
Abstract
Immunotherapy is a critical modality in cancer treatment with diverse activation pathways. In recent years, the stimulator of interferon genes (STING) signaling pathway has exhibited significant potential in tumor immunotherapy. This pathway exerts notable antitumor effects by activating innate and adaptive immunity and regulating the tumor immune microenvironment. Various metal ions have been identified as effective activators of the STING pathway and, through the design and synthesis of nanodelivery platforms, have been applied in immunotherapy as well as in combination therapies, such as chemotherapy, chemodynamic therapy, photodynamic therapy, and cancer vaccines. Metal nanomaterials showcase unique advantages in immunotherapy; however, there are still aspects that require optimization. This review systematically examines existing metal-based nanomaterials, elaborates on the mechanisms by which different metal ions activate the STING pathway, and discusses their application models in tumor combination therapies. We also provide a comparative analysis of the advantages of metal nanomaterials over other treatment methods. Our exploration highlights the broad application prospects of metal nanomaterials in cancer treatment, offering new insights and directions for the advancement of tumor immunotherapy.
Collapse
Affiliation(s)
- Xingyin Li
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaojie Xu
- Department
of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziliang Su
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Huang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
18
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2025; 48:520-540. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
19
|
Han X, Wang X, Han F, Yan H, Sun J, Zhang X, Moog C, Zhang C, Su B. The cGAS-STING pathway in HIV-1 and Mycobacterium tuberculosis coinfection. Infection 2025; 53:495-511. [PMID: 39509013 DOI: 10.1007/s15010-024-02429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) infection is the most common opportunistic infection in human immunodeficiency virus-1 (HIV-1)-infected individuals, and the mutual reinforcement of these two pathogens may accelerate disease progression and lead to rapid mortality. Therefore, HIV-1/M. tuberculosis coinfection is one of the major global public health concerns. HIV-1 infection is the greatest risk factor for M. tuberculosis infection and increases the likelihood of endogenous relapse and exogenous reinfection with M. tuberculosis. Moreover, M. tuberculosis further increases HIV-1 replication and the occurrence of chronic immune activation, accelerating the progression of HIV-1 disease. Exploring the pathogenesis of HIV-1/M. tuberculosis coinfections is essential for the development of novel treatments to reduce the global burden of tuberculosis. Innate immunity, which is the first line of host immune defense, plays a critical role in resisting HIV-1 and M. tuberculosis infections. The role of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway, which is a major DNA-sensing innate immune signaling pathway, in HIV-1 infection and M. tuberculosis infection has been intensively studied. This paper reviews the role of the cGAS-STING signaling pathway in HIV-1 infection and M. tuberculosis infection and discusses the possible role of this pathway in HIV-1/M. tuberculosis coinfection to provide new insight into the pathogenesis of HIV-1/M. tuberculosis coinfection and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoxu Han
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Fangping Han
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Hongxia Yan
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jin Sun
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Christiane Moog
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Laboratoire d'ImmunoRhumatologie Moléculaire, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Transplantex, Strasbourg, NG, 67000, France
- Vaccine Research Institute (VRI), Créteil, 94000, France
| | - Conggang Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
20
|
Smarduch S, Moreno-Velasquez SD, Ilic D, Dadsena S, Morant R, Ciprinidis A, Pereira G, Binder M, García-Sáez AJ, Acebrón SP. A novel biosensor for the spatiotemporal analysis of STING activation during innate immune responses to dsDNA. EMBO J 2025; 44:2157-2182. [PMID: 39984755 PMCID: PMC11962129 DOI: 10.1038/s44318-025-00370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 02/23/2025] Open
Abstract
The cGAS-STING signalling pathway has a central role in the innate immune response to extrinsic and intrinsic sources of cytoplasmic dsDNA. At the core of this pathway is cGAS-dependent production of the intra- and extra-cellular messenger cGAMP, which activates STING and leads to IRF3-dependent expression of cytokines and interferons. Despite its relevance to viral and bacterial infections, cell death, and genome instability, the lack of specific live-cell reporters has precluded spatiotemporal analyses of cGAS-STING signalling. Here, we generate a fluorescent biosensor termed SIRF (STING-IRF3), which reports on the functional interaction between activated STING and IRF3 at the Golgi. We show that cells harbouring SIRF react in a time- and concentration-dependent manner both to STING agonists and to microenvironmental cGAMP. We demonstrate that the new biosensor is suitable for single-cell characterisation of immune responses to HSV-1 infection, mtDNA release upon apoptosis, or other sources of cytoplasmic dsDNA. Furthermore, our results indicate that STING signalling is not activated by ruptured micronuclei, suggesting that other cytosolic pattern recognition receptors underlie the interferon responses to chromosomal instability.
Collapse
Affiliation(s)
- Steve Smarduch
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | | | - Doroteja Ilic
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shashank Dadsena
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Ryan Morant
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anja Ciprinidis
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
- Molecular Biology of Centrosome and Cilia, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Marco Binder
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
- IKERBASQUE, Basque Foundation of Science, Bilbao, Spain.
- University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
21
|
Zhang B, Xu P, Ablasser A. Regulation of the cGAS-STING Pathway. Annu Rev Immunol 2025; 43:667-692. [PMID: 40085836 DOI: 10.1146/annurev-immunol-101721-032910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The cGAS-cGAMP-STING pathway is essential for immune defense against pathogens. Upon binding DNA, cGAS synthesizes cGAMP, which activates STING, leading to potent innate immune effector responses. However, lacking specific features to distinguish between self and nonself DNA, cGAS-STING immunity requires precise regulation to prevent aberrant activation. Several safeguard mechanisms acting on different levels have evolved to maintain tolerance to self DNA and ensure immune homeostasis under normal conditions. Disruption of these safeguards can lead to erroneous activation by self DNA, resulting in inflammatory conditions but also favorable antitumor immunity. Insights into structural and cellular checkpoints that control and terminate cGAS-STING signaling are essential for comprehending and manipulating DNA-triggered innate immunity in health and disease.
Collapse
Affiliation(s)
- Bing Zhang
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Pengbiao Xu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
- Institute for Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
22
|
Wang J, Guo Y, Hu J, Peng J. STING Activation in Various Cell Types in Metabolic Dysfunction-Associated Steatotic Liver Disease. Liver Int 2025; 45:e70063. [PMID: 40116753 DOI: 10.1111/liv.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND During the hepatic histological progression in metabolic dysfunction-associated steatotic liver disease (MASLD), the immunological mechanisms play a the pivotal role, especially when progressing to metabolic dysfunction-associated steatohepatitis (MASH). The discovery of the stimulator of interferon genes (STING) marked a significant advancement in understanding the immune system. METHODS We searched literature on STING involved in MASLD in PubMed to summarise the role of intrahepatic or extrahepatic STING signal pathways and the potential agonists or inhibitors of STING in MASLD. RESULTS Besides inflammation and type I interferon response induced by STING activation in the intrahepatic or extrahepatic immune cells, STING activation in hepatocytes leads to protein aggregates and lipid deposition. STING activation in hepatic macrophages inhibits autophagy in hepatocytes and promotes hepatic stellate cells (HSCs) activation. STING activation in HSCs promotes HSC activation and exacerbates liver sinusoidal endothelial cells (LSECs) impairment. However, it was also reported that STING activation in hepatic macrophages promotes lipophagy in hepatocytes and STING activation in HSCs leads to HSC senescence. STING activation in LSEC, inhibits angiogenesis. For extrahepatic tissue, STING signalling participates in the regulation of the intestinal permeability, intestinal microecology and insulin action in adipocytes, which were all involved in the pathogenesis of MASLD. CONCLUSION There're plenty of STING ligands in MASLD. How STING activation affects the intercellular conversation in MASLD deserves thorough investigation.
Collapse
Affiliation(s)
- JingJing Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Guo
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
23
|
Shen Y, Huang W, Nie J, Zhang L. Progress Update on STING Agonists as Vaccine Adjuvants. Vaccines (Basel) 2025; 13:371. [PMID: 40333245 PMCID: PMC12030840 DOI: 10.3390/vaccines13040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Low antigen immunogenicity poses a significant challenge in vaccine development, often leading to inadequate immune responses and reduced vaccine efficacy. Therefore, the discovery of potent immune-enhancing adjuvants is crucial. STING (stimulator of interferon genes) agonists are a promising class of adjuvants which have been identified in various immune cells and are activated in response to DNA fragments, triggering a broad range of type-I interferon-dependent immune responses. Integrating STING agonists with vaccine components is an ideal strategy to bolster vaccine-induced immunity to infections and cancer cells. Several STING agonists are currently under investigation in preclinical studies and clinical trials; however, some have shown limited efficacy, while others exhibit off-target effects. To ensure safety, they are typically delivered with carriers that exhibit high biocompatibility and insolubility. In this review, we present the latest research on natural and synthetic STING agonists that have been effectively used in vaccine development, and summarize their application in adjuvant preventive and therapeutic vaccines. Additionally, we discuss the safety of STING agonists as vaccine adjuvants by reviewing potential delivery strategies. Overall, incorporating STING agonists into vaccine formulations represents a significant advancement in vaccine research with the potential to significantly enhance immune responses and improve vaccine efficacy. However, ongoing research is still required to identify the most effective and safe delivery strategies for STING agonists, as well as to evaluate their long-term safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Yanru Shen
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (Y.S.); (W.H.); (J.N.)
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (Y.S.); (W.H.); (J.N.)
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (Y.S.); (W.H.); (J.N.)
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (Y.S.); (W.H.); (J.N.)
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| |
Collapse
|
24
|
Poddar S, Chauvin SD, Archer CH, Qian W, Castillo-Badillo JA, Yin X, Disbennett WM, Miner CA, Holley JA, Naismith TV, Stinson WA, Wei X, Ning Y, Fu J, Ochoa TA, Surve N, Zaver SA, Wodzanowski KA, Balka KR, Venkatraman R, Liu C, Rome K, Bailis W, Shiba Y, Cherry S, Shin S, Semenkovich CF, De Nardo D, Yoh S, Roberson EDO, Chanda SK, Kast DJ, Miner JJ. ArfGAP2 promotes STING proton channel activity, cytokine transit, and autoinflammation. Cell 2025; 188:1605-1622.e26. [PMID: 39947179 PMCID: PMC11928284 DOI: 10.1016/j.cell.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 11/03/2024] [Accepted: 01/17/2025] [Indexed: 02/23/2025]
Abstract
Stimulator of interferon genes (STING) transmits signals downstream of the cytosolic DNA sensor cyclic guanosine monophosphate-AMP synthase (cGAS), leading to transcriptional upregulation of cytokines. However, components of the STING signaling pathway, such as IRF3 and IFNAR1, are not essential for autoinflammatory disease in STING gain-of-function (STING-associated vasculopathy with onset in infancy [SAVI]) mice. Recent discoveries revealed that STING also functions as a proton channel that deacidifies the Golgi apparatus. Because pH impacts Golgi enzyme activity, protein maturation, and trafficking, we hypothesized that STING proton channel activity influences multiple Golgi functions. Here, we show that STING-mediated proton efflux non-transcriptionally regulates Golgi trafficking of protein cargos. This process requires the Golgi-associated protein ArfGAP2, a cell-type-specific dual regulator of STING-mediated proton efflux and signaling. Deletion of ArfGAP2 in hematopoietic and endothelial cells markedly reduces STING-mediated cytokine and chemokine secretion, immune cell activation, and autoinflammatory pathology in SAVI mice. Thus, ArfGAP2 facilitates STING-mediated signaling and cytokine release in hematopoietic cells, significantly contributing to autoinflammatory disease pathogenesis.
Collapse
Affiliation(s)
- Subhajit Poddar
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Samuel D Chauvin
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christopher H Archer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Wei Qian
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jean A Castillo-Badillo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xin Yin
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - W Miguel Disbennett
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Cathrine A Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joe A Holley
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - W Alexander Stinson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xiaochao Wei
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Yue Ning
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jiayuan Fu
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Trini A Ochoa
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nehalee Surve
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shivam A Zaver
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kimberly A Wodzanowski
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine R Balka
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rajan Venkatraman
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Canyu Liu
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly Rome
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Will Bailis
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yoko Shiba
- Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Sara Cherry
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Clay F Semenkovich
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sunnie Yoh
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Elisha D O Roberson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - David J Kast
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Jonathan J Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Zhou L, Lian G, Zhou T, Cai Z, Yang S, Li W, Cheng L, Ye Y, He M, Lu J, Deng Q, Huang B, Zhou X, Lu D, Zhi F, Cui J. Palmitoylation of GPX4 via the targetable ZDHHC8 determines ferroptosis sensitivity and antitumor immunity. NATURE CANCER 2025:10.1038/s43018-025-00937-y. [PMID: 40108413 DOI: 10.1038/s43018-025-00937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Ferroptosis is closely linked with various pathophysiological processes, including aging, neurodegeneration, ischemia-reperfusion injury, viral infection and, notably, cancer progression; however, its post-translational regulatory mechanisms remain incompletely understood. Here we revealed a crucial role of S-palmitoylation in regulating ferroptosis through glutathione peroxidase 4 (GPX4), a pivotal enzyme that mitigates lipid peroxidation. We identified that zinc finger DHHC-domain containing protein 8 (zDHHC8), an S-acyltransferase that is highly expressed in multiple tumors, palmitoylates GPX4 at Cys75. Through small-molecule drug screening, we identified PF-670462, a zDHHC8-specific inhibitor that promotes the degradation of zDHHC8, consequently attenuating GPX4 palmitoylation and enhancing ferroptosis sensitivity. PF-670462 inhibition of zDHHC8 facilitates the CD8+ cytotoxic T cell-induced ferroptosis of tumor cells, thereby improving the efficacy of cancer immunotherapy in a B16-F10 xenograft model. Our findings reveal the prominent role of the zDHHC8-GPX4 axis in regulating ferroptosis and highlight the potential application of zDHHC8 inhibitors in anticancer therapy.
Collapse
Affiliation(s)
- Liang Zhou
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Guangyu Lian
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Zhe Cai
- Guangzhou Institute of Pediatrics, Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Weining Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Lilin Cheng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Ying Ye
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingfeng He
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianru Lu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Qifeng Deng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Bihui Huang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaoqian Zhou
- Department of Gastrointestinal Surgery, The First People's Hospital of Gui Yang, Gui Yang, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Cancer Research Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Feng Zhi
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
26
|
Niu GH, Hsiao WC, Lee PH, Zheng LG, Yang YS, Huang WC, Hsieh CC, Chiu TY, Wang JY, Chen CP, Huang CL, You MS, Kuo YP, Wang CM, Wen ZH, Yu GY, Chen CT, Chi YH, Tung CW, Hsu SC, Yeh TK, Sung PJ, Zhang MM, Tsou LK. Orally Bioavailable and Site-Selective Covalent STING Inhibitor Derived from a Macrocyclic Marine Diterpenoid. J Med Chem 2025; 68:5471-5487. [PMID: 40014799 PMCID: PMC11912488 DOI: 10.1021/acs.jmedchem.4c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Pharmacological inhibition of the cGAS-STING-controlled innate immune pathway is an emerging therapeutic strategy for a myriad of inflammatory diseases. Here, we report GHN105 as an orally bioavailable covalent STING inhibitor. Late-stage diversification of the briarane-type diterpenoid excavatolide B allowed the installation of solubility-enhancing functional groups while enhancing its activity as a covalent STING inhibitor against multiple human STING variants, including the S154 variant responsible for a genetic autoimmune disease. Selectively engaging the membrane-proximal Cys91 residue of STING, GHN105 dose-dependently inhibited cGAS-STING signaling and type I interferon responses in cells and in vivo. Moreover, orally administered GHN105 exhibited on-target engagement in vivo and markedly reversed key pathological features in a delayed treatment of the acute colitis mouse model. Our study provided proof of concept that the synthetic briarane analog GHN105 serves as a safe, site-selective, and orally active covalent STING inhibitor and devises a regimen that allows long-term systemic administration.
Collapse
Affiliation(s)
- Guang-Hao Niu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Wan-Chi Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Hsun Lee
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Li-Guo Zheng
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
| | - Yu-Shao Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Wei-Cheng Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chih-Chien Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Tai-Yu Chiu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Jing-Ya Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yi-Ping Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chien-Ming Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
| | - Mingzi M Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| |
Collapse
|
27
|
Chen Y, Yue S, Yu L, Cao J, Liu Y, Deng A, Lu Y, Yang J, Li H, Du J, Xia J, Li Y, Xia Y. Regulation and Function of the cGAS-STING Pathway: Mechanisms, Post-Translational Modifications, and Therapeutic Potential in Immunotherapy. Drug Des Devel Ther 2025; 19:1721-1739. [PMID: 40098909 PMCID: PMC11911240 DOI: 10.2147/dddt.s501773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Autoimmune diseases arise when the immune system attacks healthy tissues, losing tolerance for self-tissues. Normally, the immune system recognizes and defends against pathogens like bacteria and viruses. The cGAS-STING pathway, activated by pattern-recognition receptors (PRRs), plays a key role in autoimmune responses. The cGAS protein senses pathogenic DNA and synthesizes cGAMP, which induces conformational changes in STING, activating kinases IKK and TBK1 and leading to the expression of interferon genes or inflammatory mediators. This pathway is crucial in immunotherapy, activating innate immunity, enhancing antigen presentation, modulating the tumor microenvironment, and integrating into therapeutic strategies. Modulation strategies include small molecule inhibitors, oligonucleotide therapies, protein and antibody therapies, genetic and epigenetic regulation, cytokine and metabolite modulation, and nanoscale delivery systems. Post-translational modifications (PTMs) of the cGAS-STING pathway, such as phosphorylation, acetylation, ubiquitination, methylation, palmitoylation, and glycosylation, fine-tune immune responses by regulating protein activity, stability, localization, and interactions. These modifications are interconnected and collectively influence pathway functionality. We summarize the functions of cGAS-STING and its PTMs in immune and non-immune cells across various diseases, and explore potential clinical applications.
Collapse
Affiliation(s)
- Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Si Yue
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yongming Xia
- Department of Hematology, Yuyao People’s Hospital, Yuyao, Zhejiang, People’s Republic of China
| |
Collapse
|
28
|
Li N, Yang H, Zhang S, Jiang Y, Lin Y, Chen X, Zhang Y, Yu Y, Ouyang X, Cui Y, Song Y, Jiao J. COPB1-knockdown induced type I interferon signaling activation inhibits Chlamydia psittaci intracellular proliferation. Front Microbiol 2025; 16:1566239. [PMID: 40115189 PMCID: PMC11922848 DOI: 10.3389/fmicb.2025.1566239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Objective Chlamydia psittaci is a zoonotic pathogen that causes an acute disease known as psittacosis. To establish infection in host cells, Chlamydia manipulates the host cell's membrane trafficking pathways. Methods In this study, using fluorescently labeled C. psittaci and screening a human membrane trafficking small interfering RNA (siRNA) library, we identified 34 host proteins that influenced C. psittaci infection in HeLa cells. Results Among these, knockdown (KD) of two genes encoding subunits of the coatomer complex I (COPI) inhibited the pathogen's intracellular survival. Specifically, the knockdown of COPB1, a COPI subunit, significantly reduced the intracellular proliferation of C. psittaci. Mechanistically, we found that type I interferon negatively affected C. psittaci infection. Moreover, COPB1 KD disrupted the homeostasis of STING, preventing its retrieval from the Golgi back to the endoplasmic reticulum (ER), which in turn activated type I interferon signaling. Conclusion Together, our findings advance the understanding of the mechanisms underlying Chlamydia infection and offer potential avenues for the development of new anti-C. psittaci strategies.
Collapse
Affiliation(s)
- Nana Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medicine Sciences, Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medicine Sciences, Beijing, China
- School of Public Health, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Shan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medicine Sciences, Beijing, China
| | - Yufei Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medicine Sciences, Beijing, China
| | - Yinhui Lin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medicine Sciences, Beijing, China
| | - Xiaoxiao Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medicine Sciences, Beijing, China
| | - Yuchen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medicine Sciences, Beijing, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medicine Sciences, Beijing, China
| | - Xuan Ouyang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medicine Sciences, Beijing, China
| | - Yujun Cui
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medicine Sciences, Beijing, China
| | - Yajun Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medicine Sciences, Beijing, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medicine Sciences, Beijing, China
| |
Collapse
|
29
|
Quan S, Fu X, Cai H, Ren Z, Xu Y, Jia L. The neuroimmune nexus: unraveling the role of the mtDNA-cGAS-STING signal pathway in Alzheimer's disease. Mol Neurodegener 2025; 20:25. [PMID: 40038765 PMCID: PMC11877805 DOI: 10.1186/s13024-025-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
The relationship between Alzheimer's disease (AD) and neuroimmunity has gradually begun to be unveiled. Emerging evidence indicates that cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, recognizing cytosolic damage-associated molecular patterns (DAMPs), and inducing the innate immune response by activating stimulator of interferon genes (STING). Dysregulation of this pathway culminates in AD-related neuroinflammation and neurodegeneration. A substantial body of evidence indicates that mitochondria are involved in the critical pathogenic mechanisms of AD, whose damage leads to the release of mitochondrial DNA (mtDNA) into the extramitochondrial space. This leaked mtDNA serves as a DAMP, activating various pattern recognition receptors and immune defense networks in the brain, including the cGAS-STING pathway, ultimately leading to an imbalance in immune homeostasis. Therefore, modulation of the mtDNA-cGAS-STING pathway to restore neuroimmune homeostasis may offer promising prospects for improving AD treatment outcomes. In this review, we focus on the mechanisms of mtDNA release during stress and the activation of the cGAS-STING pathway. Additionally, we delve into the research progress on this pathway in AD, and further discuss the primary directions and potential hurdles in developing targeted therapeutic drugs, to gain a deeper understanding of the pathogenesis of AD and provide new approaches for its therapy.
Collapse
Affiliation(s)
- Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Yinghao Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
30
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
31
|
Dong H, Zhang H, Song P, Hu Y, Chen D. DSTYK phosphorylates STING at late endosomes to promote STING signaling. EMBO Rep 2025; 26:1620-1646. [PMID: 39979465 PMCID: PMC11933320 DOI: 10.1038/s44319-025-00394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/19/2025] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Stimulator of interferon genes (STING) is essential for innate immune pathway activation in response to pathogenic DNA. Proper activation of STING signaling requires STING translocation and phosphorylation. Here, we show that dual serine/threonine and tyrosine protein kinase (DSTYK) directly phosphorylates STING Ser366 at late endosomes to promote the activation of STING signaling. We find that TBK1 promotes STING post-Golgi trafficking via its kinase activity, thereby enabling the interaction between DSTYK and STING. We also demonstrate that DSTYK and TBK1 can both promote STING phosphorylation at late endosomes. Using an in vivo Dstyk-knockout model, we showed that mice deficient in DSTYK demonstrate reduced STING signaling activation and are more susceptible to infection with a DNA virus. Together, we reveal the previously unknown cellular function of DSTYK in phosphorylating STING and our findings provide insights into the mechanism of STING signaling activation at late endosomes.
Collapse
Affiliation(s)
- Hao Dong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.
| | - Heng Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
| | - Pu Song
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
| | - Yuan Hu
- School of Life Sciences, Peking University, Beijing, China
| | - Danying Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
32
|
Ravenhill BJ, Oliveira M, Wood G, Di Y, Kite J, Wang X, Davies CTR, Lu Y, Antrobus R, Elliott G, Irigoyen N, Hughes DJ, Lyons PA, Chung B, Borner GHH, Weekes MP. Spatial proteomics identifies a CRTC-dependent viral signaling pathway that stimulates production of interleukin-11. Cell Rep 2025; 44:115263. [PMID: 39921859 DOI: 10.1016/j.celrep.2025.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/09/2024] [Accepted: 01/12/2025] [Indexed: 02/10/2025] Open
Abstract
Appropriate cellular recognition of viruses is essential for the generation of an effective innate and adaptive immune response. Viral sensors and their downstream signaling components thus provide a crucial first line of host defense. Many of them exhibit subcellular relocalization upon activation, resulting in the expression of interferon and antiviral genes. To comprehensively identify signaling factors, we analyzed protein relocalization on a global scale during viral infection. cAMP-responsive element-binding protein (CREB)-regulated transcription coactivators 2 and 3 (CRTC2/3) exhibited early cytoplasmic-to-nuclear translocation upon infection with multiple viruses in diverse cell types. This movement was dependent on mitochondrial antiviral signaling protein (MAVS), cyclo-oxygenase proteins, and protein kinase A. A key effect of CRTC2/3 translocation is transcription of the fibro-inflammatory cytokine interleukin (IL)-11. This may be important clinically in viral infections associated with fibrosis, including SARS-CoV-2. Nuclear translocation of CRTC2/3 is, therefore, identified as an important pathway in the context of viral infection.
Collapse
Affiliation(s)
- Benjamin J Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marisa Oliveira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - George Wood
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ying Di
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Joanne Kite
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xinyue Wang
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Colin T R Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gill Elliott
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Nerea Irigoyen
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David J Hughes
- School of Biology, University of St. Andrews, St. Andrews, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Betty Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Georg H H Borner
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
33
|
Li X, Hu X, You H, Zheng K, Tang R, Kong F. Regulation of pattern recognition receptor signaling by palmitoylation. iScience 2025; 28:111667. [PMID: 39877903 PMCID: PMC11772949 DOI: 10.1016/j.isci.2024.111667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Pattern recognition receptors (PRRs), consisting of Toll-like receptors, RIG-I-like receptors, cytosolic DNA sensors, and NOD-like receptors, sense exogenous pathogenic molecules and endogenous damage signals to maintain physiological homeostasis. Upon activation, PRRs stimulate the sensitization of nuclear factor κB, mitogen-activated protein kinase, TANK-binding kinase 1-interferon (IFN) regulatory factor, and inflammasome signaling pathways to produce inflammatory factors and IFNs to activate Janus kinase/signal transducer and activator of transcription signaling pathways, resulting in anti-infection, antitumor, and other specific immune responses. Palmitoylation is a crucial type of post-translational modification that reversibly alters the localization, stability, and biological activity of target molecules. Here, we discuss the available knowledge on the biological roles and underlying mechanisms linked to protein palmitoylation in modulating PRRs and their downstream signaling pathways under physiological and pathological conditions. Moreover, recent advances in the use of palmitoylation as an attractive therapeutic target for disorders caused by the dysregulation of PRRs were summarized.
Collapse
Affiliation(s)
- Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaofang Hu
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
34
|
Nie AY, Xiao ZH, Deng JL, Li N, Hao LY, Li SH, Hu XY. Bidirectional regulation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon gene pathway and its impact on hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:98556. [PMID: 39958554 PMCID: PMC11755995 DOI: 10.4251/wjgo.v17.i2.98556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related deaths in China, and the treatment options are limited. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) activates the stimulator of interferon gene (STING) signaling pathway as a crucial immune response pathway in the cytoplasm, which detects cytoplasmic DNA to regulate innate and adaptive immune responses. As a potential therapeutic target, cGAS-STING pathway markedly inhibits tumor cell proliferation and metastasis, with its activation being particularly relevant in HCC. However, prolonged pathway activation may lead to an immunosuppressive tumor microenvironment, which fostering the invasion or metastasis of liver tumor cells. AIM To investigate the dual-regulation mechanism of cGAS-STING in HCC. METHODS This review was conducted according to the PRISMA guidelines. The study conducted a comprehensive search for articles related to HCC on PubMed and Web of Science databases. Through rigorous screening and meticulous analysis of the retrieved literature, the research aimed to summarize and elucidate the impact of the cGAS-STING pathway on HCC tumors. RESULTS All authors collaboratively selected studies for inclusion, extracted data, and the initial search of online databases yielded 1445 studies. After removing duplicates, the remaining 964 records were screened. Ultimately, 55 articles met the inclusion criteria and were included in this review. CONCLUSION Acute inflammation can have a few inhibitory effects on cancer, while chronic inflammation generally promotes its progression. Extended cGAS-STING pathway activation will result in a suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Ai-Yu Nie
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Zhong-Hui Xiao
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Jia-Li Deng
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Na Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Li-Yuan Hao
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Sheng-Hao Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Xiao-Yu Hu
- Department of Infection, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
35
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
36
|
Abdulrahman FA, Benford KA, Lin GT, Maroun AJ, Sammons C, Shirzad DN, Tsai H, Van Brunt VL, Jones Z, Marquez JE, Ratkus EC, Shehadeh AK, Abasto Valle H, Fejzo D, Gilbert AE, McWee CA, Underwood LF, Indico E, Rork BB, Nanjundan M. zDHHC-Mediated S-Palmitoylation in Skin Health and Its Targeting as a Treatment Perspective. Int J Mol Sci 2025; 26:1673. [PMID: 40004137 PMCID: PMC11854935 DOI: 10.3390/ijms26041673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
S-acylation, which includes S-palmitoylation, is the only known reversible lipid-based post-translational protein modification. S-palmitoylation is mediated by palmitoyl acyltransferases (PATs), a family of 23 enzymes commonly referred to as zDHHCs, which catalyze the addition of palmitate to cysteine residues on specific target proteins. Aberrant S-palmitoylation events have been linked to the pathogenesis of multiple human diseases. While there have been advances in elucidating the molecular mechanisms underlying the pathogenesis of various skin conditions, there remain gaps in the knowledge, specifically with respect to the contribution of S-palmitoylation to the maintenance of skin barrier function. Towards this goal, we performed PubMed literature searches relevant to S-palmitoylation in skin to define current knowledge and areas that may benefit from further research studies. Furthermore, to identify alterations in gene products that are S-palmitoylated, we utilized bioinformatic tools such as SwissPalm and analyzed relevant data from publicly available databases such as cBioportal. Since the targeting of S-palmitoylated targets may offer an innovative treatment perspective, we surveyed small molecules inhibiting zDHHCs, including 2-bromopalmitate (2-BP) which is associated with off-target effects, and other targeting strategies. Collectively, our work aims to advance both basic and clinical research on skin barrier function with a focus on zDHHCs and relevant protein targets that may contribute to the pathogenesis of skin conditions such as atopic dermatitis, psoriasis, and skin cancers including melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (F.A.A.); (K.A.B.); (G.T.L.); (A.J.M.); (C.S.); (D.N.S.); (H.T.); (V.L.V.B.); (Z.J.); (J.E.M.); (E.C.R.); (A.K.S.); (H.A.V.); (D.F.); (A.E.G.); (C.A.M.); (L.F.U.); (E.I.); (B.B.R.)
| |
Collapse
|
37
|
Han X, Ma G, Peng R, Xu J, Sheng L, Liu H, Sui Q, Li J, Gu Y, Yu J, Feng Z, Xu Q, Wen X, Yuan H, Sun H, Dai L. Discovery of an Orally Bioavailable STING Inhibitor with In Vivo Anti-Inflammatory Activity in Mice with STING-Mediated Inflammation. J Med Chem 2025; 68:2963-2980. [PMID: 39875322 DOI: 10.1021/acs.jmedchem.4c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of the interferon genes (STING) pathway plays a key role in triggering interferon and inflammatory responses against microbial invasion or tumor. However, aberrant activation of the cGAS-STING pathway is associated with a variety of inflammatory and autoimmune diseases, and thus inhibition of STING is regarded as a potential new approach to treating these diseases. Herein, we report a series of novel indolyl-urea derivatives as STING inhibitors. The representative compound 42 exhibited potent STING inhibitory activity, acceptable pharmacokinetic properties, and good in vivo safety profiles. Mechanistically, 42 could block the palmitoylation of the STING protein and STING downstream signaling. Importantly, oral administration of 42 could effectively suppress STING-mediated inflammation in 10-carboxymethyl-9-acridanone (CMA)-treated mouse and Trex1-/- mouse. Together, compound 42 represents a promising STING inhibitor for treating STING-associated inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Xi Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangcai Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ruikun Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Ju Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Sheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haohao Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qibang Sui
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaxin Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Yuhao Gu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jinli Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiqi Feng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Qinglong Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoan Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Haoliang Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hongbin Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Liang Dai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
38
|
Kalinkovich A, Livshits G. The cross-talk between the cGAS-STING signaling pathway and chronic inflammation in the development of musculoskeletal disorders. Ageing Res Rev 2025; 104:102602. [PMID: 39612990 DOI: 10.1016/j.arr.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Musculoskeletal disorders (MSDs) comprise diverse conditions affecting bones, joints, and muscles, leading to pain and loss of function, and are one of the most prevalent and major global health concerns. One of the hallmarks of MSDs is DNA damage. Once accumulated in the cytoplasm, the damaged DNA is sensed by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, which triggers the induction of type I interferons and inflammatory cytokines. Thus, this pathway connects the musculoskeletal and immune systems. Inhibitors of cGAS or STING have shown promising therapeutic effects in the pre-clinical models of several MSDs. Systemic, chronic, low-grade inflammation (SCLGI) underlies the development and maintenance of many MSDs. Failure to resolve SCLGI has been hypothesized to play a critical role in the development of chronic diseases, suggesting that the successful resolution of SCLGI will result in the alleviation of their related symptomatology. The process of inflammation resolution is feasible by specialized pro-resolving mediators (SPMs), which are enzymatically generated from dietary essential polyunsaturated fatty acids (PUFAs). The supplementation of SPMs or their stable, small-molecule mimetics and receptor agonists has revealed beneficial effects in inflammation-related animal models, including arthropathies, osteoporosis, and muscle dystrophy, suggesting a translational potential in MSDs. In this review, we substantiate the hypothesis that the use of cGAS-STING signaling pathway inhibitors together with SCLG-resolving compounds may serve as a promising new therapeutic approach for MSDs.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel; Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
39
|
You J, Xu A, Wang Y, Tu G, Huang R, Wu S. The STING signaling pathways and bacterial infection. Apoptosis 2025; 30:389-400. [PMID: 39428409 DOI: 10.1007/s10495-024-02031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
As antibiotic-resistant bacteria continue to emerge frequently, bacterial infections have become a significant and pressing challenge to global public health. Innate immunity triggers the activation of host responses by sensing "non-self" components through various pattern recognition receptors (PRRs), serving as the first line of antibacterial defense. Stimulator of interferon genes (STING) is a PRR that binds with cyclic dinucleotides (CDN) to exert effects against bacteria, viruses, and cancer by inducing the production of type I interferon and inflammatory cytokines, and facilitating regulated cell death. Currently, drugs targeting the STING signaling pathway are predominantly applied in the fields of modulating host immune defense against cancer and viral infections, with relatively limited application in treating bacterial infections. Given the significant immunomodulatory functions of STING in the interaction between bacteria and hosts, this review summarizes the research progress on STING signaling pathways and their roles in bacterial infection, as well as the novel functions of STING modulators, aiming to offer insights for the development of antibacterial drugs.
Collapse
Affiliation(s)
- Jiayi You
- Department of Medical Microbiology, School of Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Ailing Xu
- Department of Medical Microbiology, School of Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Ye Wang
- Department of Medical Microbiology, School of Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Guangmin Tu
- Department of Medical Microbiology, School of Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Rui Huang
- Department of Medical Microbiology, School of Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Shuyan Wu
- Department of Medical Microbiology, School of Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China.
| |
Collapse
|
40
|
Rendo V, Schubert M, Khuu N, Suarez Peredo Rodriguez MF, Whyte D, Ling X, van den Brink A, Huang K, Swift M, He Y, Zerbib J, Smith R, Raaijmakers J, Bandopadhayay P, Guenther LM, Hwang JH, Iniguez A, Moody S, Seo JH, Stover EH, Garraway L, Hahn WC, Stegmaier K, Medema RH, Chowdhury D, Colomé-Tatché M, Ben-David U, Beroukhim R, Foijer F. A compendium of Amplification-Related Gain Of Sensitivity genes in human cancer. Nat Commun 2025; 16:1077. [PMID: 39870664 PMCID: PMC11772776 DOI: 10.1038/s41467-025-56301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed. Combining these approaches, we propose a class of 'Amplification-Related Gain Of Sensitivity' (ARGOS) genes located in commonly amplified regions, yet expressed at lower levels than expected by their copy number, and toxic when overexpressed. We validate RBM14 as an ARGOS gene in lung and breast cancer cells, and suggest a toxicity mechanism involving altered DNA damage response and STING signaling. We additionally observe increased patient survival in a radiation-treated cancer cohort with RBM14 amplification.
Collapse
Affiliation(s)
- Veronica Rendo
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Michael Schubert
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
- Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany.
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria.
| | - Nicholas Khuu
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Declan Whyte
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Xiao Ling
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Anouk van den Brink
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Kaimeng Huang
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michelle Swift
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yizhou He
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Johanna Zerbib
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ross Smith
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jonne Raaijmakers
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Pratiti Bandopadhayay
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatrics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lillian M Guenther
- St. Jude Children's Research Hospital, Department of Oncology, Memphis, TN, USA
| | - Justin H Hwang
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Iniguez
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Moody
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elizabeth H Stover
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Levi Garraway
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - William C Hahn
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatrics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - René H Medema
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dipanjan Chowdhury
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany
- Biomedical Center (BMC), Physiological Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Uri Ben-David
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rameen Beroukhim
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
41
|
Rui Y, Shen S, Wang Y, Cheng L, Chen S, Hu Y, Cai Y, Wei W, Su J, Yu XF. HIV-1 Vpu and SARS-CoV-2 ORF3a proteins disrupt STING-mediated activation of antiviral NF-κB signaling. Sci Signal 2025; 18:eadd6593. [PMID: 39836751 DOI: 10.1126/scisignal.add6593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/12/2023] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
Activation of the stimulator of interferon genes (STING) pathway by cytosolic DNA leads to the activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB). Although many viruses produce proteins that inhibit IRF3-dependent antiviral responses, some viruses produce proteins that inhibit STING-induced NF-κB activation without blocking IRF3 activation. Here, we found that STING-activated, NF-κB-dependent, and IRF3-independent innate immunity inhibited the replication of the DNA virus herpes simplex virus type 1 (HSV-1), the RNA virus coxsackievirus A16 (CV-A16), and the retrovirus HIV-1. The HIV-1 nonstructural protein Vpu bound to STING and prevented it from interacting with the upstream NF-κB pathway kinase inhibitor of NF-κB subunit β (IKKβ), thus blocking NF-κB signaling. This function of Vpu was conserved among Vpu proteins from diverse HIV-1 and simian immunodeficiency virus strains and was distinct from its action in disrupting other host antiviral pathways. Furthermore, the ORF3a protein from the coronavirus SARS-CoV-2 also promoted viral replication by interacting with STING and blocking STING-induced activity of NF-κB but not of IRF3. These findings demonstrate that diverse viral proteins have convergently evolved to selectively inhibit NF-κB-mediated innate immunity downstream of STING activation, suggesting that targeting this pathway may represent a promising antiviral strategy.
Collapse
Affiliation(s)
- Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Si Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Department of Respiratory Disease, Thoracic Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Leyi Cheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Shiqi Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Ying Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yong Cai
- School of Life Science, Jilin University, Changchun 130012, China
| | - Wei Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine and Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
42
|
Zhang H, Wang Z, Wu J, Zheng YQ, Zhao Q, He S, Jiang H, Jiang C, Wang T, Liu Y, Cui L, Guo H, Yi J, Jin H, Xie C, Li M, Li J, Wang X, Xia L, Zhang XS, Xia X. Endothelial STING-JAK1 interaction promotes tumor vasculature normalization and antitumor immunity. J Clin Invest 2025; 135:e180622. [PMID: 39817453 PMCID: PMC11735096 DOI: 10.1172/jci180622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/11/2024] [Indexed: 01/18/2025] Open
Abstract
Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity. STING activation in endothelium promoted vessel normalization and CD8+ T cell infiltration - which required type I IFN (IFN-I) signaling- but not IFN-γ or CD4+ T cells. Rather than an upstream adaptor for inducing IFN-I signaling, STING acted downstream of interferon-α/β receptor (IFNAR) in endothelium for the JAK1-STAT signaling activation. Mechanistically, IFN-I stimulation induced JAK1-STING interaction and promoted JAK1 phosphorylation, which involved STING palmitoylation at the Cysteine 91 site but not its C-terminal tail (CTT) domain. Endothelial STING and JAK1 expression was significantly associated with immune cell infiltration in patients with cancer, and STING palmitoylation level correlated positively with CD8+ T cell infiltration around STING-positive blood vessels in tumor tissues from patients with melanoma. In summary, our findings uncover a previously unrecognized function of STING in regulating JAK1/STAT activation downstream of IFN-I stimulation and provide a new insight for future design and clinical application of STING agonists for cancer therapy.
Collapse
Affiliation(s)
- Huanling Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangzhou Institute of Clinical Medicine, Guangzhou First People’s Hospital, Guangzhou, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Qiang Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hang Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chang Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiahong Yi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengyun Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Shi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| |
Collapse
|
43
|
Xiong Y, Yi C, Zheng H, Ni Y, Xue Y, Li K. Protein palmitoylation is involved in regulating mouse sperm motility via the signals of calcium, protein tyrosine phosphorylation and reactive oxygen species. Biol Res 2025; 58:3. [PMID: 39810241 PMCID: PMC11734517 DOI: 10.1186/s40659-024-00580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear. This study aimed to elucidate the mechanism by which protein palmitoylation governs sperm motility. METHODS Protein palmitoylation in situ in mouse sperm was observed using innovative click chemistry. Sperm motility and motion parameters were evaluated using a computer-assisted sperm analyzer (CASA) after treatment with 2-bromopalmitic acid (2BP), a specific inhibitor of protein palmitoylation. Protein palmitoylation levels were confirmed by the acyl-biotin exchange (ABE) method. The interplay between protein palmitoylation, protein tyrosine phosphorylation, and intracellular calcium was investigated using Western blotting, ABE method, and fluorescent probes. The regulation of reactive oxygen species was also examined using fluorescent probes. RESULTS Localized patterns and dynamics of protein palmitoylation in distinct sperm regions were revealed, including the midpiece, post-acrosomal region, acrosome, and head. Alterations in protein palmitoylation in sperm were observed under in vitro physiological conditions. Treatment with 2BP significantly affected sperm motility and motion parameters. The study revealed interactions between protein palmitoylation, including heat shock protein 90, and protein kinase A/protein kinase C-associated protein tyrosine phosphorylation and intracellular calcium. Additionally, protein palmitoylation was found to be involved in reactive oxygen species regulation. CONCLUSIONS Protein palmitoylation regulates sperm motility through calcium signaling, protein tyrosine phosphorylation, and reactive oxygen species. This study revealed the characteristics of protein palmitoylation in sperm and its role in regulating sperm motility, thereby providing novel insights into the causes of asthenozoospermia associated with sperm motility in humans.
Collapse
Affiliation(s)
- Yuping Xiong
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chenchen Yi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haixia Zheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yamei Xue
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
44
|
Zhang Z, Zhang C. Regulation of cGAS-STING signalling and its diversity of cellular outcomes. Nat Rev Immunol 2025:10.1038/s41577-024-01112-7. [PMID: 39774812 DOI: 10.1038/s41577-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway, which recognizes both pathogen DNA and host-derived DNA, has emerged as a crucial component of the innate immune system, having important roles in antimicrobial defence, inflammatory disease, ageing, autoimmunity and cancer. Recent work suggests that the regulation of cGAS-STING signalling is complex and sophisticated. In this Review, we describe recent insights from structural studies that have helped to elucidate the molecular mechanisms of the cGAS-STING signalling cascade and we discuss how the cGAS-STING pathway is regulated by both activating and inhibitory factors. Furthermore, we summarize the newly emerging understanding of crosstalk between cGAS-STING signalling and other signalling pathways and provide examples to highlight the wide variety of cellular processes in which cGAS-STING signalling is involved, including autophagy, metabolism, ageing, inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Zhengyin Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
45
|
Paul S, Biswas SR, Milner JP, Tomsick PL, Pickrell AM. Adaptor-Mediated Trafficking of Tank Binding Kinase 1 During Diverse Cellular Processes. Traffic 2025; 26:e70000. [PMID: 40047067 PMCID: PMC11883510 DOI: 10.1111/tra.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
The serine/threonine kinase, Tank Binding Kinase 1 (TBK1), drives distinct cellular processes like innate immune signaling, selective autophagy, and mitosis. It is suggested that the translocation and activation of TBK1 at different subcellular locations within the cell, downstream of diverse stimuli, are driven by TBK1 adaptor proteins forming a complex directly or indirectly with TBK1. Various TBK1 adaptors and associated proteins like NAP1, TANK, SINTBAD, p62, optineurin (OPTN), TAX1BP1, STING, and NDP52 have been identified in facilitating TBK1 activation and recruitment with varying overlapping redundancy. This review focuses on what is known about these proteins, their interactions with TBK1, and the functional consequences of these associations. We shed light on underexplored areas of research on these TBK1 binding partners while emphasizing how future research is required to understand the function and flexibility of TBK1 signaling and crosstalk or regulation between different biological processes.
Collapse
Affiliation(s)
- Swagatika Paul
- Graduate Program in Biomedical and Veterinary SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - Sahitya Ranjan Biswas
- Translational Biology, Medicine, and Health Graduate ProgramVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
| | - Julia P. Milner
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Porter L. Tomsick
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Alicia M. Pickrell
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| |
Collapse
|
46
|
Gu J, Lao L, Chen Y, Lin S. Investigation of protein post-translational modifications with site-specifically incorporated non-canonical amino acids. Bioorg Med Chem 2025; 117:118013. [PMID: 39602864 DOI: 10.1016/j.bmc.2024.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Despite the important functions of protein post-translational modifications (PTMs) in numerous cellular processes, understanding the biological roles of PTMs remains quite challenging. Here, we summarize our efforts in recent years to incorporate a variety of non-canonical amino acids (ncAAs) to study the biological functions of protein PTMs in mammalian cells, with a focus on the use of ncAA tools to probe the biological functions of various protein PTMs. We design length-tunable lipidation mimics for studying lipidation function and designing protein drugs. We highlight the use of genetically encoded lysine aminoacylations as chemical baits to identify aminoacylated lysine ubiquitination. Finally, we discuss the use of genetically encoded electron-rich Trp derivatives to design binding affinity-enhancing histone methylations readers.
Collapse
Affiliation(s)
- Jiayu Gu
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lihui Lao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yulin Chen
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Shixian Lin
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
47
|
Ying X, Chen Q, Yang Y, Wu Z, Zeng W, Miao C, Huang Q, Ai K. Nanomedicines harnessing cGAS-STING pathway: sparking immune revitalization to transform 'cold' tumors into 'hot' tumors. Mol Cancer 2024; 23:277. [PMID: 39710707 DOI: 10.1186/s12943-024-02186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy. In this review, we provide an in-depth exploration of the molecular mechanisms that govern cGAS-STING signaling and its potential to dynamically modulate the anti-tumor immune cycle. We subsequently introduced several investigational cGAS-STING-dependent anti-tumor agents and summarized their clinical trial progress. Additionally, we provided a comprehensive review of the unique advantages of cGAS-STING-targeted nanomedicines, highlighting the transformative potential of nanotechnology in this field. Furthermore, we comprehensively reviewed and comparatively analyzed the latest breakthroughs cGAS-STING-targeting nanomedicine, focusing on strategies that induce cytosolic DNA generation via exogenous DNA delivery, chemotherapy, radiotherapy, or dynamic therapies, as well as the nanodelivery of STING agonists. Lastly, we discuss the future prospects and challenges in cGAS-STING-targeting nanomedicine development, offering new insights to bridge the gap between mechanistic research and drug development, thereby opening new pathways in cancer treatment.
Collapse
Affiliation(s)
- Xiaohong Ying
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiaohui Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ziyu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Wan Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chenxi Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Xiangya Hospital, Ministry of Education, Central South University, Changsha, 410008, China.
| |
Collapse
|
48
|
Gentili M, Carlson RJ, Liu B, Hellier Q, Andrews J, Qin Y, Blainey PC, Hacohen N. Classification and functional characterization of regulators of intracellular STING trafficking identified by genome-wide optical pooled screening. Cell Syst 2024; 15:1264-1277.e8. [PMID: 39657680 DOI: 10.1016/j.cels.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/05/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Stimulator of interferon genes (STING) traffics across intracellular compartments to trigger innate responses. Mutations in factors regulating this process lead to inflammatory disorders. To systematically identify factors involved in STING trafficking, we performed a genome-wide optical pooled screen (OPS). Based on the subcellular localization of STING in 45 million cells, we defined 464 clusters of gene perturbations based on their cellular phenotypes. A secondary, higher-dimensional OPS identified 73 finer clusters. We show that the loss of the gene of unknown function C19orf25, which clustered with USE1, a protein involved in Golgi-to-endoplasmic reticulum (ER) transport, enhances STING signaling. Additionally, HOPS deficiency delayed STING degradation and consequently increased signaling. Similarly, GARP/RIC1-RGP1 loss increased STING signaling by delaying STING Golgi exit. Our findings demonstrate that genome-wide genotype-phenotype maps based on high-content cell imaging outperform other screening approaches and provide a community resource for mining factors that impact STING trafficking and other cellular processes.
Collapse
Affiliation(s)
| | - Rebecca J Carlson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA
| | - Bingxu Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Yue Qin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul C Blainey
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA; Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA.
| | - Nir Hacohen
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA; Massachusetts General Hospital, Krantz Family Center for Cancer Research, Boston, MA, USA.
| |
Collapse
|
49
|
Padureanu V, Forțofoiu MC, Donoiu I, Tieranu EN, Dumitrascu C, Padureanu R, Mușetescu AE, Alexandru C, Iorgus CC, Bobirca F, Dascalu A, Bobirca A. COPA Syndrome-From Pathogenesis to Treatment. Diagnostics (Basel) 2024; 14:2819. [PMID: 39767180 PMCID: PMC11674574 DOI: 10.3390/diagnostics14242819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Coatomer subunit α (COPA) syndrome is a mendelian autosomal dominant immune dysregulation disease characterized by early onset lung disease in the form of diffuse alveolar hemorrhaging or interstitial lung disease, frequently associated with arthritis, glomerulonephritis, and high titer autoantibodies usually mimicking other autoimmune diseases. While immunosuppressive medication has been effective in controlling arthritis, data on long-term lung disease control remains scarce, which poses a real challenge as the progression of lung disease is the main cause of poor life expectancy in COPA patients. Nevertheless, JAK inhibitor therapy seems to be the most promising therapeutic choice now.
Collapse
Affiliation(s)
- Vlad Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.); (R.P.)
| | - Mircea-Cătălin Forțofoiu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.); (R.P.)
| | - Ionut Donoiu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Eugen-Nicolae Tieranu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Catalin Dumitrascu
- Department of Internal Medicine and Rheumatology, “Dr. Ion Cantacuzino” Clinical Hospital, 011437 Bucharest, Romania; (C.A.); (C.C.I.); (A.B.)
| | - Rodica Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.); (R.P.)
| | - Anca Emanuela Mușetescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Cristina Alexandru
- Department of Internal Medicine and Rheumatology, “Dr. Ion Cantacuzino” Clinical Hospital, 011437 Bucharest, Romania; (C.A.); (C.C.I.); (A.B.)
- Department of Internal Medicine and Rheumatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen Catalina Iorgus
- Department of Internal Medicine and Rheumatology, “Dr. Ion Cantacuzino” Clinical Hospital, 011437 Bucharest, Romania; (C.A.); (C.C.I.); (A.B.)
| | - Florin Bobirca
- Department of General Surgery, “Carol Davila” University of Medicine and Pharmacy, “Dr. Ion Cantacuzino” Clinical Hospital, 030167 Bucharest, Romania;
| | - Ana Dascalu
- Department of Ophthalmology, Emergency University Hospital Bucharest, 050098 Bucharest, Romania;
| | - Anca Bobirca
- Department of Internal Medicine and Rheumatology, “Dr. Ion Cantacuzino” Clinical Hospital, 011437 Bucharest, Romania; (C.A.); (C.C.I.); (A.B.)
- Department of Internal Medicine and Rheumatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
50
|
Taner HF, Gong W, Fitzsimonds ZR, Li Z, Wu Y, He Y, Okuyama K, Cheng W, Kuczura J, Rajesh S, Manousidaki A, Feng S, Lee M, Nör F, Lanzel E, Demehri S, Polverini PJ, Nör JE, Wang TD, Que J, Wen H, Xie Y, Moon JJ, Lei YL. SOX2-induced IL1α-mediated immune suppression drives epithelial dysplasia malignant transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.626475. [PMID: 39713429 PMCID: PMC11661103 DOI: 10.1101/2024.12.06.626475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Squamous cell carcinomas (SCC) are often preceded by potentially malignant precursor lesions, most of which remain benign. The terminal exhaustion phenotypes of effector T-cells and the accumulation of myeloid-derived suppressor cells (MDSC) have been thoroughly characterized in established SCC. However, it is unclear what precancerous lesions harbor a bona fide high risk for malignant transformation and how precancerous epithelial dysplasia drives the immune system to the point of no return. Here we show that expression of SRY-box transcription factor 2 (SOX2) in precancerous lesions imparts an irreversible risk that recruits suppressive myeloid cells by promoting the release of CCL2. We developed a unique genetically engineered mouse model (GEMM) to recapitulate the malignant transformation of epithelial dysplasia to SCC in the oral mucosa with high histologic and phenotypic fidelity. Using a combination of longitudinal human specimens and the Sox2-GEMM, we found that the myeloid cells in precancerous epithelial dysplasia exhibit a distinctive dichotomous profile featuring high levels of IL-1α-SLC2A1 and low levels of type-I interferon (IFN-I) signatures, which occurs before SCC emerges histologically. Brief priming of myeloid cells with IL-1α desensitizes them to IFN-I agonists and makes myeloid-derived suppressor cells (MDSC) even more suppressive of T-cell activation. Mechanistically, IL-1 activation represses the expression of DHHC3/7 enzymes, which are responsible for the palmitoylation of stimulator of interferon genes (STING). Early blockade of IL1 signaling using pharmacologic and genetic approaches similarly reduces MDSC and SLC2A1high myeloid cells, suppresses epithelial dysplasia transformation, and extends survival. This work establishes a previously unrecognized SOX2-CCL2-IL1 pathway that leads to irreversible immune escape when precancerous epithelial lesions transform.
Collapse
Affiliation(s)
- Hülya F. Taner
- Oral Health Sciences DDS/PhD Program, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
| | - Wang Gong
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Zackary R. Fitzsimonds
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Zaiye Li
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yuesong Wu
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Yumin He
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kohei Okuyama
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Wanqing Cheng
- Graduate School of Biomedical Sciences, the University of Texas M.D. Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Jung Kuczura
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Sashider Rajesh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andriana Manousidaki
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Shuo Feng
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Miki Lee
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Felipe Nör
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
| | - Emily Lanzel
- Department of Oral Pathology, Radiology, and Medicine, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Shadmehr Demehri
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Peter J. Polverini
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
| | - Jacques E. Nör
- Oral Health Sciences DDS/PhD Program, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Cariology, Restorative Science and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
| | - Thomas D. Wang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yuying Xie
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
- Department of Computational Mathematics Science and Engineering, Michigan State University, East Lansing, MI 48864, USA
| | - James J. Moon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI 48105, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Oral Health Sciences DDS/PhD Program, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Graduate School of Biomedical Sciences, the University of Texas M.D. Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|