1
|
Tian X, Li W, Li F, Cai M, Si Y, Tang H, Li H, Zhang H. Direct Photopatterning of Zeolitic Imidazolate Frameworks via Photoinduced Fluorination. Angew Chem Int Ed Engl 2025; 64:e202500476. [PMID: 39959928 DOI: 10.1002/anie.202500476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Precise and effective patterning strategies are essential for integrating metal-organic frameworks (MOFs) into microelectronics, photonics, sensors, and other solid-state devices. Direct lithography of MOFs with light and other irradiation sources has emerged as a promising patterning strategy. However, existing direct lithography methods often rely on the irradiation-induced amorphization of the MOFs structures and the breaking of strong covalent bonds in their organic linkers. High-energy sources (such as X-rays or electron beams) and large irradiation doses - conditions unfavorable for scalable patterning - are thus required. Here, we report a photoinduced fluorination chemistry for patterning various zeolitic imidazolate frameworks (ZIFs) under mild UV irradiation. Using UV doses as low as 10 mJ cm-2, light-sensitive fluorine-containing molecules covalently bond to ZIFs and enhance their stability in water. This creates a water-stability contrast between ZIFs in exposed and unexposed regions, enabling scalable direct photolithography of ZIFs with high resolution (2 μm) on 4-inch wafers and flexible substrates. The patterned ZIFs preserve their original crystallinity and porous properties while gaining increased hydrophobicity. This allows for the demonstration of a water-responsive fluorescent MOFs array with implications in sensing and multicolor information encryption.
Collapse
Affiliation(s)
- Xiaoli Tian
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenjun Li
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fu Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Mingfeng Cai
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yilong Si
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hao Tang
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haifang Li
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hao Zhang
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Carbonell C, Linares-Moreau M, Borisov SM, Falcaro P. Multimaterial Digital-Light Processing of Metal-Organic Framework (MOF) Composites: A Versatile Tool for the Rapid Microfabrication of MOF-Based Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408770. [PMID: 39252650 DOI: 10.1002/adma.202408770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Patterning Metal-Organic Frameworks (MOFs) is essential for their use in sensing, electronics, photonics, and encryption technologies. However, current lithography methods are limited in their ability to pattern more than two MOFs, hindering the potential for creating advanced multifunctional surfaces. Additionally, balancing design flexibility, simplicity, and cost often results in compromises. This study addresses these challenges by combining Digital-Light Processing (DLP) with a capillary-assisted stop-flow system to enable multimaterial MOF patterning. It demonstrates the desktop fabrication of multiplexed arbitrary micropatterns across cm-scale areas while preserving the MOF's pore accessibility. The ink, consisting of a MOF crystal suspension in a low volatile solvent, a mixture of high molecular weight oligomers, and a photoinitiator, is confined by capillarity in the DLP projection area and quickly exchanged using syringe pumps. The versatility of this method is demonstrated by the direct printing of a ZIF-8-based luminescent oxygen sensor, a 5-component dynamic information concealment method, and a PCN-224-based colorimetric sensor for amines, covering disparate pore and analyte sizes. The multi-MOF capabilities, simplicity, and accessibility of this strategy pave the way for the facile exploration of MOF materials across a wide range of applications, with the potential to significantly accelerate the design-to-application cycle of MOF-based devices.
Collapse
Affiliation(s)
- Carlos Carbonell
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
- Institute of Microelectronics of Barcelona (IMB-CNM-CSIC), Barcelona, 08193, Spain
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
3
|
Wang X, Jin Y, Zheng T, Li N, Han Y, Yu B, Wang K, Qi D, Wang T, Jiang J. Crystalline nanosheets of three-dimensional supramolecular frameworks with uniform thickness and high stability. Chem Sci 2024; 15:7586-7595. [PMID: 38784730 PMCID: PMC11110140 DOI: 10.1039/d4sc00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Fabricating three dimensional (3D) supramolecular frameworks (SMFs) into stable crystalline nanosheets remains a great challenge due to the homogeneous and weak inter-building block interactions along 3D directions. Herein, crystalline nanosheets of a 3D SMF with a uniform thickness of 4.8 ± 0.1 nm immobilized with Pt nanocrystals on the surface (Q[8]/Pt NSs) were fabricated via the solid-liquid reaction between cucurbit[8]uril/H2PtCl6 single crystals and hydrazine hydrate with the help of gas and heat yielded during the reaction process. A series of experiments and theoretical calculations reveal the ultrahigh stability of Q[8]/Pt NSs due to the high density hydrogen bonding interaction among neighboring Q[8] molecules. This in turn endows Q[8]/Pt NSs with excellent photocatalytic and continuous thermocatalytic CO oxidation performance, representing the thus-far reported best Pt nano-material-based catalysts.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yuesheng Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
4
|
Hong T, Lee C, Bak Y, Park G, Lee H, Kang S, Bae TH, Yoon DK, Park JG. On-Demand Tunable Electrical Conductance Anisotropy in a MOF-Polymer Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309469. [PMID: 38174621 DOI: 10.1002/smll.202309469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Property optimization through orientation control of metal-organic framework (MOF) crystals that exhibit anisotropic crystal structures continues to garner tremendous interest. Herein, an electric field is utilized to post-synthetically control the orientation of conductive layered Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) crystals dispersed in an electronically insulating poly(ethylene glycol) diacrylate (PEGDA) oligomer matrix. Optical and electrical measurements are performed to investigate the impact of the electric field on the alignment of Cu3(HHTP)2 crystals and the formation of aggregated microstructures, which leads to an ≈5000-fold increase in the conductivity of the composite. Notably, the composite thin-films containing aligned Cu3(HHTP)2 crystals exhibit significant conductivity of ≈10-3 S cm-1 despite the low concentration (≈1 wt.%) of conductive Cu3(HHTP)2. The use of an electric field to align Cu3(HHTP)2 crystals can rapidly generate various desired patterns that exhibit on-demand tunable collective charge transport anisotropy. The findings provide valuable insights toward the manipulation and utilization of conductive MOFs with anisotropic crystal structures for various applications such as adhesive electrical interconnects and microelectronics.
Collapse
Affiliation(s)
- Taegyun Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeongseo Bak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hongju Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunguk Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Hyun Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jesse G Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Tian X, Li F, Tang Z, Wang S, Weng K, Liu D, Lu S, Liu W, Fu Z, Li W, Qiu H, Tu M, Zhang H, Li J. Crosslinking-induced patterning of MOFs by direct photo- and electron-beam lithography. Nat Commun 2024; 15:2920. [PMID: 38575569 PMCID: PMC10995132 DOI: 10.1038/s41467-024-47293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) with diverse chemistry, structures, and properties have emerged as appealing materials for miniaturized solid-state devices. The incorporation of MOF films in these devices, such as the integrated microelectronics and nanophotonics, requires robust patterning methods. However, existing MOF patterning methods suffer from some combinations of limited material adaptability, compromised patterning resolution and scalability, and degraded properties. Here we report a universal, crosslinking-induced patterning approach for various MOFs, termed as CLIP-MOF. Via resist-free, direct photo- and electron-beam (e-beam) lithography, the ligand crosslinking chemistry leads to drastically reduced solubility of colloidal MOFs, permitting selective removal of unexposed MOF films with developer solvents. This enables scalable, micro-/nanoscale (≈70 nm resolution), and multimaterial patterning of MOFs on large-area, rigid or flexible substrates. Patterned MOF films preserve their crystallinity, porosity, and other properties tailored for targeted applications, such as diffractive gas sensors and electrochromic pixels. The combined features of CLIP-MOF create more possibilities in the system-level integration of MOFs in various electronic, photonic, and biomedical devices.
Collapse
Affiliation(s)
- Xiaoli Tian
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Fu Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenyuan Tang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Song Wang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Kangkang Weng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Dan Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Shaoyong Lu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Wangyu Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Zhong Fu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Wenjun Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Hengwei Qiu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Min Tu
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
- Beijing Institute of Life Science and Technology, Beijing, 102206, China
- Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Wang H, Liu P, Peng J, Yu H, Wang L. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) modified metal-organic frameworks boosting carbon dots electrochemiluminescence emission for sensitive miRNA detection. Biosens Bioelectron 2024; 249:116015. [PMID: 38211464 DOI: 10.1016/j.bios.2024.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Highly efficient luminescent materials play an important role in electrochemiluminescence (ECL) biosensing systems. Herein, the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) modified carbon dots (CDs)/zeolitic imidazolate framework-8 (ZIF-8) compositing metal-organic frameworks (MOFs) materials with excellent luminescence performance were prepared as the ECL emitters for biosensing application. In this novel ternary composites, CDs were used as emitters, ZIF-8 was used as a carrier, and the luminescent performance was finally improved by introducing PEDOT:PSS to improve the conductivity of the nanomaterials. As a result, CDs/PEDOT:PSS/ZIF-8 exhibited an approximately 8 times ECL intensity compared to CDs alone. By further modifying with AuNPs, the enhancement factor reached ≈10 in reference to the individual CDs. After combining with a DNAzyme-based two-cycle target amplification principle, an ECL biosensor was constructed to achieve high-sensitivity detection of miRNA-21 with a detection limit of 50 aM. The biosensor also demonstrated desirable selectivity, excellent stability, and quantitative ability for human serum target detection. Overall, these findings not only provide a promising pathway for high luminous efficiency ECL emitters synthesis, but also provide a platform for ultrasensitive miRNA sensing.
Collapse
Affiliation(s)
- Honghong Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Pengfei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Jiaxin Peng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Haoming Yu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Li Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
7
|
Jose A, Devijver E, Jakse N, Poloni R. Informative Training Data for Efficient Property Prediction in Metal-Organic Frameworks by Active Learning. J Am Chem Soc 2024; 146:6134-6144. [PMID: 38404041 DOI: 10.1021/jacs.3c13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In recent data-driven approaches to material discovery, scenarios where target quantities are expensive to compute and measure are often overlooked. In such cases, it becomes imperative to construct a training set that includes the most diverse, representative, and informative samples. Here, a novel regression tree-based active learning algorithm is employed for such a purpose. It is applied to predict the band gap and adsorption properties of metal-organic frameworks (MOFs), a novel class of materials that results from the virtually infinite combinations of their building units. Simpler and low dimensional descriptors, such as those based on stoichiometric and geometric properties, are used to compute the feature space for this model owing to their ability to better represent MOFs in the low data regime. The partitions given by a regression tree constructed on the labeled part of the data set are used to select new samples to be added to the training set, thereby limiting its size while maximizing the prediction quality. Tests on the QMOF, hMOF, and dMOF data sets reveal that our method constructs small training data sets to learn regression models that predict the target properties more efficiently than existing active learning approaches, and with lower variance. Specifically, our active learning approach is highly beneficial when labels are unevenly distributed in the descriptor space and when the label distribution is imbalanced, which is often the case for real world data. The regions defined by the tree help in revealing patterns in the data, thereby offering a unique tool to efficiently analyze complex structure-property relationships in materials and accelerate materials discovery.
Collapse
Affiliation(s)
- Ashna Jose
- SIMaP, Grenoble-INP, CNRS, University of Grenoble Alpes, Grenoble 38042, France
| | - Emilie Devijver
- LiG, Grenoble-INP, CNRS, University of Grenoble Alpes, Grenoble 38042, France
| | - Noel Jakse
- SIMaP, Grenoble-INP, CNRS, University of Grenoble Alpes, Grenoble 38042, France
| | - Roberta Poloni
- SIMaP, Grenoble-INP, CNRS, University of Grenoble Alpes, Grenoble 38042, France
| |
Collapse
|
8
|
Xu K, Zhang S, Zhuang X, Zhang G, Tang Y, Pang H. Recent progress of MOF-functionalized nanocomposites: From structure to properties. Adv Colloid Interface Sci 2024; 323:103050. [PMID: 38086152 DOI: 10.1016/j.cis.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024]
Abstract
Metal-organic frameworks (MOFs) are novel crystalline porous materials assembled from metal ions and organic ligands. The adaptability of their design and the fine-tuning of the pore structures make them stand out in porous materials. Furthermore, by integrating MOF guest functional materials with other hosts, the novel composites have synergistic benefits in numerous fields such as batteries, supercapacitors, catalysis, gas storage and separation, sensors, and drug delivery. This article starts by examining the structural relationship between the host and guest materials, providing a comprehensive overview of the research advancements in various types of MOF-functionalized composites reported to date. The review focuses specifically on four types of spatial structures, including MOFs being (1) embedded in nanopores, (2) immobilized on surface, (3) coated as shells and (4) assembled into hybrids. In addition, specific design ideas for these four MOF-based composites are presented. Some of them involve in situ synthesis method, solvothermal method, etc. The specific properties and applications of these materials are also mentioned. Finally, a brief summary of the advantages of these four types of MOF composites is given. Hopefully, this article will help researchers in the design of MOF composite structures.
Collapse
Affiliation(s)
- Kun Xu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoli Zhuang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
9
|
Zheng X, Li X, Meng S, Shi G, Li H, Du H, Dai L, Yang H. Cascade amplification of tumor chemodynamic therapy and starvation with re-educated TAMs via Fe-MOF based functional nanosystem. J Nanobiotechnology 2023; 21:127. [PMID: 37041537 PMCID: PMC10088258 DOI: 10.1186/s12951-023-01878-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Tumor microenvironment is characterized by the high concentration of reactive oxygen species (ROS), which is an effective key used to open the Pandora's Box against cancer. Herein, a tumor-targeted nanosystem HFNP@GOX@PFC composed of ROS-cleaved Fe-based metal-organic framework, hyaluronic acid (HA), glucose oxidase (GOX) and perfluorohexane (PFC) has been developed for tumor cascade amplified starvation and chemodynamic therapy (CDT). In response to the high concentration of hydrogen peroxide (H2O2) intratumorally, HFNP@GOX@PFC endocytosed by tumor cells can specially be disassembled and release GOX, PFC and Fe2+, which can collectively starve tumor and self-produce additional H2O2 via competitively glucose catalyzing, supply oxygen to continuous support GOX-mediated starvation therapy, initiate CDT and cascade amplify oxidative stress via Fe2+-mediated Fenton reaction, leading to the serious tumor damage with activated p53 signal pathway. Moreover, HFNP@GOX@PFC also significantly initiates antitumor immune response via re-educating tumor-associated macrophages (TAMs) by activating NF-κB and MAPK signal pathways. In vitro and in vivo results collectively demonstrate that nanosystem not only continuously initiates starvation therapy, but also pronouncedly cascade-amplify CDT and polarize TAMs, consequently efficiently inhibiting tumor growth with good biosafety. The functional nanosystem combined the cascade amplification of starvation and CDT provides a new nanoplatform for tumor therapy.
Collapse
Affiliation(s)
- Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiang Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Siyu Meng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guolin Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Huiping Du
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
10
|
Shu G, Zhao H, Zhang X. Persistent luminescent metal-organic framework nanocomposite enables autofluorescence-free dual modal imaging-guided drug delivery. Biomater Sci 2023; 11:1797-1809. [PMID: 36655655 DOI: 10.1039/d2bm01920e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Molecular imaging-guided therapy was essential for realizing precise cancer intervention, while designing an imaging platform to achieve autofluorescence-free imaging for dual modal imaging-guided drug delivery remains a challenge. Near-infrared persistent luminescence nanoparticles (NIR PLNPs) were promising for tumor imaging due to no background interference from the tissue. Herein, a persistent luminescent metal-organic framework (PLNPs@MIL-100(Fe)) is prepared via a layer-by-layer method for dual-modal imaging-guided drug delivery. The PLNPs@MIL-100(Fe) exhibit NIR persistent luminescence emitting and T2-weighted signal, achieving precise in vivo dual-modal imaging of tumor-bearing mice by providing high spatial resolution MR imaging and autofluorescence-free NIR imaging. The porous MIL-100(Fe) shell provides PLNPs@MIL-100(Fe) with up to 87.1% drug loading capacity and acid-triggered drug release for drug delivery. We envision that the proposed PLNPs@MIL-100(Fe) platform would provide an effective approach for precise tumor imaging and versatile drug delivery.
Collapse
Affiliation(s)
- Gang Shu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Huaixin Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China.
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
11
|
Troyano J, Maspoch D. Propagating MOF flexibility at the macroscale: the case of MOF-based mechanical actuators. Chem Commun (Camb) 2023; 59:1744-1756. [PMID: 36661894 DOI: 10.1039/d2cc05813h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Shapeshifting materials have captured the imagination of researchers for their myriad potential applications, yet their practical development remains challenging. These materials operate by mechanical actuation: their structural responses to external stimuli generate mechanical work. Here, we review progress on the use of flexible metal-organic frameworks (MOFs) in composite actuators that shapeshift in a controlled fashion. We highlight the dynamic behaviour of flexible MOFs, which are unique among materials, even other porous ones, and introduce the concept of propagation, which involves the efficient transmission of flexible MOF deformations to the macroscale. Furthermore, we explain how researchers can observe, measure, and induce such effects in MOF composites. Next, we review pioneering first-generation MOF-composite actuators that shapeshift in response to changes in humidity, temperature, pressure, or to other stimuli. Finally, we allude to recent developments, identify remaining R & D hurdles, and suggest future directions in this field.
Collapse
Affiliation(s)
- Javier Troyano
- Inorganic Chemistry Department, Autonomous University of Madrid, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Cao Z, Magar R, Wang Y, Barati Farimani A. MOFormer: Self-Supervised Transformer Model for Metal-Organic Framework Property Prediction. J Am Chem Soc 2023; 145:2958-2967. [PMID: 36706365 PMCID: PMC10041520 DOI: 10.1021/jacs.2c11420] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 01/28/2023]
Abstract
Metal-organic frameworks (MOFs) are materials with a high degree of porosity that can be used for many applications. However, the chemical space of MOFs is enormous due to the large variety of possible combinations of building blocks and topology. Discovering the optimal MOFs for specific applications requires an efficient and accurate search over countless potential candidates. Previous high-throughput screening methods using computational simulations like DFT can be time-consuming. Such methods also require the 3D atomic structures of MOFs, which adds one extra step when evaluating hypothetical MOFs. In this work, we propose a structure-agnostic deep learning method based on the Transformer model, named as MOFormer, for property predictions of MOFs. MOFormer takes a text string representation of MOF (MOFid) as input, thus circumventing the need of obtaining the 3D structure of a hypothetical MOF and accelerating the screening process. By comparing to other descriptors such as Stoichiometric-120 and revised autocorrelations, we demonstrate that MOFormer can achieve state-of-the-art structure-agnostic prediction accuracy on all benchmarks. Furthermore, we introduce a self-supervised learning framework that pretrains the MOFormer via maximizing the cross-correlation between its structure-agnostic representations and structure-based representations of the crystal graph convolutional neural network (CGCNN) on >400k publicly available MOF data. Benchmarks show that pretraining improves the prediction accuracy of both models on various downstream prediction tasks. Furthermore, we revealed that MOFormer can be more data-efficient on quantum-chemical property prediction than structure-based CGCNN when training data is limited. Overall, MOFormer provides a novel perspective on efficient MOF property prediction using deep learning.
Collapse
Affiliation(s)
- Zhonglin Cao
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania15213, United States
| | - Rishikesh Magar
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania15213, United States
| | - Yuyang Wang
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania15213, United States
| | - Amir Barati Farimani
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania15213, United States
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania15213, United States
- Machine
Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|
13
|
Kong N, Du H, Li Z, Lu T, Xia S, Tang Z, Song S. Nano heterojunction of double MOFs for improved CO2 photocatalytic reduction performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Abstract
Nucleation and growth are critical steps in crystallization, which plays an important role in determining crystal structure, size, morphology, and purity. Therefore, understanding the mechanisms of nucleation and growth is crucial to realize the controllable fabrication of crystalline products with desired and reproducible properties. Based on classical models, the initial crystal nucleus is formed by the spontaneous aggregation of ions, atoms, or molecules, and crystal growth is dependent on the monomer's diffusion and the surface reaction. Recently, numerous in situ investigations on crystallization dynamics have uncovered the existence of nonclassical mechanisms. This review provides a summary and highlights the in situ studies of crystal nucleation and growth, with a particular emphasis on the state-of-the-art research progress since the year 2016, and includes technological advances, atomic-scale observations, substrate- and temperature-dependent nucleation and growth, and the progress achieved in the various materials: metals, alloys, metallic compounds, colloids, and proteins. Finally, the forthcoming opportunities and challenges in this fascinating field are discussed.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330Braga, Portugal
| |
Collapse
|
15
|
Mohan B, Kumar S, Kumar V, Jiao T, Sharma HK, Chen Q. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Rahmati Z, Roushani M. SARS-CoV-2 virus label-free electrochemical nanohybrid MIP-aptasensor based on Ni 3(BTC) 2 MOF as a high-performance surface substrate. Mikrochim Acta 2022; 189:287. [PMID: 35852630 PMCID: PMC9295095 DOI: 10.1007/s00604-022-05357-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022]
Abstract
A dual recognition biosensor was developed via introducing aptamer strings and molecular imprinting polymer (MIP) for the selective detection of intact SARS-CoV-2 virus based on screen printed carbon electrode (SPCE) modified with nickel-benzene tricarboxylic acid-metal–organic framework (Ni3(BTC)2 MOF) synthesized by in situ growth method, SARS-CoV-2 S protein-specific amino-aptamer and electropolymerization of dopamine (ePDA). The proposed biosensor showed an excellent linear relationship between charge transfer resistance (Rct) and increase in virus concentration in the range 10 to 108 plaque-forming units/mL (PFU/mL) with a low detection limit of 3.3 ± 0.04 PFU/mL and response time of 20 min. Compared with single-element sensors (aptamer or MIP), it showed higher selectivity for the SARS-CoV-2 virus and facilitated detection in real samples.
Collapse
Affiliation(s)
- Zeinab Rahmati
- Department of Chemistry, Faculty of Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran.
| |
Collapse
|
17
|
|
18
|
Khodabakhshi MR, Baghersad MH. Magnetic UiO-66 functionalized with 4,4'-diamino-2,2'-stilbenedisulfonic as a highly recoverable acid catalyst for the synthesis of 4H-chromenes in green solvent. Sci Rep 2022; 12:5531. [PMID: 35365714 PMCID: PMC8975882 DOI: 10.1038/s41598-022-09337-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
According to 4H-chromenes importance, we synthesized a novel magnetic UiO-66 functionalized with 4,4′-diamino-2,2′-stilbenedisulfonic as an efficient and reusable solid acid catalyst for synthesizing 4H-chromene skeletons via a one-pot three components reaction in a green solvent. The structure of the synthesized catalyst was confirmed by various techniques including FT-IR, XRD, BET, TGA, TEM, EDX, and SEM, and also the product yields were obtained in 83–96% of yields for all the reactions and under mild conditions. The reported procedure presents an environmentally friendly approach for synthesizing a significant number of 4H-chromene derivatives. Correspondingly, MOF-based catalyst makes it easy to separate from reaction media and reuse in the next runs.
Collapse
Affiliation(s)
| | - Mohammad Hadi Baghersad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Li P, Zhou Z, Zhao YS, Yan Y. Recent advances in luminescent metal-organic frameworks and their photonic applications. Chem Commun (Camb) 2021; 57:13678-13691. [PMID: 34870655 DOI: 10.1039/d1cc05541k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, metal-organic frameworks (MOFs) have been attracting ever more interest owing to their fascinating structures and widespread applications. Among the optoelectronic materials, luminescent MOFs (LMOFs) have become one of the most attractive candidates in the fields of optics and photonics thanks to the unique characteristics of their frameworks. Luminescence from MOFs can originate from either the frameworks, mainly including organic linkers and metal ions, or the encapsulated guests, such as dyes, perovskites, and carbon dots. Here, we systematically review the recent progress in LMOFs, with an emphasis on the relationships between their structures and emission behaviour. On this basis, we comprehensively discuss the research progress and applications of multicolour emission from homogeneous and heterogeneous structures, host-guest hybrid lasers, and pure MOF lasers based on optically excited LMOFs in the field of micro/nanophotonics. We also highlight recent developments in other types of luminescence, such as electroluminescence and chemiluminescence, from LMOFs. Future perspectives and challenges for LMOFs are provided to give an outlook of this emerging field. We anticipate that this article will promote the development of MOF-based functional materials with desired performance towards robust optoelectronic applications.
Collapse
Affiliation(s)
- Penghao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhonghao Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yong Sheng Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongli Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
20
|
Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214115] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Mehek R, Iqbal N, Noor T, Amjad MZB, Ali G, Vignarooban K, Khan MA. Metal-organic framework based electrode materials for lithium-ion batteries: a review. RSC Adv 2021; 11:29247-29266. [PMID: 35479575 PMCID: PMC9040901 DOI: 10.1039/d1ra05073g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
Metal-organic frameworks (MOFs) with efficient surface and structural properties have risen as a distinctive class of porous materials through the last few decades, which has enabled MOFs to gain attention in a wide range of applications like drug delivery, gas separation and storage, catalysis and sensors. Likewise, they have also emerged as efficient active materials in energy storage devices owing to their remarkable conducting properties. Metal-organic frameworks (MOFs) have garnered great interest in high-energy-density rechargeable batteries and super-capacitors. Herein the study presents their expanding diversity, structures and chemical compositions which can be tuned at the molecular level. It also aims to evaluate their inherently porous framework and how it facilitates electronic and ionic transportation through the charging and discharging cycles of lithium-ion batteries. In this review we have summarized the various synthesis paths to achieve a particular metal-organic framework. This study focuses mainly on the implementation of metal-organic frameworks as efficient anode and cathode materials for lithium-ion batteries (LIBs) with an evaluation of their influence on cyclic stability and discharge capacity. For this purpose, a brief assessment is made of recent developments in metal-organic frameworks as anode or cathode materials for lithium-ion batteries which would provide enlightenment in optimizing the reaction conditions for designing a MOF structure for the battery community and electrochemical energy storage applications.
Collapse
Affiliation(s)
- Rimsha Mehek
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - M Zain Bin Amjad
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Ghulam Ali
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - K Vignarooban
- Department of Physics, Faculty of Science, University of Jaffna Jaffna 40000 Sri Lanka
| | - M Abdullah Khan
- Renewable Energy Advancement Laboratory (REAL), Department of Environmental Sciences, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
22
|
Dai H, Yuan X, Jiang L, Wang H, Zhang J, Zhang J, Xiong T. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213985] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Tang Y, Chen W, Liu R, Wang L, Pan Y, Bi R, Feng X, He M, Chen Q, Zhang Z. Solvent‐Free CO
2
Fixation Reaction Catalyzed by MOFs Composites Containing Polycarboxylic Acid Ligands. ChemistrySelect 2021. [DOI: 10.1002/slct.202101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yihan Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Wang Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Ruoxi Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Leyao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Yating Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Ruimin Bi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Xuejun Feng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Mingyang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Zhihui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| |
Collapse
|
25
|
Liu KG, Sharifzadeh Z, Rouhani F, Ghorbanloo M, Morsali A. Metal-organic framework composites as green/sustainable catalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213827] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Shi D, Yu X, Fan W, Wee V, Zhao D. Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Zn-mesoporous metal-organic framework incorporated with copper ions modified glassy carbon electrode: Electrocatalytic oxidation and determination of amoxicillin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Li Y, Li YN, Zheng JW, Dong XY, Guo RX, Wang YM, Hu ZN, Ai Y, Liang Q, Sun HB. Metal-Organic Framework-Encapsulated CoCu Nanoparticles for the Selective Transfer Hydrogenation of Nitrobenzaldehydes: Engineering Active Armor by the Half-Way Injection Method. Chemistry 2021; 27:1080-1087. [PMID: 33146415 DOI: 10.1002/chem.202003857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/21/2020] [Indexed: 11/10/2022]
Abstract
A novel armor-type composite of metal-organic framework (MOF)-encapsulated CoCu nanoparticles with a Fe3 O4 core (Fe3 O4 @SiO2 -NH2 -CoCu@UiO-66) has been designed and synthesized by the half-way injection method, which successfully serves as an efficient and recyclable catalyst for the selective transfer hydrogenation. In this half-way injection approach, the pre-synthetic Fe3 O4 @SiO2 -NH2 -CoCu was injected into the UiO-66 precursor solution halfway through the MOF budding period. The formed MOF armor could play a role of providing significant additional catalytic sites besides CoCu nanoparticles, protecting CoCu nanoparticles, and improving the catalyst stability, thus facilitating the selective transfer hydrogenation of nitrobenzaldehydes into corresponding nitrobenzyl alcohols in high selectivity (99 %) and conversion (99 %) rather than nitro group reduction products. Notably, this method achieves the precise assembly of a MOF-encapsulated composite, and the ingenious combination of MOF and nanoparticles exhibits excellent catalytic performance in the selective hydrogen transfer reaction, implementing a "1+1>2" strategy in catalysis.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yu-Nong Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Jian-Wei Zheng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Xiao-Yun Dong
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Rong-Xiu Guo
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yi-Ming Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Ze-Nan Hu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yongjian Ai
- Key Laboratory of Bioorganic Phosphorus Chemistry &, Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry &, Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hong-Bin Sun
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| |
Collapse
|
29
|
Raptopoulou CP. Metal-Organic Frameworks: Synthetic Methods and Potential Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E310. [PMID: 33435267 PMCID: PMC7826725 DOI: 10.3390/ma14020310] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks represent a porous class of materials that are build up from metal ions or oligonuclear metallic complexes and organic ligands. They can be considered as sub-class of coordination polymers and can be extended into one-dimension, two-dimensions, and three-dimensions. Depending on the size of the pores, MOFs are divided into nanoporous, mesoporous, and macroporous items. The latter two are usually amorphous. MOFs display high porosity, a large specific surface area, and high thermal stability due to the presence of coordination bonds. The pores can incorporate neutral molecules, such as solvent molecules, anions, and cations, depending on the overall charge of the MOF, gas molecules, and biomolecules. The structural diversity of the framework and the multifunctionality of the pores render this class of materials as candidates for a plethora of environmental and biomedical applications and also as catalysts, sensors, piezo/ferroelectric, thermoelectric, and magnetic materials. In the present review, the synthetic methods reported in the literature for preparing MOFs and their derived materials, and their potential applications in environment, energy, and biomedicine are discussed.
Collapse
Affiliation(s)
- Catherine P Raptopoulou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", 15310 Aghia Paraskevi, Attikis, Greece
| |
Collapse
|
30
|
Wang H, Wu T, Li M, Tao Y. Recent advances in nanomaterials for colorimetric cancer detection. J Mater Chem B 2020; 9:921-938. [PMID: 33367450 DOI: 10.1039/d0tb02163f] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The early diagnosis of cancer can significantly improve patient survival rates. Colorimetric methods for real-time naked-eye detection have aroused growing interest owing to their low cost, simplicity, and practicability. With the rapid development of nanotechnology, compared with conventional diagnostic methods, nanomaterials with unique physical and chemical properties were applied to improve selectivity and sensitivity in colorimetric detection of cancer biomarkers, such as MUC1 aptamer conjugated PtAuNPs to specifically recognize MUC1 proteins on the cancer cell surfaces, etching of silver nanoprisms to detect prostate-specific antigen, and aggregation or dispersion of AuNPs to sense prostate cancer antigen gene 3 or glutathione, by which the limit of detection (LOD) could approach values down to a few cancer cells per mL, several fg per mL proteins, several ng of nucleic acids, or even tens of nM of organic molecules. Herein, we review the recent progress achieved in developing colorimetric nanosensors for cancer diagnosis, particularly providing an overview of the sensing principles, target biomarkers, advanced nanomaterials employed in the fabrication of sensing platforms, and strategies for improving signal sensitivity and specificity. Finally, we sum up the nanomaterial-based colorimetric cancer detection as well as existing challenges that should be resolved to extend their clinical application.
Collapse
Affiliation(s)
- Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | | | | | | |
Collapse
|
31
|
Ruiz-Zambrana CL, Malankowska M, Coronas J. Metal organic framework top-down and bottom-up patterning techniques. Dalton Trans 2020; 49:15139-15148. [PMID: 33094303 DOI: 10.1039/d0dt02207a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal organic frameworks (MOFs) have recently attracted considerable research interest in several fields from coordination chemistry and materials science to engineering and medicine not only due to energy and environmental issues but also due to the need for new paradigms of efficiency and sustainability according to the requirements of the 21st century global society. Because of their crystalline and organic-inorganic nature, they are able to crystallize constituting intergrown architectures ductile enough to be patterned, with the use of appropriate techniques, as nano- and micro-devices with multiple applications. This perspective comprehensively summarizes the recent state of the art in the use of top-down and bottom-up methodologies to create MOF structures with a defined pattern at the nano- and micro-scale.
Collapse
Affiliation(s)
- César L Ruiz-Zambrana
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain. and Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Magdalena Malankowska
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain. and Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain. and Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
32
|
Hafner MR, Carraro F, Brandner LA, Maniam S, Grenci G, Ljubojevic-Holzer S, Bischof H, Malli R, Borisov SM, Doonan C, Falcaro P. Fatty acids as biomimetic replication agents for luminescent metal-organic framework patterns. Chem Commun (Camb) 2020; 56:12733-12736. [PMID: 32966379 DOI: 10.1039/d0cc03876h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescent metal-organic frameworks (MOFs) are known to spontaneously self-assemble on human fingerprints. Here, we investigate the different chemical components of fingerprints and determine that MOF growth is predominantly induced by insoluble fatty acids. This finding shows that these simple biomolecules can be employed for the precise positioning of luminescent MOFs.
Collapse
Affiliation(s)
- Michael R Hafner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wu X, Qiu Y, Chen Z, Guan B, Hao X, Rykov AI, Sun Y, Liu L, Zou Y, Sun J, Xu W, Zhu D. Paramagnetic Conducting Metal–Organic Frameworks with Three‐Dimensional Structure. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoyu Wu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhijun Chen
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Bo Guan
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xiang Hao
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Alexandre I. Rykov
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Yimeng Sun
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Liyao Liu
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Science Beijing 100049 China
| |
Collapse
|
34
|
Wu X, Qiu Y, Chen Z, Guan B, Hao X, Rykov AI, Sun Y, Liu L, Zou Y, Sun J, Xu W, Zhu D. Paramagnetic Conducting Metal-Organic Frameworks with Three-Dimensional Structure. Angew Chem Int Ed Engl 2020; 59:20873-20878. [PMID: 32749045 DOI: 10.1002/anie.202009253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/01/2020] [Indexed: 11/05/2022]
Abstract
3D well-crystallized metal-organic frameworks (MOFs), M-THBQ (M=Fe, Co, Mn, THBQ=tetrahydroxybenzoquinone), are synthesized and characterized. Their structures are determined as cubic cell in the group of Pm 3 ‾ from powder X-ray diffraction data, and their properties of electronic, magnetic and spectroscopic are also investigated. They are all semiconductors, and Fe-THBQ exhibits the air-stable n-type thermoelectric characteristic as its Seebeck coefficient reaches -130 μV K-1 , and the electrical conductivity is 2.7×10-4 S cm-1 at 300 K. Additional, M-THBQ are paramagnetic, and the value of Weiss constant of Fe-THBQ is -219.37 K, indicating the existence of robust intramolecular antiferromagnetic exchanges. Meanwhile, they display strong absorption bands in the range of 220 to 1000 nm, suggest M-THBQ could have the potential to become photoabsorbers, and Fe-THBQ exhibits a narrow band gap of 0.63 eV according to the ultraviolet absorption edge spectrum.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhijun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Bo Guan
- Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiang Hao
- Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Alexandre I Rykov
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yimeng Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Liyao Liu
- Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
35
|
Zhang Y, Liu J, Wu X, Tao W, Li Z. Ultrasensitive detection of Cr(VI) (Cr 2O 72-/CrO 42-) ions in water environment with a fluorescent sensor based on metal-organic frameworks combined with sulfur quantum dots. Anal Chim Acta 2020; 1131:68-79. [PMID: 32928481 DOI: 10.1016/j.aca.2020.07.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/04/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
Accurate, simple and quick detection methods for Cr(VI) detection are urgently needed for water quality monitoring. Herein, a novel and facile method of detecting Cr(VI) (Cr2O72-/CrO42-) ions is developed via the fluorescent detection technology based on metal-organic frameworks (MOFs) doped with sulfur quantum dots (SQDs) (SQDs@UiO-66-NH2). The blue-light-emitting SQDs@UiO-66-NH2 composites exhibit excellent fluorescent properties in water environment with high quantum yield (68%) and ideal fluorescent stability, thus demonstrating excellent potential for serving as a chemical sensor. After characterizing the performance and stability of SQDs@UiO-66-NH2, qualitative and quantitative detection of Cr2O72- and CrO42- ions was successfully conducted. The fluorescence of SQDs@UiO-66-NH2 composites in aqueous solution was quenched effectively with more than 90% quenching efficiency by Cr(VI) via the inner filter effect. The detection system provides considerable advantages such as rapid response (10 s), high sensitivity with a low detection limit of 0.16 μM in a broad linear range of 0-200 μM (R2 = 0.99) for Cr2O72- and 0.17 μM for CrO42- in a broad linear range of 0-220 μM (R2 = 0.99), high selectivity and reproducibility for at least five cycles with simple washing with alcohol. In practical applications, the sensor showed rapid response, high sensitivity and excellent recoveries (96.7%-105.4%) for detecting Cr2O72- in real water samples. Furthermore, a SQDs@UiO-66-NH2-based fluorescent test paper was successfully developed, providing a simple, reliable and portable method for Cr(VI) (Cr2O72-/CrO42-) detection in water environment.
Collapse
Affiliation(s)
- Yanqiu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Jiaxiang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Xiaohan Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, PR China
| | - Wenquan Tao
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
36
|
Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates. Talanta 2020; 210:120696. [DOI: 10.1016/j.talanta.2019.120696] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/16/2019] [Accepted: 12/26/2019] [Indexed: 11/20/2022]
|
37
|
Weber M, Bechelany M. Combining nanoparticles grown by ALD and MOFs for gas separation and catalysis applications. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-0109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractSupported metallic nanoparticles (NPs) are essential for many important chemical processes. In order to implement precisely tuned NPs in miniaturized devices by compatible processes, novel nanoengineering routes must be explored. Atomic layer deposition (ALD), a scalable vapor phase technology typically used for the deposition of thin films, represents a promising new route for the synthesis of supported metallic NPs. Metal–organic frameworks (MOFs) are a new exciting class of crystalline porous materials that have attracted much attention in the recent years. Since the size of their pores can be precisely adjusted, these nanomaterials permit highly selective separation and catalytic processes. The combination of NPs and MOF is an emerging area opening numbers of applications, which still faces considerable challenges, and new routes need to be explored for the synthesis of these NPs/MOF nanocomposites. The aim of this paper is double: first, it aims to briefly present the ALD route and its use for the synthesis of metallic NPs. Second, the combination of ALD-grown NPs and MOFs has been explored for the synthesis of Pd NPs/MOF ZIF-8, and several selected examples were ALD-grown NPs and MOFs have been combined and applied gas separation and catalysis will be presented.
Collapse
Affiliation(s)
- Matthieu Weber
- Institut Européen des membranes, IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Mikhael Bechelany
- Institut Européen des membranes, IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
38
|
Fang R, Dhakshinamoorthy A, Li Y, Garcia H. Metal organic frameworks for biomass conversion. Chem Soc Rev 2020; 49:3638-3687. [DOI: 10.1039/d0cs00070a] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review narrates the recent developments on the catalytic applications of pristine metal–organic frameworks (MOFs), functionalized MOFs, guests embedded over MOFs and MOFs derived carbon composites for biomass conversion into platform chemicals.
Collapse
Affiliation(s)
- Ruiqi Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- P. R. China
| | | | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Hermenegildo Garcia
- Departamento de Quimica and Instituto Universitario de Tecnologia Quimica (CSIC-UPV)
- Universitat Politècnica de València
- 46022 Valencia
- Spain
- Centre of Excellence for Advanced Materials Research
| |
Collapse
|
39
|
Xu C, Fang R, Luque R, Chen L, Li Y. Functional metal–organic frameworks for catalytic applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Sun Y, Amsler M, Goedecker S, Caravella A, Yoshida M, Kato M. Surfactant-assisted synthesis of large Cu-BTC MOF single crystals and their potential utilization as photodetectors. CrystEngComm 2019. [DOI: 10.1039/c9ce00440h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preferential growth of dense Cu-BTC MOFs (Cu-s) with the assistance of surfactants PF-127 has been investigated, forming long rods with an average length up to ∼3 mm. A simple photo-detecting device was fabricated, showing current enhancement under illumination.
Collapse
Affiliation(s)
- Yu Sun
- Institute for the Advancement of Higher Education
- Hokkaido University
- Sapporo 060-0817
- Japan
- Department of Chemistry
| | - Maximilian Amsler
- Laboratory of Atomic and Solid State Physics
- Cornell University
- Ithaca
- USA
| | | | - Alessio Caravella
- Department of Environmental and Chemical Engineering
- University of Calabria
- Rende (CS)87063
- Italy
| | - Masaki Yoshida
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Masako Kato
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
41
|
Ayala S, Bentz KC, Cohen SM. Block co-polyMOFs: morphology control of polymer-MOF hybrid materials. Chem Sci 2018; 10:1746-1753. [PMID: 30842840 PMCID: PMC6368245 DOI: 10.1039/c8sc04250k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
The hybridization of block copolymers and metal-organic frameworks (MOFs) to create novel materials (block co-polyMOFs, BCPMOFs) with controlled morphologies is reported. In this study, block copolymers containing poly(1,4-benzenedicarboxylic acid, H2bdc) and morphology directing poly(ethylene glycol) (PEG) or poly(cyclooctadiene) (poly(COD)) blocks were synthesized for the preparation of BCPMOFs. Block copolymer architecture and weight fractions were found to have a significant impact on the resulting morphology, mediated through the assembly of polymer precursors prior to MOF formation, as determined through dynamic light scattering. Simple modification of block copolymer weight fraction allowed for tuning of particle size and morphology with either faceted and spherical features. Modification of polymer block architecture represents a simple and powerful method to direct morphology in highly crystalline polyMOF materials. Furthermore, the BCPMOFs could be prepared from both Zr4+ and Zn2+ MOFs, yielding hybrid materials with appreciable surface areas and tuneable porosities. The resulting Zn2+ BCPMOF yielded materials with very narrow size distributions and uniform cubic morphologies. The use of topology in BCPMOFs to direct morphology in block copolymer assemblies may open new methodologies to access complex materials far from thermodynamic equilibrium.
Collapse
Affiliation(s)
- Sergio Ayala
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92023-0358 , USA .
| | - Kyle C Bentz
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92023-0358 , USA .
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92023-0358 , USA .
| |
Collapse
|
42
|
Huang K, Wang B, Guo S, Li K. Micropatterned Ultrathin MOF Membranes with Enhanced Molecular Sieving Property. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kang Huang
- Barrer CentreDepartment of Chemical EngineeringImperial College London London SW7 2AZ UK
| | - Bo Wang
- Barrer CentreDepartment of Chemical EngineeringImperial College London London SW7 2AZ UK
| | - Song Guo
- Department of Biomedical EngineeringNational University of Singapore 7 Engineering Drive 1 Singapore 117574 Singapore
| | - Kang Li
- Barrer CentreDepartment of Chemical EngineeringImperial College London London SW7 2AZ UK
| |
Collapse
|
43
|
Huang K, Wang B, Guo S, Li K. Micropatterned Ultrathin MOF Membranes with Enhanced Molecular Sieving Property. Angew Chem Int Ed Engl 2018; 57:13892-13896. [PMID: 30171657 PMCID: PMC6334230 DOI: 10.1002/anie.201809872] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 11/11/2022]
Abstract
Metal-organic frameworks (MOFs) are attractive crystalline materials for membranes due to their diverse crystalline pore structures and molecular separation properties. However, the fabrication cost is relatively high compared to conventional polymeric membranes. The concern of the cost could be eased if they are part of a value-added device, for example, as the key separation unit in a lab-on-a-chip device. This study demonstrates the feasibility of miniaturization of MOF membranes by patterning the membrane surface, a necessary step for MOF membranes to be used in compact devices. Water-stable ultrathin UiO-66 membranes with a thickness down to 250 nm on a substrate with a complex pattern were grown. The patterned membranes showed a 100 % improvement in the apparent permeation flux over conventional flat-UiO-66 membranes without compromising the molecular separation property, indicating the complexity of a surface would not be a formidable obstacle to the MOF membrane fabrication.
Collapse
Affiliation(s)
- Kang Huang
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Bo Wang
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Song Guo
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Kang Li
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
44
|
Liu D, Zou D, Zhu H, Zhang J. Mesoporous Metal-Organic Frameworks: Synthetic Strategies and Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801454. [PMID: 30073756 DOI: 10.1002/smll.201801454] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/25/2018] [Indexed: 05/06/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted much attention over the past two decades due to their highly promising applications not only in the fields of gas storage, separation, catalysis, drug delivery, and sensors, but also in relatively new fields such as electric, magnetic, and optical materials resulting from their extremely high surface areas, open channels and large pore cavities compared with traditional porous materials like carbon and inorganic zeolites. Particularly, MOFs involving pores within the mesoscopic scale possess unique textural properties, leading to a series of research in the design and applications of mesoporous MOFs. Unlike previous Reviews, apart from focusing on recent advances in the synthetic routes, unique characteristics and applications of mesoporous MOFs, this Review also mentions the derivatives, composites, and hierarchical MOF-based systems that contain mesoporosity, and technical boundaries and challenges brought by the drawbacks of mesoporosity. Moreover, this Review subsequently reveals promising perspectives of how recently discovered approaches to different morphologies of MOFs (not necessarily entirely mesoporous) and their corresponding performances can be extended to minimize the shortcomings of mesoporosity, thus providing a wider and brighter scope of future research into mesoporous MOFs, but not just limited to the finite progress in the target substances alone.
Collapse
Affiliation(s)
- Dingxin Liu
- MOE Key Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dianting Zou
- MOE Key Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haolin Zhu
- MOE Key Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianyong Zhang
- MOE Key Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
45
|
Abstract
The inherent porous nature and facile tunability of metal–organic frameworks (MOFs) make them ideal candidates for use in multiple fields. MOF hybrid materials are derived from existing MOFs hybridized with other materials or small molecules using a variety of techniques. This led to superior performance of the new materials by combining the advantages of MOF components and others. In this review, we discuss several hybridization methods for the preparation of various MOF hybrids with representative examples from the literature. These methods include covalent modifications, noncovalent modifications, and using MOFs as templates or precursors. We also review the applications of the MOF hybrids in the fields of catalysis, drug delivery, gas storage and separation, energy storage, sensing, and others.
Collapse
|
46
|
Shahrokhian S, Khaki Sanati E, Hosseini H. Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform. Biosens Bioelectron 2018; 112:100-107. [DOI: 10.1016/j.bios.2018.04.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/01/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
47
|
Ma Y, Xu G, Wei F, Cen Y, Xu X, Shi M, Cheng X, Chai Y, Sohail M, Hu Q. One-Pot Synthesis of a Magnetic, Ratiometric Fluorescent Nanoprobe by Encapsulating Fe 3O 4 Magnetic Nanoparticles and Dual-Emissive Rhodamine B Modified Carbon Dots in Metal-Organic Framework for Enhanced HClO Sensing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20801-20805. [PMID: 29856924 DOI: 10.1021/acsami.8b05643] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, a new magnetic, ratiometric fluorescent nanoprobe has been designed and fabricated by encapsulating Fe3O4 magnetic nanoparticles (MNPs) and dual-emissive carbon dots into the cavities of metal-organic frameworks (MOFs). This one-pot method combined hybrid characteristics of MOFs with multiple properties of the encapsulated functional materials. The MOF-based nanoprobe possessed the advantages of MOFs (strong adsorption ability, accumulating the analytes), Fe3O4 MNPs (magnetic separation), and ratiometric sensors (eliminating the variabilities caused by the instability of the instruments and environment). The MOF-based nanoprobe was dispersible and stable in aqueous solution, and the nanoprobe was applied to HClO sensing. This work will provide a promising strategy for design and synthesis of novel MOF-based composite materials.
Collapse
Affiliation(s)
- Yujie Ma
- School of Pharmacy , Nanjing Medical University , Nanjing , Jiangsu 211166 , PR China
| | - Guanhong Xu
- School of Pharmacy , Nanjing Medical University , Nanjing , Jiangsu 211166 , PR China
| | - Fangdi Wei
- School of Pharmacy , Nanjing Medical University , Nanjing , Jiangsu 211166 , PR China
| | - Yao Cen
- School of Pharmacy , Nanjing Medical University , Nanjing , Jiangsu 211166 , PR China
| | - Xiaoman Xu
- School of Pharmacy , Nanjing Medical University , Nanjing , Jiangsu 211166 , PR China
| | - Menglan Shi
- School of Pharmacy , Nanjing Medical University , Nanjing , Jiangsu 211166 , PR China
| | - Xia Cheng
- School of Pharmacy , Nanjing Medical University , Nanjing , Jiangsu 211166 , PR China
| | - Yuying Chai
- School of Pharmacy , Nanjing Medical University , Nanjing , Jiangsu 211166 , PR China
| | - Muhammad Sohail
- School of Pharmacy , Nanjing Medical University , Nanjing , Jiangsu 211166 , PR China
| | - Qin Hu
- School of Pharmacy , Nanjing Medical University , Nanjing , Jiangsu 211166 , PR China
| |
Collapse
|
48
|
Zhang C, Li Y, Wang H, He S, Xu Y, Zhong C, Li T. Adhesive bacterial amyloid nanofiber-mediated growth of metal-organic frameworks on diverse polymeric substrates. Chem Sci 2018; 9:5672-5678. [PMID: 30062001 PMCID: PMC6050626 DOI: 10.1039/c8sc01591k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/24/2018] [Indexed: 11/21/2022] Open
Abstract
Adhesive curli nanofibers, bacterial biofilms' major protein component, were utilized to mediate the growth of MOFs on various polymeric substrates.
The development of a simple, robust, and generalizable approach for spatially controlled growth of metal–organic frameworks (MOFs) on diverse polymeric substrates is of profound technological significance but remains a major challenge. Here, we reported the use of adhesive bacterial amyloid nanofibers, also known as curli nanofibers (CNFs), major protein components of bacterial biofilms, as universal and chemically/mechanically robust coatings on various polymeric substrates to achieve controlled MOF growth with improved surface coverage up to 100-fold. Notably, owing to the intrinsic adhesive attributes of CNFs, our approach is applicable for MOF growth on both 2D surfaces and 3D objects regardless of their geometric complexity. Applying this technique to membrane fabrication afforded a thin-film composite membrane comprising a 760 ± 80 nm ZIF-8 selective layer grown on a microporous polyvinylidene fluoride (PVDF) support which exhibited a C3H6/C3H8 mixed-gas separation factor up to 10, C3H6 permeance up to 1110 GPU and operational stability up to 7 days. Our simple yet robust approach therefore provides new insights into designing new interfaces for mediating MOF growth and opens new opportunities for constructing new MOF-based membranes and devices.
Collapse
Affiliation(s)
- Cuizheng Zhang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai , China 201210 . ;
| | - Yingfeng Li
- School of Physical Science and Technology , ShanghaiTech University , Shanghai , China 201210 . ; .,Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai , China 200050.,University of Chinese Academy of Sciences , Beijing , China 100049
| | - Hongliang Wang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai , China 201210 . ;
| | - Sanfeng He
- School of Physical Science and Technology , ShanghaiTech University , Shanghai , China 201210 . ;
| | - Yiyi Xu
- School of Physical Science and Technology , ShanghaiTech University , Shanghai , China 201210 . ;
| | - Chao Zhong
- School of Physical Science and Technology , ShanghaiTech University , Shanghai , China 201210 . ;
| | - Tao Li
- School of Physical Science and Technology , ShanghaiTech University , Shanghai , China 201210 . ;
| |
Collapse
|
49
|
|
50
|
Van Vleet MJ, Weng T, Li X, Schmidt J. In Situ, Time-Resolved, and Mechanistic Studies of Metal–Organic Framework Nucleation and Growth. Chem Rev 2018. [DOI: 10.1021/acs.chemrev.7b00582] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mary J. Van Vleet
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Tingting Weng
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Xinyi Li
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - J.R. Schmidt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|