1
|
Wen H, Ouyang H, Shang H, Da C, Zhang T. Helix-to-sheet transition of the Aβ42 peptide revealed using an enhanced sampling strategy and Markov state model. Comput Struct Biotechnol J 2024; 23:688-699. [PMID: 38292476 PMCID: PMC10825278 DOI: 10.1016/j.csbj.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 02/01/2024] Open
Abstract
The self-assembly of Aβ peptides into toxic oligomers and fibrils is the primary cause of Alzheimer's disease. Moreover, the conformational transition from helix to sheet is considered a crucial step in the aggregation of Aβ peptides. However, the structural details of this process still remain unclear due to the heterogeneity and transient nature of the Aβ peptides. In this study, we developed an enhanced sampling strategy that combines artificial neural networks (ANN) with metadynamics to explore the conformational space of the Aβ42 peptides. The strategy consists of two parts: applying ANN to optimize CVs and conducting metadynamics based on the resulting CVs to sample conformations. The results showed that this strategy achieved better sampling performance in terms of the distribution of sampled conformations. The sampling efficiency is increased by 10-fold compared to our previous Hamiltonian Exchange Molecular Dynamics (MD) and by 1000-fold compared to ordinary MD. Based on the sampled conformations, we constructed a Markov state model to understand the detailed transition process. The intermediate states in this process are identified, and the connecting paths are analyzed. The conformational transitions in D23-K28 and M35-V40 are proven to be crucial for aggregation. These results are helpful in clarifying the mechanism and process of Aβ42 peptide aggregation. D23-K28 and M35-V40 can be identified as potential targets for screening and designing inhibitors of Aβ peptide aggregation.
Collapse
Affiliation(s)
- Huilin Wen
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, PR China
- The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Hao Ouyang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, PR China
| | - Hao Shang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, PR China
| | - Chaohong Da
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, PR China
| | - Tao Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, PR China
| |
Collapse
|
2
|
Mishra R, Gerlach GJ, Sahoo B, Camacho CJ, Wetzel R. A Targetable Self-association Surface of the Huntingtin exon1 Helical Tetramer Required for Assembly of Amyloid Pre-nucleation Oligomers. J Mol Biol 2024; 436:168607. [PMID: 38734203 DOI: 10.1016/j.jmb.2024.168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Polyglutamine (polyQ) sequences undergo repeat-length dependent formation of disease-associated, amyloid-like cross-β core structures with kinetics and aggregate morphologies often influenced by the flanking sequences. In Huntington's disease (HD), the httNT segment on the polyQ's N-terminal flank enhances aggregation rates by changing amyloid nucleation from a classical homogeneous mechanism to a two-step process requiring an ɑ-helix-rich oligomeric intermediate. A folded, helix-rich httNT tetrameric structure suggested to be this critical intermediate was recently reported. Here we employ single alanine replacements along the httNT sequence to assess this proposed structure and refine the mechanistic model. We find that Ala replacement of hydrophobic residues within simple httNT peptides greatly suppresses helicity, supporting the tetramer model. These same helix-disruptive replacements in the httNT segment of an exon-1 analog greatly reduce aggregation kinetics, suggesting that an ɑ-helix rich multimer - either the tetramer or a larger multimer - plays an on-pathway role in nucleation. Surprisingly, several other Ala replacements actually enhance helicity and/or amyloid aggregation. The spatial localization of these residues on the tetramer surface suggests a self-association interface responsible for formation of the octomers and higher-order multimers most likely required for polyQ amyloid nucleation. Multimer docking of the tetramer, using the protein-protein docking algorithm ClusPro, predicts this symmetric surface to be a viable tetramer dimerization interface. Intriguingly, octomer formation brings the emerging polyQ chains into closer proximity at this tetramer-tetramer interface. Further supporting the potential importance of tetramer super-assembly, computational docking with a known exon-1 aggregation inhibitor predicts ligand contacts with residues at this interface.
Collapse
Affiliation(s)
- Rakesh Mishra
- Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| | - Gabriella J Gerlach
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA
| | - Bankanidhi Sahoo
- Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| | - Ronald Wetzel
- Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| |
Collapse
|
3
|
Anbaraki A, Dindar Z, Mousavi-Jarrahi Z, Ghasemi A, Moeini Z, Evini M, Saboury AA, Seyedarabi A. The novel anti-fibrillary effects of volatile compounds α-asarone and β-caryophyllene on tau protein: Towards promising therapeutic agents for Alzheimer's disease. Int J Biol Macromol 2024; 271:132401. [PMID: 38761902 DOI: 10.1016/j.ijbiomac.2024.132401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The abnormal deposition of tau protein is one of the critical causes of tauopathies including Alzheimer's disease (AD). In recent years, there has been great interest in the use of essential oils and volatile compounds in aromatherapy for treating AD, since volatile compounds can directly reach the brain through intranasal administration. The volatile compounds α-asarone (ASA) and β-caryophyllene (BCP) have revealed various important neuroprotective properties, useful in treating AD. In this study, the volatile compounds ASA and BCP were assessed for their effectiveness in preventing tau fibrillation, disassembly of pre-formed tau fibrils, and disaggregation of tau aggregates. SDS-PAGE and AFM analyses revealed that ASA and BCP inhibited tau fibrillation/aggregation and decreased the mean size of tau oligomers. Tau samples treated with ASA and BCP, showed a reduction in ThT and ANS fluorescence intensities, and a decrease in the β-sheet content. Additionally, ASA and BCP disassembled the pre-formed tau fibrils to the granular and linear oligomeric intermediates. Treatment of neuroblastoma SH-SY5Y cells with tau samples treated with ASA and BCP, revealed protective effects as shown by reduced toxicity of the cells, due to the inhibition of tau fibrillation/aggregation. Overall, ASA and BCP appeared to be promising therapeutic candidates for AD.
Collapse
Affiliation(s)
- Afrooz Anbaraki
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Dindar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Moeini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mina Evini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Prajapati KP, Mittal S, Ansari M, Mahato OP, Bharati S, Singh AP, Ahlawat S, Tiku AB, Anand BG, Kar K. Pleiotropic Nanostructures Built from l-Histidine Show Biologically Relevant Multicatalytic Activities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18268-18284. [PMID: 38564419 DOI: 10.1021/acsami.3c14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The essential amino acid histidine plays a central role in the manifestation of several metabolic processes, including protein synthesis, enzyme-catalysis, and key biomolecular interactions. However, excess accumulation of histidine causes histidinemia, which shows brain-related medical complications, and the molecular mechanism of such histidine-linked complications is largely unknown. Here, we show that histidine undergoes a self-assembly process, leading to the formation of amyloid-like cytotoxic and catalytically active nanofibers. The kinetics of histidine self-assembly was favored in the presence of Mg(II) and Co(II) ions. Molecular dynamics data showed that preferential noncovalent interactions dominated by H-bonds between histidine molecules facilitate the formation of histidine nanofibers. The histidine nanofibers induced amyloid cross-seeding reactions in several proteins and peptides including pathogenic Aβ1-42 and brain extract components. Further, the histidine nanofibers exhibited oxidase activity and enhanced the oxidation of neurotransmitters. Cell-based studies confirmed the cellular internalization of histidine nanofibers in SH-SY5Y cells and subsequent cytotoxic effects through necrosis and apoptosis-mediated cell death. Since several complications including behavioral abnormality, developmental delay, and neurological disabilities are directly linked to abnormal accumulation of histidine, our findings provide a foundational understanding of the mechanism of histidine-related complications. Further, the ability of histidine nanofibers to catalyze amyloid seeding and oxidation reactions is equally important for both biological and materials science research.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Om Prakash Mahato
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Bharati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akhilesh Pratap Singh
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shobha Ahlawat
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashu Bhan Tiku
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
5
|
Nguyen PH, Sterpone F, Derreumaux P. Metastable alpha-rich and beta-rich conformations of small Aβ42 peptide oligomers. Proteins 2023. [PMID: 37038252 DOI: 10.1002/prot.26495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023]
Abstract
Probing the structures of amyloid-β (Aβ) peptides in the early steps of aggregation is extremely difficult experimentally and computationally. Yet, this knowledge is extremely important as small oligomers are the most toxic species. Experiments and simulations on Aβ42 monomer point to random coil conformations with either transient helical or β-strand content. Our current conformational description of small Aβ42 oligomers is funneled toward amorphous aggregates with some β-sheet content and rare high energy states with well-ordered assemblies of β-sheets. In this study, we emphasize another view based on metastable α-helix bundle oligomers spanning the C-terminal residues, which are predicted by the machine-learning AlphaFold2 method and supported indirectly by low-resolution experimental data on many amyloid polypeptides. This finding has consequences in developing novel chemical tools and to design potential therapies to reduce aggregation and toxicity.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, Paris, 75005, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| |
Collapse
|
6
|
Nguyen PH, Sterpone F, Derreumaux P. Self-Assembly of Amyloid-Beta (Aβ) Peptides from Solution to Near In Vivo Conditions. J Phys Chem B 2022; 126:10317-10326. [PMID: 36469912 DOI: 10.1021/acs.jpcb.2c06375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the atomistic resolution changes during the self-assembly of amyloid peptides or proteins is important to develop compounds or conditions to alter the aggregation pathways and suppress the toxicity and potentially aid in the development of drugs. However, the complexity of protein aggregation and the transient order/disorder of oligomers along the pathways to fibril are very challenging. In this Perspective, we discuss computational studies of amyloid polypeptides carried out under various conditions, including conditions closely mimicking in vivo and point out the challenges in obtaining physiologically relevant results, focusing mainly on the amyloid-beta Aβ peptides.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| |
Collapse
|
7
|
Prajapati KP, Anand BG, Ansari M, Tiku AB, Kar K. Tryptophan self-assembly yields cytotoxic nanofibers containing amyloid-mimicking and cross-seeding competent conformers. NANOSCALE 2022; 14:16270-16285. [PMID: 36300424 DOI: 10.1039/d2nr03544h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dietary consumption of Trp via protein-based foods is essential for the maintenance of crucial metabolic processes including the synthesis of proteins and several vital metabolites such as serotonin, melatonin, acetyl CoA, and NADP. However, the abnormal build-up of Trp is known to cause familial hypertryptophanemia and several brain-related medical complications. The molecular mechanism of the onset of such Trp-driven health issues is largely unknown. Here, we show that Trp, under the physiologically mimicked conditions of temperature and buffer, undergoes a concentration driven self-assembly process, yielding amyloid-mimicking nanofibers. Viable H-bonds, π-π interactions and hydrophobic contacts between optimally coordinated Trp molecules become important factors for the formation of a Trp nanoassembly that displays a hydrophobic exterior and a hydrophilic interior. Importantly, Trp nanofibers were found to possess high affinity for native proteins, and they act as cross-seeding competent conformers capable of nucleating amyloid formation in globular proteins including whey protein β-lactoglobulin and type II diabetes linked insulin hormone. Moreover, these amyloid mimicking Trp nanostructures showed toxic effects on neuroblastoma cells. Since the key symptoms in hypertryptophanemia such as behavioural defects and brain-damaging oxidative stress are also observed in amyloid related disorders, our findings on amyloid-like Trp-nanofibers may help in the mechanistic understanding of Trp-related complications and these findings are equally important for innovation in applied nanomaterials design and strategies.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Bibin Gnanadhason Anand
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ashu Bhan Tiku
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
8
|
Shi JM, Li HY, Liu H, Zhu L, Guo YB, Pei J, An H, Li YS, Li SD, Zhang ZY, Zheng Y. N-terminal Domain of Amyloid-β Impacts Fibrillation and Neurotoxicity. ACS OMEGA 2022; 7:38847-38855. [PMID: 36340079 PMCID: PMC9631750 DOI: 10.1021/acsomega.2c04583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease is characterized by the presence of distinct amyloid-β peptide (Aβ) assemblies with diverse sizes, shapes, and toxicity. However, the primary determinants of Aβ aggregation and neurotoxicity remain unknown. Here, the N-terminal amino acid residues of Aβ42 that distinguished between humans and rats were substituted. The effects of these modifications on the ability of Aβ to aggregate and its neurotoxicity were investigated using biochemical, biophysical, and cellular techniques. The Aβ-derived diffusible ligand, protofibrils, and fibrils formed by the N-terminal mutational peptides, including Aβ42(R5G), Aβ42(Y10F), and rat Aβ42, were indistinguishable by conventional techniques such as size-exclusion chromatography, negative-staining transmission electron microscopy and silver staining, whereas the amyloid fibrillation detected by thioflavin T assay was greatly inhibited in vitro. Using circular dichroism spectroscopy, we discovered that both Aβ42 and Aβ42(Y10F) generated protofibrils and fibrils with a high proportion of parallel β-sheet structures. Furthermore, protofibrils formed by other mutant Aβ peptides and N-terminally shortened peptides were incapable of inducing neuronal death, with the exception of Aβ42 and Aβ42(Y10F). Our findings indicate that the N-terminus of Aβ is important for its fibrillation and neurotoxicity.
Collapse
Affiliation(s)
- Jing-Ming Shi
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Hai-Yun Li
- Department
of Biochemistry and Molecular Biology, School of Basic Medicine, Xi’an Jiaotong University, Xi’an 710061, China
| | - Hang Liu
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Li Zhu
- School
of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yi-Bo Guo
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Jie Pei
- Lanzhou
Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Hao An
- School
of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan-Song Li
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Sha-Di Li
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Ze-Yu Zhang
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Yi Zheng
- School
of Medicine, University of Electronic Science
and Technology of China, Chengdu 610054, China
| |
Collapse
|
9
|
Papadopoulos N, Suelves N, Perrin F, Vadukul DM, Vrancx C, Constantinescu SN, Kienlen-Campard P. Structural Determinant of β-Amyloid Formation: From Transmembrane Protein Dimerization to β-Amyloid Aggregates. Biomedicines 2022; 10:2753. [PMID: 36359274 PMCID: PMC9687742 DOI: 10.3390/biomedicines10112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 10/03/2023] Open
Abstract
Most neurodegenerative diseases have the characteristics of protein folding disorders, i.e., they cause lesions to appear in vulnerable regions of the nervous system, corresponding to protein aggregates that progressively spread through the neuronal network as the symptoms progress. Alzheimer's disease is one of these diseases. It is characterized by two types of lesions: neurofibrillary tangles (NFTs) composed of tau proteins and senile plaques, formed essentially of amyloid peptides (Aβ). A combination of factors ranging from genetic mutations to age-related changes in the cellular context converge in this disease to accelerate Aβ deposition. Over the last two decades, numerous studies have attempted to elucidate how structural determinants of its precursor (APP) modify Aβ production, and to understand the processes leading to the formation of different Aβ aggregates, e.g., fibrils and oligomers. The synthesis proposed in this review indicates that the same motifs can control APP function and Aβ production essentially by regulating membrane protein dimerization, and subsequently Aβ aggregation processes. The distinct properties of these motifs and the cellular context regulate the APP conformation to trigger the transition to the amyloid pathology. This concept is critical to better decipher the patterns switching APP protein conformation from physiological to pathological and improve our understanding of the mechanisms underpinning the formation of amyloid fibrils that devastate neuronal functions.
Collapse
Affiliation(s)
- Nicolas Papadopoulos
- SIGN Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, 1348 Brussels, Belgium
| | - Nuria Suelves
- Aging and Dementia Research Group, Cellular and Molecular (CEMO) Division, Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium
| | - Florian Perrin
- Memory Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Devkee M. Vadukul
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London SW7 2BX, UK
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Stefan N. Constantinescu
- SIGN Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, 1348 Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford University, Oxford OX1 2JD, UK
| | - Pascal Kienlen-Campard
- Aging and Dementia Research Group, Cellular and Molecular (CEMO) Division, Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|
10
|
Santuz H, Nguyen PH, Sterpone F, Derreumaux P. Small Oligomers of Aβ42 Protein in the Bulk Solution with AlphaFold2. ACS Chem Neurosci 2022; 13:711-713. [PMID: 35255205 DOI: 10.1021/acschemneuro.2c00122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aggregation of amyloid-β (Aβ42) protein is one hallmark of Alzheimer's disease, and the conformations of the smallest Aβ42 oligomers are largely unknown. Here, we explore the application of the deep learning AlphaFold2 method to the structure determination of Aβ42 monomers up to hexamers. The results shed light on the early Aβ42 aggregation steps in the bulk solution.
Collapse
Affiliation(s)
- Hubert Santuz
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H. Nguyen
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
11
|
Bhattacharya S, Xu L, Thompson D. Characterization of Amyloidogenic Peptide Aggregability in Helical Subspace. Methods Mol Biol 2022; 2340:401-448. [PMID: 35167084 DOI: 10.1007/978-1-0716-1546-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prototypical amyloidogenic peptides amyloid-β (Aβ) and α-synuclein (αS) can undergo helix-helix associations via partially folded helical conformers, which may influence pathological progression to Alzheimer's (AD) and Parkinson's disease (PD), respectively. At the other extreme, stable folded helical conformers have been reported to resist self-assembly and amyloid formation. Experimental characterisation of such disparities in aggregation profiles due to subtle differences in peptide stabilities is precluded by the conformational heterogeneity of helical subspace. The diverse physical models used in molecular simulations allow sampling distinct regions of the phase space and are extensive in capturing the ensemble of rich helical subspace. Robust and powerful computational predictive methods utilizing network theory and free energy mapping can model the origin of helical population shifts in amyloidogenic peptides, which highlight their inherent aggregability. In this chapter, we discuss computational models, methods, design rules, and strategies to identify the driving force behind helical self-assembly and the molecular origin of aggregation resistance in helical intermediates of Aβ42 and αS. By extensive multiscale mapping of intrapeptide interactions, we show that the computational models can capture features that are otherwise imperceptible to experiments. Our models predict that targeting terminal residues may allow modulation and control of initial pathogenic aggregability of amyloidogenic peptides.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Liang Xu
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
12
|
Oren O, Taube R, Papo N. Amyloid β structural polymorphism, associated toxicity and therapeutic strategies. Cell Mol Life Sci 2021; 78:7185-7198. [PMID: 34643743 PMCID: PMC11072899 DOI: 10.1007/s00018-021-03954-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
A review of the multidisciplinary scientific literature reveals a large variety of amyloid-β (Aβ) oligomeric species, differing in molecular weight, conformation and morphology. These species, which may assemble via either on- or off-aggregation pathways, exhibit differences in stability, function and neurotoxicity, according to different experimental settings. The conformations of the different Aβ species are stabilized by intra- and inter-molecular hydrogen bonds and by electrostatic and hydrophobic interactions, all depending on the chemical and physical environment (e.g., solvent, ions, pH) and interactions with other molecules, such as lipids and proteins. This complexity and the lack of a complete understanding of the relationship between the different Aβ species and their toxicity is currently dictating the nature of the inhibitor (or inducer)-based approaches that are under development for interfering with (or inducing) the formation of specific species and Aβ oligomerization, and for interfering with the associated downstream neurotoxic effects. Here, we review the principles that underlie the involvement of different Aβ oligomeric species in neurodegeneration, both in vitro and in preclinical studies. In addition, we provide an overview of the existing inhibitors (or inducers) of Aβ oligomerization that serve as potential therapeutics for neurodegenerative diseases. The review, which covers the exciting studies that have been published in the past few years, comprises three main parts: 1) on- and off-fibrillar assembly mechanisms and Aβ structural polymorphism; 2) interactions of Aβ with other molecules and cell components that dictate the Aβ aggregation pathway; and 3) targeting the on-fibrillar Aβ assembly pathway as a therapeutic approach.
Collapse
Affiliation(s)
- Ofek Oren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
- Department of Biotechnology Engineering, Avram and Stella Goldstein-Goren, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Niv Papo
- Department of Biotechnology Engineering, Avram and Stella Goldstein-Goren, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
13
|
Anand BG, Prajapati KP, Ansari M, Yadav DK, Temgire M, Kar K. Genesis of Neurotoxic Hybrid Nanofibers from the Coassembly of Aromatic Amino Acids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36722-36736. [PMID: 34327979 DOI: 10.1021/acsami.1c04161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considering the relevance of accumulation and self-assembly of metabolites and aftermath of biological consequences, it is important to know whether they undergo coassembly and what properties the resultant hybrid higher-order structures would exhibit. This work reveals the inherent tendency of aromatic amino acids to undergo a spontaneous coassembly process under physiologically mimicked conditions, which yields neurotoxic hybrid nanofibers. Resultant hybrid nanostructures resembled the β-structured conformers stabilized by H-bonds and π-π stacking interactions, which were highly toxic to human neuroblastoma cells. The hybrid nanofibers also showed strong cross-seeding potential that triggered in vitro aggregation of diverse globular proteins and brain extract components, converting the native structures into cross-β-rich amyloid aggregates. The heterogenic nature of the hybrid nanofibers seems crucial for their higher toxicity and faster cross-seeding potential as compared to the homogeneous amino acid nanofibers. Our findings reveal the importance of aromaticity-driven optimized intermolecular arrangements for the coassembly of aromatic amino acids, and the results may provide important clues to the fundamental understanding of metabolite accumulation-related complications.
Collapse
Affiliation(s)
- Bibin Gnanadhason Anand
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepak Kumar Yadav
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mayur Temgire
- Department of Chemical Engineering, Indian Institution of Technology Bombay, Powai, Mumbai 400076, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
Protein-induced metamorphosis of unilamellar lipid vesicles to multilamellar hybrid vesicles. J Control Release 2021; 331:187-197. [PMID: 33422501 DOI: 10.1016/j.jconrel.2021.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
Protein encapsulation into nanocarriers has been extensively studied to improve the efficacy and stability of therapeutic proteins. However, the chemical modification of proteins or new synthetic carrier materials are essential to achieve a high encapsulation efficiency and structural stability of proteins, which hinders their clinical applications. New strategies to physically incorporate proteins into nanocarriers feasible for clinical uses are required to overcome the current limitation. Here we report the spontaneous protein-induced reorganization of 'pre-formed' unilamellar lipid vesicles to efficiently incorporate proteins within multilamellar protein-lipid hybrid vesicles without chemical modification. Epidermal growth factor (EGF) binds to the surface of cationic unilamellar lipid vesicles and induces layer-by-layer self-assembly of the vesicles. The protein is spontaneously entrapped in the interstitial layers of a multilamellar structure with extremely high loading efficiency, ~99%, through polyionic interactions as predicted by molecular dynamics simulation. The loaded protein exhibits much higher structural, chemical, and biological stability compared to free protein. The method is also successfully applied to several other proteins. This work provides a promising method for the highly efficient encapsulation of therapeutic proteins into multilamellar lipid vesicles without the use of specialized instruments, high energy, coupling agents, or organic solvents.
Collapse
|
15
|
Mahmoudinobar F, Nilsson BL, Dias CL. Effects of Ions and Small Compounds on the Structure of Aβ 42 Monomers. J Phys Chem B 2021; 125:1085-1097. [PMID: 33481611 DOI: 10.1021/acs.jpcb.0c09617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aggregation of amyloid-β (Aβ) proteins in the brain is a hallmark of Alzheimer's disease. This phenomenon can be promoted or inhibited by adding small molecules to the solution where Aβ is embedded. These molecules affect the ensemble of conformations sampled by Aβ monomers even before aggregation starts. Here, we perform extensive all-atom replica exchange molecular dynamics (REMD) simulations to provide a comparative study of the ensemble of conformations sampled by Aβ42 monomers in solutions that promote (i.e., aqueous solution containing NaCl) and inhibit (i.e., aqueous solutions containing scyllo-inositol or 4-aminophenol) aggregation. Simulations performed in pure water are used as our reference. We find that secondary-structure content is only affected in an antagonistic manner by promoters and inhibitors at the C-terminus and the central hydrophilic core. Moreover, the end of the C-terminus binds more favorably to the central hydrophobic core region of Aβ42 in NaCl adopting a type of strand-loop-strand structure that is disfavored by inhibitors. Nonpolar residues that form the dry core of larger aggregates of Aβ42 (e.g., PDB ID 2BEG) are found at close proximity in these strand-loop-strand structures, suggesting that their formation could play an important role in initiating nucleation. In the presence of inhibitors, the C-terminus binds the central hydrophilic core with a higher probability than in our reference simulation. This sensitivity of the C-terminus, which is affected in an antagonistic manner by inhibitors and promoters, provides evidence for its critical role in accounting for aggregation.
Collapse
Affiliation(s)
- Farbod Mahmoudinobar
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
16
|
Dimeric Transmembrane Orientations of APP/C99 Regulate γ-Secretase Processing Line Impacting Signaling and Oligomerization. iScience 2020; 23:101887. [PMID: 33367225 PMCID: PMC7749410 DOI: 10.1016/j.isci.2020.101887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Amyloid precursor protein (APP) cleavage by the β-secretase produces the C99 transmembrane (TM) protein, which contains three dimerization-inducing Gly-x-x-x-Gly motifs. We demonstrate that dimeric C99 TM orientations regulate the precise cleavage lines by γ-secretase. Of all possible dimeric orientations imposed by a coiled-coil to the C99 TM domain, the dimer containing the 33Gly-x-x-x-Gly37 motif in the interface promoted the Aβ42 processing line and APP intracellular domain-dependent gene transcription, including the induction of BACE1 mRNA, enhancing amyloidogenic processing and signaling. Another orientation exhibiting the 25Gly-x-x-x-Gly29 motif in the interface favored processing to Aβ43/40. It induced significantly less gene transcription, while promoting formation of SDS-resistant "Aβ-like" oligomers, reminiscent of Aβ peptide oligomers. These required both Val24 of a pro-β motif and the 25Gly-x-x-x-Gly29 interface. Thus, crossing angles imposed by precise dimeric orientations control γ-secretase initial cleavage at Aβ48 or Aβ49, linking the former to enhanced signaling and Aβ42 production.
Collapse
|
17
|
Wetzel R. Exploding the Repeat Length Paradigm while Exploring Amyloid Toxicity in Huntington's Disease. Acc Chem Res 2020; 53:2347-2357. [PMID: 32975927 DOI: 10.1021/acs.accounts.0c00450] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Huntington's disease (HD) is a progressive, familial neurodegenerative disease triggered by the expansion of a polyglutamine (polyQ) track in the protein huntingtin (htt). PolyQ sequences up to Q36 in htt are not known to be toxic, while polyQ lengths above Q36 almost invariably lead to increased disease risk and decreased ages of onset. The large number of physical states (monomers, dimers, tetramers, non-β oligomers, nanofibrils, and clustered amyloid fibrils) on the self-association landscape, with their overlapping kinetics of formation, have greatly complicated identification of the molecular species responsible for HD toxicity, drawing attention to the need for innovative approaches.After reports of HD-associated intraneuronal htt inclusions in 1997, we elucidated aggregation mechanisms of both simple polyQ sequences and the more complex polyQ-containing "exon1" fragment of htt (htt-ex1). Grounded in this work, the more recent results described here were made possible by breakthroughs in the molecular design of diagnostic polyQ derivatives and in fluorescence applications for characterizing amyloid assembly intermediates. Thus, insertion of β-turn-promoting mutations into relatively short, disordered polyQ sequences created "pro-β-hairpin" polyQs (βHPs) that exhibit amyloid formation rates comparable to the enhanced rates seen with expanded polyQ peptides. Introduction of "β-breaker" mutations into these βHP polyQ sequences created molecules that are blocked from aggregating into amyloid and also can inhibit amyloid formation by other polyQ proteins. These mutational effects were then successfully transferred into more complex htt-ex1 sequence backgrounds. Insights into the aggregation properties of htt-ex1 derivatives-as well as into the nucleation process itself-were obtained using fluorescence correlation spectroscopy (FCS) and a novel thioflavin-T (ThT) protocol that allows quantitation of htt-ex1 assembly intermediates.Using these tools, we quantified physical states of htt-ex1 at different growth times in mammalian PC12 cells engineered for inducible expression of both normal and expanded polyQ repeat length versions of htt-ex1. For expanded polyQ versions, we found tetramers, oligomers, and fibrils (but no monomers) all populated in these cells at a time when the first indication of toxicity (nuclear DNA damage) was observed. These experiments provided a strong hint that monomeric forms of htt-ex1 are not involved in toxicity, but we were otherwise unable to implicate a specific toxic self-assembled state because of the overlapping kinetics of formation. To gain a more intimate focus and control over the timelines of htt-ex1 self-assembly and the resulting toxic response, we engineered various htt-ex1-βHP molecules-with and without added β-breaker mutations-that could be expressed in rat neuronal and Drosophila models of HD. In both models, novel htt-ex1-βHP analogues exhibiting strong aggregation in spite of their very short polyQ repeat lengths proved to be toxic, dramatically breaking the "repeat length paradigm" and strongly suggesting that the toxic species must be some kind of aggregate. In both models, β-breaker analogues of htt-ex1-βHP that are slow to make amyloid-instead favoring accumulation of non-β oligomers-were nontoxic. In contrast, htt-ex1-βHP analogues that rapidly progress to amyloid states were toxic, suggesting that an aggregate possessing the fundamental amyloid folding motif is very likely the major toxic species in HD.
Collapse
Affiliation(s)
- Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
18
|
Kumari A, Muthu SA, Prakash P, Ahmad B. Herbalome of Chandraprabha vati, a polyherbal formulation of Ayurveda prevents fibrillation of lysozyme by stabilizing aggregation-prone intermediate state. Int J Biol Macromol 2020; 148:102-109. [DOI: 10.1016/j.ijbiomac.2020.01.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 10/25/2022]
|
19
|
Tonali N, Dodero VI, Kaffy J, Hericks L, Ongeri S, Sewald N. Real-Time BODIPY-Binding Assay To Screen Inhibitors of the Early Oligomerization Process of Aβ1-42 Peptide. Chembiochem 2020; 21:1129-1135. [PMID: 31702868 PMCID: PMC7217026 DOI: 10.1002/cbic.201900652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 01/03/2023]
Abstract
Misfolding and aggregation of amyloid β1–42 peptide (Aβ1–42) play a central role in the pathogenesis of Alzheimer's disease (AD). Targeting the highly cytotoxic oligomeric species formed during the early stages of the aggregation process represents a promising therapeutic strategy to reduce the toxicity associated with Aβ1–42. Currently, the thioflavin T (ThT) assay is the only established spectrofluorometric method to screen aggregation inhibitors. The success of the ThT assay is that it can detect Aβ1–42 aggregates with high β‐sheet content, such as protofibrils or fibrils, which appear in the late aggregation steps. Unfortunately, by using the ThT assay, the detection of inhibitors of early soluble oligomers that present a low β‐sheet character is challenging. Herein, a new, facile, and robust boron‐dipyrromethene (BODIPY) real‐time assay suitable for 96‐well plate format, which allows screening of compounds as selective inhibitors of the formation of Aβ1–42 oligomers, is reported. These inhibitors decrease the cellular toxicity of Aβ1–42, although they fail in the ThT assay. The findings have been confirmed and validated by structural analysis and cell viability assays under comparable experimental conditions. It is demonstrated that the BODIPY assay is a convenient method to screen and discover new candidate compounds that slow down or stop the pathological early oligomerization process and are active in the cellular assay. Therefore, it is a suitable complementary screening method of the current ThT assay.
Collapse
Affiliation(s)
- Nicolo Tonali
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, P. O. Box 100131, 33501, Bielefeld, Germany.,BioCIS, CNRS/Université Paris Sud, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Veronica I Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, P. O. Box 100131, 33501, Bielefeld, Germany
| | - Julia Kaffy
- BioCIS, CNRS/Université Paris Sud, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Loreen Hericks
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, P. O. Box 100131, 33501, Bielefeld, Germany
| | - Sandrine Ongeri
- BioCIS, CNRS/Université Paris Sud, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, P. O. Box 100131, 33501, Bielefeld, Germany
| |
Collapse
|
20
|
Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:461-504. [DOI: 10.1016/bs.pmbts.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Candreva J, Chau E, Rice ME, Kim JR. Interactions between Soluble Species of β-Amyloid and α-Synuclein Promote Oligomerization while Inhibiting Fibrillization. Biochemistry 2019; 59:425-435. [PMID: 31854188 DOI: 10.1021/acs.biochem.9b00655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aggregations of β-amyloid (Aβ) and α-synuclein (αS) into oligomeric and fibrillar assemblies are the pathological hallmarks of Alzheimer's and Parkinson's diseases, respectively. Although Aβ and αS affect different regions of the brain and are separated at the cellular level, there is evidence of their eventual interaction in the pathology of both disorders. Characterization of interactions of Aβ and αS at various stages of their aggregation pathways could reveal mechanisms and therapeutic targets for the prevention and cure of these neurodegenerative diseases. In this study, we comprehensively examined the interactions and their molecular manifestations using an array of characterization tools. We show for the first time that αS monomers and oligomers, but not αS fibrils, inhibit Aβ fibrillization while promoting oligomerization of Aβ monomers and stabilizing preformed Aβ oligomers via coassembly, as judged by Thioflavin T fluorescence, transmission electron microscopy, and SDS- and native-PAGE with fluorescently labeled peptides/proteins. In contrast, soluble Aβ species, such as monomers and oligomers, aggregate into fibrils, when incubated alone under the otherwise same condition. Our study provides evidence that the interactions with αS soluble species, responsible for the effects, are mediated primarily by the C-terminus of Aβ, when judged by competitive immunoassays using antibodies recognizing various fragments of Aβ. We also show that the C-terminus of Aβ is a primary site for its interaction with αS fibrils. Collectively, these data demonstrate aggregation state-specific interactions between αS and Aβ and offer insight into a molecular basis of synergistic biological effects between the two polypeptides.
Collapse
Affiliation(s)
- Jason Candreva
- Department of Chemical and Biomolecular Engineering , New York University , 6 MetroTech Center , Brooklyn , New York 11201 , United States
| | - Edward Chau
- Department of Chemical and Biomolecular Engineering , New York University , 6 MetroTech Center , Brooklyn , New York 11201 , United States
| | - Margaret E Rice
- Departments of Neurosurgery, and Neuroscience and Physiology , New York University School of Medicine , New York , New York 10016 , United States
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering , New York University , 6 MetroTech Center , Brooklyn , New York 11201 , United States
| |
Collapse
|
22
|
Developing Trojan horses to induce, diagnose and suppress Alzheimer’s pathology. Pharmacol Res 2019; 149:104471. [DOI: 10.1016/j.phrs.2019.104471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
|
23
|
Micsonai A, Wien F, Bulyáki É, Kun J, Moussong É, Lee YH, Goto Y, Réfrégiers M, Kardos J. BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res 2019; 46:W315-W322. [PMID: 29893907 PMCID: PMC6031044 DOI: 10.1093/nar/gky497] [Citation(s) in RCA: 686] [Impact Index Per Article: 137.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
Circular dichroism (CD) spectroscopy is a widely used method to study the protein secondary structure. However, for decades, the general opinion was that the correct estimation of β-sheet content is challenging because of the large spectral and structural diversity of β-sheets. Recently, we showed that the orientation and twisting of β-sheets account for the observed spectral diversity, and developed a new method to estimate accurately the secondary structure (PNAS, 112, E3095). BeStSel web server provides the Beta Structure Selection method to analyze the CD spectra recorded by conventional or synchrotron radiation CD equipment. Both normalized and measured data can be uploaded to the server either as a single spectrum or series of spectra. The originality of BeStSel is that it carries out a detailed secondary structure analysis providing information on eight secondary structure components including parallel-β structure and antiparallel β-sheets with three different groups of twist. Based on these, it predicts the protein fold down to the topology/homology level of the CATH protein fold classification. The server also provides a module to analyze the structures deposited in the PDB for BeStSel secondary structure contents in relation to Dictionary of Secondary Structure of Proteins data. The BeStSel server is freely accessible at http://bestsel.elte.hu.
Collapse
Affiliation(s)
- András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Frank Wien
- Synchrotron SOLEIL, Gif-sur-Yvette 91192, France
| | - Éva Bulyáki
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Judit Kun
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Éva Moussong
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | | | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| |
Collapse
|
24
|
John T, Dealey TJA, Gray NP, Patil NA, Hossain MA, Abel B, Carver JA, Hong Y, Martin LL. The Kinetics of Amyloid Fibrillar Aggregation of Uperin 3.5 Is Directed by the Peptide’s Secondary Structure. Biochemistry 2019; 58:3656-3668. [DOI: 10.1021/acs.biochem.9b00536] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Torsten John
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Tiara J. A. Dealey
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Nicholas P. Gray
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Nitin A. Patil
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mohammed A. Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - John A. Carver
- Research School of Chemistry, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Lisandra L. Martin
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
25
|
Misra P, Blancas-Mejia LM, Ramirez-Alvarado M. Mechanistic Insights into the Early Events in the Aggregation of Immunoglobulin Light Chains. Biochemistry 2019; 58:3155-3168. [PMID: 31287666 DOI: 10.1021/acs.biochem.9b00311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Little is known about the mechanism of amyloid assembly in immunoglobulin light chain (AL) amyloidosis, in contrast to other amyloid diseases. Early events in the aggregation pathway are especially important, as these soluble species could be cytotoxic intermediates playing a critical role in the initiation of the amyloid assembly. In this work, we discuss the mechanism of the early events in in vitro fibril formation of immunoglobulin light chain AL-09 and AL-12 (involved in cardiac amyloidosis) and its germline (control) protein κI O18/O8. Previous work from our laboratory showed that AL-12 adopts a canonical dimer conformation (like the germline protein), whereas AL-09 presents an altered dimer interface as a result of somatic mutations. Both AL-12 and AL-09 aggregate with similar rates and significantly faster than the germline protein. AL-09 is the only protein in this study that forms stable oligomeric intermediates during the early stages of the aggregation reaction with some structural rearrangements that increase the thioflavin T fluorescence but maintain the same number of monomers in solution. The presence of the restorative mutation AL-09 H87Y changes the kinetics and the aggregation pathway compared to AL-09. The single restorative mutation AL-12 R65S slightly delayed the overall rate of aggregation as compared to AL-12. Collectively, our study provides a comprehensive analysis of species formed during amyloid nucleation in AL amyloidosis, shows a strong dependence between the altered dimer conformation and the formation of stable oligomeric intermediates, and sheds light on the structural features of amyloidogenic intermediates associated with cellular toxicity.
Collapse
|
26
|
Lee D, Kim SM, Kim HY, Kim Y. Fluorescence Chemicals To Detect Insoluble and Soluble Amyloid-β Aggregates. ACS Chem Neurosci 2019; 10:2647-2657. [PMID: 31009195 DOI: 10.1021/acschemneuro.9b00199] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Misfolded amyloid-β (Aβ) is the key biomarker of Alzheimer's disease (AD), and discoveries of fluorescence chemicals visualizing such Aβ aggregates in the brain have made major contributions in postmortem and antemortem diagnosis of the disorder. Insoluble senile plaques of Aβ in brain tissues are commonly stained with thioflavin and congo red dyes and observed through microscopy, while those in living patient brains are detected via radioisotope-labeled fluorescence chemicals for positron emission tomography. Clinical evidence strongly supports the view that plaques are well-associated with the onset but not with the progression of AD. Plaques could accumulate while cognitive functions of at-risk individuals are still intact, and thus, another biomarker is needed to monitor neurodegeneration. Soluble Aβ oligomers are considered to have strong correlation with neuronal loss and brain atrophy as they are the most neurotoxic forms of misfolded Aβ. However, oligomer-targeting probes encounter several major difficulties in development. There is a significant structural distinction between two Aβ species-plaques are β-sheet-rich while oligomers are unordered-and it is still difficult to isolate and stabilize the oligomeric forms of Aβ. Due to these challenges, soluble oligomer-detecting imaging probes are relatively rare compared to the plaque-targeting chemical probes. This Review describes biochemical and optical characteristics of up-to-date fluorescence chemicals targeting insoluble plaques and soluble oligomers of Aβ. We also highlight the contributions of Aβ fluorescence chemicals to the clinical diagnosis of AD and technical challenges in searching for enhanced imaging probes.
Collapse
|
27
|
Bhattacharya S, Xu L, Thompson D. Molecular Simulations Reveal Terminal Group Mediated Stabilization of Helical Conformers in Both Amyloid-β42 and α-Synuclein. ACS Chem Neurosci 2019; 10:2830-2842. [PMID: 30917651 DOI: 10.1021/acschemneuro.9b00053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The presence of partially structured helices in natively unfolded amyloid-β42 (Aβ42) and α-synuclein (αS) has been shown to accelerate fibrillation in the onset of Alzheimer's and Parkinson's disease, respectively. At the other extreme, folded stable helical conformers have also been reported to resist amyloid formation. Recent studies indicate that amyloidogenic aggregation can be impeded using small molecules that stabilize the α-helical monomers and switch off the neurotoxic pathway. We predict a common intrapeptide route to stabilization based on the plasticity of helical conformations of Aβ42 and αS as assessed through extensive atomistic molecular dynamics (MD) computer simulations (∼36 μs) across ten distinct protein force field and water model combinations. Computed free energies and interaction maps (not obtainable from experiments alone) show that flexible terminal groups (N-terminus of Aβ42 and C-terminus of αS) show a tendency to stabilize folded helical conformations in both peptides via primary hydrophobic interactions with central hydrophobic domains, and secondary salt bridges with other domains. These interactions confer aggregation resistance by decreasing the population of partially structured helices and are absent in control simulations of complete unfolding. Computed helical stability is also significantly reduced in terminal-deleted variants. The models suggest new strategies to tackle neurodegeneration by rationally re-engineering terminal groups to optimize their predicted ability to deactivate helical monomers.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Liang Xu
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
28
|
Sequeira MA, Herrera MG, Dodero VI. Modulating amyloid fibrillation in a minimalist model peptide by intermolecular disulfide chemical reduction. Phys Chem Chem Phys 2019; 21:11916-11923. [PMID: 31125036 DOI: 10.1039/c9cp01846h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peptide structural transformation and aggregation is associated with a large number of outsider aetiology diseases, and it is intrinsically linked to amyloid peptide aggregation. Diphenylalanine self-assembled structures are used as robust minimalist beta amyloids not only to elucidate protein aggregation but also to generate hydrogels. Herein, we employed a neutral model peptide Ac-Phe-Phe-Cys-NH2 (Ac-FFC-NH2) to elucidate the role of intermolecular disulfide bonds in protein fibrillation. The Ac-FFC-NH2 peptide initially self-assembles into nanospheres that evolve to amyloid type fibrils under mild oxidative conditions. Incubation of the peptide in the presence of the chemical reduction agent TCEP inhibits the formation of the fibrils, detecting only spherical nanostructures with no secondary structure. Importantly, we triggered the transformation of the preformed linear straight amyloid fibrils to non-fibrillar structures by TCEP treatment. Under this condition, the amyloid bundles are transformed into rings, which evolve to a new spherical microstructure. We showed that the chemical reduction of intermolecular S-S in internal amyloid sequences might favour the off-path intermediates of amyloid fibril growth, even when the fibrils are formed. Our findings demonstrated that in internal amyloid sequences, the formation of intermolecular S-S promotes the formation of amyloid type fibrils; meanwhile, its reduction stabilises non-fibrillar structures. Altogether, this work provides fundamental understanding at the molecular and supramolecular level, thus facilitating the rational design of therapeutic tools for protein aggregation diseases.
Collapse
Affiliation(s)
- María Alejandra Sequeira
- Instituto de Química del Sur (INQUISUR-CONICET), Departamento de Química, Universidad Nacional del Sur, 8000FTN Bahía Blanca, Argentina
| | | | | |
Collapse
|
29
|
Liu C, Zhao W, Xing X, Shi H, Kang B, Liu H, Li P, Ai H. An Original Monomer Sampling from a Ready‐Made Aβ
42
NMR Fibril Suggests a Turn‐β‐Strand Synergetic Seeding Mechanism. Chemphyschem 2019; 20:1649-1660. [DOI: 10.1002/cphc.201801137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Chengqiang Liu
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Wei Zhao
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Xiaofeng Xing
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Hu Shi
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 China
| | - Baotao Kang
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Haiying Liu
- School of PhysicsUniversity of Jinan Jinan 250022 China
| | - Ping Li
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Hongqi Ai
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| |
Collapse
|
30
|
Xiong Q, Jiang Y, Cai X, Yang F, Li Z, Han W. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations. ACS NANO 2019; 13:4455-4468. [PMID: 30869864 DOI: 10.1021/acsnano.8b09741] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The molecular design of peptide-assembled nanostructures relies on extensive knowledge pertaining to the relationship between conformational features of peptide constituents and their behavior regarding self-assembly, and characterizing the conformational details of peptides during their self-assembly is experimentally challenging. Here, we demonstrate that a hybrid-resolution modeling method can be employed to investigate the role that conformation plays during the assembly of terminally capped diphenylalanines (FF) through microsecond simulations of hundreds or thousands of peptides. Our simulations discovered tubular or vesicular nanostructures that were consistent with experimental observation while reproducing critical self-assembly concentration and secondary structure contents in the assemblies that were measured in our experiments. The atomic details provided by our method allowed us to uncover diverse FF conformations and conformation dependence of assembled nanostructures. We found that the assembled morphologies and the molecular packing of FFs in the observed assemblies are linked closely with side-chain angle and peptide bond orientation, respectively. Of various conformations accessible to soluble FFs, only a select few are compatible with the assembled morphologies in water. A conformation resembling a FF crystal, in particular, became predominant due to its ability to permit highly ordered and energetically favorable FF packing in aqueous assemblies. Strikingly, several conformations incompatible with the assemblies arose transiently as intermediates, facilitating key steps of the assembly process. The molecular rationale behind the role of these intermediate conformations were further explained. Collectively, the structural details reported here advance the understanding of the FF self-assembly mechanism, and our method shows promise for studying peptide-assembled nanostructures and their rational design.
Collapse
Affiliation(s)
- Qinsi Xiong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yixiang Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Xiang Cai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Fadeng Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| |
Collapse
|
31
|
Blinov N, Wishart DS, Kovalenko A. Solvent Composition Effects on the Structural Properties of the Aβ42 Monomer from the 3D-RISM-KH Molecular Theory of Solvation. J Phys Chem B 2019; 123:2491-2506. [PMID: 30811210 DOI: 10.1021/acs.jpcb.9b00480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural characterization of amyloid (A)β peptides implicated in Alzheimer's disease is a challenging problem due to their intrinsically disordered nature and their high propensity for aggregation. Only limited information is currently available from experiments on conformational properties and aggregation pathways of the peptides in cellular environments. In silico modeling complements experimental information, providing atomistic insight into structure and dynamics of different Aβ species. All-atom explicit solvent molecular dynamics (MD) simulations with a properly selected force field can deliver reliable structural and dynamic information. In the case of intrinsically disordered Aβ peptides, enhanced sampling simulations beyond the nanosecond time scale are required to obtain statistically meaningful results even for simple solvent conditions. To overcome the challenges of conformational sampling in crowded cellular environments, alternative approaches have to be used, including postprocessing of MD data. In this study, we employ the statistical-mechanical, three-dimensional reference interaction site model with the Kovalenko-Hirata closure integral equation molecular theory of solvation to describe solvent composition effects on the conformational equilibrium in a structural ensemble of the Aβ42 (covering residues 1-42) monomer based on a statistical reweighting technique. The methodology enables a computationally efficient prediction on how different factors in the cellular environment, such as solvent composition, nonpolar solvation, and macromolecular crowding, affect the structural properties of the monomer. Similarities have been identified between changes in the structural ensemble caused by nonpolar solvation and crowded environments modeled by ionic solution with large negative ions. In particular, both solvent conditions reduce the random coil content and enhance the helical structure content of the monomer. In contrast to the previous studies, which reported increased α-helical content of peptides in crowded environments, this work attributes these structural features to the difference in solvent exposure of hydrophilic residues of the monomer for different secondary structure elements, rather than to (entropic) excluded volume effects.
Collapse
Affiliation(s)
- Nikolay Blinov
- Department of Mechanical Engineering , Edmonton , Alberta T6G 1H9 , Canada.,Nanotechnology Research Centre , Edmonton , Alberta T6G 2M9 , Canada
| | - David S Wishart
- Departments of Computing Science and Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2E8 , Canada
| | - Andriy Kovalenko
- Department of Mechanical Engineering , Edmonton , Alberta T6G 1H9 , Canada.,Nanotechnology Research Centre , Edmonton , Alberta T6G 2M9 , Canada
| |
Collapse
|
32
|
La Manna S, Roviello V, Scognamiglio PL, Diaferia C, Giannini C, Sibillano T, Morelli G, Novellino E, Marasco D. Amyloid fibers deriving from the aromatic core of C-terminal domain of nucleophosmin 1. Int J Biol Macromol 2019; 122:517-525. [DOI: 10.1016/j.ijbiomac.2018.10.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
|
33
|
Drombosky KW, Rode S, Kodali R, Jacob TC, Palladino MJ, Wetzel R. Mutational analysis implicates the amyloid fibril as the toxic entity in Huntington's disease. Neurobiol Dis 2018; 120:126-138. [PMID: 30171891 DOI: 10.1016/j.nbd.2018.08.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022] Open
Abstract
In Huntington disease (HD), an expanded polyglutamine (polyQ > 37) sequence within huntingtin (htt) exon1 leads to enhanced disease risk. It has proved difficult, however, to determine whether the toxic form generated by polyQ expansion is a misfolded or avid-binding monomer, an α-helix-rich oligomer, or a β-sheet-rich amyloid fibril. Here we describe an engineered htt exon1 analog featuring a short polyQ sequence that nonetheless quickly forms amyloid fibrils and causes HD-like toxicity in rat neurons and Drosophila. Additional modifications within the polyQ segment produce htt exon1 analogs that populate only spherical oligomers and are non-toxic in cells and flies. Furthermore, in mixture with expanded-polyQ htt exon1, the latter analogs in vitro suppress amyloid formation and promote oligomer formation, and in vivo rescue neurons and flies expressing mhtt exon1 from dysfunction and death. Thus, in our experiments, while htt exon1 toxicity tracks with aggregation propensity, it does so in spite of the toxic construct's possessing polyQ tracts well below those normally considered to be disease-associated. That is, aggregation propensity proves to be a more accurate surrogate for toxicity than is polyQ repeat length itself, strongly supporting a major toxic role for htt exon1 aggregation in HD. In addition, the results suggest that the aggregates that are most toxic in these model systems are amyloid-related. These engineered analogs are novel tools for mapping properties of polyQ self-assembly intermediates and products that should similarly be useful in the analysis of other expanded polyQ diseases. Small molecules with similar amyloid inhibitory properties might be developed into effective therapeutic agents.
Collapse
Affiliation(s)
- Kenneth W Drombosky
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sascha Rode
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ravi Kodali
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J Palladino
- Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Kar RK, Brender JR, Ghosh A, Bhunia A. Nonproductive Binding Modes as a Prominent Feature of Aβ 40 Fiber Elongation: Insights from Molecular Dynamics Simulation. J Chem Inf Model 2018; 58:1576-1586. [PMID: 30047732 DOI: 10.1021/acs.jcim.8b00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The formation of amyloid fibers has been implicated in a number of neurodegenerative diseases. The growth of amyloid fibers is strongly thermodynamically favorable, but kinetic traps exist where the incoming monomer binds in an incompatible conformation that blocks further elongation. Unfortunately, this process is difficult to follow experimentally at the atomic level. It is also too complex to simulate in full detail and to date has been explored either through coarse-grained simulations, which may miss many important interactions, or full atomic simulations, in which the incoming peptide is constrained to be near the ideal fiber geometry. Here we use an alternate approach starting from a docked complex in which the monomer is from an experimental NMR structure of one of the major conformations in the unbound ensemble, a largely unstructured peptide with the central hydrophobic region in a 310 helix. A 1000 ns full atomic simulation in explicit solvent shows the formation of a metastable intermediate by sequential, concerted movements of both the fiber and the monomer. A Markov state model shows that the unfolded monomer is trapped at the end of the fiber in a set of interconverting antiparallel β-hairpin conformations. The simulation here may serve as a model for the binding of other non-β-sheet conformations to amyloid fibers.
Collapse
Affiliation(s)
- Rajiv K Kar
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Jeffrey R Brender
- Radiation Biology Branch , National Institutes of Health , Bethesda , Maryland 20814 , United States
| | - Anirban Ghosh
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Anirban Bhunia
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| |
Collapse
|
35
|
Jiang X, Cao Y, Han W. In Silico Study of Recognition between Aβ 40 and Aβ 40 Fibril Surfaces: An N-Terminal Helical Recognition Motif and Its Implications for Inhibitor Design. ACS Chem Neurosci 2018; 9:935-944. [PMID: 29281261 DOI: 10.1021/acschemneuro.7b00359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The recent finding that the surface of amyloid-β (Aβ) fibril can recruit Aβ peptides and convert them into toxic oligomers has rendered fibril surfaces attractive as inhibition targets. Through extensive simulations with hybrid-resolution and all-atom models, we have investigated how Aβ1-40 recognizes its own fibril surfaces. These calculations give a ∼2.6-5.6 μM half-saturation concentration of Aβ on the surface (cf. experimental value ∼6 μM). Aβ was found to preferentially bind to region 16-24 of Aβ40 fibrils through both electrostatic and van der Waals forces. Both terminal regions of Aβ contribute significantly to binding energetics. A helical binding pose of the N-terminal region of Aβ (Aβ3-14) not seen before is highly preferred on the fibril surface. Aβ3-14 in a helical form can arrange side chains with similar properties on the same sides of the helix and maximize complementary interactions with side chain arrays characteristic of amyloid fibrils. Helix formation on a fibril surface implies a helix-mediated mechanism for Aβ oligomerization catalyzed by fibrils. We propose an Aβ3-14 analogue that can exhibit enhanced helical character and interactions with Aβ fibrils and may thus be used as a template with which to pursue potent inhibitors of Aβ-fibril interactions.
Collapse
Affiliation(s)
- Xuehan Jiang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yang Cao
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Han
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
36
|
Sethi R, Tripathi N, Pallapati AR, Gaikar A, Bharatam PV, Roy I. Does N-terminal huntingtin function as a 'holdase' for inhibiting cellular protein aggregation? FEBS J 2018; 285:1791-1811. [PMID: 29630769 DOI: 10.1111/febs.14457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/14/2018] [Accepted: 03/29/2018] [Indexed: 11/28/2022]
Abstract
Proteolytic cleavage of huntingtin gives rise to N-terminal fragments. While the role of truncated mutant huntingtin is described in Huntington's disease (HD) pathogenesis, the function of N-terminal wild-type protein is less studied. The yeast model of HD is generated by the presence of FLAG tag and absence of polyproline tract as flanking sequences of the elongated polyglutamine stretch. We show that the same sequence derived from wild-type huntingtin exon1 is able to inhibit the aggregation of proteins in vitro and in yeast cells. It is able to stabilize client proteins as varied as luciferase, α-synuclein, and p53 in a soluble but non-native state. This is somewhat similar to the 'holdase' function of small heat shock proteins and 'nonchaperone proteins' which are able to stabilize partially unfolded client proteins in a nonspecific manner, slowing down their aggregation. Mutagenesis studies show this property to be localized at the N17 domain preceding the polyglutamine tract. Distortion of this ordered segment, either by deletion of this segment or mutation of a single residue (L4A), leads to decreased stability and increased aggregation of client proteins. It is interesting to note that the helical conformation of the N17 domain is also essential for aggregation of the N-terminal mutant protein. Our results provide evidence for a novel function for the amphipathic helix derived from exon1 of wild-type huntingtin.
Collapse
Affiliation(s)
- Ratnika Sethi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Neha Tripathi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Anusha R Pallapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Abhishek Gaikar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Punjab, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
37
|
Bhattacharya S, Xu L, Thompson D. Revisiting the earliest signatures of amyloidogenesis: Roadmaps emerging from computational modeling and experiment. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal InstituteUniversity of LimerickLimerickIreland
| | - Liang Xu
- Department of Physics, Bernal InstituteUniversity of LimerickLimerickIreland
| | - Damien Thompson
- Department of Physics, Bernal InstituteUniversity of LimerickLimerickIreland
| |
Collapse
|
38
|
Yamamoto N, Tsuhara S, Tamura A, Chatani E. A specific form of prefibrillar aggregates that functions as a precursor of amyloid nucleation. Sci Rep 2018; 8:62. [PMID: 29311640 PMCID: PMC5758805 DOI: 10.1038/s41598-017-18390-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022] Open
Abstract
Non-fibrillar protein aggregates that appear in the earlier stages of amyloid fibril formation are sometimes considered to play a key role in amyloid nucleation; however, the structural features of these aggregates currently remain unclear. We herein identified a characteristic pathway of fibril formation by human insulin B chain, in which two major species of prefibrillar aggregates were identified. Based on the time-resolved tracking of this pathway with far-UV circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and 1H-NMR spectroscopy, the first prefibrillar aggregate with a hydrodynamic diameter of approximately 70 nm accumulated concomitantly with the formation of a β-sheet structure, and the size further evolved to 130 nm with an additional structural development. These prefibrillar aggregates were metastable and survived at least 24 hours as long as they were maintained under quiescent conditions. The energy barrier for nucleation was overcome by shaking or even by applying a single short ultrasonic pulse. Furthermore, an investigation where nucleation efficiency was monitored by fibrillation rates with varying the timing of the ultrasonic-pulse treatment revealed that the second prefibrillar aggregate specifically produced amyloid nuclei. These results suggest that the second form of the prefibrillar aggregates acts as a direct precursor for the amyloid nucleation.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Shoko Tsuhara
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Atsuo Tamura
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Eri Chatani
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
39
|
Wetzel R, Chemuru S, Misra P, Kodali R, Mukherjee S, Kar K. An Aggregate Weight-Normalized Thioflavin-T Measurement Scale for Characterizing Polymorphic Amyloids and Assembly Intermediates. Methods Mol Biol 2018; 1777:121-144. [PMID: 29744831 DOI: 10.1007/978-1-4939-7811-3_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The red shift in the fluorescence excitation spectra of thioflavin dyes upon binding to fibrils has been a boon to the amyloid field, offering simple and effective methods for the qualitative detection of amyloid in tissue samples and for quantitation of particular fibril preparations with gravimetric linearity. The quantitative aspect of the thioflavin T (ThT) response, however, comes with an important caveat that bestows both significant limitations and great untapped power. It is now well established that amyloid fibrils of different proteins, as well as polymorphic fibrils of the same protein, can exhibit vastly different ThT fluorescence intensities for the same weight concentration of aggregates. Furthermore, the aggregated intermediates commonly observed in amyloid assembly reactions can exhibit aggregate weight-normalized (AWN) ThT fluorescence intensities that vary from essentially zero through a wide range of intermediate values before reaching the intensity of homogeneous, mature amyloid. These features make it very difficult to quantitatively interpret, without additional data, the time-dependent development of ThT fluorescence intensity in an assembly reaction. In this chapter, we describe a method for coupling ex situ ThT fluorescence determinations with an analytical HPLC supported sedimentation assay (also described in detail) that can provide significant new insights into amyloid assembly reactions. The time dependent aggregation data provided by the sedimentation assay reveals a time course of aggregation that is largely independent of aggregate properties. In addition, the combination of these data with ThT measurements of the same reaction time points reveals important aspects of average aggregate structure at each time point. Examples of the use and potential value of AWN-ThT measurements during amyloid assembly Aβ and polyglutamine peptides are provided.
Collapse
Affiliation(s)
- Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Saketh Chemuru
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Pinaki Misra
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ravi Kodali
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, USA
| | - Smita Mukherjee
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Karunakar Kar
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
40
|
Blinov N, Khorvash M, Wishart DS, Cashman NR, Kovalenko A. Initial Structural Models of the Aβ42 Dimer from Replica Exchange Molecular Dynamics Simulations. ACS OMEGA 2017; 2:7621-7636. [PMID: 31457321 PMCID: PMC6645216 DOI: 10.1021/acsomega.7b00805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/26/2017] [Indexed: 05/27/2023]
Abstract
Experimental characterization of the molecular structure of small amyloid (A)β oligomers that are currently considered as toxic agents in Alzheimer's disease is a formidably difficult task due to their transient nature and tendency to aggregate. Such structural information is of importance because it can help in developing diagnostics and an effective therapy for the disease. In this study, molecular simulations and protein-protein docking are employed to explore a possible connection between the structure of Aβ monomers and the properties of the intermonomer interface in the Aβ42 dimer. A structurally diverse ensemble of conformations of the monomer was sampled in microsecond timescale implicit solvent replica exchange molecular dynamics simulations. Representative structures with different solvent exposure of hydrophobic residues and secondary structure content were selected to build structural models of the dimer. Analysis of these models reveals that formation of an intramonomer salt bridge (SB) between Asp23 and Lys28 residues can prevent the building of a hydrophobic interface between the central hydrophobic clusters (CHCs) of monomers upon dimerization. This structural feature of the Aβ42 dimer is related to the difference in packing of hydrophobic residues in monomers with the Asp23-Lys28 SB in on and off states, in particular, to a lower propensity to form hydrophobic contacts between the CHC domain and C-terminal residues in monomers with a formed SB. These findings could have important implications for understanding the difference between aggregation pathways of Aβ monomers leading to neurotoxic oligomers or inert fibrillar structures.
Collapse
Affiliation(s)
- Nikolay Blinov
- Department
of Mechanical Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
- National
Institute for Nanotechnology, National Research
Council of Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Massih Khorvash
- Department
of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - David S. Wishart
- Departments
of Computing Science and Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
| | - Neil R. Cashman
- Department
of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Andriy Kovalenko
- Department
of Mechanical Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
- National
Institute for Nanotechnology, National Research
Council of Canada, Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|
41
|
Cao Y, Jiang X, Han W. Self-Assembly Pathways of β-Sheet-Rich Amyloid-β(1-40) Dimers: Markov State Model Analysis on Millisecond Hybrid-Resolution Simulations. J Chem Theory Comput 2017; 13:5731-5744. [PMID: 29019683 DOI: 10.1021/acs.jctc.7b00803] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early oligomerization during amyloid-β (Aβ) aggregation is essential for Aβ neurotoxicity. Understanding how unstructured Aβs assemble into oligomers, especially those rich in β-sheets, is essential but remains challenging as the assembly process is too transient for experimental characterization and too slow for molecular dynamics simulations. So far, atomic simulations are limited only to studies of either oligomer structures or assembly pathways for short Aβ segments. To overcome the computational challenge, we combine in this study a hybrid-resolution model and adaptive sampling techniques to perform over 2.7 ms of simulations of formation of full-length Aβ40 dimers that are the earliest toxic oligomeric species. The Markov state model is further employed to characterize the transition pathways and associated kinetics. Our results show that for two major forms of β-sheet-rich structures reported experimentally, the corresponding assembly mechanisms are markedly different. Hairpin-containing structures are formed by direct binding of soluble Aβ in β-hairpin-like conformations. Formation of parallel, in-register structures resembling fibrils occurs ∼100-fold more slowly and involves a rapid encounter of Aβ in arbitrary conformations followed by a slow structural conversion. The structural conversion proceeds via diverse pathways but always requires transient unfolding of encounter complexes. We find that the transition kinetics could be affected differently by intra-/intermolecular interactions involving individual residues in a conformation-dependent manner. In particular, the interactions involving Aβ's N-terminal part promote the assembly into hairpin-containing structures but delay the formation of fibril-like structures, thus explaining puzzling observations reported previously regarding the roles of this region in the early assembly process.
Collapse
Affiliation(s)
- Yang Cao
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| | - Xuehan Jiang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| | - Wei Han
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| |
Collapse
|
42
|
Kim K, Lee BI, Chung YJ, Choi WS, Park CB. Hematite-Based Photoelectrode Materials for Photoelectrocatalytic Inhibition of Alzheimer's β-Amyloid Self-Assembly. Adv Healthc Mater 2017; 6. [PMID: 28194907 DOI: 10.1002/adhm.201601133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/22/2016] [Indexed: 01/24/2023]
Abstract
A visible light-active, hematite-based photoelectrode platform for suppressing β-amyloid (Aβ) self-assembly in vitro is reported. Upon illumination of a light-emitting diode with an anodic bias, the hematite photoanode generates reactive radical species, such as superoxide ions and hydroxyl radicals, via photoelectrocatalytic process. According to our analyses, the hematite photoanode exhibited a strong inhibitory effect on Aβ aggregation under visible light illumination and anodic bias. We found that hole-derived radicals played a significant role of oxidizing Aβ peptides, which effectively blocked further aggregation. The efficacy of photoelectrocatalytic inhibition on Aβ aggregation was enhanced by introducing cobalt phosphate (Co-Pi) as a co-catalyst on the hematite photoanode, which facilitated the separation of electron-hole pairs. We verified that both bare and Co-Pi@hematite photoanodes are biocompatible and effective in reducing Aβ aggregation-induced cytotoxicity.
Collapse
Affiliation(s)
- Kayoung Kim
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST); 335 Science Road Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Byung Il Lee
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST); 335 Science Road Yuseong-gu Daejeon 305-701 Republic of Korea
| | - You Jung Chung
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST); 335 Science Road Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Woo Seok Choi
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST); 335 Science Road Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST); 335 Science Road Yuseong-gu Daejeon 305-701 Republic of Korea
| |
Collapse
|
43
|
Lucato CM, Lupton CJ, Halls ML, Ellisdon AM. Amyloidogenicity at a Distance: How Distal Protein Regions Modulate Aggregation in Disease. J Mol Biol 2017; 429:1289-1304. [PMID: 28342736 DOI: 10.1016/j.jmb.2017.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
The misfolding of proteins to form amyloid is a key pathological feature of several progressive, and currently incurable, diseases. A mechanistic understanding of the pathway from soluble, native protein to insoluble amyloid is crucial for therapeutic design, and recent efforts have helped to elucidate the key molecular events that trigger protein misfolding. Generally, either global or local structural perturbations occur early in amyloidogenesis to expose aggregation-prone regions of the protein that can then self-associate to form toxic oligomers. Surprisingly, these initiating structural changes are often caused or influenced by protein regions distal to the classically amyloidogenic sequences. Understanding the importance of these distal regions in the pathogenic process has highlighted many remaining knowledge gaps regarding the precise molecular events that occur in classic aggregation pathways. In this review, we discuss how these distal regions can influence aggregation in disease and the recent technical and conceptual advances that have allowed this insight.
Collapse
Affiliation(s)
- Christina M Lucato
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
44
|
Li J, Lyu W, Rossetti G, Konijnenberg A, Natalello A, Ippoliti E, Orozco M, Sobott F, Grandori R, Carloni P. Proton Dynamics in Protein Mass Spectrometry. J Phys Chem Lett 2017; 8:1105-1112. [PMID: 28207277 DOI: 10.1021/acs.jpclett.7b00127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multistep simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-β peptide (Aβ(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ∼0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the picosecond-time scale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the millisecond time scale). However, the structural changes associated with the process do not significantly affect the structural determinants.
Collapse
Affiliation(s)
- Jinyu Li
- College of Chemistry, Fuzhou University , 350002 Fuzhou, China
| | - Wenping Lyu
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH-Aachen University , 52056 Aachen, Germany
- Computation-Based Science and Technology Research Center, Cyprus Institute , 2121 Aglantzia, Nicosia, Cyprus
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University , 52062 Aachen, Germany
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich , D-52425 Jülich, Germany
| | - Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp , 2000 Antwerpen, Belgium
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Emiliano Ippoliti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
| | - Modesto Orozco
- Joint BSC-IRB Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac 10, Barcelona 08028, Spain
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de Barcelona , Avgda Diagonal 647, Barcelona 08028, Spain
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp , 2000 Antwerpen, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, United Kingdom
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- JARA-HPC, 52425 Jülich, Germany
| |
Collapse
|
45
|
Gade Malmos K, Blancas-Mejia LM, Weber B, Buchner J, Ramirez-Alvarado M, Naiki H, Otzen D. ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid 2017; 24:1-16. [PMID: 28393556 DOI: 10.1080/13506129.2017.1304905] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thioflavin T (ThT) has been widely used to investigate amyloid formation since 1989. While concerns have recently been raised about its use as a probe specific for amyloid, ThT still continues to be a very valuable tool for studying kinetic aspects of fibrillation and associated inhibition mechanisms. This review aims to provide a conceptual instruction manual, covering appropriate considerations and pitfalls related to the use of ThT. We start by giving a brief introduction to amyloid formation with focus on the morphology of different aggregate species, followed by a discussion of the quality of protein needed to obtain reliable fibrillation data. After an overview of the photochemical basis for ThT's amyloid binding properties and artifacts that may arise from this, we describe how to plan and analyze ThT assays. We conclude with recommendations for complementary techniques to address shortcomings in the ThT assay.
Collapse
Affiliation(s)
- Kirsten Gade Malmos
- a Interdisciplinary Nanoscience Center (iNANO) and Center for Insoluble Protein Structures (inSPIN) , Aarhus University , Aarhus C , Denmark.,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| | - Luis M Blancas-Mejia
- c Department of Biochemistry and Molecular Biology , Mayo Clinic , Rochester , MN , USA
| | - Benedikt Weber
- d Center for Integrated Protein Science Munich at the Department Chemie , Technische Universität München , Garching , Germany
| | - Johannes Buchner
- d Center for Integrated Protein Science Munich at the Department Chemie , Technische Universität München , Garching , Germany
| | | | - Hironobu Naiki
- e Department of Molecular Pathology, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Daniel Otzen
- a Interdisciplinary Nanoscience Center (iNANO) and Center for Insoluble Protein Structures (inSPIN) , Aarhus University , Aarhus C , Denmark
| |
Collapse
|
46
|
Strømland Ø, Handegård ØS, Govasli ML, Wen H, Halskau Ø. Peptides derived from α-lactalbumin membrane binding helices oligomerize in presence of lipids and disrupt bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1029-1039. [PMID: 28069414 DOI: 10.1016/j.bbamem.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/02/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
Abstract
Helix A and -C of α-lactalbumin, a loosely folded amphitropic protein, perturb lipid monolayers by the formation of amyloid pore-like structures. To investigate whether these helices are able to disrupt fully formed bilayers, we designed peptides comprised of Helix A and -C, and investigated their membrane-perturbing properties. The peptides, designated A-Cage-C and A-Lnk-C, were prepared with tryptophan sites in the helical and the spacer segments in order to monitor which part were involved in membrane association under given conditions. The peptides associate with and disrupt negatively charged bilayers in a pH-dependent manner and α-helical tendencies increased upon membrane association. Both helices and the spacer segment were involved in membrane binding in the case of A-Lnk-C, and there are indications that the two helixes act in synergy to affect the membrane. However, the helices and the spacer segment could not intercalate when present as A-Cage-C at neutral conditions. At acidic pH, both helices could intercalate, but not the central spacer segment. AFM performed on bilayers under aqueous conditions revealed oligomers formed by the peptides. The presence of bilayers and acidic pHs were both drivers for the formation of these, suggestive of models for peptide oligomerization where segments of the peptide are stacked in an electrostatically favorable manner by the surface. Of the two peptides, A-Lnk-C was the more prolific oligomerizer, and also formed amyloid-fibril like structures at acidic pH and elevated concentrations. Our results suggest the peptides perturb membranes not through pore-like structures, but possibly by a thinning mechanism.
Collapse
Affiliation(s)
- Øyvind Strømland
- Department of Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Ørjan S Handegård
- Department of Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Morten L Govasli
- Department of Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Hanzhen Wen
- Department of Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway.
| |
Collapse
|
47
|
Wen G, Qin W, Chen D, Wang Y, Yue X, Liu Z, Cao Y, Du J, Zhou B, Bu X. Stabilizing the monomeric amyloid-β peptide by tyrocidine A prevents and reverses amyloidogenesis without the accumulation of oligomers. Chem Commun (Camb) 2017; 53:3886-3889. [DOI: 10.1039/c7cc00506g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stabilizing the monomeric amyloid-β peptide by tyrocidine A prevents accumulation of oligomers.
Collapse
Affiliation(s)
- Gesi Wen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenjing Qin
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Daoyuan Chen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Youqiao Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xin Yue
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ziyi Liu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yingnan Cao
- Department of Pharmacology
- Xinhua College of Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Jun Du
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Binhua Zhou
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
48
|
A comparative study of fibrillation kinetics of two homologous proteins under identical solution condition. Biochimie 2017; 132:75-84. [DOI: 10.1016/j.biochi.2016.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/03/2016] [Indexed: 02/08/2023]
|