1
|
Jang GJ, Payne-Dwyer AL, Maple R, Wu Z, Liu F, Lopez SG, Wang Y, Fang X, Leake MC, Dean C. Modular in vivo assembly of Arabidopsis FCA oligomers into condensates competent for RNA 3' processing. EMBO J 2025:10.1038/s44318-025-00394-4. [PMID: 39994485 DOI: 10.1038/s44318-025-00394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Our understanding of the functional requirements underpinning biomolecular condensation in vivo is still relatively poor. The Arabidopsis RNA binding protein FLOWERING CONTROL LOCUS A (FCA) is found in liquid-like nuclear condensates that function in transcription termination, promoting proximal polyadenylation at many target genes in the Arabidopsis genome. To further understand the properties of these condensates in vivo, we used single-particle tracking experiments on FCA reporters stably expressed at endogenous levels in plant nuclei. SEC-MALS analyses suggested that FCA forms a core oligomer consistent with a size of four molecules; in vivo particle tracking indicated that this core molecule multimerizes into higher-order particles. The ensuing assemblies coalesce into macromolecular condensates via the coiled-coil protein FLL2, which is genetically required for FCA function. Accordingly, FLL2 predominately co-localizes with FCA in larger-sized condensates. A missense mutation in the FCA RRM domain, also genetically required for FCA function, reduced average size of both FCA particles and condensates, but did not perturb the core oligomer. Our work points to a modular structure for FCA condensates, involving multimerization of core oligomers assembled into functional macromolecular condensates via associated RNA and FLL2 interactions.
Collapse
Affiliation(s)
- Geng-Jen Jang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Alex L Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, York, UK
| | - Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Zhe Wu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fuquan Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Sergio G Lopez
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yanning Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Mark C Leake
- School of Physics, Engineering and Technology, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
2
|
Ye F, Chen X, Li Y, Ju A, Sheng Y, Duan L, Zhang J, Zhang Z, Al-Rasheid KAS, Stover NA, Gao S. Comprehensive genome annotation of the model ciliate Tetrahymena thermophila by in-depth epigenetic and transcriptomic profiling. Nucleic Acids Res 2025; 53:gkae1177. [PMID: 39657783 PMCID: PMC11754650 DOI: 10.1093/nar/gkae1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The ciliate Tetrahymena thermophila is a well-established unicellular model eukaryote, contributing significantly to foundational biological discoveries. Despite its acknowledged importance, current studies on Tetrahymena biology face challenges due to gene annotation inaccuracy, particularly the notable absence of untranslated regions (UTRs). To comprehensively annotate the Tetrahymena macronuclear genome, we collected extensive transcriptomic data spanning various cell stages. To ascertain transcript orientation and transcription start/end sites, we incorporated data on epigenetic marks displaying enrichment towards the 5' end of gene bodies, including H3 lysine 4 tri-methylation (H3K4me3), histone variant H2A.Z, nucleosome positioning and N6-methyldeoxyadenine (6mA). Cap-seq data was subsequently applied to validate the accuracy of identified transcription start sites. Additionally, we integrated Nanopore direct RNA sequencing (DRS), strand-specific RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) data. Using a newly developed bioinformatic pipeline, coupled with manual curation and experimental validation, our work yielded substantial improvements to the current gene models, including the addition of 2,481 new genes, updates to 23,936 existing genes, and the incorporation of 8,339 alternatively spliced isoforms. Furthermore, novel UTR information was annotated for 26,687 high-confidence genes. Intriguingly, 20% of protein-coding genes were identified to have natural antisense transcripts characterized by high diversity in alternative splicing, thus offering insights into understanding transcriptional regulation. Our work will enhance the utility of Tetrahymena as a robust genetic toolkit for advancing biological research, and provides a promising framework for genome annotation in other eukaryotes.
Collapse
Affiliation(s)
- Fei Ye
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
| | - Yuan Li
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Aili Ju
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yalan Sheng
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Lili Duan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiachen Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhe Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, IL 61625, USA
| | - Shan Gao
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Fonseca A, Rosa S. Detection and Automated Quantification of Nucleocytoplasmic RNA Fractions in Arabidopsis Using smFISH. Methods Mol Biol 2025; 2873:187-203. [PMID: 39576603 DOI: 10.1007/978-1-0716-4228-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Subcellular RNA localization is an underexplored regulatory layer crucial for properly adapting cells to cellular or environmental conditions. Most studies describing RNA localization have been performed by cell fractionation and subsequent RNA quantification from pools of cells, thereby missing information about cell-to-cell variability. RNA single-molecule fluorescent in situ hybridization (smFISH) is an effective technique for detecting single RNA molecules and identifying subcellular accumulation patterns. Nevertheless, obtaining quantitative results from smFISH can be challenging in tissues with high autofluorescence, like in plants. Here, we describe an automated pipeline to detect and quantify nucleocytoplasmic RNA levels from Arabidopsis root smFISH images. This pipeline utilizes free image preprocessing, segmentation, and RNA detection software. The method permits users with any programming skills to analyze batches of images. Suggestions and recommendations for image acquisition, processing, and data analysis are included. This pipeline allows quantitative differences in nucleocytoplasmic distribution at the single-cell level to be studied under different cellular, environmental, and genetic contexts.
Collapse
Affiliation(s)
| | - Stefanie Rosa
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Long X, Cai Y, Wang H, Liu Y, Huang X, Xuan H, Li W, Zhang X, Zhang H, Fang X, He H, Xu G, Dean C, Yang H. Cotranscriptional splicing is required in the cold to produce COOLAIR isoforms that repress Arabidopsis FLC. Proc Natl Acad Sci U S A 2024; 121:e2407628121. [PMID: 39546565 PMCID: PMC11588071 DOI: 10.1073/pnas.2407628121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
Plants use seasonal cold to time the transition to reproductive development. Short- and long-term cold exposure is registered via parallel transcriptional shutdown and Polycomb-dependent epigenetic silencing of the Arabidopsis thaliana major flowering repressor locus FLOWERING LOCUS C (FLC). The cold-induced antisense transcripts (COOLAIR) determine the dynamics of FLC transcriptional shutdown, but the thermosensory mechanisms are still unresolved. Here, through a forward genetic screen, we identify a mutation that perturbs cold-induced COOLAIR expression and FLC repression. The mutation is a hypomorphic allele of SUPPRESSORS OF MEC-8 AND UNC-52 1 (SMU1), a conserved subunit of the spliceosomal B complex. SMU1 interacts in vivo with the proximal region of nascent COOLAIR and RNA 3' processing/cotranscriptional regulators and enhances COOLAIR proximal intron splicing to promote specific COOLAIR isoforms. SMU1 also interacts with ELF7, an RNA Polymerase II Associated Factor (Paf1) component and limits COOLAIR transcription. Cold thus changes cotranscriptional splicing/RNA Pol II functionality in an SMU1-dependent mechanism to promote two different isoforms of COOLAIR that lead to reduced FLC transcription. Such cotranscriptional mechanisms are emerging as important regulators underlying plasticity in gene expression.
Collapse
Affiliation(s)
- Xiaogang Long
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Yajun Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Huamei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Xiaoyi Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Hua Xuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Wenjuan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Hongya Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Xiaofeng Fang
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Hang He
- College of Life Sciences, Peking University, Beijing100871, China
| | - Guoyong Xu
- Hubei Hongshan Laboratory, Wuhan430070, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan430072, China
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- RNA Institute, Wuhan University, Wuhan430072, China
| |
Collapse
|
5
|
Fonseca A, Riveras E, Moyano TC, Alvarez JM, Rosa S, Gutiérrez RA. Dynamic changes in mRNA nucleocytoplasmic localization in the nitrate response of Arabidopsis roots. PLANT, CELL & ENVIRONMENT 2024; 47:4227-4245. [PMID: 38950037 DOI: 10.1111/pce.15018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots. We identified 402 differentially localized transcripts (DLTs) in response to nitrate treatment. Induced DLT genes showed rapid and transient recruitment of the RNA polymerase II, together with an increase in the mRNA turnover rates. DLTs code for genes involved in metabolic processes, localization, and response to stimulus indicating DLTs include genes with relevant functions for the nitrate response that have not been previously identified. Using single-molecule RNA FISH, we observed early nuclear accumulation of the NITRATE REDUCTASE 1 (NIA1) transcripts in their transcription sites. We found that transcription of NIA1, a gene showing delayed cytoplasmic accumulation, is rapidly and transiently activated; however, its transcripts become unstable when they reach the cytoplasm. Our study reveals the dynamic localization of mRNAs between the nucleus and cytoplasm as an emerging feature in the temporal control of gene expression in response to nitrate treatment in Arabidopsis roots.
Collapse
Affiliation(s)
- Alejandro Fonseca
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Eleodoro Riveras
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - José M Alvarez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Rodrigo A Gutiérrez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Menon G, Mateo-Bonmati E, Reeck S, Maple R, Wu Z, Ietswaart R, Dean C, Howard M. Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing. Mol Cell 2024; 84:2255-2271.e9. [PMID: 38851186 DOI: 10.1016/j.molcel.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.
Collapse
Affiliation(s)
- Govind Menon
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Eduardo Mateo-Bonmati
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Svenja Reeck
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Robert Ietswaart
- Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
7
|
Jasielski P, Zawlik I, Bogaczyk A, Potocka N, Paszek S, Maźniak M, Witkoś A, Korzystka A, Kmieć A, Kluz T. The Promotive and Inhibitory Role of Long Non-Coding RNAs in Endometrial Cancer Course-A Review. Cancers (Basel) 2024; 16:2125. [PMID: 38893244 PMCID: PMC11171405 DOI: 10.3390/cancers16112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Endometrial cancer is one of the most common malignant tumours in women. The development of this tumour is associated with several genetic disorders, many of which are still unknown. One type of RNA molecules currently being intensively studied in many types of cancer are long non-coding RNAs (lncRNAs). LncRNA-coding genes occupy a large fraction of the human genome. LncRNAs regulate many aspects of cell development, metabolism, and other physiological processes. Diverse types of lncRNA can function as a tumour suppressor or an oncogene that can alter migration, invasion, cell proliferation, apoptosis, and immune system response. Recent studies suggest that selected lncRNAs are important in an endometrial cancer course. Our article describes over 70 lncRNAs involved in the development of endometrial cancer, which were studied via in vivo and in vitro research. It was proved that lncRNAs could both promote and inhibit the development of endometrial cancer. In the future, lncRNAs may become an important therapeutic target. The aim of this study is to review the role of lncRNAs in the development of carcinoma of uterine body.
Collapse
Affiliation(s)
- Patryk Jasielski
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Michał Maźniak
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Aleksandra Witkoś
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Adrianna Korzystka
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Aleksandra Kmieć
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| |
Collapse
|
8
|
Bergis-Ser C, Reji M, Latrasse D, Bergounioux C, Benhamed M, Raynaud C. Chromatin dynamics and RNA metabolism are double-edged swords for the maintenance of plant genome integrity. NATURE PLANTS 2024; 10:857-873. [PMID: 38658791 DOI: 10.1038/s41477-024-01678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Maintenance of genome integrity is an essential process in all organisms. Mechanisms avoiding the formation of DNA lesions or mutations are well described in animals because of their relevance to human health and cancer. In plants, they are of growing interest because DNA damage accumulation is increasingly recognized as one of the consequences of stress. Although the cellular response to DNA damage is mostly studied in response to genotoxic treatments, the main source of DNA lesions is cellular activity itself. This can occur through the production of reactive oxygen species as well as DNA processing mechanisms such as DNA replication or transcription and chromatin dynamics. In addition, how lesions are formed and repaired is greatly influenced by chromatin features and dynamics and by DNA and RNA metabolism. Notably, actively transcribed regions or replicating DNA, because they are less condensed and are sites of DNA processing, are more exposed to DNA damage. However, at the same time, a wealth of cellular mechanisms cooperate to favour DNA repair at these genomic loci. These intricate relationships that shape the distribution of mutations along the genome have been studied extensively in animals but much less in plants. In this Review, we summarize how chromatin dynamics influence lesion formation and DNA repair in plants, providing a comprehensive view of current knowledge and highlighting open questions with regard to what is known in other organisms.
Collapse
Affiliation(s)
- Clara Bergis-Ser
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Meega Reji
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, India
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette, France
- Institut Universitaire de France, Orsay, France
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France.
| |
Collapse
|
9
|
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 2024; 25:396-415. [PMID: 38242953 PMCID: PMC11045326 DOI: 10.1038/s41580-023-00694-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
11
|
Tremblay BJM, Santini CP, Cheng Y, Zhang X, Rosa S, Qüesta JI. Interplay between coding and non-coding regulation drives the Arabidopsis seed-to-seedling transition. Nat Commun 2024; 15:1724. [PMID: 38409232 PMCID: PMC10897432 DOI: 10.1038/s41467-024-46082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Translation of seed stored mRNAs is essential to trigger germination. However, when RNAPII re-engages RNA synthesis during the seed-to-seedling transition has remained in question. Combining csRNA-seq, ATAC-seq and smFISH in Arabidopsis thaliana we demonstrate that active transcription initiation is detectable during the entire germination process. Features of non-coding regulation such as dynamic changes in chromatin accessible regions, antisense transcription, as well as bidirectional non-coding promoters are widespread throughout the Arabidopsis genome. We show that sensitivity to exogenous ABSCISIC ACID (ABA) during germination depends on proximal promoter accessibility at ABA-responsive genes. Moreover, we provide genetic validation of the existence of divergent transcription in plants. Our results reveal that active enhancer elements are transcribed producing non-coding enhancer RNAs (eRNAs) as widely documented in metazoans. In sum, this study defining the extent and role of coding and non-coding transcription during key stages of germination expands our understanding of transcriptional mechanisms underlying plant developmental transitions.
Collapse
Affiliation(s)
- Benjamin J M Tremblay
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Cristina P Santini
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Yajiao Cheng
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Xue Zhang
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Stefanie Rosa
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Julia I Qüesta
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain.
| |
Collapse
|
12
|
Luchsinger-Morcelle SJ, Gribnau J, Mira-Bontenbal H. Orchestrating Asymmetric Expression: Mechanisms behind Xist Regulation. EPIGENOMES 2024; 8:6. [PMID: 38390897 PMCID: PMC10885031 DOI: 10.3390/epigenomes8010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Compensation for the gene dosage disequilibrium between sex chromosomes in mammals is achieved in female cells by repressing one of its X chromosomes through a process called X chromosome inactivation (XCI), exemplifying the control of gene expression by epigenetic mechanisms. A critical player in this mechanism is Xist, a long, non-coding RNA upregulated from a single X chromosome during early embryonic development in female cells. Over the past few decades, many factors involved at different levels in the regulation of Xist have been discovered. In this review, we hierarchically describe and analyze the different layers of Xist regulation operating concurrently and intricately interacting with each other to achieve asymmetric and monoallelic upregulation of Xist in murine female cells. We categorize these into five different classes: DNA elements, transcription factors, other regulatory proteins, long non-coding RNAs, and the chromatin and topological landscape surrounding Xist.
Collapse
Affiliation(s)
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hegias Mira-Bontenbal
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
13
|
Huang P, Zhang X, Cheng Z, Wang X, Miao Y, Huang G, Fu YF, Feng X. The nuclear pore Y-complex functions as a platform for transcriptional regulation of FLOWERING LOCUS C in Arabidopsis. THE PLANT CELL 2024; 36:346-366. [PMID: 37877462 PMCID: PMC10827314 DOI: 10.1093/plcell/koad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
The nuclear pore complex (NPC) has multiple functions beyond the nucleo-cytoplasmic transport of large molecules. Subnuclear compartmentalization of chromatin is critical for gene expression in animals and yeast. However, the mechanism by which the NPC regulates gene expression is poorly understood in plants. Here we report that the Y-complex (Nup107-160 complex, a subcomplex of the NPC) self-maintains its nucleoporin homeostasis and modulates FLOWERING LOCUS C (FLC) transcription via changing histone modifications at this locus. We show that Y-complex nucleoporins are intimately associated with FLC chromatin through their interactions with histone H2A at the nuclear membrane. Fluorescence in situ hybridization assays revealed that Nup96, a Y-complex nucleoporin, enhances FLC positioning at the nuclear periphery. Nup96 interacted with HISTONE DEACETYLASE 6 (HDA6), a key repressor of FLC expression via histone modification, at the nuclear membrane to attenuate HDA6-catalyzed deposition at the FLC locus and change histone modifications. Moreover, we demonstrate that Y-complex nucleoporins interact with RNA polymerase II to increase its occupancy at the FLC locus, facilitating transcription. Collectively, our findings identify an attractive mechanism for the Y-complex in regulating FLC expression via tethering the locus at the nuclear periphery and altering its histone modification.
Collapse
Affiliation(s)
- Penghui Huang
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaomei Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Cheng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guowen Huang
- Department of Biological Sciences and Chemical Engineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Yong-Fu Fu
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianzhong Feng
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
14
|
Ahn JY, Subburaj S, Yan F, Yao J, Chandrasekaran A, Ahn KG, Lee GJ. Molecular Evaluation of the Effects of FLC Homologs and Coordinating Regulators on the Flowering Responses to Vernalization in Cabbage ( Brassica oleracea var. capitata) Genotypes. Genes (Basel) 2024; 15:154. [PMID: 38397144 PMCID: PMC10887945 DOI: 10.3390/genes15020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The flowering loci of cabbage must be understood to boost their productivity. In this study, to clarify the flowering mechanisms of cabbage, we examined the three flowering repressors BoFLC1, 2 and 3, and the flowering regulators BoGI, BoCOOLAIR, and BoVIN3 of early (CAB1), middle (CAB3), and late (CAB5) flowering cabbage genotypes. Analysis of allele-specifically amplified genomic DNA and various sequence alignments demonstrated that maximal insertions and deletions influenced cabbage flowering behavior, notably in CAB3 and CAB5. Phylogenetic studies showed that BoFLC1, 2, and 3 in the CAB1, 3, and 5 genotypes had the highest homologies to other Brassica species, with CAB3 and 5 the most similar. Although CAB3 and CAB5 have comparable genetic patterns, flowering repressors and flowering regulators were investigated individually with and without vernalization to determine their minor flowering differences. The expression investigation revealed that vernalized CAB5 downregulated all BoFLC genes compared to CAB3 and, in contrast, CAB3 exhibited upregulated BoCOOLAIR. We hypothesized that the CAB3 BoFLC locus' additional insertions may have led to BoCOOLAIR overexpression and BoFLC downregulation. This study sheds light on cabbage genotypes-particularly those of CAB1 and CAB5-and suggests that structural variations in BoFLC2 and 3 bind flowering regulators, such as COOLAIR, which may affect cabbage flowering time.
Collapse
Affiliation(s)
- Ju-Young Ahn
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
| | - Saminathan Subburaj
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
| | - Fanzhuang Yan
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| | - Jian Yao
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| | - Ajithan Chandrasekaran
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| | - Kyoung-Gu Ahn
- Joen Seed Co., Ltd., Goesan 28051, Republic of Korea;
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| |
Collapse
|
15
|
Nielsen M, Menon G, Zhao Y, Mateo-Bonmati E, Wolff P, Zhou S, Howard M, Dean C. COOLAIR and PRC2 function in parallel to silence FLC during vernalization. Proc Natl Acad Sci U S A 2024; 121:e2311474121. [PMID: 38236739 PMCID: PMC10823242 DOI: 10.1073/pnas.2311474121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Noncoding transcription induces chromatin changes that can mediate environmental responsiveness, but the causes and consequences of these mechanisms are still unclear. Here, we investigate how antisense transcription (termed COOLAIR) interfaces with Polycomb Repressive Complex 2 (PRC2) silencing during winter-induced epigenetic regulation of Arabidopsis FLOWERING LOCUS C (FLC). We use genetic and chromatin analyses on lines ineffective or hyperactive for the antisense pathway in combination with computational modeling to define the mechanisms underlying FLC repression. Our results show that FLC is silenced through pathways that function with different dynamics: a COOLAIR transcription-mediated pathway capable of fast response and in parallel a slow PRC2 switching mechanism that maintains each allele in an epigenetically silenced state. Components of both the COOLAIR and PRC2 pathways are regulated by a common transcriptional regulator (NTL8), which accumulates by reduced dilution due to slow growth at low temperature. The parallel activities of the regulatory steps, and their control by temperature-dependent growth dynamics, create a flexible system for registering widely fluctuating natural temperature conditions that change year on year, and yet ensure robust epigenetic silencing of FLC.
Collapse
Affiliation(s)
- Mathias Nielsen
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Govind Menon
- Computational and Systems Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Yusheng Zhao
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Eduardo Mateo-Bonmati
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Philip Wolff
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Shaoli Zhou
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
16
|
Li X, Liu Q, Liu J. Long Non-Coding RNAs: Discoveries, Mechanisms, and Research Strategies in Seeds. Genes (Basel) 2023; 14:2214. [PMID: 38137035 PMCID: PMC10742540 DOI: 10.3390/genes14122214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Seeds provide nutrients for the embryo and allow for dormancy in stressed environments to better adapt the plant to its environment. In addition, seeds are an essential source of food for human survival and are the basis for the formation of food production and quality. Therefore, the research on the genetic mechanism of seed development and germination will provide a theoretical basis and technical support for the improvement of crop yield and quality. Recent studies have shown that long non-coding RNAs (lncRNAs) occupy a pivotal position in seed development and germination. In this review, we describe the key processes in seed biology and examine discoveries and insights made in seed lncRNA, with emphasis on lncRNAs that regulate seed biology through multiple mechanisms. Given that thousands of lncRNAs are present in the seed transcriptome, characterization has lagged far behind identification. We provide an overview of research strategies and approaches including some exciting new techniques that may uncover the function of lncRNAs in seed. Finally, we discuss the challenges facing the field and the opening questions. All in all, we hope to provide a clear perspective on discoveries of seed lncRNA by linking discoveries, mechanisms, and technologies.
Collapse
Affiliation(s)
| | | | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (Q.L.)
| |
Collapse
|
17
|
Lee KC, Kim YC, Kim JK, Lee H, Lee JH. Regulation of Flowering Time and Other Developmental Plasticities by 3' Splicing Factor-Mediated Alternative Splicing in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:3508. [PMID: 37836248 PMCID: PMC10575287 DOI: 10.3390/plants12193508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Plants, as sessile organisms, show a high degree of plasticity in their growth and development and have various strategies to cope with these alterations under continuously changing environments and unfavorable stress conditions. In particular, the floral transition from the vegetative and reproductive phases in the shoot apical meristem (SAM) is one of the most important developmental changes in plants. In addition, meristem regions, such as the SAM and root apical meristem (RAM), which continually generate new lateral organs throughout the plant life cycle, are important sites for developmental plasticity. Recent findings have shown that the prevailing type of alternative splicing (AS) in plants is intron retention (IR) unlike in animals; thus, AS is an important regulatory mechanism conferring plasticity for plant growth and development under various environmental conditions. Although eukaryotes exhibit some similarities in the composition and dynamics of their splicing machinery, plants have differences in the 3' splicing characteristics governing AS. Here, we summarize recent findings on the roles of 3' splicing factors and their interacting partners in regulating the flowering time and other developmental plasticities in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Keh Chien Lee
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
| | - Young-Cheon Kim
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Republic of Korea;
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Horim Lee
- Department of Biotechnology, Duksung Women’s University, Seoul 03169, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Republic of Korea;
| |
Collapse
|
18
|
Gramzow L, Sharma R, Theißen G. Evolutionary Dynamics of FLC-like MADS-Box Genes in Brassicaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:3281. [PMID: 37765445 PMCID: PMC10536770 DOI: 10.3390/plants12183281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
MADS-box genes encode transcription factors that play important roles in the development and evolution of plants. There are more than a dozen clades of MADS-box genes in angiosperms, of which those with functions in the specification of floral organ identity are especially well-known. From what has been elucidated in the model plant Arabidopsis thaliana, the clade of FLC-like MADS-box genes, comprising FLC-like genes sensu strictu and MAF-like genes, are somewhat special among the MADS-box genes of plants since FLC-like genes, especially MAF-like genes, show unusual evolutionary dynamics, in that they generate clusters of tandemly duplicated genes. Here, we make use of the latest genomic data of Brassicaceae to study this remarkable feature of the FLC-like genes in a phylogenetic context. We have identified all FLC-like genes in the genomes of 29 species of Brassicaceae and reconstructed the phylogeny of these genes employing a Maximum Likelihood method. In addition, we conducted selection analyses using PAML. Our results reveal that there are three major clades of FLC-like genes in Brassicaceae that all evolve under purifying selection but with remarkably different strengths. We confirm that the tandem arrangement of MAF-like genes in the genomes of Brassicaceae resulted in a high rate of duplications and losses. Interestingly, MAF-like genes also seem to be prone to transposition. Considering the role of FLC-like genes sensu lato (s.l.) in the timing of floral transition, we hypothesize that this rapid evolution of the MAF-like genes was a main contributor to the successful adaptation of Brassicaceae to different environments.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
19
|
Antoniou-Kourounioti RL, Meschichi A, Reeck S, Berry S, Menon G, Zhao Y, Fozard J, Holmes T, Zhao L, Wang H, Hartley M, Dean C, Rosa S, Howard M. Integrating analog and digital modes of gene expression at Arabidopsis FLC. eLife 2023; 12:e79743. [PMID: 37466633 DOI: 10.7554/elife.79743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/25/2023] [Indexed: 07/20/2023] Open
Abstract
Quantitative gene regulation at the cell population level can be achieved by two fundamentally different modes of regulation at individual gene copies. A 'digital' mode involves binary ON/OFF expression states, with population-level variation arising from the proportion of gene copies in each state, while an 'analog' mode involves graded expression levels at each gene copy. At the Arabidopsis floral repressor FLOWERING LOCUS C (FLC), 'digital' Polycomb silencing is known to facilitate quantitative epigenetic memory in response to cold. However, whether FLC regulation before cold involves analog or digital modes is unknown. Using quantitative fluorescent imaging of FLC mRNA and protein, together with mathematical modeling, we find that FLC expression before cold is regulated by both analog and digital modes. We observe a temporal separation between the two modes, with analog preceding digital. The analog mode can maintain intermediate expression levels at individual FLC gene copies, before subsequent digital silencing, consistent with the copies switching OFF stochastically and heritably without cold. This switch leads to a slow reduction in FLC expression at the cell population level. These data present a new paradigm for gradual repression, elucidating how analog transcriptional and digital epigenetic memory pathways can be integrated.
Collapse
Affiliation(s)
- Rea L Antoniou-Kourounioti
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anis Meschichi
- Swedish University of Agricultural Sciences, Plant Biology Department, Uppsala, Sweden
| | - Svenja Reeck
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Scott Berry
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Govind Menon
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Yusheng Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - John Fozard
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Terri Holmes
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Lihua Zhao
- Swedish University of Agricultural Sciences, Plant Biology Department, Uppsala, Sweden
| | - Huamei Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Matthew Hartley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Stefanie Rosa
- Swedish University of Agricultural Sciences, Plant Biology Department, Uppsala, Sweden
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
20
|
Zhu P, Dean C. Reply to: Cold induction of nuclear FRIGIDA condensation in Arabidopsis. Nature 2023; 619:E33-E37. [PMID: 37438593 DOI: 10.1038/s41586-023-06190-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Affiliation(s)
- Pan Zhu
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
21
|
Manna S, Mishra J, Baral T, Kirtana R, Nandi P, Roy A, Chakraborty S, Niharika, Patra SK. Epigenetic signaling and crosstalk in regulation of gene expression and disease progression. Epigenomics 2023; 15:723-740. [PMID: 37661861 DOI: 10.2217/epi-2023-0235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Chromatin modifications - including DNA methylation, modification of histones and recruitment of noncoding RNAs - are essential epigenetic events. Multiple sequential modifications converge into a complex epigenetic landscape. For example, promoter DNA methylation is recognized by MeCP2/methyl CpG binding domain proteins which further recruit SETDB1/SUV39 to attain a higher order chromatin structure by propagation of inactive epigenetic marks like H3K9me3. Many studies with new information on different epigenetic modifications and associated factors are available, but clear maps of interconnected pathways are also emerging. This review deals with the salient epigenetic crosstalk mechanisms that cells utilize for different cellular processes and how deregulation or aberrant gene expression leads to disease progression.
Collapse
Affiliation(s)
- Soumen Manna
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Jagdish Mishra
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Tirthankar Baral
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - R Kirtana
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Piyasa Nandi
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ankan Roy
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Subhajit Chakraborty
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Niharika
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir K Patra
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| |
Collapse
|
22
|
Zhao L, Fonseca A, Meschichi A, Sicard A, Rosa S. Whole-mount smFISH allows combining RNA and protein quantification at cellular and subcellular resolution. NATURE PLANTS 2023; 9:1094-1102. [PMID: 37322128 PMCID: PMC10356603 DOI: 10.1038/s41477-023-01442-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Multicellular organisms result from complex developmental processes largely orchestrated through the quantitative spatiotemporal regulation of gene expression. Yet, obtaining absolute counts of messenger RNAs at a three-dimensional resolution remains challenging, especially in plants, owing to high levels of tissue autofluorescence that prevent the detection of diffraction-limited fluorescent spots. In situ hybridization methods based on amplification cycles have recently emerged, but they are laborious and often lead to quantification biases. In this article, we present a simple method based on single-molecule RNA fluorescence in situ hybridization to visualize and count the number of mRNA molecules in several intact plant tissues. In addition, with the use of fluorescent protein reporters, our method also enables simultaneous detection of mRNA and protein quantity, as well as subcellular distribution, in single cells. With this method, research in plants can now fully explore the benefits of the quantitative analysis of transcription and protein levels at cellular and subcellular resolution in plant tissues.
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Alejandro Fonseca
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Anis Meschichi
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Adrien Sicard
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| |
Collapse
|
23
|
Duncan S, Johansson HE, Ding Y. Reference genes for quantitative Arabidopsis single molecule RNA fluorescence in situ hybridization. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2405-2415. [PMID: 36579724 PMCID: PMC10082928 DOI: 10.1093/jxb/erac521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 06/06/2023]
Abstract
Subcellular mRNA quantities and spatial distributions are fundamental for driving gene regulatory programmes. Single molecule RNA fluorescence in situ hybridization (smFISH) uses fluorescent probes to label individual mRNA molecules, thereby facilitating both localization and quantitative studies. Validated reference mRNAs function as positive controls and are required for calibration. Here we present selection criteria for the first set of Arabidopsis smFISH reference genes. Following sequence and transcript data assessments, four mRNA probe sets were selected for imaging. Transcript counts per cell, correlations with cell size, and corrected fluorescence intensities were all calculated for comparison. In addition to validating reference probe sets, we present sample preparation steps that can retain green fluorescent protein fluorescence, thereby providing a method for simultaneous RNA and protein detection. In summary, our reference gene analyses, modified protocol, and simplified quantification method together provide a firm foundation for future quantitative single molecule RNA studies in Arabidopsis root apical meristem cells.
Collapse
Affiliation(s)
- Susan Duncan
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Hans E Johansson
- LGC Biosearch Technologies, 2199 S. McDowell Blvd, Petaluma, CA 94954, USA
| | - Yiliang Ding
- John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
24
|
Tao X, Li S, Chen G, Wang J, Xu S. Approaches for Modes of Action Study of Long Non-Coding RNAs: From Single Verification to Genome-Wide Determination. Int J Mol Sci 2023; 24:ijms24065562. [PMID: 36982636 PMCID: PMC10054671 DOI: 10.3390/ijms24065562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides (nt) that are not translated into known functional proteins. This broad definition covers a large collection of transcripts with diverse genomic origins, biogenesis, and modes of action. Thus, it is very important to choose appropriate research methodologies when investigating lncRNAs with biological significance. Multiple reviews to date have summarized the mechanisms of lncRNA biogenesis, their localization, their functions in gene regulation at multiple levels, and also their potential applications. However, little has been reviewed on the leading strategies for lncRNA research. Here, we generalize a basic and systemic mind map for lncRNA research and discuss the mechanisms and the application scenarios of ‘up-to-date’ techniques as applied to molecular function studies of lncRNAs. Taking advantage of documented lncRNA research paradigms as examples, we aim to provide an overview of the developing techniques for elucidating lncRNA interactions with genomic DNA, proteins, and other RNAs. In the end, we propose the future direction and potential technological challenges of lncRNA studies, focusing on techniques and applications.
Collapse
Affiliation(s)
- Xiaoyuan Tao
- Xianghu Laboratory, Hangzhou 311231, China
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sujuan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengchun Xu
- Xianghu Laboratory, Hangzhou 311231, China
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence:
| |
Collapse
|
25
|
Montez M, Majchrowska M, Krzyszton M, Bokota G, Sacharowski S, Wrona M, Yatusevich R, Massana F, Plewczynski D, Swiezewski S. Promoter-pervasive transcription causes RNA polymerase II pausing to boost DOG1 expression in response to salt. EMBO J 2023; 42:e112443. [PMID: 36705062 PMCID: PMC9975946 DOI: 10.15252/embj.2022112443] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Eukaryotic genomes are pervasively transcribed by RNA polymerase II. Yet, the molecular and biological implications of such a phenomenon are still largely puzzling. Here, we describe noncoding RNA transcription upstream of the Arabidopsis thaliana DOG1 gene, which governs salt stress responses and is a key regulator of seed dormancy. We find that expression of the DOG1 gene is induced by salt stress, thereby causing a delay in seed germination. We uncover extensive transcriptional activity on the promoter of the DOG1 gene, which produces a variety of lncRNAs. These lncRNAs, named PUPPIES, are co-directionally transcribed and extend into the DOG1 coding region. We show that PUPPIES RNAs respond to salt stress and boost DOG1 expression, resulting in delayed germination. This positive role of pervasive PUPPIES transcription on DOG1 gene expression is associated with augmented pausing of RNA polymerase II, slower transcription and higher transcriptional burst size. These findings highlight the positive role of upstream co-directional transcription in controlling transcriptional dynamics of downstream genes.
Collapse
Affiliation(s)
- Miguel Montez
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Maria Majchrowska
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Grzegorz Bokota
- Laboratory of Functional and Structural Genomics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Sebastian Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Magdalena Wrona
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Ruslan Yatusevich
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Ferran Massana
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland
| | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| |
Collapse
|
26
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
27
|
Nishio H, Kudoh H. Distinct responses to autumn and spring temperatures by the key flowering-time regulator FLOWERING LOCUS C. Curr Opin Genet Dev 2023; 78:102016. [PMID: 36549195 DOI: 10.1016/j.gde.2022.102016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Despite the similarity in temperature regimes between late autumn and early spring, plants exhibit distinct developmental responses that result in distinct morphologies, that is, overwintering and reproductive forms. In Arabidopsis, the control of autumn-spring distinction involves the transcriptional regulation of the floral repressor FLOWERING LOCUS C (FLC). The memory of winter cold is registered as epigenetic silencing of FLC. Recent studies on A. thaliana FLC revealed detailed and additional mechanisms of silencing in response to autumn and winter cold. Studies on perennial Arabidopsis FLC revealed that its expression responds to spring warmth and is robustly upregulated, ignoring cold. These new studies provide mechanistic insights into the distinct regulation of FLC under autumn and spring temperature regimes.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan; Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan.
| |
Collapse
|
28
|
Lohani N, Golicz AA, Allu AD, Bhalla PL, Singh MB. Genome-wide analysis reveals the crucial role of lncRNAs in regulating the expression of genes controlling pollen development. PLANT CELL REPORTS 2023; 42:337-354. [PMID: 36653661 DOI: 10.1007/s00299-022-02960-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The genomic location and stage-specific expression pattern of many long non-coding RNAs reveal their critical role in regulating protein-coding genes crucial in pollen developmental progression and male germ line specification. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 bp with no apparent protein-coding potential. Multiple investigations have revealed high expression of lncRNAs in plant reproductive organs in a cell and tissue-specific manner. However, their potential role as essential regulators of molecular processes involved in sexual reproduction remains largely unexplored. We have used developing field mustard (Brassica rapa) pollen as a model system for investigating the potential role of lncRNAs in reproductive development. Reference-based transcriptome assembly performed to update the existing genome annotation identified novel expressed protein-coding genes and long non-coding RNAs (lncRNAs), including 4347 long intergenic non-coding RNAs (lincRNAs, 1058 expressed) and 2,045 lncRNAs overlapping protein-coding genes on the opposite strand (lncNATs, 780 expressed). The analysis of expression profiles reveals that lncRNAs are significant and stage-specific contributors to the gene expression profile of developing pollen. Gene co-expression networks accompanied by genome location analysis identified 38 cis-acting lincRNA, 31 cis-acting lncNAT, 7 trans-acting lincRNA and 14 trans-acting lncNAT to be substantially co-expressed with target protein-coding genes involved in biological processes regulating pollen development and male lineage specification. These findings provide a foundation for future research aiming at developing strategies to employ lncRNAs as regulatory tools for gene expression control during reproductive development.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- School of Science, Western Sydney University, Richmond, Australia
| | - Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Gießen, Gießen, Germany
| | - Annapurna D Allu
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Meena SK, Heidecker M, Engelmann S, Jaber A, de Vries T, Triller S, Baumann-Kaschig K, Abel S, Behrens SE, Gago-Zachert S. Altered expression levels of long non-coding natural antisense transcripts overlapping the UGT73C6 gene affect rosette size in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:460-477. [PMID: 36495314 DOI: 10.1111/tpj.16058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Natural antisense long non-coding RNAs (lncNATs) are involved in the regulation of gene expression in plants, modulating different relevant developmental processes and responses to various stimuli. We have identified and characterized two lncNATs (NAT1UGT73C6 and NAT2UGT73C6 , collectively NATsUGT73C6 ) from Arabidopsis thaliana that are transcribed from a gene fully overlapping UGT73C6, a member of the UGT73C subfamily of genes encoding UDP-glycosyltransferases (UGTs). Expression of both NATsUGT73C6 is developmentally controlled and occurs independently of the transcription of UGT73C6 in cis. Downregulation of NATsUGT73C6 levels through artificial microRNAs results in a reduction of the rosette area, while constitutive overexpression of NAT1UGT73C6 or NAT2UGT73C6 leads to the opposite phenotype, an increase in rosette size. This activity of NATsUGT73C6 relies on its RNA sequence and, although modulation of UGT73C6 in cis cannot be excluded, the observed phenotypes are not a consequence of the regulation of UGT73C6 in trans. The NATsUGT73C6 levels were shown to affect cell proliferation and thus individual leaf size. Consistent with this concept, our data suggest that the NATsUGT73C6 influence the expression levels of key transcription factors involved in regulating leaf growth by modulating cell proliferation. These findings thus reveal an additional regulatory layer on the process of leaf growth. In this work, we characterized at the molecular level two long non-coding RNAs (NATsUGT73C6 ) that are transcribed in the opposite direction to UGT73C6, a gene encoding a glucosyltransferase involved in brassinosteroid homeostasis in A. thaliana. Our results indicate that NATsUGT73C6 expression influences leaf growth by acting in trans and by modulating the levels of transcription factors that are involved in the regulation of cell proliferation.
Collapse
Affiliation(s)
- Shiv Kumar Meena
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale, D-06120, Germany
| | - Michel Heidecker
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale, D-06120, Germany
| | - Susanne Engelmann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale, D-06120, Germany
| | - Ammar Jaber
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale, D-06120, Germany
| | - Tebbe de Vries
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale, D-06120, Germany
| | - Saskia Triller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale, D-06120, Germany
| | - Katja Baumann-Kaschig
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale, D-06120, Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale, D-06120, Germany
| | - Sven-Erik Behrens
- Section Microbial Biotechnology, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, D-06120, Germany
| | - Selma Gago-Zachert
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale, D-06120, Germany
- Section Microbial Biotechnology, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, D-06120, Germany
| |
Collapse
|
30
|
Zacharaki V, Meena SK, Kindgren P. The non-coding RNA SVALKA locus produces a cis-natural antisense transcript that negatively regulates the expression of CBF1 and biomass production at normal temperatures. PLANT COMMUNICATIONS 2023:100551. [PMID: 36681861 PMCID: PMC10363475 DOI: 10.1016/j.xplc.2023.100551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Non-coding transcription is present in all eukaryotic genomes, but we lack fundamental knowledge about its importance for an organism's ability to develop properly. In plants, emerging evidence highlights the essential biological role of non-coding transcription in the regulation of coding transcription. However, we have few molecular insights into this regulation. Here, we show that a long isoform of the long non-coding RNA SVALKA-L (SVK-L) forms a natural antisense transcript to the host gene CBF1 and negatively regulates CBF1 mRNA levels at normal temperatures in the model plant Arabidopsis thaliana. Furthermore, we show detailed evidence for the specific mode of action of SVK-L. This pathway includes the formation of double-stranded RNA that is recognized by the DICER proteins and subsequent downregulation of CBF1 mRNA levels. Thus, the CBF1-SVK regulatory circuit is not only important for its previously known role in cold temperature acclimation but also for biomass production at normal temperatures. Our study characterizes the developmental role of SVK-L and offers mechanistic insight into how biologically important overlapping natural antisense transcripts can act on and fine-tune the steady-state levels of their host gene's mRNA.
Collapse
Affiliation(s)
- Vasiliki Zacharaki
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
| | - Shiv Kumar Meena
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
| | - Peter Kindgren
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden.
| |
Collapse
|
31
|
Bele S, Wokasch AS, Gannon M. Epigenetic modulation of cell fate during pancreas development. TRENDS IN DEVELOPMENTAL BIOLOGY 2023; 16:1-27. [PMID: 38873037 PMCID: PMC11173269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Epigenetic modifications to DNA and its associated proteins affect cell plasticity and cell fate restrictions throughout embryonic development. Development of the vertebrate pancreas is characterized by initial is an over-lapping expression of a set of transcriptional regulators in a defined region of the posterior foregut endoderm that collectively promote pancreas progenitor specification and proliferation. As development progresses, these transcription factors segregate into distinct pancreatic lineages, with some being maintained in specific subsets of terminally differentiated pancreas cell types throughout adulthood. Here we describe the progressive stages and cell fate restrictions that occur during pancreas development and the relevant known epigenetic regulatory events that drive the dynamic expression patterns of transcription factors that regulate pancreas development. In addition, we highlight how changes in epigenetic marks can affect susceptibility to pancreas diseases (such as diabetes), adult pancreas cell plasticity, and the ability to derive replacement insulin-producing β cells for the treatment of diabetes.
Collapse
Affiliation(s)
- Shilpak Bele
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Anthony S. Wokasch
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Veterans Affairs Tennessee Valley Authority, Research Division, 1310 24 Avenue South, Nashville, TN, 37212, USA
- Department of Molecular Physiology and Biophysics, 2213 Garland Avenue, Nashville, TN, 37232, USA
| |
Collapse
|
32
|
Wei L, Zhang R, Zhang M, Xia G, Liu S. Functional analysis of long non-coding RNAs involved in alkaline stress responses in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5698-5714. [PMID: 35595260 DOI: 10.1093/jxb/erac211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Saline-alkali soil is a major environmental problem affecting crop productivity. One of the most effective approaches to combat it is to breed stress-tolerant plants through genetic engineering. Shanrong No. 4 (SR4) is an alkaline-tolerant cultivar of bread wheat (Triticum aestivum) derived from asymmetric somatic hybridization between the common wheat cultivar Jinan 177 (JN177) and tall wheatgrass. In this study, we aimed to explore the structure and function of alkalinity stress-responsive long non-coding RNAs (lncRNAs) in wheat. Sequencing was employed to identify the lncRNAs associated with stress tolerance and their corresponding targets. Approximately 19 000 novel lncRNA sequences were detected in SR4 and JN177. Upon exposure to alkaline stress, SR4 differentially expressed 5691 lncRNAs, whilst JN177 differentially expressed 5932. We selected five of them (L0760, L6247, L0208, L2098, and L3065) and generated seedlings of transiently knocked down strains using the virus-induced gene-silencing method. Knockdown of L0760 and L2098 caused the plants to exhibit sensitivity to alkaline stress, whereas knockdown of L6247, L0208, and L3065 increased the ability of plants to tolerate alkaline stress. We constructed lncRNA-miRNA-target-mRNA networks and alkali-response-related lncRNA-target-mRNA association networks to analyse the functions of lncRNAs. Collectively, our results demonstrate that lncRNAs may perform different roles under alkaline stress conditions.
Collapse
Affiliation(s)
- Lin Wei
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Rong Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Min Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Shuwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
33
|
Preston JC, Fjellheim S. Flowering time runs hot and cold. PLANT PHYSIOLOGY 2022; 190:5-18. [PMID: 35274728 PMCID: PMC9434294 DOI: 10.1093/plphys/kiac111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 05/16/2023]
Abstract
Evidence suggests that anthropogenically-mediated global warming results in accelerated flowering for many plant populations. However, the fact that some plants are late flowering or unaffected by warming, underscores the complex relationship between phase change, temperature, and phylogeny. In this review, we present an emerging picture of how plants sense temperature changes, and then discuss the independent recruitment of ancient flowering pathway genes for the evolution of ambient, low, and high temperature-regulated reproductive development. As well as revealing areas of research required for a better understanding of how past thermal climates have shaped global patterns of plasticity in plant phase change, we consider the implications for these phenological thermal responses in light of climate change.
Collapse
Affiliation(s)
- Jill C Preston
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås 1430, Norway
| |
Collapse
|
34
|
Du J, Dartawan R, Rice W, Gao F, Zhou JH, Sheng J. Fluorescent Platforms for RNA Chemical Biology Research. Genes (Basel) 2022; 13:1348. [PMID: 36011259 PMCID: PMC9407474 DOI: 10.3390/genes13081348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating.
Collapse
Affiliation(s)
| | | | | | | | | | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (J.D.); (R.D.); (W.R.); (F.G.); (J.H.Z.)
| |
Collapse
|
35
|
Kaashyap M, Kaur S, Ford R, Edwards D, Siddique KH, Varshney RK, Mantri N. Comprehensive transcriptomic analysis of two RIL parents with contrasting salt responsiveness identifies polyadenylated and non-polyadenylated flower lncRNAs in chickpea. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1402-1416. [PMID: 35395125 PMCID: PMC9241372 DOI: 10.1111/pbi.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Salinity severely affects the yield of chickpea. Understanding the role of lncRNAs can shed light on chickpea salt tolerance mechanisms. However, because lncRNAs are encoded by multiple sites within the genome, their classification to reveal functional versatility at the transcriptional and the post-transcriptional levels is challenging. To address this, we deep sequenced 24 salt-challenged flower transcriptomes from two parental genotypes of a RIL population that significantly differ in salt tolerance ability. The transcriptomes for the first time included 12 polyadenylated and 12 non-polyadenylated RNA libraries to a sequencing depth of ~50 million reads. The ab initio transcriptome assembly comprised ~34 082 transcripts from three biological replicates of salt-tolerant (JG11) and salt-sensitive (ICCV2) flowers. A total of 9419 lncRNAs responding to salt stress were identified, 2345 of which were novel lncRNAs specific to chickpea. The expression of poly(A+) lncRNAs and naturally antisense transcribed RNAs suggest their role in post-transcriptional modification and gene silencing. Notably, 178 differentially expressed lncRNAs were induced in the tolerant genotype but repressed in the sensitive genotype. Co-expression network analysis revealed that the induced lncRNAs interacted with the FLOWERING LOCUS (FLC), chromatin remodelling and DNA methylation genes, thus inducing flowering during salt stress. Furthermore, 26 lncRNAs showed homology with reported lncRNAs such as COOLAIR, IPS1 and AT4, thus confirming the role of chickpea lncRNAs in controlling flowering time as a crucial salt tolerance mechanism in tolerant chickpea genotype. These robust set of differentially expressed lncRNAs provide a deeper insight into the regulatory mechanisms controlled by lncRNAs under salt stress.
Collapse
Affiliation(s)
- Mayank Kaashyap
- The Pangenomics LabSchool of ScienceRMIT UniversityMelbourneVICAustralia
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Sukhjiwan Kaur
- Department of Economic DevelopmentJobs, Transport and ResourcesAgriBioCentre for AgriBioscienceMelbourneVICAustralia
| | - Rebecca Ford
- School of Environment and ScienceGriffith UniversityNathanQLDAustralia
| | - David Edwards
- The UWA Institute of AgricultureThe University of Western AustraliaPerthWAAustralia
| | | | - Rajeev K. Varshney
- The UWA Institute of AgricultureThe University of Western AustraliaPerthWAAustralia
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelanganaIndia
- State Agricultural Biotechnology CentreCentre for Crop and Food InnovationFood Futures InstituteMurdoch UniversityMurdochWAAustralia
| | - Nitin Mantri
- The Pangenomics LabSchool of ScienceRMIT UniversityMelbourneVICAustralia
- The UWA Institute of AgricultureThe University of Western AustraliaPerthWAAustralia
| |
Collapse
|
36
|
Zhang Y, Fan S, Hua C, Teo ZWN, Kiang JX, Shen L, Yu H. Phase separation of HRLP regulates flowering time in Arabidopsis. SCIENCE ADVANCES 2022; 8:eabn5488. [PMID: 35731874 PMCID: PMC9217094 DOI: 10.1126/sciadv.abn5488] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RNA binding proteins mediate posttranscriptional RNA metabolism and play regulatory roles in many developmental processes in eukaryotes. Despite their known effects on the floral transition from vegetative to reproductive growth in plants, the underlying mechanisms remain largely obscure. Here, we show that a hitherto unknown RNA binding protein, hnRNP R-LIKE PROTEIN (HRLP), inhibits cotranscriptional splicing of a key floral repressor gene FLOWERING LOCUS C (FLC). This, in turn, facilitates R-loop formation near FLC intron I to repress its transcription, thereby promoting the floral transition in Arabidopsis thaliana. HRLP, together with the splicing factor ARGININE/SERINE-RICH 45, forms phase-separated nuclear condensates with liquid-like properties, which is essential for HRLP function in regulating FLC splicing, R-loop formation, and RNA Polymerase II recruitment. Our findings reveal that inhibition of cotranscriptional splicing of FLC by nuclear HRLP condensates constitutes the molecular basis for down-regulation of FLC transcript levels to ensure the reproductive success of Arabidopsis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Sheng Fan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Changmei Hua
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Zhi Wei Norman Teo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Jian Xuan Kiang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Corresponding author. (L.S.); (H.Y.)
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Corresponding author. (L.S.); (H.Y.)
| |
Collapse
|
37
|
He Z, Ye L, Yang D, Ma Z, Deng F, He Z, Hu J, Chen H, Zheng L, Pu Y, Jiao Y, Chen Q, Gao K, Xiong J, Lai B, Gu X, Huang X, Yang S, Zhang M, Yan T. Identification, characterization and functional analysis of gonadal long noncoding RNAs in a protogynous hermaphroditic teleost fish, the ricefield eel (Monopterus albus). BMC Genomics 2022; 23:450. [PMID: 35725373 PMCID: PMC9208217 DOI: 10.1186/s12864-022-08679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/09/2022] [Indexed: 11/11/2022] Open
Abstract
Background An increasing number of long noncoding RNAs (lncRNAs) have been found to play important roles in sex differentiation and gonad development by regulating gene expression at the epigenetic, transcriptional and posttranscriptional levels. The ricefield eel, Monopterus albus, is a protogynous hermaphroditic fish that undergoes a sequential sex change from female to male. However, the roles of lncRNA in the sex change is unclear. Results Herein, we performed RNA sequencing to analyse lncRNA expression patterns in five different stages of M. albus development to investigate the roles of lncRNAs in the sex change process. A total of 12,746 lncRNAs (1503 known lncRNAs and 11,243 new lncRNAs) and 2901 differentially expressed lncRNAs (DE-lncRNAs) were identified in the gonads. The target genes of the DE-lncRNAs included foxo1, foxm1, smad3, foxr1, camk4, ar and tgfb3, which were mainly enriched in signalling pathways related to gonadal development, such as the insulin signalling pathway, MAPK signalling pathway, and calcium signalling pathway. We selected 5 highly expressed DE-lncRNAs (LOC109952131, LOC109953466, LOC109954337, LOC109954360 and LOC109958454) for full length amplification and expression pattern verification. They were all expressed at higher levels in ovaries and intersex gonads than in testes, and exhibited specific time-dependent expression in ovarian tissue incubated with follicle-stimulating hormone (FSH) and human chorionic gonadotropin (hCG). The results of quantitative real-time PCR (qRT-PCR) analysis and a dual-luciferase assay showed that znf207, as the gene targeted by LOC109958454, was expressed in multiple tissues and gonadal developmental stages of M. albus, and its expression was also inhibited by the hormones FSH and hCG. Conclusions These results provide new insights into the role of lncRNAs in gonad development, especially regarding natural sex changes in fish, which will be useful for enhancing our understanding of sequential hermaphroditism and sex changes in the ricefield eel (M. albus) and other teleosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08679-2.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lijuan Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhijun Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Faqiang Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhide He
- Luzhou Municipal Bureau of Agriculture and Rural Affairs, Luzhou, 646000, Sichuan, China
| | - Jiaxiang Hu
- Sichuan Water Conservancy Vocational College, Chengdu, 611231, Sichuan, China
| | - Hongjun Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Li Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yong Pu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuanyuan Jiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiqi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo Gao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jinxin Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bolin Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaobin Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
38
|
Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, Irfan M. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:10-24. [PMID: 35305363 DOI: 10.1016/j.plaphy.2022.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 03/05/2022] [Indexed: 05/25/2023]
Abstract
As sessile species and without the possibility of escape, plants constantly face numerous environmental stresses. To adapt in the external environmental cues, plants adjust themselves against such stresses by regulating their physiological, metabolic and developmental responses to external environmental cues. Certain environmental stresses rarely occur during plant life, while others, such as heat, drought, salinity, and cold are repetitive. Abiotic stresses are among the foremost environmental variables that have hindered agricultural production globally. Through distinct mechanisms, these stresses induce various morphological, biochemical, physiological, and metabolic changes in plants, directly impacting their growth, development, and productivity. Subsequently, plant's physiological, metabolic, and genetic adjustments to the stress occurrence provide necessary competencies to adapt, survive and nurture a condition known as "memory." This review emphasizes the advancements in various epigenetic-related chromatin modifications, DNA methylation, histone modifications, chromatin remodeling, phytohormones, and microRNAs associated with abiotic stress memory. Plants have the ability to respond quickly to stressful situations and can also improve their defense systems by retaining and sustaining stressful memories, allowing for stronger or faster responses to repeated stressful situations. Although there are relatively few examples of such memories, and no clear understanding of their duration, taking into consideration plenty of stresses in nature. Understanding these mechanisms in depth could aid in the development of genetic tools to improve breeding techniques, resulting in higher agricultural yield and quality under changing environmental conditions.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vipasha Verma
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Bhavya Bhargava
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
39
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
40
|
Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23084124. [PMID: 35456943 PMCID: PMC9032736 DOI: 10.3390/ijms23084124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Plant growth and development are greatly affected by the environment. Many genes have been identified to be involved in regulating plant development and adaption of abiotic stress. Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncRNAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Currently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development and abiotic response are being deeply explored. In this review, we summarize the recent research progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters, targets functions, and interplay network of ncRNAs and their targets in plant development and abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs, and targets in plants are also discussed. Understanding molecular mechanisms and functional implications of ncRNAs in various abiotic stress responses and development will benefit us in regard to the use of ncRNAs as potential character-determining factors in molecular plant breeding.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
41
|
Alecki C, Vera M. Role of Nuclear Non-Canonical Nucleic Acid Structures in Organismal Development and Adaptation to Stress Conditions. Front Genet 2022; 13:823241. [PMID: 35281835 PMCID: PMC8906566 DOI: 10.3389/fgene.2022.823241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Over the last decades, numerous examples have involved nuclear non-coding RNAs (ncRNAs) in the regulation of gene expression. ncRNAs can interact with the genome by forming non-canonical nucleic acid structures such as R-loops or DNA:RNA triplexes. They bind chromatin and DNA modifiers and transcription factors and favor or prevent their targeting to specific DNA sequences and regulate gene expression of diverse genes. We review the function of these non-canonical nucleic acid structures in regulating gene expression of multicellular organisms during development and in response to different stress conditions and DNA damage using examples described in several organisms, from plants to humans. We also overview recent techniques developed to study where R-loops or DNA:RNA triplexes are formed in the genome and their interaction with proteins.
Collapse
Affiliation(s)
- Célia Alecki
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
42
|
Lei Z, Wang L, Kim EY, Cho J. Phase separation of chromatin and small RNA pathways in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1256-1265. [PMID: 34585805 DOI: 10.1111/tpj.15517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Gene expression can be modulated by epigenetic mechanisms, including chromatin modifications and small regulatory RNAs. These pathways are unevenly distributed within a cell and usually take place in specific intracellular regions. Unfortunately, the fundamental driving force and biological relevance of such spatial differentiation is largely unknown. Liquid-liquid phase separation (LLPS) is a natural propensity of demixing liquid phases and has been recently suggested to mediate the formation of biomolecular condensates that are relevant to diverse cellular processes. LLPS provides a mechanistic explanation for the self-assembly of subcellular structures by which the efficiency and specificity of certain cellular reactions are achieved. In plants, LLPS has been observed for several key factors in the chromatin and small RNA pathways. For example, the formation of facultative and obligate heterochromatin involves the LLPS of multiple relevant factors. In addition, phase separation is observed in a set of proteins acting in microRNA biogenesis and the small interfering RNA pathway. In this Focused Review, we highlight and discuss the recent findings regarding phase separation in the epigenetic mechanisms of plants.
Collapse
Affiliation(s)
- Zhen Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
43
|
He Y, Wang W, Jiang P, Yang L, Guo Q, Xiang J, Gao Y, Wang Y, Chen R. Long Non-Coding RNAs in Oral Submucous Fibrosis: Their Functional Mechanisms and Recent Research Progress. J Inflamm Res 2021; 14:5787-5800. [PMID: 34764671 PMCID: PMC8578048 DOI: 10.2147/jir.s337014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown that most genomes are transcribed into non-coding RNAs (ncRNAs), including microRNAs (miRs) and long non-coding RNAs (lncRNAs), which can affect different cell characteristics. LncRNAs are long heterologous RNAs that regulate gene expression and various signaling pathways during homeostasis and development. Studies have shown that a lncRNA is an important regulatory molecule that can be targeted to change the physiology and function of cells. Expression or dysfunction of lncRNAs is closely related to various genetic, autoimmune, and metabolic diseases. The importance of ncRNAs in oral submucosal fibrosis (OSF) has garnered much attention in recent years. However, most research has focused on miRs. The role of these molecules in OSF is incompletely understood. This review focuses on the emerging role and function of lncRNAs in OSF as novel regulators. Finally, the potential functional role of lncRNAs as biomarkers for OSF diagnosis is also described. LncRNAs are expected to become a new therapeutic target, but more research is needed to understand their biological functions more deeply.
Collapse
Affiliation(s)
- Yaodong He
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Wei Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Pingping Jiang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, 230032, People's Republic of China
| | - Lin Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Qi Guo
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Junwei Xiang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Yuling Gao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Ran Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| |
Collapse
|
44
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
45
|
Zhu P, Lister C, Dean C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature 2021; 599:657-661. [PMID: 34732891 PMCID: PMC8612926 DOI: 10.1038/s41586-021-04062-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Plants use seasonal temperature cues to time the transition to reproduction. In Arabidopsis thaliana, winter cold epigenetically silences the floral repressor locus FLOWERING LOCUS C (FLC) through POLYCOMB REPRESSIVE COMPLEX 2 (PRC2)1. This vernalization process aligns flowering with spring. A prerequisite for silencing is transcriptional downregulation of FLC, but how this occurs in the fluctuating temperature regimes of autumn is unknown2-4. Transcriptional repression correlates with decreased local levels of histone H3 trimethylation at K36 (H3K36me3) and H3 trimethylation at K4 (H3K4me3)5,6, which are deposited during FRIGIDA (FRI)-dependent activation of FLC7-10. Here we show that cold rapidly promotes the formation of FRI nuclear condensates that do not colocalize with an active FLC locus. This correlates with reduced FRI occupancy at the FLC promoter and FLC repression. Warm temperature spikes reverse this process, buffering FLC shutdown to prevent premature flowering. The accumulation of condensates in the cold is affected by specific co-transcriptional regulators and cold induction of a specific isoform of the antisense RNA COOLAIR5,11. Our work describes the dynamic partitioning of a transcriptional activator conferring plasticity in response to natural temperature fluctuations, thus enabling plants to effectively monitor seasonal progression.
Collapse
Affiliation(s)
- Pan Zhu
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Clare Lister
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
46
|
Reis RS, Poirier Y. Making sense of the natural antisense transcript puzzle. TRENDS IN PLANT SCIENCE 2021; 26:1104-1115. [PMID: 34303604 DOI: 10.1016/j.tplants.2021.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
In plants, thousands of genes are associated with antisense transcription, which often produces noncoding RNAs. Although widespread, sense-antisense pairs have been implicated in a limited variety of functions in plants and are often thought to form extensive dsRNA stretches triggering gene silencing. In this opinion, we show that evidence does not support gene silencing as a major role for antisense transcription. In fact, it is more likely that antisense transcripts play diverse functions in gene regulation. We propose a general framework for the initial functional dissection of antisense transcripts, suggesting testable hypotheses relying on an experiment-based decision tree. By moving beyond the gene silencing paradigm, we argue that a broad and diverse role for natural antisense transcription will emerge.
Collapse
Affiliation(s)
- Rodrigo Siqueira Reis
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
47
|
Lin Y, Fang X. Phase separation in RNA biology. J Genet Genomics 2021; 48:872-880. [PMID: 34371110 DOI: 10.1016/j.jgg.2021.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022]
Abstract
The formation of biomolecular condensates via liquid-liquid phase separation (LLPS) is an advantageous strategy for cells to organize subcellular compartments for diverse functions. The involvement of LLPS is more widespread and overrepresented in RNA-related biological processes. This is in part because that RNAs are intrinsically multivalent macromolecules, and the presence of RNAs affects the formation, dissolution, and biophysical properties of biomolecular condensates formed by LLPS. Emerging studies have illustrated how LLPS participates in RNA transcription, splicing, processing, quality control, translation, and function. The interconnected regulation between LLPS and RNAs ensures tight control of RNA-related cellular functions.
Collapse
Affiliation(s)
- Yi Lin
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Xiaofeng Fang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
48
|
Abstract
Plant intra-individual and inter-individual variation can be determined by the epigenome, a set of covalent modifications of DNA and chromatin that can alter genome structure and activity without changes to the genome sequence. The epigenome of plant cells is plastic, that is, it can change in response to internal or external cues, such as during development or due to environmental changes, to create a memory of such events. Ongoing advances in technologies to read and write epigenomic patterns with increasing resolution, scale and precision are enabling the extent of plant epigenome variation to be more extensively characterized and functionally interrogated. In this Review, we discuss epigenome dynamics and variation within plants during development and in response to environmental changes, including stress, as well as between plants. We review known or potential functions of such plasticity and emphasize the importance of investigating the causality of epigenomic changes. Finally, we discuss emerging technologies that may underpin future research into plant epigenome plasticity.
Collapse
Affiliation(s)
- James P B Lloyd
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
49
|
Singh N. Role of mammalian long non-coding RNAs in normal and neuro oncological disorders. Genomics 2021; 113:3250-3273. [PMID: 34302945 DOI: 10.1016/j.ygeno.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/09/2022]
Abstract
Long non-coding RNAs (lncRNAs) are expressed at lower levels than protein-coding genes but have a crucial role in gene regulation. LncRNA is distinct, they are being transcribed using RNA polymerase II, and their functionality depends on subcellular localization. Depending on their niche, they specifically interact with DNA, RNA, and proteins and modify chromatin function, regulate transcription at various stages, forms nuclear condensation bodies and nucleolar organization. lncRNAs may also change the stability and translation of cytoplasmic mRNAs and hamper signaling pathways. Thus, lncRNAs affect the physio-pathological states and lead to the development of various disorders, immune responses, and cancer. To date, ~40% of lncRNAs have been reported in the nervous system (NS) and are involved in the early development/differentiation of the NS to synaptogenesis. LncRNA expression patterns in the most common adult and pediatric tumor suggest them as potential biomarkers and provide a rationale for targeting them pharmaceutically. Here, we discuss the mechanisms of lncRNA synthesis, localization, and functions in transcriptional, post-transcriptional, and other forms of gene regulation, methods of lncRNA identification, and their potential therapeutic applications in neuro oncological disorders as explained by molecular mechanisms in other malignant disorders.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit, Department of Centre for Advance Research, King George's Medical University, Lucknow, Uttar Pradesh 226 003, India.
| |
Collapse
|
50
|
Gogolev YV, Ahmar S, Akpinar BA, Budak H, Kiryushkin AS, Gorshkov VY, Hensel G, Demchenko KN, Kovalchuk I, Mora-Poblete F, Muslu T, Tsers ID, Yadav NS, Korzun V. OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. PLANTS (BASEL, SWITZERLAND) 2021; 10:1423. [PMID: 34371624 PMCID: PMC8309286 DOI: 10.3390/plants10071423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022]
Abstract
The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.
Collapse
Affiliation(s)
- Yuri V. Gogolev
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | | | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT 59802, USA; (B.A.A.); (H.B.)
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Vladimir Y. Gorshkov
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | - Tugdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey;
| | - Ivan D. Tsers
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Viktor Korzun
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
| |
Collapse
|