1
|
Bosshard AB, Burkart JM, Merlo P, Cathcart C, Townsend SW, Bickel B. Beyond bigrams: call sequencing in the common marmoset ( Callithrix jacchus) vocal system. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240218. [PMID: 39507993 PMCID: PMC11537759 DOI: 10.1098/rsos.240218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Over the last two decades, an emerging body of research has demonstrated that non-human animals exhibit the ability to combine context-specific calls into larger sequences. These structures have frequently been compared with language's syntax, whereby linguistic units are combined to form larger structures, and leveraged to argue that syntax might not be unique to language. Currently, however, the overwhelming majority of examples of call combinations are limited to simple sequences comprising just two calls which differ dramatically from the open-ended hierarchical structuring of the syntax found in language. We revisit this issue by taking a whole-repertoire approach to investigate combinatoriality in common marmosets (Callithrix jacchus). We use Markov chain models to quantify the vocal sequences produced by marmosets providing evidence for structures beyond the bigram, including three-call and even combinations of up to eight or nine calls. Our analyses of these longer vocal sequences are suggestive of potential further internal organization, including some amount of recombination, nestedness and non-adjacent dependencies. We argue that data-driven, whole-repertoire analyses are fundamental to uncovering the combinatorial complexity of non-human animals and will further facilitate meaningful comparisons with language's combinatoriality.
Collapse
Affiliation(s)
- Alexandra B. Bosshard
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Judith M. Burkart
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Paola Merlo
- Department of Linguistics, University of Geneva, Geneva, Switzerland
- Idiap Research Institute, Martigny, Switzerland
| | - Chundra Cathcart
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
| | - Simon W. Townsend
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Balthasar Bickel
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Bistere L, Gomez-Guzman CM, Xiong Y, Vallentin D. Female calls promote song learning in male juvenile zebra finches. Nat Commun 2024; 15:8938. [PMID: 39414810 PMCID: PMC11484889 DOI: 10.1038/s41467-024-53251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Social interactions promote vocal learning, but the impact of social feedback on this process and its neural circuitry is not well understood. We studied song imitation in juvenile male zebra finches raised either in the presence or absence of adult females. Juveniles learned songs more accurately with a female present, suggesting her presence improves imitation. When female calls correlated with practice, tutees' songs better resembled the tutor's, hinting toward the possibility that females provide practice-specific vocalizations. Intracellular recordings of HVC projection neurons revealed that a subset of these neurons in both juveniles and adults is sensitive to female calls during listening, suggesting a consistent neural mechanism for processing important vocalizations, regardless of age. However, call-related neural responses during singing were observed only in juveniles. These findings highlight how vocalizations, beyond those of the tutor, influence the neural circuits for vocal learning and production.
Collapse
Affiliation(s)
- Linda Bistere
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | | | | | - Daniela Vallentin
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| |
Collapse
|
3
|
Heim F, Mendoza E, Koparkar A, Vallentin D. Disinhibition enables vocal repertoire expansion after a critical period. Nat Commun 2024; 15:7565. [PMID: 39217170 PMCID: PMC11365960 DOI: 10.1038/s41467-024-51818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The efficiency of motor skill acquisition is age-dependent, making it increasingly challenging to learn complex manoeuvres later in life. Zebra finches, for instance, acquire a complex vocal motor programme during a developmental critical period after which the learned song is essentially impervious to modification. Although inhibitory interneurons are implicated in critical period closure, it is unclear whether manipulating them can reopen heightened motor plasticity windows. Using pharmacology and a cell-type specific optogenetic approach, we manipulated inhibitory neuron activity in a premotor area of adult zebra finches beyond their critical period. When exposed to auditory stimulation in the form of novel songs, manipulated birds added new vocal syllables to their stable song sequence. By lifting inhibition in a premotor area during sensory experience, we reintroduced vocal plasticity, promoting an expansion of the syllable repertoire without compromising pre-existing song production. Our findings provide insights into motor skill learning capacities, offer potential for motor recovery after injury, and suggest avenues for treating neurodevelopmental disorders involving inhibitory dysfunctions.
Collapse
Affiliation(s)
- Fabian Heim
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Ezequiel Mendoza
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Avani Koparkar
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Indian Institute of Science Education and Research (IISER), Pune, India
- Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Daniela Vallentin
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| |
Collapse
|
4
|
Oren G, Shapira A, Lifshitz R, Vinepinsky E, Cohen R, Fried T, Hadad GP, Omer D. Vocal labeling of others by nonhuman primates. Science 2024; 385:996-1003. [PMID: 39208084 DOI: 10.1126/science.adp3757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Humans, dolphins, and elephants are the only known species that vocally label their conspecifics. It remains unclear whether nonhuman primates share this ability. We recorded spontaneous "phee-call" dialogues between pairs of marmoset monkeys. We discovered that marmosets use these calls to vocally label their conspecifics. Moreover, they respond more consistently and correctly to calls that are specifically directed at them. Analysis of calls from multiple monkeys revealed that family members use similar calls and acoustic features to label others and perform vocal learning. These findings shed light on the complexities of social vocalizations among nonhuman primates and suggest that marmoset vocalizations may provide a model for understanding aspects of human language, thereby offering new insights into the evolution of social communication.
Collapse
Affiliation(s)
- Guy Oren
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aner Shapira
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Lifshitz
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Vinepinsky
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roni Cohen
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tomer Fried
- Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy P Hadad
- Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Omer
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Ghazanfar AA, Gomez-Marin A. The central role of the individual in the history of brains. Neurosci Biobehav Rev 2024; 163:105744. [PMID: 38825259 PMCID: PMC11246226 DOI: 10.1016/j.neubiorev.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Every species' brain, body and behavior is shaped by the contingencies of their evolutionary history; these exert pressures that change their developmental trajectories. There is, however, another set of contingencies that shape us and other animals: those that occur during a lifetime. In this perspective piece, we show how these two histories are intertwined by focusing on the individual. We suggest that organisms--their brains and behaviors--are not solely the developmental products of genes and neural circuitry but individual centers of action unfolding in time. To unpack this idea, we first emphasize the importance of variation and the central role of the individual in biology. We then go over "errors in time" that we often make when comparing development across species. Next, we reveal how an individual's development is a process rather than a product by presenting a set of case studies. These show developmental trajectories as emerging in the contexts of the "the actual now" and "the presence of the past". Our consideration reveals that individuals are slippery-they are never static; they are a set of on-going, creative activities. In light of this, it seems that taking individual development seriously is essential if we aspire to make meaningful comparisons of neural circuits and behavior within and across species.
Collapse
Affiliation(s)
- Asif A Ghazanfar
- Princeton Neuroscience Institute, and Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| | - Alex Gomez-Marin
- Behavior of Organisms Laboratory, Instituto de Neurociencias CSIC-UMH, Alicante 03550, Spain.
| |
Collapse
|
6
|
Walsh SL, Townsend SW, Engesser S, Ridley AR. Call combination production is linked to the social environment in Western Australian magpies ( Gymnorhina tibicen dorsalis). Philos Trans R Soc Lond B Biol Sci 2024; 379:20230198. [PMID: 38768205 PMCID: PMC11391283 DOI: 10.1098/rstb.2023.0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/21/2024] [Accepted: 04/04/2024] [Indexed: 05/22/2024] Open
Abstract
It has recently become clear that some language-specific traits previously thought to be unique to humans (such as the capacity to combine sounds) are widespread in the animal kingdom. Despite the increase in studies documenting the presence of call combinations in non-human animals, factors promoting this vocal trait are unclear. One leading hypothesis proposes that communicative complexity co-evolved with social complexity owing to the need to transmit a diversity of information to a wider range of social partners. The Western Australian magpie (Gymnorhina tibicen dorsalis) provides a unique model to investigate this proposed link because it is a group-living, vocal learning species that is capable of multi-level combinatoriality (independently produced calls contain vocal segments and comprise combinations). Here, we compare variations in the production of call combinations across magpie groups ranging in size from 2 to 11 birds. We found that callers in larger groups give call combinations: (i) in greater diversity and (ii) more frequently than callers in smaller groups. Significantly, these observations support the hypothesis that combinatorial complexity may be related to social complexity in an open-ended vocal learner, providing an important step in understanding the role that sociality may have played in the development of vocal combinatorial complexity. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Sarah L Walsh
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Crawley, Western Australia 6008, Australia
| | - Simon W Townsend
- Department of Evolutionary Anthropology, University of Zurich , Zurich 8032, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich , Zurich 8032, Switzerland
- Department of Psychology, University of Warwick , Coventry CV4 7AL, UK
| | - Sabrina Engesser
- Department of Biology, University of Copenhagen , Kobenhavn 2100, Denmark
| | - Amanda R Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Crawley, Western Australia 6008, Australia
| |
Collapse
|
7
|
Drazan TM, Bradley SP, Jones A, Allen-Worthington K, Chudasama Y. Improving reproductive success in captive marmosets through active female choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593247. [PMID: 38766181 PMCID: PMC11100743 DOI: 10.1101/2024.05.08.593247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The recent upsurge in the use of common marmosets (Callithrix jacchus) as a desirable model for high priority biomedical research has challenged local and global suppliers struggling to provide sufficient numbers of marmosets for large scale projects. Scientific research laboratories are increasingly establishing institutional breeding colonies, in part to combat the resulting shortage and high cost of commercially available animals, and in part to have maximum control over research lines involving reproduction and development. For such laboratories, efficient marmoset breeding can be challenging and time consuming. Random male/female pairings are often unsuccessful, with intervals of several months before attempting alternate pairings. Here we address this challenge through a behavioral task that promotes self-directed female selection of potential mates to increase the efficiency of breeding in captive marmosets. We created a partner preference test ('love maze') in which nulliparous females (n=12) had the opportunity to select between two eligible males (n=23) at a time, in a forced choice test. In this test, both males usually displayed sexual solicitations. However, the female would clearly indicate her preference for one. Most commonly, the female actively ignored the non-preferred male and directed overt prosocial behaviors (e.g. proceptive tongue-flicking, approach and grooming) to the preferred male. Moreover, once a male was selected in this context, the female would continue to prefer him over other males in three consecutive testing sessions. Compared with random pairings, this directed female choice showed a 2.5-fold improvement in breeding within 90 days compared to random pairings. This cost-effective and straightforward pairing practice can be used to enhance breeding efficiency in both small and large marmoset colonies.
Collapse
|
8
|
Nagarajan G, Matrov D, Pearson AC, Yen C, Bradley SP, Chudasama Y. Cingulate cortex shapes early postnatal development of social vocalizations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580738. [PMID: 38529485 PMCID: PMC10962701 DOI: 10.1101/2024.02.17.580738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The social dynamics of vocal behavior has major implications for social development in humans. We asked whether early life damage to the anterior cingulate cortex (ACC), which is closely associated with socioemotional regulation more broadly, impacts the normal development of vocal expression. The common marmoset provides a unique opportunity to study the developmental trajectory of vocal behavior, and to track the consequences of early brain damage on aspects of social vocalizations. We created ACC lesions in neonatal marmosets and compared their pattern of vocalization to that of age-matched controls throughout the first 6 weeks of life. We found that while early life ACC lesions had little influence on the production of vocal calls, developmental changes to the quality of social contact calls and their associated syntactical and acoustic characteristics were compromised. These animals made fewer social contact calls, and when they did, they were short, loud and monotonic. We further determined that damage to ACC in infancy results in a permanent alteration in downstream brain areas known to be involved in social vocalizations, such as the amygdala and periaqueductal gray. Namely, in the adult, these structures exhibited diminished GABA-immunoreactivity relative to control animals, likely reflecting disruption of the normal inhibitory balance following ACC deafferentation. Together, these data indicate that the normal development of social vocal behavior depends on the ACC and its interaction with other areas in the vocal network during early life.
Collapse
|
9
|
Yano-Nashimoto S, Truzzi A, Shinozuka K, Murayama AY, Kurachi T, Moriya-Ito K, Tokuno H, Miyazawa E, Esposito G, Okano H, Nakamura K, Saito A, Kuroda KO. Anxious about rejection, avoidant of neglect: Infant marmosets tune their attachment based on individual caregiver's parenting style. Commun Biol 2024; 7:212. [PMID: 38378797 PMCID: PMC10879543 DOI: 10.1038/s42003-024-05875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Children's secure attachment with their primary caregivers is crucial for physical, cognitive, and emotional maturation. Yet, the causal links between specific parenting behaviors and infant attachment patterns are not fully understood. Here we report infant attachment in New World monkeys common marmosets, characterized by shared infant care among parents and older siblings and complex vocal communications. By integrating natural variations in parenting styles and subsecond-scale microanalyses of dyadic vocal and physical interactions, we demonstrate that marmoset infants signal their needs through context-dependent call use and selective approaches toward familiar caregivers. The infant attachment behaviors are tuned to each caregiver's parenting style; infants use negative calls when carried by rejecting caregivers and selectively avoid neglectful and rejecting caregivers. Family-deprived infants fail to develop such adaptive uses of attachment behaviors. With these similarities with humans, marmosets offer a promising model for investigating the biological mechanisms of attachment security.
Collapse
Affiliation(s)
- Saori Yano-Nashimoto
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Laboratory of Physiology, Department of Basic Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Anna Truzzi
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Planning, Review and Research Institute for Social insurance and Medical program, Chiyoda-ku, Japan
| | - Ayako Y Murayama
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
- Neural Circuit Unit, Okinawa Institute Science and Technology Graduate University, Onna, Japan
| | - Takuma Kurachi
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Keiko Moriya-Ito
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Hironobu Tokuno
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Eri Miyazawa
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| | - Gianluca Esposito
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
| | - Katsuki Nakamura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Atsuko Saito
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan.
- Department of Psychology, Sophia University, Chiyoda-ku, Japan.
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan.
- Kuroda Laboratory, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
10
|
An R, Lu C, Wang C, Chang L, Huang J, Jiang F, Xu TL, Gong N. Developmental Patterns and Gender Differences of Vocal Production in Marmoset Monkeys. Neurosci Bull 2024; 40:133-138. [PMID: 37914957 PMCID: PMC10774232 DOI: 10.1007/s12264-023-01137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/28/2023] [Indexed: 11/03/2023] Open
Affiliation(s)
- Ruixin An
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaocheng Lu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Chen Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liangtang Chang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Junfeng Huang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Fan Jiang
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tian-Le Xu
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
| | - Neng Gong
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
| |
Collapse
|
11
|
Langehennig-Peristenidou A, Romero-Mujalli D, Bergmann T, Scheumann M. Features of animal babbling in the vocal ontogeny of the gray mouse lemur (Microcebus murinus). Sci Rep 2023; 13:21384. [PMID: 38049448 PMCID: PMC10696017 DOI: 10.1038/s41598-023-47919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
In human infants babbling is an important developmental stage of vocal plasticity to acquire maternal language. To investigate parallels in the vocal development of human infants and non-human mammals, seven key features of human babbling were defined, which are up to date only shown in bats and marmosets. This study will explore whether these features can also be found in gray mouse lemurs by investigating how infant vocal streams gradually resemble the structure of the adult trill call, which is not present at birth. Using unsupervised clustering, we distinguished six syllable types, whose sequential order gradually reflected the adult trill. A subset of adult syllable types was produced by several infants, with the syllable production being rhythmic, repetitive, and independent of the social context. The temporal structure of the calling bouts and the tempo-spectral features of syllable types became adult-like at the age of weaning. The age-dependent changes in the acoustic parameters differed between syllable types, suggesting that they cannot solely be explained by physical maturation of the vocal apparatus. Since gray mouse lemurs exhibit five features of animal babbling, they show parallels to the vocal development of human infants, bats, and marmosets.
Collapse
Affiliation(s)
| | - Daniel Romero-Mujalli
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
- Department for Environment Constructions and Design, Institute of Microbiology (IM), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850, Mendrisio, Switzerland
| | - Tjard Bergmann
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Marina Scheumann
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| |
Collapse
|
12
|
Zhao L, Wang X. Frontal cortex activity during the production of diverse social communication calls in marmoset monkeys. Nat Commun 2023; 14:6634. [PMID: 37857618 PMCID: PMC10587070 DOI: 10.1038/s41467-023-42052-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Vocal communication is essential for social behaviors in humans and non-human primates. While the frontal cortex is crucial to human speech production, its role in vocal production in non-human primates has long been questioned. It is unclear whether activities in the frontal cortex represent diverse vocal signals used in non-human primate communication. Here we studied single neuron activities and local field potentials (LFP) in the frontal cortex of male marmoset monkeys while the animal engaged in vocal exchanges with conspecifics in a social environment. We found that both single neuron activities and LFP were modulated by the production of each of the four major call types. Moreover, neural activities showed distinct patterns for different call types and theta-band LFP oscillations showed phase-locking to the phrases of twitter calls, suggesting a neural representation of vocalization features. Our results suggest important functions of the marmoset frontal cortex in supporting the production of diverse vocalizations in communication.
Collapse
Affiliation(s)
- Lingyun Zhao
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, 94158, USA.
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
13
|
Miss F, Adriaense J, Burkart J. Towards integrating joint action research: Developmental and evolutionary perspectives on co-representation. Neurosci Biobehav Rev 2022; 143:104924. [DOI: 10.1016/j.neubiorev.2022.104924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
|
14
|
Bouchet H, Lemasson A, Collier K, Marker L, Schmidt-Küntzel A, Johnston B, Hausberger M. Early life experience and sex influence acoustic repertoire use in wild-born, but hand-reared, captive cheetahs (Acinonyx jubatus). Dev Psychobiol 2022; 64:e22309. [PMID: 36282750 DOI: 10.1002/dev.22309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023]
Abstract
Early deprivation of adult influence is known to have long-lasting effects on social abilities, notably communication skills, as adults play a key role in guiding and regulating the behavior of youngsters, including acoustic repertoire use in species in which vocal production is not learned. Cheetahs grow up alongside their mother for 18 months, thus maternal influences on the development of social skills are likely to be crucial. Here, we investigated the impact of early maternal deprivation on vocal production and use in 12 wild-born cheetahs, rescued and subsequently hand-reared either at an early (less than 2 months) or a later stage of development. We could distinguish 16 sound types, produced mostly singly but sometimes in repeated or multitype sound sequences. The repertoire of these cheetahs did not differ fundamentally from that described in other studies on adult cheetahs, but statistical analyses revealed a concurrent effect of both early experience and sex on repertoire use. More specifically, early-reared males were characterized by a high proportion of Purr, Meow, and Stutter; early-reared females Mew, Growl, Hoot, Sneeze, and Hiss; late-reared males Meow, Mew, Growl, and Howl; and late-reared females mostly Meow. Our study demonstrates therefore the long-term effects of maternal deprivation on communication skills in a limited-vocal learner and its differential effect according to sex, in line with known social differences and potential differential maternal investment. More generally, it emphasizes the critical importance to consider the past history of the subjects (e.g., captive/wild-born, mother/hand-reared, early/late-mother-deprived, etc.) when studying social behavior, notably acoustic communication.
Collapse
Affiliation(s)
- Hélène Bouchet
- CNRS, EthoS (Ethologie animale et humaine), Univ Rennes, Normandie Univ, UMR 6552, Paimpont, France
| | - Alban Lemasson
- CNRS, EthoS (Ethologie animale et humaine), Univ Rennes, Normandie Univ, UMR 6552, Rennes, France.,Institut Universitaire de France, Paris, France
| | - Katie Collier
- CNRS, EthoS (Ethologie animale et humaine), Univ Rennes, Normandie Univ, UMR 6552, Paimpont, France
| | | | | | | | - Martine Hausberger
- CNRS, EthoS (Ethologie animale et humaine), Univ Rennes, Normandie Univ, UMR 6552, Paimpont, France
| |
Collapse
|
15
|
Burkart JM, Adriaense JEC, Brügger RK, Miss FM, Wierucka K, van Schaik CP. A convergent interaction engine: vocal communication among marmoset monkeys. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210098. [PMID: 35876206 PMCID: PMC9315454 DOI: 10.1098/rstb.2021.0098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/26/2022] [Indexed: 09/14/2023] Open
Abstract
To understand the primate origins of the human interaction engine, it is worthwhile to focus not only on great apes but also on callitrichid monkeys (marmosets and tamarins). Like humans, but unlike great apes, callitrichids are cooperative breeders, and thus habitually engage in coordinated joint actions, for instance when an infant is handed over from one group member to another. We first explore the hypothesis that these habitual cooperative interactions, the marmoset interactional ethology, are supported by the same key elements as found in the human interaction engine: mutual gaze (during joint action), turn-taking, volubility, as well as group-wide prosociality and trust. Marmosets show clear evidence of these features. We next examine the prediction that, if such an interaction engine can indeed give rise to more flexible communication, callitrichids may also possess elaborate communicative skills. A review of marmoset vocal communication confirms unusual abilities in these small primates: high volubility and large vocal repertoires, vocal learning and babbling in immatures, and voluntary usage and control. We end by discussing how the adoption of cooperative breeding during human evolution may have catalysed language evolution by adding these convergent consequences to the great ape-like cognitive system of our hominin ancestors. This article is part of the theme issue 'Revisiting the human 'interaction engine': comparative approaches to social action coordination'.
Collapse
Affiliation(s)
- J. M. Burkart
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution ISLE, University of Zurich, Affolternstrasse 56, 8050 Zurich, Switzerland
| | - J. E. C. Adriaense
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - R. K. Brügger
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - F. M. Miss
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - K. Wierucka
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - C. P. van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution ISLE, University of Zurich, Affolternstrasse 56, 8050 Zurich, Switzerland
| |
Collapse
|
16
|
Yi Y, Choi A, Lee S, Ham S, Jang H, Oktaviani R, Mardiastuti A, Choe JC. Transient co-singing of offspring and mothers in non-duetting Javan gibbons (Hylobates moloch). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.910260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the vocalizations of non-human primates were thought to be innate, recent studies have revealed highly flexible vocalizations in immatures. This behavior suggests that social influences have an important role in developing vocalizations. Yet not much is known about how non-human primate vocalization develop and how the vocalizations of immature animals differ between sexes. Here, we analyzed 95 cases of co-singing between mothers and offspring out of 240 female songs from three groups of wild Javan gibbon (Hylobates moloch) in Gunung Halimun-Salak National Park, Indonesia, between 2009 and 2021. Hylobates moloch is one of only two gibbon species with pairs that do not duet. Instead, they produce sex-specific solo songs. We found that both offspring female and male H. moloch follow their mothers’ female-specific songs, similar to other duetting gibbon species. Immatures started co-singing with their mothers from 7 months old, but with an average starting age of about 24 months. As female offspring grew older, they co-sung with mothers more often while male offspring did not. After 7 years of age, both sexes stopped co-singing with their mothers and started singing alone, following their own sex-specific vocalizations. We did not find any relation between male offspring co-singing and territorial functions (e.g., co-singing more during intergroup encounters or closer to home range borders). Our results suggest that mothers’ songs may trigger male offspring and females to practice singing, but not specifically for males to defend territories. We highlight that despite the absence of duets, H. moloch develop their vocalizations from early infancy and throughout their maturation while co-singing with mothers. However, the level of co-singing varies depending on the sexes. Our study is the first to elucidate the sex-specific trajectories of vocal development in H. moloch across years, indicating that offspring in non-duetting gibbons co-sing with mothers like in duetting species.
Collapse
|
17
|
Salmi R, Szczupider M, Carrigan J. A novel attention-getting vocalization in zoo-housed western gorillas. PLoS One 2022; 17:e0271871. [PMID: 35947550 PMCID: PMC9365142 DOI: 10.1371/journal.pone.0271871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
As a critical aspect of language, vocal learning is extremely rare in animals, having only been described in a few distantly related species. New evidence, however, extends vocal learning/innovation to the primate order, with zoo-housed chimpanzees and orangutans producing novel vocal signals to attract the attention of familiar human caregivers. If the ability to produce novel vocalizations as a means of navigating evolutionarily novel circumstances spans the Hominidae family, then we can expect to find evidence for it in the family’s third genus, Gorilla. To explore this possibility, we conduct an experiment with eight gorillas from Zoo Atlanta to examine whether they use species-atypical vocalizations to get the attention of humans across three different conditions: just a human, just food, or a human holding food. Additionally, we survey gorilla keepers from other AZA-member zoos to compile a list of common attention-getting signals used by the gorillas in their care. Our experiment results indicated that Zoo Atlanta gorillas vocalized most often during the human-food condition, with the most frequently used vocal signal being a species-atypical sound somewhere between a sneeze and a cough (n = 28). This previously undescribed sound is acoustically different from other calls commonly produced during feeding (i.e., single grunts and food-associated calls). Our survey and analyses of recordings from other zoos confirmed that this novel attention-getting sound is not unique to Zoo Atlanta, although further work should be done to better determine the extent and patterns of transmission and/or potential independent innovation of this sound across captive gorilla populations. These findings represent one of the few pieces of evidence of spontaneous novel vocal production in non-enculturated individuals of this species, supporting the inclusion of great apes as moderate vocal learners and perhaps demonstrating an evolutionary function to a flexible vocal repertoire.
Collapse
Affiliation(s)
- Roberta Salmi
- Department of Anthropology, University of Georgia, Athens, GA, United States of America
- * E-mail:
| | - Monica Szczupider
- Department of Anthropology, University of Georgia, Athens, GA, United States of America
- Intergrative Conservation Graduate Program, University of Georgia, Athens, GA, United States of America
| | - Jodi Carrigan
- Zoo Atlanta, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Narayanan DZ, Takahashi DY, Kelly LM, Hlavaty SI, Huang J, Ghazanfar AA. Prenatal development of neonatal vocalizations. eLife 2022; 11:78485. [PMID: 35880740 PMCID: PMC9391037 DOI: 10.7554/elife.78485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Human and non-human primates produce rhythmical sounds as soon as they are born. These early vocalizations are important for soliciting the attention of caregivers. How they develop, remains a mystery. The orofacial movements necessary for producing these vocalizations have distinct spatiotemporal signatures. Therefore, their development could potentially be tracked over the course of prenatal life. We densely and longitudinally sampled fetal head and orofacial movements in marmoset monkeys using ultrasound imaging. We show that orofacial movements necessary for producing rhythmical vocalizations differentiate from a larger movement pattern that includes the entire head. We also show that signature features of marmoset infant contact calls emerge prenatally as a distinct pattern of orofacial movements. Our results establish that aspects of the sensorimotor development necessary for vocalizing occur prenatally, even before the production of sound.
Collapse
Affiliation(s)
- Darshana Z Narayanan
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Lauren M Kelly
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Sabina I Hlavaty
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| | - Junzhou Huang
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, United States
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| |
Collapse
|
19
|
Castellucci GA, Guenther FH, Long MA. A Theoretical Framework for Human and Nonhuman Vocal Interaction. Annu Rev Neurosci 2022; 45:295-316. [PMID: 35316612 PMCID: PMC9909589 DOI: 10.1146/annurev-neuro-111020-094807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vocal communication is a critical feature of social interaction across species; however, the relation between such behavior in humans and nonhumans remains unclear. To enable comparative investigation of this topic, we review the literature pertinent to interactive language use and identify the superset of cognitive operations involved in generating communicative action. We posit these functions comprise three intersecting multistep pathways: (a) the Content Pathway, which selects the movements constituting a response; (b) the Timing Pathway, which temporally structures responses; and (c) the Affect Pathway, which modulates response parameters according to internal state. These processing streams form the basis of the Convergent Pathways for Interaction framework, which provides a conceptual model for investigating the cognitive and neural computations underlying vocal communication across species.
Collapse
Affiliation(s)
- Gregg A. Castellucci
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
| | - Frank H. Guenther
- Departments of Speech, Language & Hearing Sciences and Biomedical Engineering, Boston University, Boston, MA, USA
| | - Michael A. Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
20
|
Samandra R, Haque ZZ, Rosa MGP, Mansouri FA. The marmoset as a model for investigating the neural basis of social cognition in health and disease. Neurosci Biobehav Rev 2022; 138:104692. [PMID: 35569579 DOI: 10.1016/j.neubiorev.2022.104692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/23/2023]
Abstract
Social-cognitive processes facilitate the use of environmental cues to understand others, and to be understood by others. Animal models provide vital insights into the neural underpinning of social behaviours. To understand social cognition at even deeper behavioural, cognitive, neural, and molecular levels, we need to develop more representative study models, which allow testing of novel hypotheses using human-relevant cognitive tasks. Due to their cooperative breeding system and relatively small size, common marmosets (Callithrix jacchus) offer a promising translational model for such endeavours. In addition to having social behavioural patterns and group dynamics analogous to those of humans, marmosets have cortical brain areas relevant for the mechanistic analysis of human social cognition, albeit in simplified form. Thus, they are likely suitable animal models for deciphering the physiological processes, connectivity and molecular mechanisms supporting advanced cognitive functions. Here, we review findings emerging from marmoset social and behavioural studies, which have already provided significant insights into executive, motivational, social, and emotional dysfunction associated with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zakia Z Haque
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre for Integrative Brain Function, Monash University, Australia.
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre for Integrative Brain Function, Monash University, Australia.
| |
Collapse
|
21
|
A mechanism for punctuating equilibria during mammalian vocal development. PLoS Comput Biol 2022; 18:e1010173. [PMID: 35696441 PMCID: PMC9232141 DOI: 10.1371/journal.pcbi.1010173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 06/24/2022] [Accepted: 05/05/2022] [Indexed: 12/02/2022] Open
Abstract
Evolution and development are typically characterized as the outcomes of gradual changes, but sometimes (states of equilibrium can be punctuated by sudden change. Here, we studied the early vocal development of three different mammals: common marmoset monkeys, Egyptian fruit bats, and humans. Consistent with the notion of punctuated equilibria, we found that all three species undergo at least one sudden transition in the acoustics of their developing vocalizations. To understand the mechanism, we modeled different developmental landscapes. We found that the transition was best described as a shift in the balance of two vocalization landscapes. We show that the natural dynamics of these two landscapes are consistent with the dynamics of energy expenditure and information transmission. By using them as constraints for each species, we predicted the differences in transition timing from immature to mature vocalizations. Using marmoset monkeys, we were able to manipulate both infant energy expenditure (vocalizing in an environment with lighter air) and information transmission (closed-loop contingent parental vocal playback). These experiments support the importance of energy and information in leading to punctuated equilibrium states of vocal development. Species can sometimes evolve suddenly; their appearance is preceded and followed by long periods of stability. This process is known as “punctuated equilibrium”. Our data show that for three mammalian species—marmoset monkeys, fruit bats, and humans—early vocal development trajectories can also be characterized as different equilibrium states punctuated by sharp transitions; transitions indicate the advent of a new vocal behavior. To better understand the putative mechanism behind such transitions, we show that a balance model, in which variables trade-off in their importance over time, captured this change by accurately simulating the shape of the developmental trajectory and predicting the timing of the transition between immature and mature vocal states for all three species. Two variables—energy and information—were hypothesized to trade-off during development. We tested and found support for this hypothesis in analyses of two marmoset monkey experiments, one which manipulated energy metabolic costs and another which manipulated information transmission.
Collapse
|
22
|
Zhang YS, Alvarez JL, Ghazanfar AA. Arousal elevation drives the development of oscillatory vocal output. J Neurophysiol 2022; 127:1519-1531. [PMID: 35475704 PMCID: PMC9169828 DOI: 10.1152/jn.00007.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Adult behaviors, such as vocal production, often exhibit temporal regularity. In contrast, their immature forms are more irregular. We ask whether the coupling of motor behaviors with arousal changes gives rise to temporal regularity: Do they drive the transition from variable to regular motor output over the course of development? We used marmoset monkey vocal production to explore this putative influence of arousal on the nonlinear changes in their developing vocal output patterns. Based on a detailed analysis of vocal and arousal dynamics in marmosets, we put forth a general model incorporating arousal and auditory feedback loops for spontaneous vocal production. Using this model, we show that a stable oscillation can emerge as the baseline arousal increases, predicting the transition from stochastic to periodic oscillations observed during marmoset vocal development. We further provide a solution for how this model can explain vocal development as the joint consequence of energetic growth and social feedback. Together, we put forth a plausible mechanism for the development of arousal-mediated adaptive behavior.NEW & NOTEWORTHY The development of motor behaviors, and the influence of energetic and social factors on it, has long been of interest, yet we lack an integrated picture of how these different systems may interact. Through the lens of vocal development in infant marmosets, this study offers a solution for social behavior development by linking motor production with arousal states. Increases in arousal can drive the system out of stochastic states toward oscillatory dynamics ready for communication.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - John L Alvarez
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
- Department of Psychology, Princeton University, Princeton, New Jersey
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
23
|
Individual differences in co-representation in three monkey species (Callithrix jacchus, Sapajus apella and Macaca tonkeana) in the joint Simon task: the role of social factors and inhibitory control. Anim Cogn 2022; 25:1399-1415. [PMID: 35508572 PMCID: PMC9652238 DOI: 10.1007/s10071-022-01622-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 12/27/2022]
Abstract
Behavioral coordination is involved in many forms of primate interactions. Co-representation is the simultaneous mental representation of one’s own and the partner’s task and actions. It often underlies behavioral coordination and cooperation success. In humans, the dyadic social context can modulate co-representation. Here, we first investigated whether individual differences in co-representation in the joint Simon task in capuchin monkeys and Tonkean macaques can be explained by social factors, namely dyadic grooming and sociality index, rank difference and eigenvector centrality. These factors did not predict variation in co-representation. However, in this specific task, co-representation reduces rather than facilitates joint performance. Automatic co-representation therefore needs to be inhibited or suppressed to maximize cooperation success. We therefore also investigated whether general inhibitory control (detour-reaching) would predict co-representation in the joint Simon task in Tonkean macaques, brown capuchin and marmoset monkeys. Inhibitory control did neither explain individual differences nor species differences, since marmosets were most successful in their joint performance despite scoring lowest on inhibitory control. These results suggest that the animals’ ability to resolve conflicts between self and other representation to increase cooperation success in this task is gradually learned due to frequent exposure during shared infant care, rather than determined by strong general inhibitory control. Further, we conclude that the joint Simon task, while useful to detect co-representation non-invasively, is less suitable for identifying the factors explaining individual differences and thus a more fruitful approach to identify these factors is to design tasks in which co-representation favors, rather than hinders cooperation success.
Collapse
|
24
|
Lameira AR, Santamaría-Bonfil G, Galeone D, Gamba M, Hardus ME, Knott CD, Morrogh-Bernard H, Nowak MG, Campbell-Smith G, Wich SA. Sociality predicts orangutan vocal phenotype. Nat Ecol Evol 2022; 6:644-652. [PMID: 35314786 PMCID: PMC9085614 DOI: 10.1038/s41559-022-01689-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
In humans, individuals' social setting determines which and how language is acquired. Social seclusion experiments show that sociality also guides vocal development in songbirds and marmoset monkeys, but absence of similar great ape data has been interpreted as support to saltational notions for language origin, even if such laboratorial protocols are unethical with great apes. Here we characterize the repertoire entropy of orangutan individuals and show that in the wild, different degrees of sociality across populations are associated with different 'vocal personalities' in the form of distinct regimes of alarm call variants. In high-density populations, individuals are vocally more original and acoustically unpredictable but new call variants are short lived, whereas individuals in low-density populations are more conformative and acoustically consistent but also exhibit more complex call repertoires. Findings provide non-invasive evidence that sociality predicts vocal phenotype in a wild great ape. They prove false hypotheses that discredit great apes as having hardwired vocal development programmes and non-plastic vocal behaviour. Social settings mould vocal output in hominids besides humans.
Collapse
Affiliation(s)
- Adriano R Lameira
- Department of Psychology, University of Warwick, Coventry, UK.
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.
| | - Guillermo Santamaría-Bonfil
- Instituto Nacional de Electricidad y Energías Limpias, Gerencia de Tecnologías de la Información, Cuernavaca, México
| | - Deborah Galeone
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | | | - Cheryl D Knott
- Department of Anthropology, Boston University, Boston, MA, USA
| | - Helen Morrogh-Bernard
- Borneo Nature Foundation, Palangka Raya, Indonesia
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Matthew G Nowak
- The PanEco Foundation-Sumatran Orangutan Conservation Programme, Berg am Irchel, Switzerland
- Department of Anthropology, Southern Illinois University, Carbondale, IL, USA
| | - Gail Campbell-Smith
- Yayasan Inisiasi Alam Rehabilitasi Indonesia, International Animal Rescue, Ketapang, Indonesia
| | - Serge A Wich
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
- Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Calapai A, Cabrera-Moreno J, Moser T, Jeschke M. Flexible auditory training, psychophysics, and enrichment of common marmosets with an automated, touchscreen-based system. Nat Commun 2022; 13:1648. [PMID: 35347139 PMCID: PMC8960775 DOI: 10.1038/s41467-022-29185-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Devising new and more efficient protocols to analyze the phenotypes of non-human primates, as well as their complex nervous systems, is rapidly becoming of paramount importance. This is because with genome-editing techniques, recently adopted to non-human primates, new animal models for fundamental and translational research have been established. One aspect in particular, namely cognitive hearing, has been difficult to assess compared to visual cognition. To address this, we devised autonomous, standardized, and unsupervised training and testing of auditory capabilities of common marmosets with a cage-based standalone, wireless system. All marmosets tested voluntarily operated the device on a daily basis and went from naïve to experienced at their own pace and with ease. Through a series of experiments, here we show, that animals autonomously learn to associate sounds with images; to flexibly discriminate sounds, and to detect sounds of varying loudness. The developed platform and training principles combine in-cage training of common marmosets for cognitive and psychoacoustic assessment with an enriched environment that does not rely on dietary restriction or social separation, in compliance with the 3Rs principle.
Collapse
Affiliation(s)
- A Calapai
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Leibniz ScienceCampus "Primate Cognition", Göttingen, Germany
| | - J Cabrera-Moreno
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, 37075, Göttingen, Germany
| | - T Moser
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, 37075, Göttingen, Germany
- Auditory Neuroscience Group and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany
| | - M Jeschke
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany.
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany.
- Leibniz ScienceCampus "Primate Cognition", Göttingen, Germany.
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
26
|
Risueno-Segovia C, Koç O, Champéroux P, Hage SR. Cardiovascular mechanisms underlying vocal behavior in freely moving macaque monkeys. iScience 2022; 25:103688. [PMID: 35036873 PMCID: PMC8749184 DOI: 10.1016/j.isci.2021.103688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Communication is a keystone of animal behavior. However, the physiological states underlying natural vocal signaling are still largely unknown. In this study, we investigated the correlation of affective vocal utterances with concomitant cardiorespiratory mechanisms. We telemetrically recorded electrocardiography, blood pressure, and physical activity in six freely moving and interacting cynomolgus monkeys (Macaca fascicularis). Our results demonstrate that vocal onsets are strengthened during states of sympathetic activation, and are phase locked to a slower Mayer wave and a faster heart rate signal at ∼2.5 Hz. Vocalizations are coupled with a distinct peri-vocal physiological signature based on which we were able to predict the onset of vocal output using three machine learning classification models. These findings emphasize the role of cardiorespiratory mechanisms correlated with vocal onsets to optimize arousal levels and minimize energy expenditure during natural vocal production. Cardiovascular signals are measured telemetrically in freely moving macaques A distinct cardiovascular physiological signature is present before vocal onset Vocal onsets are phase locked to the Mayer wave and heart rate signals Vocal onsets prediction is performed using machine learning classification models
Collapse
Affiliation(s)
- Cristina Risueno-Segovia
- Neurobiology of Social Communication, Department of Otolaryngology-Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Street 25, 72076 Tübingen, Germany.,Graduate School of Neural and Behavioural Sciences-International Max Planck Research School, University of Tübingen, Österberg-Street 3, 72074 Tübingen, Germany
| | - Okan Koç
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Street 25, 72076 Tübingen, Germany
| | - Pascal Champéroux
- European Research Biology Center, ERBC, Chemin de Montifault, 18800 Baugy, France
| | - Steffen R Hage
- Neurobiology of Social Communication, Department of Otolaryngology-Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Street 25, 72076 Tübingen, Germany
| |
Collapse
|
27
|
Zeng HH, Huang JF, Li JR, Shen Z, Gong N, Wen YQ, Wang L, Poo MM. Distinct neuron populations for simple and compound calls in the primary auditory cortex of awake marmosets. Natl Sci Rev 2021; 8:nwab126. [PMID: 34876995 PMCID: PMC8645005 DOI: 10.1093/nsr/nwab126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 11/12/2022] Open
Abstract
Marmosets are highly social non-human primates that live in families. They exhibit rich vocalization, but the neural basis underlying this complex vocal communication is largely unknown. Here we report the existence of specific neuron populations in marmoset A1 that respond selectively to distinct simple or compound calls made by conspecific marmosets. These neurons were spatially dispersed within A1 but distinct from those responsive to pure tones. Call-selective responses were markedly diminished when individual domains of the call were deleted or the domain sequence was altered, indicating the importance of the global rather than local spectral-temporal properties of the sound. Compound call-selective responses also disappeared when the sequence of the two simple-call components was reversed or their interval was extended beyond 1 s. Light anesthesia largely abolished call-selective responses. Our findings demonstrate extensive inhibitory and facilitatory interactions among call-evoked responses, and provide the basis for further study of circuit mechanisms underlying vocal communication in awake non-human primates.
Collapse
Affiliation(s)
- Huan-huan Zeng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Jun-feng Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100086, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Jun-ru Li
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Zhiming Shen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Neng Gong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Yun-qing Wen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | | | | |
Collapse
|
28
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
29
|
Faust KM, Carouso-Peck S, Elson MR, Goldstein MH. The Origins of Social Knowledge in Altricial Species. ANNUAL REVIEW OF DEVELOPMENTAL PSYCHOLOGY 2021; 2:225-246. [PMID: 34553142 DOI: 10.1146/annurev-devpsych-051820-121446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human infants are altricial, born relatively helpless and dependent on parental care for an extended period of time. This protracted time to maturity is typically regarded as a necessary epiphenomenon of evolving and developing large brains. We argue that extended altriciality is itself adaptive, as a prolonged necessity for parental care allows extensive social learning to take place. Human adults possess a suite of complex social skills, such as language, empathy, morality, and theory of mind. Rather than requiring hardwired, innate knowledge of social abilities, evolution has outsourced the necessary information to parents. Critical information for species-typical development, such as species recognition, may originate from adults rather than from genes, aided by underlying perceptual biases for attending to social stimuli and capacities for statistical learning of social actions. We draw on extensive comparative findings to illustrate that, across species, altriciality functions as an adaptation for social learning from caregivers.
Collapse
Affiliation(s)
- Katerina M Faust
- Department of Psychology, Cornell University, Ithaca, New York 14853, USA
| | | | - Mary R Elson
- Department of Psychology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
30
|
Hosoya M, Fujioka M, Murayama AY, Ozawa H, Okano H, Ogawa K. Neuronal development in the cochlea of a nonhuman primate model, the common marmoset. Dev Neurobiol 2021; 81:905-938. [PMID: 34545999 PMCID: PMC9298346 DOI: 10.1002/dneu.22850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023]
Abstract
Precise cochlear neuronal development is vital to hearing ability. Understanding the developmental process of the spiral ganglion is useful for studying hearing loss aimed at aging or regenerative therapy. Although interspecies differences have been reported between rodents and humans, to date, most of our knowledge about the development of cochlear neuronal development has been obtained from rodent models because of the difficulty in using human fetal samples in this field. In this study, we investigated cochlear neuronal development in a small New World monkey species, the common marmoset (Callithrix jacchus). We examined more than 25 genes involved in the neuronal development of the cochlea and described the critical developmental steps of these neurons. We also revealed similarities and differences between previously reported rodent models and this primate animal model. Our results clarified that this animal model of cochlear neuronal development is more similar to humans than rodents and is suitable as an alternative for the analysis of human cochlear development. The time course established in this report will be a useful tool for studying primate‐specific neuronal biology of the inner ear, which could eventually lead to new treatment strategies for human hearing loss.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ayako Y Murayama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Fernandez AA, Burchardt LS, Nagy M, Knörnschild M. Babbling in a vocal learning bat resembles human infant babbling. Science 2021; 373:923-926. [PMID: 34413237 DOI: 10.1126/science.abf9279] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/13/2021] [Indexed: 11/02/2022]
Abstract
Babbling is a production milestone in infant speech development. Evidence for babbling in nonhuman mammals is scarce, which has prevented cross-species comparisons. In this study, we investigated the conspicuous babbling behavior of Saccopteryx bilineata, a bat capable of vocal production learning. We analyzed the babbling of 20 bat pups in the field during their 3-month ontogeny and compared its features to those that characterize babbling in human infants. Our findings demonstrate that babbling in bat pups is characterized by the same eight features as babbling in human infants, including the conspicuous features reduplication and rhythmicity. These parallels in vocal ontogeny between two mammalian species offer future possibilities for comparison of cognitive and neuromolecular mechanisms and adaptive functions of babbling in bats and humans.
Collapse
Affiliation(s)
- Ahana A Fernandez
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Animal Behavior Lab, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Lara S Burchardt
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Animal Behavior Lab, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Martina Nagy
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Mirjam Knörnschild
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Animal Behavior Lab, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany.,Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Balboa Ancon, Republic of Panama
| |
Collapse
|
32
|
Varella TT, Ghazanfar AA. Cooperative care and the evolution of the prelinguistic vocal learning. Dev Psychobiol 2021; 63:1583-1588. [PMID: 33826142 PMCID: PMC8355020 DOI: 10.1002/dev.22108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 11/06/2022]
Abstract
The development of the earliest vocalizations of human infants is influenced by social feedback from caregivers. As these vocalizations change, they increasingly elicit such feedback. This pattern of development is in stark contrast to that of our close phylogenetic relatives, Old World monkeys and apes, who produce mature-sounding vocalizations at birth. We put forth a scenario to account for this difference: Humans have a cooperative breeding strategy, which pressures infants to compete for the attention from caregivers. Humans use this strategy because large brained human infants are energetically costly and born altricial. An altricial brain accommodates vocal learning. To test this hypothetical scenario, we present findings from New World marmoset monkeys indicating that, through convergent evolution, this species adopted a largely identical developmental system-one that includes vocal learning and cooperative breeding.
Collapse
Affiliation(s)
- Thiago T. Varella
- Department of Psychology, Princeton University, Princeton NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA
| | - Asif A. Ghazanfar
- Department of Psychology, Princeton University, Princeton NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
33
|
Gultekin YB, Hildebrand DGC, Hammerschmidt K, Hage SR. High plasticity in marmoset monkey vocal development from infancy to adulthood. SCIENCE ADVANCES 2021; 7:7/27/eabf2938. [PMID: 34193413 PMCID: PMC8245035 DOI: 10.1126/sciadv.abf2938] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/17/2021] [Indexed: 05/21/2023]
Abstract
The vocal behavior of human infants undergoes marked changes across their first year while becoming increasingly speech-like. Conversely, vocal development in nonhuman primates has been assumed to be largely predetermined and completed within the first postnatal months. Contradicting this assumption, we found a dichotomy between the development of call features and vocal sequences in marmoset monkeys, suggestive of a role for experience. While changes in call features were related to physical maturation, sequences of and transitions between calls remained flexible until adulthood. As in humans, marmoset vocal behavior developed in stages correlated with motor and social development stages. These findings are evidence for a prolonged phase of plasticity during marmoset vocal development, a crucial primate evolutionary preadaptation for the emergence of vocal learning and speech.
Collapse
Affiliation(s)
- Yasemin B Gultekin
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Medical Center, University of Tübingen, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - David G C Hildebrand
- Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | - Kurt Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, 37077 Göttingen, Germany
| | - Steffen R Hage
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Medical Center, University of Tübingen, 72076 Tübingen, Germany.
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
34
|
Desjonquères C, Maliszewski J, Rodríguez RL. Juvenile social experience and practice have a switch-like influence on adult mate preferences in an insect. Evolution 2021; 75:1106-1116. [PMID: 33491177 DOI: 10.1111/evo.14180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Social causes of variation in animal communication systems have important evolutionary consequences, including speciation. The relevance of these effects depends on how widespread they are among animals. There is evidence for such effects not only in birds and mammals, but also frogs and some insects and spiders. Here, we analyze the social ontogeny of adult mate preferences in an insect, Enchenopa treehoppers. In these communal plant-feeding insects, individuals reared in isolation or in groups differ in their mate preferences, and the group-reared phenotype can be rescued by playbacks to isolation-reared individuals. We ask about the relative role of signaling experience and signaling practice during ontogeny on the development of adult mating preferences in Enchenopa females. Taking advantage of variation in the signal experience and signaling practice of isolation-reared individuals, we find switch-like effects for experience and practice on female mate preference phenotypes, with individuals having some experience and practice as juveniles best rescuing the group-reared preference phenotype. We discuss how understanding the nature and distribution of social-ontogenetic causes of variation in mate preferences and other sexual traits will bring new insights into how within- and between-population variation influences the evolution of communication systems.
Collapse
Affiliation(s)
- Camille Desjonquères
- Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Jak Maliszewski
- Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Rafael Lucas Rodríguez
- Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
35
|
Fischer J, Wegdell F, Trede F, Dal Pesco F, Hammerschmidt K. Vocal convergence in a multi-level primate society: insights into the evolution of vocal learning. Proc Biol Sci 2020; 287:20202531. [PMID: 33323082 PMCID: PMC7779498 DOI: 10.1098/rspb.2020.2531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
The extent to which nonhuman primate vocalizations are amenable to modification through experience is relevant for understanding the substrate from which human speech evolved. We examined the vocal behaviour of Guinea baboons, Papio papio, ranging in the Niokolo Koba National Park in Senegal. Guinea baboons live in a multi-level society, with units nested within parties nested within gangs. We investigated whether the acoustic structure of grunts of 27 male baboons of two gangs varied with party/gang membership and genetic relatedness. Males in this species are philopatric, resulting in increased male relatedness within gangs and parties. Grunts of males that were members of the same social levels were more similar than those of males in different social levels (N = 351 dyads for comparison within and between gangs, and N = 169 dyads within and between parties), but the effect sizes were small. Yet, acoustic similarity did not correlate with genetic relatedness, suggesting that higher amounts of social interactions rather than genetic relatedness promote the observed vocal convergence. We consider this convergence a result of sensory-motor integration and suggest this to be an implicit form of vocal learning shared with humans, in contrast to the goal-directed and intentional explicit form of vocal learning unique to human speech acquisition.
Collapse
Affiliation(s)
- Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg August University Göttingen, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Franziska Wegdell
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Franziska Trede
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Primate Genetics Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Federica Dal Pesco
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Kurt Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| |
Collapse
|
36
|
Fernandez AA, Knörnschild M. Pup Directed Vocalizations of Adult Females and Males in a Vocal Learning Bat. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Hosoya M, Fujioka M, Murayama AY, Okano H, Ogawa K. The common marmoset as suitable nonhuman alternative for the analysis of primate cochlear development. FEBS J 2020; 288:325-353. [PMID: 32323465 PMCID: PMC7818239 DOI: 10.1111/febs.15341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Cochlear development is a complex process with precise spatiotemporal patterns. A detailed understanding of this process is important for studies of congenital hearing loss and regenerative medicine. However, much of our understanding of cochlear development is based on rodent models. Animal models that bridge the gap between humans and rodents are needed. In this study, we investigated the development of hearing organs in a small New World monkey species, the common marmoset (Callithrix jacchus). We describe the general stages of cochlear development in comparison with those of humans and mice. Moreover, we examined more than 25 proteins involved in cochlear development and found that expression patterns were generally conserved between rodents and primates. However, several proteins involved in supporting cell processes and neuronal development exhibited interspecific expression differences. Human fetal samples for studies of primate‐specific cochlear development are extremely rare, especially for late developmental stages. Our results support the use of the common marmoset as an effective alternative for analyses of primate cochlear development.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ayako Y Murayama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Abstract
Vocal learning is the ability to modify vocal output on the basis of experience. Traditionally, species have been classified as either displaying or lacking this ability. A recent proposal, the vocal learning continuum, recognizes the need to have a more nuanced view of this phenotype and abandon the yes–no dichotomy. However, it also limits vocal learning to production of novel calls through imitation, moreover subserved by a forebrain-to-phonatory-muscles circuit. We discuss its limitations regarding the characterization of vocal learning across species and argue for a more permissive view. Vocal learning is the capacity to modify vocal output on the basis of experience, crucial for human speech and several animal communication systems. This Essay maintains that the existing evidence supports a more nuanced view of this phenotype, broadening the set of species, behaviors, and factors that can help us understand it.
Collapse
Affiliation(s)
- Pedro Tiago Martins
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
- * E-mail:
| | - Cedric Boeckx
- University of Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
39
|
Zhang YS, Ghazanfar AA. A Hierarchy of Autonomous Systems for Vocal Production. Trends Neurosci 2020; 43:115-126. [PMID: 31955902 PMCID: PMC7213988 DOI: 10.1016/j.tins.2019.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Vocal production is hierarchical in the time domain. These hierarchies build upon biomechanical and neural dynamics across various timescales. We review studies in marmoset monkeys, songbirds, and other vertebrates. To organize these data in an accessible and across-species framework, we interpret the different timescales of vocal production as belonging to different levels of an autonomous systems hierarchy. The first level accounts for vocal acoustics produced on short timescales; subsequent levels account for longer timescales of vocal output. The hierarchy of autonomous systems that we put forth accounts for vocal patterning, sequence generation, dyadic interactions, and context dependence by sequentially incorporating central pattern generators, intrinsic drives, and sensory signals from the environment. We then show the framework's utility by providing an integrative explanation of infant vocal production learning in which social feedback modulates infant vocal acoustics through the tuning of a drive signal.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
40
|
Fischer J, Hammerschmidt K. Towards a new taxonomy of primate vocal production learning. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190045. [PMID: 31735147 PMCID: PMC6895554 DOI: 10.1098/rstb.2019.0045] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 11/12/2022] Open
Abstract
The extent to which vocal learning can be found in nonhuman primates is key to reconstructing the evolution of speech. Regarding the adjustment of vocal output in relation to auditory experience (vocal production learning in the narrow sense), effects on the ontogenetic trajectory of vocal development as well as adjustment to group-specific call features have been found. Yet, a comparison of the vocalizations of different primate genera revealed striking similarities in the structure of calls and repertoires in different species of the same genus, indicating that the structure of nonhuman primate vocalizations is highly conserved. Thus, modifications in relation to experience only appear to be possible within relatively tight species-specific constraints. By contrast, comprehension learning may be extremely rapid and open-ended. In conjunction, these findings corroborate the idea of an ancestral independence of vocal production and auditory comprehension learning. To overcome the futile debate about whether or not vocal production learning can be found in nonhuman primates, we suggest putting the focus on the different mechanisms that may mediate the adjustment of vocal output in response to experience; these mechanisms may include auditory facilitation and learning from success. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, Göttingen, Niedersachsen 37077, Germany
- Department of Primate Cognition, Georg August University Göttingen, Göttingen, Niedersachsen, Germany
- Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Kurt Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, Göttingen, Niedersachsen 37077, Germany
- Leibniz Science Campus Primate Cognition, Göttingen, Germany
| |
Collapse
|
41
|
Nieder A, Mooney R. The neurobiology of innate, volitional and learned vocalizations in mammals and birds. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190054. [PMID: 31735150 PMCID: PMC6895551 DOI: 10.1098/rstb.2019.0054] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 11/12/2022] Open
Abstract
Vocalization is an ancient vertebrate trait essential to many forms of communication, ranging from courtship calls to free verse. Vocalizations may be entirely innate and evoked by sexual cues or emotional state, as with many types of calls made in primates, rodents and birds; volitional, as with innate calls that, following extensive training, can be evoked by arbitrary sensory cues in non-human primates and corvid songbirds; or learned, acoustically flexible and complex, as with human speech and the courtship songs of oscine songbirds. This review compares and contrasts the neural mechanisms underlying innate, volitional and learned vocalizations, with an emphasis on functional studies in primates, rodents and songbirds. This comparison reveals both highly conserved and convergent mechanisms of vocal production in these different groups, despite their often vast phylogenetic separation. This similarity of central mechanisms for different forms of vocal production presents experimentalists with useful avenues for gaining detailed mechanistic insight into how vocalizations are employed for social and sexual signalling, and how they can be modified through experience to yield new vocal repertoires customized to the individual's social group. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
42
|
Sakata JT, Woolley SC. Scaling the Levels of Birdsong Analysis. THE NEUROETHOLOGY OF BIRDSONG 2020. [DOI: 10.1007/978-3-030-34683-6_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Zürcher Y, Willems EP, Burkart JM. Are dialects socially learned in marmoset monkeys? Evidence from translocation experiments. PLoS One 2019; 14:e0222486. [PMID: 31644527 PMCID: PMC6808547 DOI: 10.1371/journal.pone.0222486] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/01/2019] [Indexed: 11/19/2022] Open
Abstract
The acoustic properties of vocalizations in common marmosets differ between populations. These differences may be the result of social vocal learning, but they can also result from environmental or genetic differences between populations. We performed translocation experiments to separately quantify the influence of a change in the physical environment (experiment 1), and a change in the social environment (experiment 2) on the acoustic properties of calls from individual captive common marmosets. If population differences were due to genetic differences, we expected no change in the vocalizations of the translocated marmosets. If differences were due to environmental factors, we expected vocalizations to permanently change contingent with environmental changes. If social learning was involved, we expected that the vocalizations of animals translocated to a new population with a different dialect would become more similar to the new population. In experiment 1, we translocated marmosets to a different physical environment without changing the social composition of the groups or their neighbours. Immediately after the translocation to the new facility, one out of three call types showed a significant change in call structure, but 5-6 weeks later, the calls were no longer different from before the translocation. Thus, the novel physical environment did not induce long lasting changes in the vocalizations of the marmosets. In experiment 2, we translocated marmosets to a new population with a different dialect. Importantly, our previous work had shown that these two populations differed significantly in vocalization structure. The translocated marmosets were still housed in their original social group, but after translocation they were surrounded by the vocalizations from neighbouring groups of the new population. The vocal distance between the translocated individuals and the new population decreased for two out of three call types over 16 weeks. Thus, even without direct social contact or interaction, the vocalizations of the translocated animals converged towards the new population, indicating that common marmosets can modify their calls due to acoustic input from conspecifics alone, via crowd vocal learning. To our knowledge, this is the first study able to distinguish between different explanations for vocal dialects as well as to show crowd vocal learning in a primate species.
Collapse
Affiliation(s)
- Yvonne Zürcher
- Department of Anthropology, University of Zurich, Winterthurerstrasse, Zürich, Switzerland
| | - Erik P. Willems
- Department of Anthropology, University of Zurich, Winterthurerstrasse, Zürich, Switzerland
| | - Judith M. Burkart
- Department of Anthropology, University of Zurich, Winterthurerstrasse, Zürich, Switzerland
| |
Collapse
|
44
|
Zhang YS, Takahashi DY, Liao DA, Ghazanfar AA, Elemans CPH. Vocal state change through laryngeal development. Nat Commun 2019; 10:4592. [PMID: 31597928 PMCID: PMC6785551 DOI: 10.1038/s41467-019-12588-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/13/2019] [Indexed: 01/26/2023] Open
Abstract
Across vertebrates, progressive changes in vocal behavior during postnatal development are typically attributed solely to developing neural circuits. How the changing body influences vocal development remains unknown. Here we show that state changes in the contact vocalizations of infant marmoset monkeys, which transition from noisy, low frequency cries to tonal, higher pitched vocalizations in adults, are caused partially by laryngeal development. Combining analyses of natural vocalizations, motorized excised larynx experiments, tensile material tests and high-speed imaging, we show that vocal state transition occurs via a sound source switch from vocal folds to apical vocal membranes, producing louder vocalizations with higher efficiency. We show with an empirically based model of descending motor control how neural circuits could interact with changing laryngeal dynamics, leading to adaptive vocal development. Our results emphasize the importance of embodied approaches to vocal development, where exploiting biomechanical consequences of changing material properties can simplify motor control, reducing the computational load on the developing brain.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Diana A Liao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
- Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| |
Collapse
|
45
|
Wirthlin M, Chang EF, Knörnschild M, Krubitzer LA, Mello CV, Miller CT, Pfenning AR, Vernes SC, Tchernichovski O, Yartsev MM. A Modular Approach to Vocal Learning: Disentangling the Diversity of a Complex Behavioral Trait. Neuron 2019; 104:87-99. [PMID: 31600518 PMCID: PMC10066796 DOI: 10.1016/j.neuron.2019.09.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022]
Abstract
Vocal learning is a behavioral trait in which the social and acoustic environment shapes the vocal repertoire of individuals. Over the past century, the study of vocal learning has progressed at the intersection of ecology, physiology, neuroscience, molecular biology, genomics, and evolution. Yet, despite the complexity of this trait, vocal learning is frequently described as a binary trait, with species being classified as either vocal learners or vocal non-learners. As a result, studies have largely focused on a handful of species for which strong evidence for vocal learning exists. Recent studies, however, suggest a continuum in vocal learning capacity across taxa. Here, we further suggest that vocal learning is a multi-component behavioral phenotype comprised of distinct yet interconnected modules. Discretizing the vocal learning phenotype into its constituent modules would facilitate integration of findings across a wider diversity of species, taking advantage of the ways in which each excels in a particular module, or in a specific combination of features. Such comparative studies can improve understanding of the mechanisms and evolutionary origins of vocal learning. We propose an initial set of vocal learning modules supported by behavioral and neurobiological data and highlight the need for diversifying the field in order to disentangle the complexity of the vocal learning phenotype.
Collapse
|
46
|
de Boer B. Evolution of Speech: Anatomy and Control. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:2932-2945. [PMID: 31465707 DOI: 10.1044/2019_jslhr-s-csmc7-18-0293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose This article critically reviews work on the evolution of speech in the context of motor control. It presents a brief introduction to the field of language evolution, of which the study of the evolution of speech is an integral component, and argues why taking the evolutionary perspective is useful. It then proceeds to review different methods of studying evolutionary questions: comparative research, experimental and observational research, and computer and mathematical modeling. Conclusions On the basis of comparative analysis of related species (specifically, other great apes) and on the basis of theoretical results, this article argues that adaptations for speech must have evolved gradually and that it is likely that speech motor control is one of the key aspects that has undergone observable selection related to speech, because, in this area, all the necessary precursors are present in closely related species. This implies that it must be possible to find empirical evidence for how speech evolved in the area of speech motor control. However, such research is only in its infancy at the present moment.
Collapse
Affiliation(s)
- Bart de Boer
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
47
|
Lameira AR, Shumaker RW. Orangutans show active voicing through a membranophone. Sci Rep 2019; 9:12289. [PMID: 31444387 PMCID: PMC6707206 DOI: 10.1038/s41598-019-48760-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/31/2019] [Indexed: 11/09/2022] Open
Abstract
Active voicing - voluntary control over vocal fold oscillation - is essential for speech. Nonhuman great apes can learn new consonant- and vowel-like calls, but active voicing by our closest relatives has historically been the hardest evidence to concede to. To resolve this controversy, a diagnostic test for active voicing is reached here through the use of a membranophone: a musical instrument where a player's voice flares a membrane's vibration through oscillating air pressure. We gave the opportunity to use a membranophone to six orangutans (with no effective training), three of whom produced a priori novel (species-atypical) individual-specific vocalizations. After 11 and 34 min, two subjects were successful by producing their novel vocalizations into the instrument, hence, confirming active voicing. Beyond expectation, however, within <1 hour, both subjects found opposite strategies to significantly alter their voice duration and frequency to better activate the membranophone, further demonstrating plastic voice control as a result of experience with the instrument. Results highlight how individual differences in vocal proficiency between great apes may affect performance in experimental tests. Failing to adjust a test's difficulty level to individuals' vocal skill may lead to false negatives, which may have largely been the case in past studies now used as "textbook fact" for great ape "missing" vocal capacities. Results qualitatively differ from small changes that can be caused in innate monkey calls by intensive months-long conditional training. Our findings verify that active voicing beyond the typical range of the species' repertoire, which in our species underpins the acquisition of new voiced speech sounds, is not uniquely human among great apes.
Collapse
Affiliation(s)
- Adriano R Lameira
- School of Psychology and Neuroscience, University of St. Andrews, St Andrews, UK. .,Department of Anthropology, Durham University, Durham, UK.
| | - Robert W Shumaker
- Indianapolis Zoo, Indianapolis, USA.,Krasnow Institute for Advanced Studies, George Mason University, Fairfax, USA.,Anthropology Department, Indiana University, Bloomington, USA
| |
Collapse
|
48
|
Pomberger T, Risueno-Segovia C, Gultekin YB, Dohmen D, Hage SR. Cognitive control of complex motor behavior in marmoset monkeys. Nat Commun 2019; 10:3796. [PMID: 31439849 PMCID: PMC6706403 DOI: 10.1038/s41467-019-11714-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/30/2019] [Indexed: 02/04/2023] Open
Abstract
Marmosets have attracted significant interest in the life sciences. Similarities with human brain anatomy and physiology, such as the granular frontal cortex, as well as the development of transgenic lines and potential for transferring rodent neuroscientific techniques to small primates make them a promising neurodegenerative and neuropsychiatric model system. However, whether marmosets can exhibit complex motor tasks in highly controlled experimental designs—one of the prerequisites for investigating higher-order control mechanisms underlying cognitive motor behavior—has not been demonstrated. We show that marmosets can be trained to perform vocal behavior in response to arbitrary visual cues in controlled operant conditioning tasks. Our results emphasize the marmoset as a suitable model to study complex motor behavior and the evolution of cognitive control underlying speech. Whether marmosets can exhibit complex motor tasks in controlled experimental designs has not yet been demonstrated. Here, the authors show that marmoset monkeys can be trained to call on command in controlled operant conditioning tasks.
Collapse
Affiliation(s)
- Thomas Pomberger
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences, International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074, Tübingen, Germany
| | - Cristina Risueno-Segovia
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences, International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074, Tübingen, Germany
| | - Yasemin B Gultekin
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences, International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074, Tübingen, Germany
| | - Deniz Dohmen
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences, International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074, Tübingen, Germany
| | - Steffen R Hage
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.
| |
Collapse
|
49
|
Gustison ML, Borjon JI, Takahashi DY, Ghazanfar AA. Vocal and locomotor coordination develops in association with the autonomic nervous system. eLife 2019; 8:e41853. [PMID: 31310236 PMCID: PMC6684270 DOI: 10.7554/elife.41853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 07/06/2019] [Indexed: 11/13/2022] Open
Abstract
In adult animals, movement and vocalizations are coordinated, sometimes facilitating, and at other times inhibiting, each other. What is missing is how these different domains of motor control become coordinated over the course of development. We investigated how postural-locomotor behaviors may influence vocal development, and the role played by physiological arousal during their interactions. Using infant marmoset monkeys, we densely sampled vocal, postural and locomotor behaviors and estimated arousal fluctuations from electrocardiographic measures of heart rate. We found that vocalizations matured sooner than postural and locomotor skills, and that vocal-locomotor coordination improved with age and during elevated arousal levels. These results suggest that postural-locomotor maturity is not required for vocal development to occur, and that infants gradually improve coordination between vocalizations and body movement through a process that may be facilitated by arousal level changes.
Collapse
Affiliation(s)
- Morgan L Gustison
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jeremy I Borjon
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUnited States
| |
Collapse
|
50
|
Abstract
Humans exhibit a high level of vocal plasticity in speech production, which allows us to acquire both native and foreign languages and dialects, and adapt to local accents in social communication. In comparison, non-human primates exhibit limited vocal plasticity, especially in adulthood, which would limit their ability to adapt to different social and environmental contexts in vocal communication. Here, we quantitatively examined the ability of adult common marmosets (Callithrix jacchus), a highly vocal New World primate species, to modulate their vocal production in social contexts. While recent studies have demonstrated vocal learning in developing marmosets, we know much less about the extent of vocal learning and plasticity in adult marmosets. We found, in the present study, that marmosets were able to adaptively modify the spectrotemporal structure of their vocalizations when they encountered interfering sounds. Our experiments showed that marmosets shifted the spectrum of their vocalizations away from the spectrum of the interfering sounds in order to avoid the overlap. More interestingly, we found that marmosets made predictive and long-lasting spectral shifts in their vocalizations after they had experienced a particular type of interfering sound. These observations provided evidence for directional control of the vocalization spectrum and long-term vocal plasticity by adult marmosets. The findings reported here have important implications for the ability of this New World primate species in voluntarily and adaptively controlling their vocal production in social communication.
Collapse
Affiliation(s)
- Lingyun Zhao
- 1 Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
| | - Bahar Boroumand Rad
- 2 Department of Biological Sciences, Towson University , Towson, MD 21252 , USA
| | - Xiaoqin Wang
- 1 Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
| |
Collapse
|