1
|
Gorji AE, Ahmadian K, Roudbari Z, Sadkowski T. Identification and analysis of differentially expressed lncRNAs and their ceRNA networks in DMD/mdx primary myoblasts. Sci Rep 2024; 14:23691. [PMID: 39390091 PMCID: PMC11467414 DOI: 10.1038/s41598-024-75221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
This study explored the significance of long non-coding RNAs (lncRNAs), particularly their role in maintaining dystrophin protein stability and regulating myocyte proliferation and differentiation. The investigation focused on DMD/mdx mouse skeletal muscle primary myoblasts, aiming to identify lncRNAs potential as biomarkers and therapeutic targets for Duchenne muscular dystrophy (DMD). Utilizing CLC Genomics Workbench software, 554 differentially expressed lncRNAs were identified in DMD/mdx mice compared to wild-type (WT) control. Among them, 373 were upregulated, and 181 were downregulated. The study highlighted specific lncRNAs (e.g., 5930430L01Rik, Gm10143, LncRNA1490, LncRNA580) and their potential regulatory roles in DMD key genes like IGF1, FN1, TNNI1, and MYOD1. By predicting miRNA and their connections with lncRNA and mRNA (ceRNA network) using tools such as miRNet, miRSYSTEM and miRCARTA, the study revealed potential indirect regulation of Dystrophin, IGF1R and UTRN genes by identified lncRNAs (e.g. 2310001H17Rik-203, C130073E24Rik-202, LncRNA2767, 5930430L01Rik and LncRNA580). These findings suggest that the identified lncRNAs may play crucial roles in the development and progression of DMD through their regulatory influence on key gene expression, providing valuable insights for potential therapeutic interventions.
Collapse
Affiliation(s)
- Abdolvahab Ebrahimpour Gorji
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| | - Kasra Ahmadian
- Department Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, 02-776, Poland.
| |
Collapse
|
2
|
Gatto F, Benemei S, Piluso G, Bello L. The complex landscape of DMD mutations: moving towards personalized medicine. Front Genet 2024; 15:1360224. [PMID: 38596212 PMCID: PMC11002111 DOI: 10.3389/fgene.2024.1360224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by progressive muscle degeneration, with respiratory and cardiac complications, caused by mutations in the DMD gene, encoding the protein dystrophin. Various DMD mutations result in different phenotypes and disease severity. Understanding genotype/phenotype correlations is essential to optimize clinical care, as mutation-specific therapies and innovative therapeutic approaches are becoming available. Disease modifier genes, trans-active variants influencing disease severity and phenotypic expressivity, may modulate the response to therapy, and become new therapeutic targets. Uncovering more disease modifier genes via extensive genomic mapping studies offers the potential to fine-tune prognostic assessments for individuals with DMD. This review provides insights into genotype/phenotype correlations and the influence of modifier genes in DMD.
Collapse
Affiliation(s)
| | | | - Giulio Piluso
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Luca Bello
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Woodcock IR, Tachas G, Desem N, Houweling PJ, Kean M, Emmanuel J, Kennedy R, Carroll K, de Valle K, Adams J, Lamandé SR, Coles C, Tiong C, Burton M, Villano D, Button P, Hogrel JY, Catling-Seyffer S, Ryan MM, Delatycki MB, Yiu EM. A phase 2 open-label study of the safety and efficacy of weekly dosing of ATL1102 in patients with non-ambulatory Duchenne muscular dystrophy and pharmacology in mdx mice. PLoS One 2024; 19:e0294847. [PMID: 38271438 PMCID: PMC10810432 DOI: 10.1371/journal.pone.0294847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/19/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND ATL1102 is a 2'MOE gapmer antisense oligonucleotide to the CD49d alpha subunit of VLA-4, inhibiting expression of CD49d on lymphocytes, reducing survival, activation and migration to sites of inflammation. Children with DMD have dystrophin deficient muscles susceptible to contraction induced injury, which triggers the immune system, exacerbating muscle damage. CD49d is a biomarker of disease severity in DMD, with increased numbers of high CD49d expressing T cells correlating with more severe and progressive weakess, despite corticosteroid treatment. METHODS This Phase 2 open label study assessed the safety, efficacy and pharmacokinetic profile of ATL1102 administered as 25 mg weekly by subcutaneous injection for 24 weeks in 9 non-ambulatory boys with DMD aged 10-18 years. The main objective was to assess safety and tolerability of ATL1102. Secondary objectives included the effect of ATL1102 on lymphocyte numbers in the blood, functional changes in upper limb function as assessed by Performance of Upper Limb test (PUL 2.0) and upper limb strength using MyoGrip and MyoPinch compared to baseline. RESULTS Eight out of nine participants were on a stable dose of corticosteroids. ATL1102 was generally safe and well tolerated. No serious adverse events were reported. There were no participant withdrawals from the study. The most commonly reported adverse events were injection site erythema and skin discoloration. There was no statistically significant change in lymphocyte count from baseline to week 8, 12 or 24 of dosing however, the CD3+CD49d+ T lymphocytes were statistically significantly higher at week 28 compared to week 24, four weeks past the last dose (mean change 0.40x109/L 95%CI 0.05, 0.74; p = 0.030). Functional muscle strength, as measured by the PUL2.0, EK2 and Myoset grip and pinch measures, and MRI fat fraction of the forearm muscles were stable throughout the trial period. CONCLUSION ATL1102, a novel antisense drug being developed for the treatment of inflammation that exacerbates muscle fibre damage in DMD, appears to be safe and well tolerated in non-ambulant boys with DMD. The apparent stabilisation observed on multiple muscle disease progression parameters assessed over the study duration support the continued development of ATL1102 for the treatment of DMD. TRIAL REGISTRATION Clinical Trial Registration. Australian New Zealand Clinical Trials Registry Number: ACTRN12618000970246.
Collapse
Affiliation(s)
- Ian R. Woodcock
- Department of Neurology, The Royal Children’s Hospital, Melbourne, Australia
- The Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | | | - Nuket Desem
- Antisense Therapeutics Ltd, Melbourne, Australia
| | - Peter J. Houweling
- The Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Michael Kean
- Department of Medical Imaging, The Royal Children’s Hospital, Melbourne, Australia
| | - Jaiman Emmanuel
- Department of Medical Imaging, The Royal Children’s Hospital, Melbourne, Australia
| | - Rachel Kennedy
- Department of Neurology, The Royal Children’s Hospital, Melbourne, Australia
- The Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Physiotherapy, University of Melbourne, Melbourne, Australia
| | - Kate Carroll
- Department of Neurology, The Royal Children’s Hospital, Melbourne, Australia
- The Murdoch Children’s Research Institute, Melbourne, Australia
| | - Katy de Valle
- Department of Neurology, The Royal Children’s Hospital, Melbourne, Australia
- The Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Physiotherapy, University of Melbourne, Melbourne, Australia
| | - Justine Adams
- The Murdoch Children’s Research Institute, Melbourne, Australia
| | - Shireen R. Lamandé
- The Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Chantal Coles
- The Murdoch Children’s Research Institute, Melbourne, Australia
| | - Chrystal Tiong
- The Murdoch Children’s Research Institute, Melbourne, Australia
| | - Matthew Burton
- The Murdoch Children’s Research Institute, Melbourne, Australia
| | - Daniella Villano
- Department of Neurology, The Royal Children’s Hospital, Melbourne, Australia
| | | | | | - Sarah Catling-Seyffer
- Department of Neurology, The Royal Children’s Hospital, Melbourne, Australia
- The Murdoch Children’s Research Institute, Melbourne, Australia
| | - Monique M. Ryan
- Department of Neurology, The Royal Children’s Hospital, Melbourne, Australia
- The Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Martin B. Delatycki
- Victorian Clinical Genetics Service, Melbourne, Australia
- Murdoch Children’s Research Institute, Bruce Lefroy Centre for Genetic Health Research, Melbourne, Australia
| | - Eppie M. Yiu
- Department of Neurology, The Royal Children’s Hospital, Melbourne, Australia
- The Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Thangarajh M, McDermott MP, Guglieri M, Griggs RC. Association between neurodevelopmental impairments and motor function in Duchenne muscular dystrophy. Ann Clin Transl Neurol 2023; 10:2285-2296. [PMID: 37804000 PMCID: PMC10723228 DOI: 10.1002/acn3.51914] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/13/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVE We explored various prognostic factors of motor outcomes in corticosteroid-naive boys with Duchenne Muscular Dystrophy (DMD). METHODS The associations between parent-reported neurodevelopmental concerns (speech delay, speech and language difficulties (SLD), and learning difficulties), DMD mutation location, and motor outcomes (6-minute walk distance (6MWD), North Star Ambulatory Assessment (NSAA) total score, 10-meter walk/run velocity, and rise from floor velocity) were studied in 196 corticosteroid-naive boys from ages 4 to less than 8 years. RESULTS Participants with SLD walked 25.8 fewer meters in 6 minutes than those without SLD (p = 0.005) but did not demonstrate statistical differences in NSAA total score, 10-meter walk/run velocity, and rise from floor velocity. Participants with distal DMD mutations with learning difficulties walked 51.8 fewer meters in 6 minutes than those without learning difficulties (p = 0.0007). Participants with distal DMD mutations were slower on 10-meter walk/run velocity, and rise from floor velocity (p = 0.02) than those with proximal DMD mutations. Participants with distal DMD mutations, who reported speech delay or learning difficulties, were slower on rise from floor velocity (p = 0.04, p = 0.01) than those with proximal DMD mutations. The mean NSAA total score was lower in participants with learning difficulties than in those without (p = 0.004). INTERPRETATION Corticosteroid-naive boys with DMD with distal DMD mutations may perform worse on some timed function tests, and that those with learning difficulties may perform worse on the NSAA. Pending confirmatory studies, our data underscore the importance of considering co-existing neurodevelopmental symptoms on motor outcome measures.
Collapse
Affiliation(s)
- Mathula Thangarajh
- Department of NeurologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Michael P. McDermott
- University of Rochester Medical CenterSchool of Medicine and DentistryRochesterNew YorkUSA
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research CentreNewcastle University and Newcastle Hospitals National Health Service Foundation TrustNewcastleUK
| | - Robert C. Griggs
- University of Rochester Medical CenterSchool of Medicine and DentistryRochesterNew YorkUSA
| |
Collapse
|
5
|
Nieves-Rodriguez S, Barthélémy F, Woods JD, Douine ED, Wang RT, Scripture-Adams DD, Chesmore KN, Galasso F, Miceli MC, Nelson SF. Transcriptomic analysis of paired healthy human skeletal muscles to identify modulators of disease severity in DMD. Front Genet 2023; 14:1216066. [PMID: 37576554 PMCID: PMC10415210 DOI: 10.3389/fgene.2023.1216066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Muscle damage and fibro-fatty replacement of skeletal muscles is a main pathologic feature of Duchenne muscular dystrophy (DMD) with more proximal muscles affected earlier and more distal affected later in the disease course, suggesting that different skeletal muscle groups possess distinctive characteristics that influence their susceptibility to disease. To explore transcriptomic factors driving differential gene expression and modulating DMD skeletal muscle severity, we characterized the transcriptome of vastus lateralis (VL), a more proximal and susceptible muscle, relative to tibialis anterior (TA), a more distal and protected muscle, in 15 healthy individuals using bulk RNA sequencing to identify gene expression differences that may mediate their relative susceptibility to damage with loss of dystrophin. Matching single nuclei RNA sequencing data was generated for 3 of the healthy individuals, to infer cell composition in the bulk RNA sequencing dataset and to improve mapping of differentially expressed genes to their cell source of expression. A total of 3,410 differentially expressed genes were identified and mapped to cell type using single nuclei RNA sequencing of muscle, including long non-coding RNAs and protein coding genes. There was an enrichment of genes involved in calcium release from the sarcoplasmic reticulum, particularly in the myofibers and these myofiber genes were higher in the VL. There was an enrichment of genes in "Collagen-Containing Extracellular Matrix" expressed by fibroblasts, endothelial, smooth muscle and pericytes, with most genes higher in the TA, as well as genes in "Regulation Of Apoptotic Process" expressed across all cell types. Previously reported genetic modifiers were also enriched within the differentially expressed genes. We also identify 6 genes with differential isoform usage between the VL and TA. Lastly, we integrate our findings with DMD RNA sequencing data from the TA, and identify "Collagen-Containing Extracellular Matrix" and "Negative Regulation Of Apoptotic Process" as differentially expressed between DMD compared to healthy. Collectively, these findings propose novel candidate mechanisms that may mediate differential muscle susceptibility in muscular dystrophies and provide new insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Shirley Nieves-Rodriguez
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Florian Barthélémy
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeremy D. Woods
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emilie D. Douine
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Richard T. Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Deirdre D. Scripture-Adams
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin N. Chesmore
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Francesca Galasso
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - M. Carrie Miceli
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Bello L, Hoffman EP, Pegoraro E. Is it time for genetic modifiers to predict prognosis in Duchenne muscular dystrophy? Nat Rev Neurol 2023; 19:410-423. [PMID: 37308617 DOI: 10.1038/s41582-023-00823-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Patients with Duchenne muscular dystrophy (DMD) show clinically relevant phenotypic variability, despite sharing the same primary biochemical defect (dystrophin deficiency). Factors contributing to this clinical variability include allelic heterogeneity (specific DMD mutations), genetic modifiers (trans-acting genetic polymorphisms) and variations in clinical care. Recently, a series of genetic modifiers have been identified, mostly involving genes and/or proteins that regulate inflammation and fibrosis - processes increasingly recognized as being causally linked with physical disability. This article reviews genetic modifier studies in DMD to date and discusses the effect of genetic modifiers on predicting disease trajectories (prognosis), clinical trial design and interpretation (inclusion of genotype-stratified subgroup analyses) and therapeutic approaches. The genetic modifiers identified to date underscore the importance of progressive fibrosis, downstream of dystrophin deficiency, in driving the disease process. As such, genetic modifiers have shown the importance of therapies aimed at slowing this fibrotic process and might point to key drug targets.
Collapse
Affiliation(s)
- Luca Bello
- Department of Neurosciences (DNS), University of Padova, Padova, Italy
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University (State University of New York), Binghamton, NY, USA
| | - Elena Pegoraro
- Department of Neurosciences (DNS), University of Padova, Padova, Italy.
| |
Collapse
|
7
|
Andrews JG, Galindo MK, Thomas S, Mathews KD, Whitehead N. DMD Gene and Dystrophinopathy Phenotypes Associated With Mutations: A Systematic Review for Clinicians. J Clin Neuromuscul Dis 2023; 24:171-187. [PMID: 37219861 DOI: 10.1097/cnd.0000000000000436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABSTRACT The diagnosis of Duchenne and Becker muscular dystrophy (DBMD) is made by genetic testing in approximately 95% of cases. Although specific mutations can be associated with skeletal muscle phenotype, pulmonary and cardiac comorbidities (leading causes of death in Duchenne) have not been associated with Duchenne muscular dystrophy mutation type or location and vary within families. Therefore, identifying predictors for phenotype severity beyond frameshift prediction is important clinically. We performed a systematic review assessing research related to genotype-phenotype correlations in DBMD. While there are severity differences across the spectrum and within mild and severe forms of DBMD, few protective or exacerbating mutations within the dystrophin gene were reported. Except for intellectual disability, clinical test results reporting genotypic information are insufficient for clinical prediction of severity and comorbidities and the predictive validity is too low to be useful when advising families. Including expanded information coupled with proposed severity predictions in clinical genetic reports for DBMD is critical for improving anticipatory guidance.
Collapse
Affiliation(s)
- Jennifer G Andrews
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ
| | | | | | - Katherine D Mathews
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA; and
| | | |
Collapse
|
8
|
Fang Y, McDonald CM, Clemens PR, Gordish HD, Illei K, Hoffman EP, Dang UJ. Modeling Early Heterogeneous Rates of Progression in Boys with Duchenne Muscular Dystrophy. J Neuromuscul Dis 2023; 10:349-364. [PMID: 36806514 DOI: 10.3233/jnd-221527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) exhibits substantial variability in rates of disease progression and response to treatment. This has hindered treatment development and complicated interpretation of drug effects in clinical trials. OBJECTIVE We hypothesized that a multivariate combination of early-age clinical outcome measurements can explain differential disease progression. METHODS Data on boys with DMD (ages 4-<10 years), both treated with steroidal anti-inflammatories and untreated, were obtained from CINRG Duchenne Natural History Study (n = 209) and vamorolone VBP15-002/003/LTE (n = 46) studies. Velocities from three timed function tests (TFTs; stand from supine, run/walk 10 meters, and climb 4 stairs) were simultaneously modeled in a longitudinal latent class analysis. RESULTS Three classes of differentially progressing early age DMD motor trajectories were identified. Quicker decline/progression was associated with lower baseline TFT velocities, earlier loss of ability to finish a TFT, and lower predicted velocities. Earlier substantial steroid exposure was associated with greater TFT velocities while the moderate progression class was observed to have the largest difference in performance between boys treated early with steroids vs. not. Sample size calculations with the class showing the largest treatment response showed a large reduction in required sample size as compared to using summaries from all participants. Gene mutations were also investigated in post-hoc analyses, with mutations near the beginning of the DMD gene (Dp427 absent and Dp140/Dp71 present) found to be enriched in the slowest progressing class. CONCLUSIONS This study provides insight into the variation in DMD progression through a latent class analysis. Our findings show class-related trajectories of motor outcomes and pharmacological response to corticosteroids, and suggest that enrichment strategies and/or subgroup analyses could be considered further in design of therapeutic interventions in DMD.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Craig M McDonald
- University of California Davis School of Medicine, Sacramento, CA, USA
| | - Paula R Clemens
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Veteran Affairs Medical Center, Pittsburgh, PA, USA
| | | | | | - Eric P Hoffman
- ReveraGen BioPharma, Rockville, MD, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, NY, USA
| | | | - Utkarsh J Dang
- Department of Health Sciences, Carleton University, Ottawa, Canada
| |
Collapse
|
9
|
Fortunato F, Ferlini A. Biomarkers in Duchenne Muscular Dystrophy: Current Status and Future Directions. J Neuromuscul Dis 2023; 10:987-1002. [PMID: 37545256 PMCID: PMC10657716 DOI: 10.3233/jnd-221666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Duchenne muscular dystrophy is a severe, X-linked disease characterized by decreased muscle mass and function in children. Genetic and biochemical research over the years has led to the characterization of the cause and the pathophysiology of the disease. Moreover, the elucidation of genetic mechanisms underlining Duchenne muscular dystrophy has allowed for the design of innovative personalized therapies.The identification of specific, accurate, and sensitive biomarkers is becoming crucial for evaluating muscle disease progression and response to therapies, disease monitoring, and the acceleration of drug development and related regulatory processes.This review illustrated the up-to-date progress in the development of candidate biomarkers in DMD at the level of proteins, metabolites, micro-RNAs (miRNAs) and genetic modifiers also highlighting the complexity of translating research results to clinical practice.We highlighted the challenges encountered in translating biomarkers into the clinical context and the existing bottlenecks hampering the adoption of biomarkers as surrogate endpoints. These challenges could be overcome by national and international collaborative efforts, multicenter data sharing, definition of public biobanks and patients' registries, and creation of large cohorts of patients. Novel statistical tools/ models suitable to analyze small patient numbers are also required.Finally, collaborations with pharmaceutical companies would greatly benefit biomarker discovery and their translation in clinical trials.
Collapse
Affiliation(s)
- Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Schreyer L, Reilly J, McConkey H, Kerkhof J, Levy MA, Hu J, Hnaini M, Sadikovic B, Campbell C. The discovery of the DNA methylation episignature for Duchenne muscular dystrophy. Neuromuscul Disord 2023; 33:5-14. [PMID: 36572586 DOI: 10.1016/j.nmd.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive neuromuscular disorder characterized by progressive muscle weakness due to loss of function mutations in the dystrophin gene. Variation in clinical presentation, the rate of disease progression, and treatment responsiveness have been observed amongst DMD patients, suggesting that factors beyond the loss of dystrophin may contribute to DMD pathophysiology. Epigenetic mechanisms are becoming recognized as important factors implicated in the etiology and progression of various diseases. A growing number of genetic syndromes have been associated with unique genomic DNA methylation patterns (called "episignatures") that can be used for diagnostic testing and as disease biomarkers. To further investigate DMD pathophysiology, we assessed the genome-wide DNA methylation profiles of peripheral blood from 36 patients with DMD using the combination of Illumina Infinium Methylation EPIC bead chip array and EpiSign technology. We identified a unique episignature for DMD that whose specificity was confirmed in relation other neurodevelopmental disorders with known episignatures. By modeling the DMD episignature, we developed a new DMD episignature biomarker and provided novel insights into the molecular pathogenesis of this disorder, which have the potential to advance more effective, personalized approaches to DMD care.
Collapse
Affiliation(s)
- Leighton Schreyer
- Department of Neuroscience, Western University, London, ON N6A 3K7, Canada
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jonathan Hu
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mona Hnaini
- Department of Pediatrics, Clinical Neurological Sciences, Western University, London, ON N6A 3K7, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - Craig Campbell
- Department of Pediatrics, Clinical Neurological Sciences and Epidemiology, Western University, London, ON N6A 3K7, Canada.
| |
Collapse
|
11
|
Barnard AM, Hammers DW, Triplett WT, Kim S, Forbes SC, Willcocks RJ, Daniels MJ, Senesac CR, Lott DJ, Arpan I, Rooney WD, Wang RT, Nelson SF, Sweeney HL, Vandenborne K, Walter GA. Evaluating Genetic Modifiers of Duchenne Muscular Dystrophy Disease Progression Using Modeling and MRI. Neurology 2022; 99:e2406-e2416. [PMID: 36240102 PMCID: PMC9687406 DOI: 10.1212/wnl.0000000000201163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Duchenne muscular dystrophy (DMD) is a progressive muscle degenerative disorder with a well-characterized disease phenotype but considerable interindividual heterogeneity that is not well understood. The aim of this study was to evaluate the effects of dystrophin variations and genetic modifiers of DMD on rate and age of muscle replacement by fat. METHODS One hundred seventy-five corticosteroid treated participants from the ImagingDMD natural history study underwent repeated magnetic resonance spectroscopy (MRS) of the vastus lateralis (VL) and soleus (SOL) to determine muscle fat fraction (FF). MRS was performed annually in most instances; however, some individuals had additional visits at 3 or 6 monthss intervals. FF changes over time were modeled using nonlinear mixed effects to estimate disease trajectories based on the age that the VL or SOL reached half-maximum change in FF (mu) and the time required for FF change (sigma). Computed mu and sigma values were evaluated for dystrophin variations that have demonstrated the ability to lead to a mild phenotype as well as compared between different genetic polymorphism groups. RESULTS Participants with dystrophin gene deletions amenable to exon 8 skipping (n = 4) had minimal increases in SOL FF and had an increase in VL mu value by 4.4 years compared with a reference cohort (p = 0.039). Participants with nonsense variations within exons that may produce milder phenotypes (n = 11) also had minimal increases in SOL and VL FFs. No differences in estimated FF trajectories were seen for individuals amenable to exon 44 skipping (n = 10). Modeling of the SPP1, LTBP4, and thrombospondin-1 (THBS1) genetic modifiers did not result in significant differences in muscle FF trajectories between genotype groups (p > 0.05); however, trends were noted for the polymorphisms associated with long-range regulation of LTBP4 and THBS1 that deserve further follow-up. DISCUSSION The results of this study link the historically mild phenotypes seen in individuals amenable to exon 8 skipping and with certain nonsense variations with alterations in trajectories of lower extremity muscle replacement by fat.
Collapse
Affiliation(s)
- Alison M Barnard
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - David W Hammers
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - William T Triplett
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Sarah Kim
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Sean C Forbes
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Rebecca J Willcocks
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Michael J Daniels
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Claudia R Senesac
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Donovan J Lott
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Ishu Arpan
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - William D Rooney
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Richard T Wang
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Stanley F Nelson
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - H Lee Sweeney
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Krista Vandenborne
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Glenn A Walter
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville.
| |
Collapse
|
12
|
Kosac A, Pesovic J, Radenkovic L, Brkusanin M, Radovanovic N, Djurisic M, Radivojevic D, Mladenovic J, Ostojic S, Kovacevic G, Kravljanac R, Savic Pavicevic D, Milic Rasic V. LTBP4, SPP1, and CD40 Variants: Genetic Modifiers of Duchenne Muscular Dystrophy Analyzed in Serbian Patients. Genes (Basel) 2022; 13:1385. [PMID: 36011296 PMCID: PMC9407083 DOI: 10.3390/genes13081385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Clinical course variability in Duchenne muscular dystrophy (DMD) is partially explained by the mutation location in the DMD gene and variants in modifier genes. We assessed the effect of the SPP1, CD40, and LTBP4 genes and DMD mutation location on loss of ambulation (LoA). METHODS SNPs in SPP1-rs28357094, LTBP4-rs2303729, rs1131620, rs1051303, rs10880, and CD40-rs1883832 were genotyped, and their effect was assessed by survival and hierarchical cluster analysis. RESULTS Patients on glucocorticoid corticosteroid (GC) therapy experienced LoA one year later (p = 0.04). The modifying effect of SPP1 and CD40 variants, as well as LTBP4 haplotypes, was not observed using a log-rank test and multivariant Cox regression analysis. Cluster analysis revealed two subgroups with statistical trends in differences in age at LoA. Almost all patients in the cluster with later LoA had the protective IAAM LTBP4 haplotype and statistically significantly fewer CD40 genotypes with harmful T allele and "distal" DMD mutations. CONCLUSIONS The modifying effect of SPP1, CD40, and LTBP4 was not replicated in Serbian patients, although our cohort was comparable in terms of its DMD mutation type distribution, SNP allele frequencies, and GC-positive effect with other European cohorts. Cluster analysis may be able to identify patient subgroups carrying a combination of the genetic variants that modify LoA.
Collapse
Affiliation(s)
- Ana Kosac
- Department of Neurology, Clinic of Neurology and Psychiatry for Children and Youth, 11000 Belgrade, Serbia
| | - Jovan Pesovic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Lana Radenkovic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Milos Brkusanin
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Nemanja Radovanovic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Marina Djurisic
- Laboratory of Medical Genetics, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11000 Belgrade, Serbia
| | - Danijela Radivojevic
- Laboratory of Medical Genetics, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11000 Belgrade, Serbia
| | - Jelena Mladenovic
- Department of Neurology, Clinic of Neurology and Psychiatry for Children and Youth, 11000 Belgrade, Serbia
| | - Slavica Ostojic
- Department of Neurology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11000 Belgrade, Serbia
| | - Gordana Kovacevic
- Department of Neurology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11000 Belgrade, Serbia
| | - Ruzica Kravljanac
- Department of Neurology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dusanka Savic Pavicevic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | | |
Collapse
|
13
|
Kiriaev L, Houweling PJ, North KN, Head SI. Loss of α-actinin-3 confers protection from eccentric contraction damage in fast-twitch EDL muscles from aged mdx dystrophic mice by reducing pathological fibre branching. Hum Mol Genet 2022; 31:1417-1429. [PMID: 34761268 PMCID: PMC9071495 DOI: 10.1093/hmg/ddab326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022] Open
Abstract
The common null polymorphism (R577X) in the ACTN3 gene is present in over 1.5 billion people worldwide and results in the absence of the protein α-actinin-3 from the Z-discs of fast-twitch skeletal muscle fibres. We have previously reported that this polymorphism is a modifier of dystrophin-deficient Duchenne Muscular Dystrophy. To investigate the mechanism underlying this, we use a double knockout (dk)Actn3KO/mdx (dKO) mouse model, which lacks both dystrophin and sarcomere α-actinin-3. We used dKO mice and mdx dystrophic mice at 12 months (aged) to investigate the correlation between morphological changes to the fast-twitch dKO EDL and the reduction in force deficit produced by an in vitro eccentric contraction protocol. In the aged dKO mouse, we found a marked reduction in fibre branching complexity that correlated with protection from eccentric contraction induced force deficit. Complex branches in the aged dKO EDL fibres (28%) were substantially reduced compared to aged mdx EDL fibres (68%), and this correlates with a graded force loss over three eccentric contractions for dKO muscles (~36% after first contraction, ~66% overall) compared to an abrupt drop in mdx upon the first eccentric contraction (~75% after first contraction, ~89% after three contractions). In dKO, protection from eccentric contraction damage was linked with a doubling of SERCA1 pump density the EDL. We propose that the increased oxidative metabolism of fast-twitch glycolytic fibres characteristic of the null polymorphism (R577X) and increase in SR Ca2+ pump proteins reduces muscle fibre branching and decreases susceptibility to eccentric injury in the dystrophinopathies.
Collapse
Affiliation(s)
- Leonit Kiriaev
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
| | - Peter J Houweling
- Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Kathryn N North
- Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Stewart I Head
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
| |
Collapse
|
14
|
Barthélémy F, Santoso JW, Rabichow L, Jin R, Little I, Nelson SF, McCain ML, Miceli MC. Modeling Patient-Specific Muscular Dystrophy Phenotypes and Therapeutic Responses in Reprogrammed Myotubes Engineered on Micromolded Gelatin Hydrogels. Front Cell Dev Biol 2022; 10:830415. [PMID: 35465312 PMCID: PMC9020228 DOI: 10.3389/fcell.2022.830415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
In vitro models of patient-derived muscle allow for more efficient development of genetic medicines for the muscular dystrophies, which often present mutation-specific pathologies. One popular strategy to generate patient-specific myotubes involves reprogramming dermal fibroblasts to a muscle lineage through MyoD induction. However, creating physiologically relevant, reproducible tissues exhibiting multinucleated, aligned myotubes with organized striations is dependent on the introduction of physicochemical cues that mimic the native muscle microenvironment. Here, we engineered patient-specific control and dystrophic muscle tissues in vitro by culturing and differentiating MyoD–directly reprogrammed fibroblasts isolated from one healthy control subject, three patients with Duchenne muscular dystrophy (DMD), and two Limb Girdle 2A/R1 (LGMD2A/R1) patients on micromolded gelatin hydrogels. Engineered DMD and LGMD2A/R1 tissues demonstrated varying levels of defects in α-actinin expression and organization relative to control, depending on the mutation. In genetically relevant DMD tissues amenable to mRNA reframing by targeting exon 44 or 45 exclusion, exposure to exon skipping antisense oligonucleotides modestly increased myotube coverage and alignment and rescued dystrophin protein expression. These findings highlight the value of engineered culture substrates in guiding the organization of reprogrammed patient fibroblasts into aligned muscle tissues, thereby extending their value as tools for exploration and dissection of the cellular and molecular basis of genetic muscle defects, rescue, and repair.
Collapse
Affiliation(s)
- Florian Barthélémy
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey W. Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Laura Rabichow
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rongcheng Jin
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Isaiah Little
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stanley F. Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
- *Correspondence: M. Carrie Miceli, ; Megan L. McCain,
| | - M. Carrie Miceli
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: M. Carrie Miceli, ; Megan L. McCain,
| |
Collapse
|
15
|
Birnkrant DJ, Bello L, Butterfield RJ, Carter JC, Cripe LH, Cripe TP, McKim DA, Nandi D, Pegoraro E. Cardiorespiratory management of Duchenne muscular dystrophy: emerging therapies, neuromuscular genetics, and new clinical challenges. THE LANCET RESPIRATORY MEDICINE 2022; 10:403-420. [DOI: 10.1016/s2213-2600(21)00581-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 01/06/2023]
|
16
|
Coles CA, Woodcock I, Pellicci DG, Houweling PJ. A Spotlight on T Lymphocytes in Duchenne Muscular Dystrophy-Not Just a Muscle Defect. Biomedicines 2022; 10:535. [PMID: 35327337 PMCID: PMC8945129 DOI: 10.3390/biomedicines10030535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
The lack of dystrophin in Duchenne muscular dystrophy (DMD) results in membrane fragility resulting in contraction-induced muscle damage and subsequent inflammation. The impact of inflammation is profound, resulting in fibrosis of skeletal muscle, the diaphragm and heart, which contributes to muscle weakness, reduced quality of life and premature death. To date, the innate immune system has been the major focus in individuals with DMD, and our understanding of the adaptive immune system, specifically T cells, is limited. Targeting the immune system has been the focus of multiple clinical trials for DMD and is considered a vital step in the development of better treatments. However, we must first have a complete picture of the involvement of the immune systems in dystrophic muscle disease to better understand how inflammation influences disease progression and severity. This review focuses on the role of T cells in DMD, highlighting the importance of looking beyond skeletal muscle when considering how the loss of dystrophin impacts disease progression. Finally, we propose that targeting T cells is a potential novel therapeutic in the treatment of DMD.
Collapse
Affiliation(s)
- Chantal A. Coles
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3052, Australia
| | - Ian Woodcock
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Daniel G. Pellicci
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Peter J. Houweling
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
17
|
Nair KS, Lott DJ, Forbes SC, Barnard AM, Willcocks RJ, Senesac CR, Daniels MJ, Harrington AT, Tennekoon GI, Zilke K, Finanger EL, Finkel RS, Rooney WD, Walter GA, Vandenborne K. Step Activity Monitoring in Boys with Duchenne Muscular Dystrophy and its Correlation with Magnetic Resonance Measures and Functional Performance. J Neuromuscul Dis 2022; 9:423-436. [PMID: 35466946 PMCID: PMC9257666 DOI: 10.3233/jnd-210746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Muscles of boys with Duchenne muscular dystrophy (DMD) are progressively replaced by fatty fibrous tissues, and weakness leads to loss of ambulation (LoA). Step activity (SA) monitoring is a quantitative measure of real-world ambulatory function. The relationship between quality of muscle health and SA is unknown in DMD. OBJECTIVE To determine SA in steroid treated boys with DMD across various age groups, and to evaluate the association of SA with quality of muscle health and ambulatory function. METHODS Quality of muscle health was measured by magnetic resonance (MR) imaging transverse magnetization relaxation time constant (MRI-T2) and MR spectroscopy fat fraction (MRS-FF). SA was assessed via accelerometry, and functional abilities were assessed through clinical walking tests. Correlations between SA, MR, and functional measures were determined. A threshold value of SA was determined to predict the future LoA. RESULTS The greatest reduction in SA was observed in the 9- < 11years age group. SA correlated with all functional and MR measures.10m walk/run test had the highest correlation with SA. An increase in muscle MRI-T2 and MRS-FF was associated with a decline in SA. Two years prior to LoA, SA in boys with DMD was 32% lower than age matched boys with DMD who maintained ambulation for more than two-year period. SA monitoring can predict subsequent LoA in Duchenne, as a daily step count of 3200 at baseline was associated with LoA over the next two-years. CONCLUSION SA monitoring is a feasible and accessible tool to measure functional capacity in the real-world environment.
Collapse
Affiliation(s)
- Kavya S. Nair
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Donovan J. Lott
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Sean C. Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Alison M. Barnard
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Rebecca J. Willcocks
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Claudia R. Senesac
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Michael J. Daniels
- Department of Statistics, University of Florida, Gainesville, Florida, USA
| | - Ann T. Harrington
- Center for Rehabilitation, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gihan I. Tennekoon
- Department of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kirsten Zilke
- Department of Pediatrics and Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Erika L. Finanger
- Department of Pediatrics and Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Richard S. Finkel
- Center for Experimental Neurotherapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - William D. Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Kiriaev L, Kueh S, Morley JW, North KN, Houweling PJ, Head SI. Lifespan Analysis of Dystrophic mdx Fast-Twitch Muscle Morphology and Its Impact on Contractile Function. Front Physiol 2021; 12:771499. [PMID: 34950049 PMCID: PMC8689589 DOI: 10.3389/fphys.2021.771499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy is caused by the absence of the protein dystrophin from skeletal muscle and is characterized by progressive cycles of necrosis/regeneration. Using the dystrophin deficient mdx mouse model, we studied the morphological and contractile chronology of dystrophic skeletal muscle pathology in fast-twitch Extensor Digitorum Longus muscles from animals 4–22 months of age containing 100% regenerated muscle fibers. Catastrophically, the older age groups lost ∼80% of their maximum force after one eccentric contraction (EC) of 20% strain with the greatest loss of ∼92% recorded in senescent 22-month-old mdx mice. In old age groups, there was minimal force recovery ∼24% after 120 min, correlated with a dramatic increase in the number and complexity of branched fibers. This data supports our two-phase model where a “tipping point” is reached when branched fibers rupture irrevocably on EC. These findings have important implications for pre-clinical drug studies and genetic rescue strategies.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- *Correspondence: Leonit Kiriaev,
| | - Sindy Kueh
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - John W. Morley
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Kathryn N. North
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Peter J. Houweling
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Stewart I. Head
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Dang UJ, Ziemba M, Clemens PR, Hathout Y, Conklin LS, Hoffman EP. Serum biomarkers associated with baseline clinical severity in young steroid-naïve Duchenne muscular dystrophy boys. Hum Mol Genet 2021; 29:2481-2495. [PMID: 32592467 PMCID: PMC7471506 DOI: 10.1093/hmg/ddaa132] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin in muscle, and while all patients share the primary gene and biochemical defect, there is considerable patient–patient variability in clinical symptoms. We sought to develop multivariate models of serum protein biomarkers that explained observed variation, using functional outcome measures as proxies for severity. Serum samples from 39 steroid-naïve DMD boys 4 to <7 years enrolled into a clinical trial of vamorolone were studied (NCT02760264). Four assessments of gross motor function were carried out for each participant over a 6-week interval, and their mean was used as response for biomarker models. Weighted correlation network analysis was used for unsupervised clustering of 1305 proteins quantified using SOMAscan® aptamer profiling to define highly representative and connected proteins. Multivariate models of biomarkers were obtained for time to stand performance (strength phenotype; 17 proteins) and 6 min walk performance (endurance phenotype; 17 proteins) including some shared proteins. Identified proteins were tested with associations of mRNA expression with histological severity of muscle from dystrophinopathy patients (n = 28) and normal controls (n = 6). Strong associations predictive of both clinical and histological severity were found for ERBB4 (reductions in both blood and muscle with increasing severity), SOD1 (reductions in muscle and increases in blood with increasing severity) and CNTF (decreased levels in blood and muscle with increasing severity). We show that performance of DMD boys was effectively modeled with serum proteins, proximal strength associated with growth and remodeling pathways and muscle endurance centered on TGFβ and fibrosis pathways in muscle.
Collapse
Affiliation(s)
- Utkarsh J Dang
- Department of Health Outcomes and Administrative Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Michael Ziemba
- Department of Biomedical Engineering, Watson School of Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Paula R Clemens
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Veteran Affairs Medical Center, Pittsburgh, PA 15213, USA
| | - Yetrib Hathout
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | | | | | - Eric P Hoffman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, NY 13902, USA.,ReveraGen BioPharma, Rockville, MD 20850, USA
| |
Collapse
|
20
|
Thangarajh M, Bello L, Gordish-Dressman H. Longitudinal motor function in proximal versus distal DMD pathogenic variants. Muscle Nerve 2021; 64:467-473. [PMID: 34255858 DOI: 10.1002/mus.27371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION/AIMS There is considerable heterogenicity in clinical outcomes in Duchenne muscular dystrophy (DMD). The aim of this study was to assess whether dystrophin gene (DMD) pathogenic variant location influences upper or lower extremity motor function outcomes in a large prospective cohort. METHODS We used longitudinal timed and quantitative motor function measurements obtained from 154 boys with DMD over a 10-y period by the Cooperative International Neuromuscular Research Group Duchenne Natural History Study (CINRG-DNHS) to understand how the trajectories of motor function differ based on proximal versus distal DMD pathogenic variants. Proximal variants were defined as located proximal to 5' DMD intron 44, and distal variants as those including nucleotides 3' DMD including intron 44. Distal DMD variants are predicted to alter the expression of short dystrophin isoforms (Dp140, Dp116, and Dp71). We compared various upper extremity and lower extremity motor function measures in these two groups, after adjusting for total lifetime corticosteroid use. RESULTS The time to loss-of-ambulation and timed motor function measurements of both upper and lower limbs over a 10-y period were comparable between boys with proximal (n = 53) and distal (n = 101) DMD pathogenic variants. Age had a significant effect on several motor function outcomes. Boys younger than 7 y of age (n = 49) showed gain in function whereas boys 7 y and older (n = 71) declined, regardless of dystrophin pathogenic variant location. DISCUSSION The longitudinal decline in upper and lower motor function is independent of proximal versus distal location of DMD pathogenic variants.
Collapse
Affiliation(s)
- Mathula Thangarajh
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Luca Bello
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| | - Heather Gordish-Dressman
- Center for Genetic Medicine, Children's Research Institute, Children's National Health System, Washington, District of Columbia, USA
| | | |
Collapse
|
21
|
Seto JT, Roeszler KN, Meehan LR, Wood HD, Tiong C, Bek L, Lee SF, Shah M, Quinlan KGR, Gregorevic P, Houweling PJ, North KN. ACTN3 genotype influences skeletal muscle mass regulation and response to dexamethasone. SCIENCE ADVANCES 2021; 7:eabg0088. [PMID: 34215586 PMCID: PMC11060041 DOI: 10.1126/sciadv.abg0088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Homozygosity for the common ACTN3 null polymorphism (ACTN3 577X) results in α-actinin-3 deficiency in ~20% of humans worldwide and is linked to reduced sprint and power performance in both elite athletes and the general population. α-Actinin-3 deficiency is also associated with reduced muscle mass, increased risk of sarcopenia, and altered muscle wasting response induced by denervation and immobilization. Here, we show that α-actinin-3 plays a key role in the regulation of protein synthesis and breakdown signaling in skeletal muscle and influences muscle mass from early postnatal development. We also show that α-actinin-3 deficiency reduces the atrophic and anti-inflammatory response to the glucocorticoid dexamethasone in muscle and protects against dexamethasone-induced muscle wasting in female but not male mice. The effects of α-actinin-3 deficiency on muscle mass regulation and response to muscle wasting provide an additional mechanistic explanation for the positive selection of the ACTN3 577X allele in recent human history.
Collapse
Affiliation(s)
- Jane T Seto
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kelly N Roeszler
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Lyra R Meehan
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Harrison D Wood
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Chrystal Tiong
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Lucinda Bek
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Siaw F Lee
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Physiology, University of Melbourne, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Peter J Houweling
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Fortunato F, Ferlini A. Clinical application of molecular biomarkers in Duchenne muscular dystrophy: challenges and perspectives. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2021.1903872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Stocco A, Smolina N, Sabatelli P, Šileikytė J, Artusi E, Mouly V, Cohen M, Forte M, Schiavone M, Bernardi P. Treatment with a triazole inhibitor of the mitochondrial permeability transition pore fully corrects the pathology of sapje zebrafish lacking dystrophin. Pharmacol Res 2021; 165:105421. [PMID: 33429034 DOI: 10.1016/j.phrs.2021.105421] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022]
Abstract
High-throughput screening identified isoxazoles as potent but metabolically unstable inhibitors of the mitochondrial permeability transition pore (PTP). Here we have studied the effects of a metabolically stable triazole analog, TR001, which maintains the PTP inhibitory properties with an in vitro potency in the nanomolar range. We show that TR001 leads to recovery of muscle structure and function of sapje zebrafish, a severe model of Duchenne muscular dystrophy (DMD). PTP inhibition fully restores the otherwise defective respiration in vivo, allowing normal development of sapje individuals in spite of lack of dystrophin. About 80 % sapje zebrafish treated with TR001 are alive and normal at 18 days post fertilization (dpf), a point in time when not a single untreated sapje individual survives. Time to 50 % death of treated zebrafish increases from 5 to 28 dpf, a sizeable number of individuals becoming young adults in spite of the persistent lack of dystrophin expression. TR001 improves respiration of myoblasts and myotubes from DMD patients, suggesting that PTP-dependent dysfunction also occurs in the human disease and that mitochondrial therapy of DMD with PTP-inhibiting triazoles is a viable treatment option.
Collapse
Affiliation(s)
- Anna Stocco
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Padova, Italy
| | - Natalia Smolina
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Padova, Italy
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Justina Šileikytė
- Vollum Institute and Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Edoardo Artusi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Padova, Italy
| | - Vincent Mouly
- Center for Research in Myology UMRS 974, Sorbonne Université, INSERM, Myology Institute, Paris, France
| | - Michael Cohen
- Vollum Institute and Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Michael Forte
- Vollum Institute and Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Marco Schiavone
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Padova, Italy.
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Padova, Italy.
| |
Collapse
|
24
|
de Feraudy Y, Ben Yaou R, Wahbi K, Stalens C, Stantzou A, Laugel V, Desguerre I, Servais L, Leturcq F, Amthor H. Very Low Residual Dystrophin Quantity Is Associated with Milder Dystrophinopathy. Ann Neurol 2020; 89:280-292. [PMID: 33159473 PMCID: PMC7894170 DOI: 10.1002/ana.25951] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022]
Abstract
Objective This study was undertaken to determine whether a low residual quantity of dystrophin protein is associated with delayed clinical milestones in patients with DMD mutations. Methods We performed a retrospective multicentric cohort study by using molecular and clinical data from patients with DMD mutations registered in the Universal Mutation Database–DMD France database. Patients with intronic, splice site, or nonsense DMD mutations, with available muscle biopsy Western blot data, were included irrespective of whether they presented with severe Duchenne muscular dystrophy (DMD) or milder Becker muscular dystrophy (BMD). Patients were separated into 3 groups based on dystrophin protein levels. Clinical outcomes were ages at appearance of first symptoms; loss of ambulation; fall in vital capacity and left ventricular ejection fraction; interventions such as spinal fusion, tracheostomy, and noninvasive ventilation; and death. Results Of 3,880 patients with DMD mutations, 90 with mutations of interest were included. Forty‐two patients expressed no dystrophin (group A), and 31 of 42 (74%) developed DMD. Thirty‐four patients had dystrophin quantities < 5% (group B), and 21 of 34 (61%) developed BMD. Fourteen patients had dystrophin quantities ≥ 5% (group C), and all but 4 who lost ambulation beyond 24 years of age were ambulant. Dystrophin quantities of <5%, as low as <0.5%, were associated with milder phenotype for most of the evaluated clinical outcomes, including age at loss of ambulation (p < 0.001). Interpretation Very low residual dystrophin protein quantity can cause a shift in disease phenotype from DMD toward BMD. ANN NEUROL 2021;89:280–292
Collapse
Affiliation(s)
- Yvan de Feraudy
- Paris-Saclay University, UVSQ, Inserm, END-ICAP, Versailles, France.,Neuromuscular Reference Center, Pediatric Department, Raymond Poincaré Hospital, Garches, France
| | - Rabah Ben Yaou
- Neuromuscular Reference Center, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France.,Center of Research in Myology, Sorbonne University, Inserm UMRS 974, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - Karim Wahbi
- Cardiology Department, APHP, Cochin Hospital, FILNEMUS, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
| | - Caroline Stalens
- Biostatistic, Medical Affairs Direction, AFM-Théléthon, Evry, France
| | - Amalia Stantzou
- Paris-Saclay University, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Vincent Laugel
- Neuromuscular Reference Center, Pediatric Department, Hautepierre Hospital, Strasbourg, France
| | - Isabelle Desguerre
- Neuromuscular Reference Center, Pediatric Department, Necker-Enfants Malades Hospital, Paris, France
| | | | - Laurent Servais
- Department of Pediatrics, Neuromuscular Disease Reference Center, Division of Child Neurology, Faculty of Medicine, University of Liège, Liège, Belgium.,MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - France Leturcq
- Laboratory for Biochemistry and Molecular Genetics, Cochin Hospital, Paris, France
| | - Helge Amthor
- Paris-Saclay University, UVSQ, Inserm, END-ICAP, Versailles, France.,Neuromuscular Reference Center, Pediatric Department, Raymond Poincaré Hospital, Garches, France
| |
Collapse
|
25
|
Lambert MR, Spinazzola JM, Widrick JJ, Pakula A, Conner JR, Chin JE, Owens JM, Kunkel LM. PDE10A Inhibition Reduces the Manifestation of Pathology in DMD Zebrafish and Represses the Genetic Modifier PITPNA. Mol Ther 2020; 29:1086-1101. [PMID: 33221436 PMCID: PMC7934586 DOI: 10.1016/j.ymthe.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by mutations in the DMD gene. Absence of dystrophin protein leads to progressive degradation of skeletal and cardiac function and leads to premature death. Over the years, zebrafish have been increasingly used for studying DMD and are a powerful tool for drug discovery and therapeutic development. In our study, a birefringence screening assay led to identification of phosphodiesterase 10A (PDE10A) inhibitors that reduced the manifestation of dystrophic muscle phenotype in dystrophin-deficient sapje-like zebrafish larvae. PDE10A has been validated as a therapeutic target by pde10a morpholino-mediated reduction in muscle pathology and improvement in locomotion, muscle, and vascular function as well as long-term survival in sapje-like larvae. PDE10A inhibition in zebrafish and DMD patient-derived myoblasts were also associated with reduction of PITPNA expression that has been previously identified as a protective genetic modifier in two exceptional dystrophin-deficient golden retriever muscular dystrophy (GRMD) dogs that escaped the dystrophic phenotype. The combination of a phenotypic assay and relevant functional assessments in the sapje-like zebrafish enhances the potential for the prospective discovery of DMD therapeutics. Indeed, our results suggest a new application for a PDE10A inhibitor as a potential DMD therapeutic to be investigated in a mouse model of DMD.
Collapse
Affiliation(s)
- Matthias R Lambert
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Janelle M Spinazzola
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey J Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Pakula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - James R Conner
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Janice E Chin
- Rare Disease Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Jane M Owens
- Rare Disease Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Haber G, Conway KM, Paramsothy P, Roy A, Rogers H, Ling X, Kozauer N, Street N, Romitti PA, Fox DJ, Phan HC, Matthews D, Ciafaloni E, Oleszek J, James KA, Galindo M, Whitehead N, Johnson N, Butterfield RJ, Pandya S, Venkatesh S, Bhattaram VA. Association of genetic mutations and loss of ambulation in childhood-onset dystrophinopathy. Muscle Nerve 2020; 63:181-191. [PMID: 33150975 DOI: 10.1002/mus.27113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Quantifying associations between genetic mutations and loss of ambulation (LoA) among males diagnosed with childhood-onset dystrophinopathy is important for understanding variation in disease progression and may be useful in clinical trial design. METHODS Genetic and clinical data from the Muscular Dystrophy Surveillance, Tracking, and Research Network for 358 males born and diagnosed from 1982 to 2011 were analyzed. LoA was defined as the age at which independent ambulation ceased. Genetic mutations were defined by overall type (deletion/duplication/point mutation) and among deletions, those amenable to exon-skipping therapy (exons 8, 20, 44-46, 51-53) and another group. Cox proportional hazards regression modeling was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS Mutation type did not predict time to LoA. Controlling for corticosteroids, Exons 8 (HR = 0.22; 95% CI = 0.08, 0.63) and 44 (HR = 0.30; 95% CI = 0.12, 0.78) were associated with delayed LoA compared to other exon deletions. CONCLUSIONS Delayed LoA in males with mutations amenable to exon-skipping therapy is consistent with previous studies. These findings suggest that clinical trials including exon 8 and 44 skippable males should consider mutation information prior to randomization.
Collapse
Affiliation(s)
- Gregory Haber
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Kristin M Conway
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, USA
| | - Pangaja Paramsothy
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anindya Roy
- Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Hobart Rogers
- Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, Maryland, USA
| | - Xiang Ling
- Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, Maryland, USA
| | - Nicholas Kozauer
- Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, Maryland, USA
| | - Natalie Street
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul A Romitti
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, USA
| | - Deborah J Fox
- Bureau of Environmental and Occupational Epidemiology, New York State Department of Health, Albany, New York, USA
| | - Han C Phan
- Department of Pediatrics, Division of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dennis Matthews
- Department of Physical Medicine and Rehabilitation, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Emma Ciafaloni
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Joyce Oleszek
- Department of Physical Medicine and Rehabilitation, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Katherine A James
- School of Public Health, University of Colorado, Boulder, Colorado, USA
| | - Maureen Galindo
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Nedra Whitehead
- Research Triangle Institute International, Research Triangle Park, North Carolina, USA
| | - Nicholas Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Russell J Butterfield
- Department of Pediatrics and Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Shree Pandya
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Swamy Venkatesh
- Department of Neurology, University of South Carolina, Columbia, South Carolina, USA
| | - Venkatesh Atul Bhattaram
- Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
27
|
Nagai M, Awano H, Yamamoto T, Bo R, Matsuo M, Iijima K. The ACTN3 577XX Null Genotype Is Associated with Low Left Ventricular Dilation-Free Survival Rate in Patients with Duchenne Muscular Dystrophy. J Card Fail 2020; 26:841-848. [DOI: 10.1016/j.cardfail.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
|
28
|
Evaluating modified diets and dietary supplement therapies for reducing muscle lipid accumulation and improving muscle function in neurofibromatosis type 1 (NF1). PLoS One 2020; 15:e0237097. [PMID: 32810864 PMCID: PMC7446925 DOI: 10.1371/journal.pone.0237097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that affects a range of tissue systems, however the associated muscle weakness and fatigability can have a profound impact on quality of life. Prior studies using the limb-specific Nf1 knockout mouse (Nf1Prx1-/-) revealed an accumulation of intramyocellular lipid (IMCL) that could be rescued by a diet supplemented with L-carnitine and enriched for medium-chain fatty acids (MCFAs). In this study we used the Nf1Prx1-/- mouse to model a range of dietary interventions designed to reduce IMCL accumulation, and analyze using other modalities including in situ muscle physiology and lipid mass spectrometry. Histological IMCL accumulation was significantly reduced by a range of treatments including L-carnitine and high MCFAs alone. A low-fat diet did not affect IMCL, but did provide improvements to muscle strength. Supplementation yielded rapid improvements in IMCL within 4 weeks, but were lost once treatment was discontinued. In situ muscle measurements were highly variable in Nf1Prx1-/- mice, attributable to the severe phenotype present in this model, with fusion of the hips and an overall small hind limb muscle size. Lipidome analysis enabled segregation of the normal and modified chow diets, and fatty acid data suggested increased muscle lipolysis with the intervention. Acylcarnitines were also affected, suggestive of a mitochondrial fatty acid oxidation disorder. These data support the theory that NF1 is a lipid storage disease that can be treated by dietary intervention, and encourages future human trials.
Collapse
|
29
|
Passarelli C, Selvatici R, Carrieri A, Di Raimo FR, Falzarano MS, Fortunato F, Rossi R, Straub V, Bushby K, Reza M, Zharaieva I, D'Amico A, Bertini E, Merlini L, Sabatelli P, Borgiani P, Novelli G, Messina S, Pane M, Mercuri E, Claustres M, Tuffery-Giraud S, Aartsma-Rus A, Spitali P, T'Hoen PAC, Lochmüller H, Strandberg K, Al-Khalili C, Kotelnikova E, Lebowitz M, Schwartz E, Muntoni F, Scapoli C, Ferlini A. Tumor Necrosis Factor Receptor SF10A (TNFRSF10A) SNPs Correlate With Corticosteroid Response in Duchenne Muscular Dystrophy. Front Genet 2020; 11:605. [PMID: 32719714 PMCID: PMC7350910 DOI: 10.3389/fgene.2020.00605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a rare and severe X-linked muscular dystrophy in which the standard of care with variable outcome, also due to different drug response, is chronic off-label treatment with corticosteroids (CS). In order to search for SNP biomarkers for corticosteroid responsiveness, we genotyped variants across 205 DMD-related genes in patients with differential response to steroid treatment. Methods and Findings We enrolled a total of 228 DMD patients with identified dystrophin mutations, 78 of these patients have been under corticosteroid treatment for at least 5 years. DMD patients were defined as high responders (HR) if they had maintained the ability to walk after 15 years of age and low responders (LR) for those who had lost ambulation before the age of 10 despite corticosteroid therapy. Based on interactome mapping, we prioritized 205 genes and sequenced them in 21 DMD patients (discovery cohort or DiC = 21). We identified 43 SNPs that discriminate between HR and LR. Discriminant Analysis of Principal Components (DAPC) prioritized 2 response-associated SNPs in the TNFRSF10A gene. Validation of this genotype was done in two additional larger cohorts composed of 46 DMD patients on corticosteroid therapy (validation cohorts or VaC1), and 150 non ambulant DMD patients and never treated with corticosteroids (VaC2). SNP analysis in all validation cohorts (N = 207) showed that the CT haplotype is significantly associated with HR DMDs confirming the discovery results. Conclusion We have shown that TNFRSF10A CT haplotype correlates with corticosteroid response in DMD patients and propose it as an exploratory CS response biomarker.
Collapse
Affiliation(s)
- Chiara Passarelli
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,U.O.C. Laboratory of Medical Genetics, Paediatric Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Rita Selvatici
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alberto Carrieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rachele Rossi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Katie Bushby
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mojgan Reza
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Irina Zharaieva
- Dubowitz Neuromuscular Center, University College London Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom
| | - Adele D'Amico
- Molecular Medicine and Unit of Neuromuscular and Neurodegenerative Diseases, Paediatric Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Enrico Bertini
- Molecular Medicine and Unit of Neuromuscular and Neurodegenerative Diseases, Paediatric Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Sabatelli
- IRCCS Rizzoli & Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
| | - Paola Borgiani
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Novelli
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Istituto Neuromed, IRCCS, Pozzilli, Italy
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, Nemo Sud Clinical Center, University of Messina, Messina, Italy
| | - Marika Pane
- Paediatric Neurology Unit, Centro Clinico Nemo, IRCCS Fondazione Policlinico A. Gemelli, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Eugenio Mercuri
- Paediatric Neurology Unit, Centro Clinico Nemo, IRCCS Fondazione Policlinico A. Gemelli, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Mireille Claustres
- Laboratory of Genetics of Rare Diseases, University of Montpellier, Montpellier, France
| | - Sylvie Tuffery-Giraud
- Laboratory of Genetics of Rare Diseases, University of Montpellier, Montpellier, France
| | - Annemieke Aartsma-Rus
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter A C T'Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.,Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Kristin Strandberg
- Department of Systems Biology, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Al-Khalili
- Department of Systems Biology, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | - Francesco Muntoni
- Dubowitz Neuromuscular Center, University College London Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom.,NIH Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Great Ormond Street Hospital Trust, London, United Kingdom
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Dubowitz Neuromuscular Center, University College London Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
30
|
Bello L, D'Angelo G, Villa M, Fusto A, Vianello S, Merlo B, Sabbatini D, Barp A, Gandossini S, Magri F, Comi GP, Pedemonte M, Tacchetti P, Lanzillotta V, Trucco F, D'Amico A, Bertini E, Astrea G, Politano L, Masson R, Baranello G, Albamonte E, De Mattia E, Rao F, Sansone VA, Previtali S, Messina S, Vita GL, Berardinelli A, Mongini T, Pini A, Pane M, Mercuri E, Vianello A, Bruno C, Hoffman EP, Morgenroth L, Gordish-Dressman H, McDonald CM, Pegoraro E. Genetic modifiers of respiratory function in Duchenne muscular dystrophy. Ann Clin Transl Neurol 2020; 7:786-798. [PMID: 32343055 PMCID: PMC7261745 DOI: 10.1002/acn3.51046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Objective Respiratory insufficiency is a major complication of Duchenne muscular dystrophy (DMD). Its progression shows considerable interindividual variability, which has been less thoroughly characterized and understood than in skeletal muscle. We collected pulmonary function testing (PFT) data from a large retrospective cohort followed at Centers collaborating in the Italian DMD Network. Furthermore, we analyzed PFT associations with different DMD mutation types, and with genetic variants in SPP1, LTBP4, CD40, and ACTN3, known to modify skeletal muscle weakness in DMD. Genetic association findings were independently validated in the Cooperative International Neuromuscular Research Group Duchenne Natural History Study (CINRG‐DNHS). Methods and Results Generalized estimating equation analysis of 1852 PFTs from 327 Italian DMD patients, over an average follow‐up time of 4.5 years, estimated that forced vital capacity (FVC) declined yearly by −4.2%, forced expiratory volume in 1 sec by −5.0%, and peak expiratory flow (PEF) by −2.9%. Glucocorticoid (GC) treatment was associated with higher values of all PFT measures (approximately + 15% across disease stages). Mutations situated 3’ of DMD intron 44, thus predicted to alter the expression of short dystrophin isoforms, were associated with lower (approximately −6%) PFT values, a finding independently validated in the CINRG‐DNHS. Deletions amenable to skipping of exon 51 and 53 were independently associated with worse PFT outcomes. A meta‐analysis of the two cohorts identified detrimental effects of SPP1 rs28357094 and CD40 rs1883832 minor alleles on both FVC and PEF. Interpretation These findings support GC efficacy in delaying respiratory insufficiency, and will be useful for the design and interpretation of clinical trials focused on respiratory endpoints in DMD.
Collapse
Affiliation(s)
- Luca Bello
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| | - Grazia D'Angelo
- NeuroMuscular Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini (Lecco), Italy
| | - Matteo Villa
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| | - Aurora Fusto
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| | - Sara Vianello
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| | - Beatrice Merlo
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| | - Daniele Sabbatini
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| | - Andrea Barp
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| | - Sandra Gandossini
- NeuroMuscular Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini (Lecco), Italy
| | - Francesca Magri
- IRCSS Foundation, Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Giacomo P Comi
- IRCSS Foundation, Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Marina Pedemonte
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Paola Tacchetti
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Valentina Lanzillotta
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Federica Trucco
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Guja Astrea
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, "Vanvitelli" University of Campania, Naples, Italy
| | - Riccardo Masson
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni Baranello
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,The Dubowitz Neuromuscular Centre, NIHR BRC University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom
| | - Emilio Albamonte
- Neurorehabilitation Unit, Centro Clinico NeMO, University of Milan, Milan, Italy
| | - Elisa De Mattia
- Neurorehabilitation Unit, Centro Clinico NeMO, University of Milan, Milan, Italy
| | - Fabrizio Rao
- Neurorehabilitation Unit, Centro Clinico NeMO, University of Milan, Milan, Italy
| | - Valeria A Sansone
- Neurorehabilitation Unit, Centro Clinico NeMO, University of Milan, Milan, Italy
| | - Stefano Previtali
- Neuromuscular Repair Unit, Inspe and Division of Neuroscience, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Sonia Messina
- Department of Neurosciences and Nemo Sud Clinical Center, University of Messina, Messina, Italy
| | - Gian Luca Vita
- Department of Neurosciences and Nemo Sud Clinical Center, University of Messina, Messina, Italy
| | | | - Tiziana Mongini
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Antonella Pini
- Child Neurology and Psychiatry Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marika Pane
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Università Cattolica del Sacro Cuore, Rome, Italy.,Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Eugenio Mercuri
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Università Cattolica del Sacro Cuore, Rome, Italy.,Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Andrea Vianello
- Department of Cardio-Thoracic Sciences, Respiratory Pathophysiology Division, University-City Hospital of Padova, Padova, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Eric P Hoffman
- Binghamton University - SUNY, Binghamton, New York.,Center for Genetic Medicine, Children's Research Institute, Children's National Health System, Washington, District of Columbia
| | - Lauren Morgenroth
- Center for Genetic Medicine, Children's Research Institute, Children's National Health System, Washington, District of Columbia
| | - Heather Gordish-Dressman
- Center for Genetic Medicine, Children's Research Institute, Children's National Health System, Washington, District of Columbia
| | - Craig M McDonald
- University of California Davis Medical Center, Sacramento, California
| | | | - Elena Pegoraro
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| |
Collapse
|
31
|
Choi JH, Jeong SY, Oh MR, Allen PD, Lee EH. TRPCs: Influential Mediators in Skeletal Muscle. Cells 2020; 9:cells9040850. [PMID: 32244622 PMCID: PMC7226745 DOI: 10.3390/cells9040850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ itself or Ca2+-dependent signaling pathways play fundamental roles in various cellular processes from cell growth to death. The most representative example can be found in skeletal muscle cells where a well-timed and adequate supply of Ca2+ is required for coordinated Ca2+-dependent skeletal muscle functions, such as the interactions of contractile proteins during contraction. Intracellular Ca2+ movements between the cytosol and sarcoplasmic reticulum (SR) are strictly regulated to maintain the appropriate Ca2+ supply in skeletal muscle cells. Added to intracellular Ca2+ movements, the contribution of extracellular Ca2+ entry to skeletal muscle functions and its significance have been continuously studied since the early 1990s. Here, studies on the roles of channel proteins that mediate extracellular Ca2+ entry into skeletal muscle cells using skeletal myoblasts, myotubes, fibers, tissue, or skeletal muscle-originated cell lines are reviewed with special attention to the proposed functions of transient receptor potential canonical proteins (TRPCs) as store-operated Ca2+ entry (SOCE) channels under normal conditions and the potential abnormal properties of TRPCs in muscle diseases such as Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Mi Ri Oh
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Paul D. Allen
- Leeds Institute of Biomedical & Clinical Sciences, St. James’s University Hospital, University of Leeds, Leeds LS97TF, UK
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-7279
| |
Collapse
|
32
|
Girgis CM, Cha KM, So B, Tsang M, Chen J, Houweling PJ, Schindeler A, Stokes R, Swarbrick MM, Evesson FJ, Cooper ST, Gunton JE. Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function. J Cachexia Sarcopenia Muscle 2019; 10:1228-1240. [PMID: 31225722 PMCID: PMC6903451 DOI: 10.1002/jcsm.12460] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND It has long been recognized that vitamin D deficiency is associated with muscle weakness and falls. Vitamin D receptor (VDR) is present at very low levels in normal muscle. Whether vitamin D plays a direct role in muscle function is unknown and is a subject of hot debate. Myocyte-specific deletion of VDR would provide a strategy to answer this question. METHODS Myocyte-specific vitamin D receptor (mVDR) null mice were generated by crossing human skeletal actin-Cre mice with floxed VDR mice. The effects of gene deletion on the muscle phenotype were studied in terms of body tissue composition, muscle tissue histology, and gene expression by real-time PCR. RESULTS Unlike whole-body VDR knockout mice, mVDR mice showed a normal body size. The mVDR showed a distinct muscle phenotype featuring reduced proportional lean mass (70% vs. 78% of lean mass), reduced voluntary wheel-running distance (22% decrease, P = 0.009), reduced average running speed, and reduced grip strength (7-16% reduction depending on age at testing). With their decreased voluntary exercise, and decreased lean mass, mVDR have increased proportional fat mass at 20% compared with 13%. Surprisingly, their muscle fibres showed slightly increased diameter, as well as the presence of angular fibres and central nuclei suggesting ongoing remodelling. There were, however, no clear changes in fibre type and there was no increase in muscle fibrosis. VDR is a transcriptional regulator, and changes in the expression of candidate genes was examined in RNA extracted from skeletal muscle. Alterations were seen in myogenic gene expression, and there was decreased expression of cell cycle genes cyclin D1, D2, and D3 and cyclin-dependent kinases Cdk-2 and Cdk-4. Expression of calcium handling genes sarcoplasmic/endoplasmic reticulum calcium ATPases (SERCA) Serca2b and Serca3 was decreased and Calbindin mRNA was lower in mVDR muscle. CONCLUSIONS This study demonstrates that vitamin D signalling is needed for myocyte function. Despite the low level of VDR protein normally found muscle, deleting myocyte VDR had important effects on muscle size and strength. Maintenance of normal vitamin D signalling is a useful strategy to prevent loss of muscle function and size.
Collapse
Affiliation(s)
- Christian M Girgis
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, New South Wales, Australia.,Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Diabetes and Endocrinology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Kuan Minn Cha
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Benjamin So
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Tsang
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer Chen
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter J Houweling
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Aaron Schindeler
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Westmead, Australia
| | - Rebecca Stokes
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael M Swarbrick
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Frances J Evesson
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, The Children's Hospital at Westmead, The Discipline of Child and Adolescent Health, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Sandra T Cooper
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, The Children's Hospital at Westmead, The Discipline of Child and Adolescent Health, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jenny E Gunton
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, New South Wales, Australia.,Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Division of Immunology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
The "Usual Suspects": Genes for Inflammation, Fibrosis, Regeneration, and Muscle Strength Modify Duchenne Muscular Dystrophy. J Clin Med 2019; 8:jcm8050649. [PMID: 31083420 PMCID: PMC6571893 DOI: 10.3390/jcm8050649] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), the most severe form of dystrophinopathy, is quite homogeneous with regards to its causative biochemical defect, i.e., complete dystrophin deficiency, but not so much with regards to its phenotype. For instance, muscle weakness progresses to the loss of independent ambulation at a variable age, starting from before 10 years, to even after 16 years (with glucocorticoid treatment). Identifying the bases of such variability is relevant for patient counseling, prognosis, stratification in trials, and identification of therapeutic targets. To date, variants in five loci have been associated with variability in human DMD sub-phenotypes: SPP1, LTBP4, CD40, ACTN3, and THBS1. Four of these genes (SPP1, LTBP4, CD40, and THBS1) are implicated in several interconnected molecular pathways regulating inflammatory response to muscle damage, regeneration, and fibrosis; while ACTN3 is known as “the gene for speed”, as it contains a common truncating polymorphism (18% of the general population), which reduces muscle power and sprint performance. Studies leading to the identification of these modifiers were mostly based on a “candidate gene” approach, hence the identification of modifiers in “usual suspect” pathways, which are already known to modify muscle in disease or health. Unbiased approaches that are based on genome mapping have so far been applied only initially, but they will probably represent the focus of future developments in this field, and will hopefully identify novel, “unsuspected” therapeutic targets. In this article, we summarize the state of the art of modifier loci of human dystrophin deficiency, and attempt to assess their relevance and implications on both clinical management and translational research.
Collapse
|
34
|
Kostek M. Precision Medicine and Exercise Therapy in Duchenne Muscular Dystrophy. Sports (Basel) 2019; 7:sports7030064. [PMID: 30875955 PMCID: PMC6473733 DOI: 10.3390/sports7030064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 01/15/2023] Open
Abstract
Precision medicine is being discussed and incorporated at all levels of health care and disease prevention, management, and treatment. Key components include new taxonomies of disease classification, the measurement and incorporation of genetics and "omics" data, biomarkers, and health care professionals who can optimize this information for a precision approach to treatment. The study and treatment of Duchenne Muscular Dystrophy is making rapid advances in these areas in addition to rapid advances in new gene and cell-based therapies. New therapies will increase the variability in disease severity, furthering a need for a precision-based approach. An area of therapy that is rarely considered in this approach is how the physiology of muscle contractions will interact with these therapies and a precision approach. As muscle pathology improves, physical activity levels will increase, which will likely be very beneficial to some patients but likely not to all. Physical activity is likely to synergistically improve these therapies and can be used to enhance muscle health and quality of life after these therapies are delivered using the tools of precision medicine.
Collapse
Affiliation(s)
- Matthew Kostek
- Laboratory of Muscle and Translational Therapeutics, Department of Physical Therapy, Duquesne University, Pittsburgh, PA 15228, USA.
- McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15228, USA.
| |
Collapse
|
35
|
Houweling PJ, Papadimitriou ID, Seto JT, Pérez LM, Coso JD, North KN, Lucia A, Eynon N. Is evolutionary loss our gain? The role of
ACTN3
p.Arg577Ter (R577X) genotype in athletic performance, ageing, and disease. Hum Mutat 2018; 39:1774-1787. [DOI: 10.1002/humu.23663] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Peter J. Houweling
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | | | - Jane T. Seto
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | - Laura M. Pérez
- Universidad Europea de Madrid (Faculty of Sport Sciences) Madrid Spain
- Instituto de Investigación Hospital 12 de Octubre Madrid Spain
| | - Juan Del Coso
- Exercise Physiology Laboratory Camilo José Cela University Madrid Spain
| | - Kathryn N. North
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | - Alejandro Lucia
- Universidad Europea de Madrid (Faculty of Sport Sciences) Madrid Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable Madrid Spain
| | - Nir Eynon
- Institute for Health and Sport (iHeS) Victoria University Victoria Australia
| |
Collapse
|
36
|
Human Macrophages Preferentially Infiltrate the Superficial Adipose Tissue. Int J Mol Sci 2018; 19:ijms19051404. [PMID: 29738484 PMCID: PMC5983635 DOI: 10.3390/ijms19051404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 02/06/2023] Open
Abstract
Human abdominal subcutaneous adipose tissue consists of two individual layers—the superficial adipose tissue (SAT) and deep adipose tissue (DAT)—separated by the Scarpa’s fascia. The present study focuses on the analysis of morphological and immunological differences of primary adipocytes, adipose-derived stem cells (ASC), and tissue-infiltrating immune cells found in SAT and DAT. Adipocytes and stromal vascular fraction (SVF) cells were isolated from human SAT and DAT specimens and phenotypically characterized by in vitro assays. Ex vivo analysis of infiltrating immune cells was performed by flow cytometry. Primary adipocytes from SAT are larger in size but did not significantly differ in cytokine levels of LEPTIN, ADIPOQ, RBP4, CHEMERIN, DEFB1, VISFATIN, MCP1, or MSCF. ASC isolated from SAT proliferated faster and exhibited a higher differentiation potential than those isolated from DAT. Flow cytometry analysis indicated no specific differences in the relative numbers of ASC, epithelial progenitor cells (EPC), or CD3+ T-cells, but showed higher numbers of tissue-infiltrating macrophages in SAT compared to DAT. Our findings suggest that ASC isolated from SAT have a higher regenerative potential than DAT-ASC. Moreover, spatial proximity to skin microbiota might promote macrophage infiltration in SAT.
Collapse
|
37
|
Garton FC, Houweling PJ, Vukcevic D, Meehan LR, Lee FXZ, Lek M, Roeszler KN, Hogarth MW, Tiong CF, Zannino D, Yang N, Leslie S, Gregorevic P, Head SI, Seto JT, North KN. The Effect of ACTN3 Gene Doping on Skeletal Muscle Performance. Am J Hum Genet 2018; 102:845-857. [PMID: 29706347 PMCID: PMC5986729 DOI: 10.1016/j.ajhg.2018.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 11/21/2022] Open
Abstract
Loss of expression of ACTN3, due to homozygosity of the common null polymorphism (p.Arg577X), is underrepresented in elite sprint/power athletes and has been associated with reduced muscle mass and strength in humans and mice. To investigate ACTN3 gene dosage in performance and whether expression could enhance muscle force, we performed meta-analysis and expression studies. Our general meta-analysis using a Bayesian random effects model in elite sprint/power athlete cohorts demonstrated a consistent homozygous-group effect across studies (per allele OR = 1.4, 95% CI 1.3-1.6) but substantial heterogeneity in heterozygotes. In mouse muscle, rAAV-mediated gene transfer overexpressed and rescued α-actinin-3 expression. Contrary to expectation, in vivo "doping" of ACTN3 at low to moderate doses demonstrated an absence of any change in function. At high doses, ACTN3 is toxic and detrimental to force generation, to demonstrate gene doping with supposedly performance-enhancing isoforms of sarcomeric proteins can be detrimental for muscle function. Restoration of α-actinin-3 did not enhance muscle mass but highlighted the primary role of α-actinin-3 in modulating muscle metabolism with altered fatiguability. This is the first study to express a Z-disk protein in healthy skeletal muscle and measure the in vivo effect. The sensitive balance of the sarcomeric proteins and muscle function has relevant implications in areas of gene doping in performance and therapy for neuromuscular disease.
Collapse
Affiliation(s)
- Fleur C Garton
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter J Houweling
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Damjan Vukcevic
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, VIC 3052, Australia; School of BioSciences, Faculty of Science, University of Melbourne, Parkville, VIC 3052, Australia; Centre for Systems Genomics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Lyra R Meehan
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Fiona X Z Lee
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia
| | - Monkol Lek
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kelly N Roeszler
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Marshall W Hogarth
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Chrystal F Tiong
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Diana Zannino
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Nan Yang
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Stephen Leslie
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, VIC 3052, Australia; School of BioSciences, Faculty of Science, University of Melbourne, Parkville, VIC 3052, Australia; Centre for Systems Genomics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul Gregorevic
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Stewart I Head
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2031, Australia; School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Jane T Seto
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC 3052, Australia.
| |
Collapse
|
38
|
Abstract
BACKGROUND Given the etiologic heterogeneity of disease classification using clinical phenomenology, we employed contemporary criteria to classify variants associated with myoclonic epilepsy with ragged-red fibers (MERRF) syndrome and to assess the strength of evidence of gene-disease associations. Standardized approaches are used to clarify the definition of MERRF, which is essential for patient diagnosis, patient classification, and clinical trial design. METHODS Systematic literature and database search with application of standardized assessment of gene-disease relationships using modified Smith criteria and of variants reported to be associated with MERRF using modified Yarham criteria. RESULTS Review of available evidence supports a gene-disease association for two MT-tRNAs and for POLG. Using modified Smith criteria, definitive evidence of a MERRF gene-disease association is identified for MT-TK. Strong gene-disease evidence is present for MT-TL1 and POLG. Functional assays that directly associate variants with oxidative phosphorylation impairment were critical to mtDNA variant classification. In silico analysis was of limited utility to the assessment of individual MT-tRNA variants. With the use of contemporary classification criteria, several mtDNA variants previously reported as pathogenic or possibly pathogenic are reclassified as neutral variants. CONCLUSIONS MERRF is primarily an MT-TK disease, with pathogenic variants in this gene accounting for ~90% of MERRF patients. Although MERRF is phenotypically and genotypically heterogeneous, myoclonic epilepsy is the clinical feature that distinguishes MERRF from other categories of mitochondrial disorders. Given its low frequency in mitochondrial disorders, myoclonic epilepsy is not explained simply by an impairment of cellular energetics. Although MERRF phenocopies can occur in other genes, additional data are needed to establish a MERRF disease-gene association. This approach to MERRF emphasizes standardized classification rather than clinical phenomenology, thus improving patient diagnosis and clinical trial design.
Collapse
|
39
|
Kiriaev L, Kueh S, Morley JW, North KN, Houweling PJ, Head SI. Branched fibers from old fast-twitch dystrophic muscles are the sites of terminal damage in muscular dystrophy. Am J Physiol Cell Physiol 2018; 314:C662-C674. [PMID: 29412689 DOI: 10.1152/ajpcell.00161.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A striking pathological feature of dystrophinopathies is the presence of morphologically abnormal branched skeletal muscle fibers. The deterioration of muscle contractile function in Duchenne muscular dystrophy is accompanied by both an increase in number and complexity of these branched fibers. We propose that when number and complexity of branched fibers reaches a critical threshold, or "tipping point," the branches in and of themselves are the site of contraction-induced rupture. In the present study, we use the dystrophic mdx mouse and littermate controls to study the prediseased dystrophic fast-twitch extensor digitorum longus (EDL) muscle at 2-3 wk, the peak myonecrotic phase at 6-9 wk, and finally, "old," at 58-112 wk. Using a combination of isolated muscle function contractile measurements coupled with single-fiber imaging and confocal microscope imaging of cleared whole muscles, we identified a distinct pathophysiology, acute fiber rupture at branch nodes, which occurs in "old" fast-twitch EDL muscle approaching the end stage of the dystrophinopathy muscle disease, where the EDL muscles are entirely composed of complexed branched fibers. This evidence supports our concept of "tipping point" where the number and extent of fiber branching reach a level where the branching itself terminally compromises muscle function, irrespective of the absence of dystrophin.
Collapse
Affiliation(s)
- Leonit Kiriaev
- School of Medical Sciences, University of New South Wales , Sidney, New South Wales , Australia
| | - Sindy Kueh
- School of Medical Sciences, University of New South Wales , Sidney, New South Wales , Australia.,School of Medicine, Western Sydney University, Penrith, New South Wales , Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Penrith, New South Wales , Australia
| | - Kathryn N North
- Murdoch Children's Research Institute , Melbourne, Victoria , Australia
| | - Peter J Houweling
- Murdoch Children's Research Institute , Melbourne, Victoria , Australia
| | - Stewart I Head
- School of Medical Sciences, University of New South Wales , Sidney, New South Wales , Australia.,School of Medicine, Western Sydney University, Penrith, New South Wales , Australia
| |
Collapse
|
40
|
Willmann R, Buccella F, De Luca A, Grounds MD, Versnel J, Vroom E, Ribeiro D, Ambrosini A, Pavlath G, Porter J, Dziewczapolski G, Dubowitz V, Lochmüller H, Campbell K, Davies K, Roth KA, Clark A, Clementi E, Nagaraju K, Goemans N, Straub V, Klein A, Aartsma-Rus A, Grounds M, Willmann R, Buccella F, van Putten M, Fries M, Sheean M, Tinsley J, Girgenrath M. 227 th ENMC International Workshop:. Neuromuscul Disord 2018; 28:185-192. [DOI: 10.1016/j.nmd.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023]
|
41
|
Szigyarto CAK, Spitali P. Biomarkers of Duchenne muscular dystrophy: current findings. Degener Neurol Neuromuscul Dis 2018; 8:1-13. [PMID: 30050384 PMCID: PMC6053903 DOI: 10.2147/dnnd.s121099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous biomarkers have been unveiled in the rapidly evolving biomarker discovery field, with an aim to improve the clinical management of disorders. In rare diseases, such as Duchenne muscular dystrophy, this endeavor has created a wealth of knowledge that, if effectively exploited, will benefit affected individuals, with respect to health care, therapy, improved quality of life and increased life expectancy. The most promising findings and molecular biomarkers are inspected in this review, with an aim to provide an overview of currently known biomarkers and the technological developments used. Biomarkers as cells, genetic variations, miRNAs, proteins, lipids and/or metabolites indicative of disease severity, progression and treatment response have the potential to improve development and approval of therapies, clinical management of DMD and patients’ life quality. We highlight the complexity of translating research results to clinical use, emphasizing the need for biomarkers, fit for purpose and describe the challenges associated with qualifying biomarkers for clinical applications.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Division of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden, .,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden,
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands,
| |
Collapse
|
42
|
Hightower RM, Alexander MS. Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies. Muscle Nerve 2018; 57:6-15. [PMID: 28877560 PMCID: PMC5759757 DOI: 10.1002/mus.25953] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2017] [Indexed: 01/05/2023]
Abstract
Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018.
Collapse
Affiliation(s)
- Rylie M. Hightower
- University of Alabama at Birmingham Graduate School of Biomedical Sciences, Birmingham, AL 35294
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology at Children’s of Alabama and the University of Alabama at Birmingham, Birmingham, AL, 35294
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, 35294
| |
Collapse
|
43
|
Summers MA, Rupasinghe T, Vasiljevski ER, Evesson FJ, Mikulec K, Peacock L, Quinlan KGR, Cooper ST, Roessner U, Stevenson DA, Little DG, Schindeler A. Dietary intervention rescues myopathy associated with neurofibromatosis type 1. Hum Mol Genet 2017; 27:577-588. [DOI: 10.1093/hmg/ddx423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Affiliation(s)
- Matthew A Summers
- Orthopaedic Research & Biotechnology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | | | - Emily R Vasiljevski
- Orthopaedic Research & Biotechnology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Frances J Evesson
- Institute for Neuroscience and Muscle Research, The Children’s Hospital Westmead, Sydney, NSW, Australia
| | - Kathy Mikulec
- Orthopaedic Research & Biotechnology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Lauren Peacock
- Orthopaedic Research & Biotechnology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Kate G R Quinlan
- Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Institute for Neuroscience and Muscle Research, The Children’s Hospital Westmead, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW, Australia
| | - Sandra T Cooper
- Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Institute for Neuroscience and Muscle Research, The Children’s Hospital Westmead, Sydney, NSW, Australia
| | - Ute Roessner
- Metabolomics Australia, University of Melbourne, VIC, Australia
| | - David A Stevenson
- Division of Medical Genetics, Stanford University, Stanford, CA, USA
| | - David G Little
- Orthopaedic Research & Biotechnology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
44
|
Schiavone M, Zulian A, Menazza S, Petronilli V, Argenton F, Merlini L, Sabatelli P, Bernardi P. Alisporivir rescues defective mitochondrial respiration in Duchenne muscular dystrophy. Pharmacol Res 2017; 125:122-131. [DOI: 10.1016/j.phrs.2017.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
|
45
|
Stendel C, Walter MC, Klopstock T. [Risk genes in myopathies and mitochondrial diseases]. DER NERVENARZT 2017; 88:736-743. [PMID: 28573363 DOI: 10.1007/s00115-017-0350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Myopathies and mitochondrial diseases pose a major challenge in diagnosis due to the multitude of different entities and - in the case of mitochondriopathies - the possible involvement of multiple organs. Furthermore, there is broad clinical variability within particular diseases; patients with hereditary myopathy, for example, can show great phenotypic variability despite identical genetic defects. In addition to environmental factors, gender-specific influences, and the degree of heteroplasmy in mitochondrial diseases, the existence of disease-modifying genes has long been assumed as an explanation. In recent years, risk genes, which can influence the course of disease, have been identified for some myopathies and mitochondrial diseases. The precise role of these disease-modifying genes in the pathogenesis of the diseases is largely unexplained and requires further research.
Collapse
Affiliation(s)
- C Stendel
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU München, Ziemssenstr. 1a, 80336, München, Deutschland. .,Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), München, Deutschland.
| | - M C Walter
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU München, Ziemssenstr. 1a, 80336, München, Deutschland
| | - T Klopstock
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU München, Ziemssenstr. 1a, 80336, München, Deutschland.,Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), München, Deutschland.,Munich Cluster for Systems Neurology (SyNergy), München, Deutschland
| |
Collapse
|
46
|
Repression of phosphatidylinositol transfer protein α ameliorates the pathology of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2017; 114:6080-6085. [PMID: 28533404 DOI: 10.1073/pnas.1703556114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by X-linked inherited mutations in the DYSTROPHIN (DMD) gene. Absence of dystrophin protein from the sarcolemma causes severe muscle degeneration, fibrosis, and inflammation, ultimately leading to cardiorespiratory failure and premature death. Although there are several promising strategies under investigation to restore dystrophin protein expression, there is currently no cure for DMD, and identification of genetic modifiers as potential targets represents an alternative therapeutic strategy. In a Brazilian golden retriever muscular dystrophy (GRMD) dog colony, two related dogs demonstrated strikingly mild dystrophic phenotypes compared with those typically observed in severely affected GRMD dogs despite lacking dystrophin. Microarray analysis of these "escaper" dogs revealed reduced expression of phosphatidylinositol transfer protein-α (PITPNA) in escaper versus severely affected GRMD dogs. Based on these findings, we decided to pursue investigation of modulation of PITPNA expression on dystrophic pathology in GRMD dogs, dystrophin-deficient sapje zebrafish, and human DMD myogenic cells. In GRMD dogs, decreased expression of Pitpna was associated with increased phosphorylated Akt (pAkt) expression and decreased PTEN levels. PITPNA knockdown by injection of morpholino oligonucleotides in sapje zebrafish also increased pAkt, rescued the abnormal muscle phenotype, and improved long-term sapje mutant survival. In DMD myotubes, PITPNA knockdown by lentiviral shRNA increased pAkt and increased myoblast fusion index. Overall, our findings suggest PIPTNA as a disease modifier that accords benefits to the abnormal signaling, morphology, and function of dystrophic skeletal muscle, and may be a target for DMD and related neuromuscular diseases.
Collapse
|