1
|
Zhou Z, Wu Y, He J, Frauenheim T, Prezhdo OV. Enhancing Extraction and Suppressing Cooling of Hot Electrons in Lead Halide Perovskites by Dipolar Surface Passivation. J Am Chem Soc 2024; 146:29905-29912. [PMID: 39417599 DOI: 10.1021/jacs.4c12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Slowing hot carrier (HC) cooling and improving HC extraction are considered two pivotal factors for enhancing power conversion efficiency in emerging HC photovoltaic applications of perovskites and other materials. Employing ab initio quantum dynamics simulations, we demonstrate the simultaneous slow cooling and efficient extraction of hot electrons at the C60/CsPbI3 interface through dipolar surface passivation with phenethylammonium and 4-fluorophenethylammonium ligands. The passivation effectively suppresses I-Pb lattice vibrations, weakens the hot electron-phonon interaction in CsPbI3, and thus slows down the HC cooling. At the same time, the dipolar surface passivation elevates the LUMO + 1 state in C60 and reduces the energy gap for HC extraction. Concurrently, higher-frequency vibrations of the dipolar layer enhance the coupling between C60 and CsPbI3, promoting efficient HC extraction further. These phenomena are intensified with increased polarity of the dipolar layer. Furthermore, we find that dipolar passivation has the opposite influence on cold electron collection at the band edge, underscoring the fact that the observed improvement in photovoltaic performance stems preferentially from the effective utilization of HCs rather than cold electrons. The work provides a new strategy for achieving high-performance HC perovskite solar cells.
Collapse
Affiliation(s)
- Zhaobo Zhou
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Yang Wu
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
| | - Junjie He
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Thomas Frauenheim
- School of Science, Constructor University, Bremen 28759, Germany
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Xu L, Liu J, Guo X, Liu S, Lai X, Wang J, Yu M, Xie Z, Peng H, Zou X, Wang X, Huang R, He M. Ultrasensitive dim-light neuromorphic vision sensing via momentum-conserved reconfigurable van der Waals heterostructure. Nat Commun 2024; 15:9011. [PMID: 39424814 PMCID: PMC11489728 DOI: 10.1038/s41467-024-53268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Reconfigurable phototransistors featuring bipolar photoresponses are favorable for manipulating high-performance neuromorphic vision sensory. Here, we present a momentum-conserved reconfigurable phototransistor based on the van der Waals heterojunction between methylammonium lead iodide perovskite and two-dimensional Bi2O2Se semiconductor, which exhibits a synergistic interplay of interband hot-carrier transitions and reconfigurable heterointerface band alignments, eventually achieving the ultrahigh bipolar optoelectronic performances with the photoresponsivity of 6×107 AW-1, accompanied by the specific detectivity of 5.2×1011 Jones, and the dynamic range of 110 dB. Moreover, A 3×3 heterotransistor array is fabricated to perform in-sensor analog multiply-accumulate operations even under the challenging dim illumination of 0.1 μWcm-2 that comparable to natural moonlight. The reconfigurable heterotransistor array can be further adopted to enhance the traffic-light detection under dim-light conditions. Our advancement in momentum-conserved reconfigurable heterotransistor signifies a leap forward in real-time, energy-efficient, and low-light image processing for neuromorphic vision sensors.
Collapse
Affiliation(s)
- Lei Xu
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China
| | - Junling Liu
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China
| | - Xinrui Guo
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China
| | - Shuo Liu
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China
| | - Xilin Lai
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China
| | - Jingyue Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mengshi Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhengdao Xie
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Hailin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xuming Zou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Xinran Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Ru Huang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China
| | - Ming He
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, China.
| |
Collapse
|
3
|
Ye J, Mondal N, Carwithen BP, Zhang Y, Dai L, Fan XB, Mao J, Cui Z, Ghosh P, Otero-Martínez C, van Turnhout L, Huang YT, Yu Z, Chen Z, Greenham NC, Stranks SD, Polavarapu L, Bakulin A, Rao A, Hoye RLZ. Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics. Nat Commun 2024; 15:8120. [PMID: 39285179 PMCID: PMC11405528 DOI: 10.1038/s41467-024-52377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Defect tolerance is a critical enabling factor for efficient lead-halide perovskite materials, but the current understanding is primarily on band-edge (cold) carriers, with significant debate over whether hot carriers can also exhibit defect tolerance. Here, this important gap in the field is addressed by investigating how intentionally-introduced traps affect hot carrier relaxation in CsPbX3 nanocrystals (X = Br, I, or mixture). Using femtosecond interband and intraband spectroscopy, along with energy-dependent photoluminescence measurements and kinetic modelling, it is found that hot carriers are not universally defect tolerant in CsPbX3, but are strongly correlated to the defect tolerance of cold carriers, requiring shallow traps to be present (as in CsPbI3). It is found that hot carriers are directly captured by traps, instead of going through an intermediate cold carrier, and deeper traps cause faster hot carrier cooling, reducing the effects of the hot phonon bottleneck and Auger reheating. This work provides important insights into how defects influence hot carriers, which will be important for designing materials for hot carrier solar cells, multiexciton generation, and optical gain media.
Collapse
Affiliation(s)
- Junzhi Ye
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Navendu Mondal
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, London, UK.
| | - Ben P Carwithen
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Yunwei Zhang
- School of Physics, Sun Yat-sen University, Guangzhou, China
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Xiang-Bing Fan
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, UK
| | - Jian Mao
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, China
| | - Zhiqiang Cui
- School of Physics, Sun Yat-sen University, Guangzhou, China
| | - Pratyush Ghosh
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Clara Otero-Martínez
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario As Lagoas, Marcosende, Vigo, Spain
| | | | - Yi-Teng Huang
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Zhongzheng Yu
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ziming Chen
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario As Lagoas, Marcosende, Vigo, Spain
| | - Artem Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK.
- Department of Materials, Imperial College London, London, UK.
| |
Collapse
|
4
|
Tran TX, Jang YJ, Vu VT, Jung CW, Do VD, Jin Y, Lee J, Kim H, Kim JH. Augmented Extraction Efficiency of a Hot D Exciton in MoS 2 via Intervalley Scattering. NANO LETTERS 2024; 24:11163-11169. [PMID: 39225119 DOI: 10.1021/acs.nanolett.4c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Prolonging hot carrier cooling, a crucial factor in optoelectronic applications, including hot carrier photovoltaics, presents a significant challenge. High-energy band-nesting excitons within parallel bands offer a promising and underexplored avenue for addressing this issue. Here, we exploit an exceptional D exciton cooling prolongation of 2 to 3 orders of magnitude compared to sub-picosecond in typical transition metal dichalcogenides (TMDs) owing to the complex Coulomb environment and the sequential and mismatch-valley relaxation. Simultaneously, the intervalley scattering upconversion of band-edge excitons with the slow D exciton formation in the metastable Γ valley/hill also reduces the cooling rate. We successfully extract D and C excitons as hot carriers through integrating with various thicknesses of TiOx, achieving the highest efficiency of 98% and 85% at a Ti thickness of 2 nm. Our findings highlight the potential of band-nesting excitons for extending hot carrier cooling time, paving the way for advancements in hot carrier-based optoelectronic devices.
Collapse
Affiliation(s)
- Thanh-Xuan Tran
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Ultrafast Phase Transformation, Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Yu Jin Jang
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (NUS), Singapore 117574
| | - Van-Tu Vu
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan-Woo Jung
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Dam Do
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yeongrok Jin
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunjung Kim
- Center for Ultrafast Phase Transformation, Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Ji-Hee Kim
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Samanta K, Deswal P, Alam S, Bhati M, Ivanov SA, Tretiak S, Ghosh D. Ligand Controls Excited Charge Carrier Dynamics in Metal-Rich CdSe Quantum Dots: Computational Insights. ACS NANO 2024; 18:24941-24952. [PMID: 39189799 DOI: 10.1021/acsnano.4c05638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Small metal-rich semiconducting quantum dots (QDs) are promising for solid-state lighting and single-photon emission due to their highly tunable yet narrow emission line widths. Nonetheless, the anionic ligands commonly employed to passivate these QDs exert a substantial influence on the optoelectronic characteristics, primarily owing to strong electron-phonon interactions. In this work, we combine time-domain density functional theory and nonadiabatic molecular dynamics to investigate the excited charge carrier dynamics of Cd28Se17X22 QDs (X = HCOO-, OH-, Cl-, and SH-) at ambient conditions. These chemically distinct but regularly used molecular groups influence the dynamic surface-ligand interfacial interactions in Cd-rich QDs, drastically modifying their vibrational characteristics. The strong electron-phonon coupling leads to substantial transient variations at the band edge states. The strength of these interactions closely depends on the physicochemical characteristics of passivating ligands. Consequently, the ligands largely control the nonradiative recombination rates and emission characteristics in these QDs. Our simulations indicate that Cd28Se17(OH)22 has the fastest nonradiative recombination rate due to the strongest electron-phonon interactions. Conversely, QDs passivated with thiolate or chloride exhibit considerably longer carrier lifetimes and suppressed nonradiative processes. The ligand-controlled electron-phonon interactions further give rise to the broadest and narrowest intrinsic optical line widths for OH and Cl-passivated single QDs, respectively. Obtained computational insights lay the groundwork for designing appropriate passivating ligands on metal-rich QDs, making them suitable for a wide range of applications, from blue LEDs to quantum emitters.
Collapse
Affiliation(s)
- Kushal Samanta
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Priyanka Deswal
- Department of Physics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Shayeeque Alam
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Bhati
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei A Ivanov
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dibyajyoti Ghosh
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
6
|
Guan Z, Li Y, Man P, Tan H, Wei Q, Liu J, Li M, Ly TH, Yin J, Lee CS. Ultrafast Electron-Transfer Via Hybrid States at Perovskite/Fullerene Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407406. [PMID: 39081099 DOI: 10.1002/adma.202407406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Indexed: 10/04/2024]
Abstract
Interfacial charge-transfer between perovskite and charge-transport layers plays a key role in determining performance of perovskite solar cells. The conventional viewpoint emphases the necessity of favorable energy-level alignment of the two components. In recent reports, efficient electron-transfer is observed from perovskite to fullerene-based electron-transport layers even when there are unfavorable energy-level alignments, but the mechanism is still unclear. Here, using an ultrafast in situ two-photon photoelectron spectroscopy, real-time observations of electron-transfer processes at CsPbI3/C60 interface in both temporal and energetic dimensions are reported. Due to strong electronic coupling, a large amount of interfacial hybrid states is generated at the interfaces, aiding fast photoinduced electron-transfer in ≈124 fs. This process is further verified by nonadiabatic molecular dynamics simulations and transient absorption experiments. The short timescale explains why electron-transfer can overcome unfavorable energy-level alignments, providing a guideline for device design.
Collapse
Affiliation(s)
- Zhiqiang Guan
- Department of Chemistry, City University of Hong Kong, Hong kong, Hong Kong SAR, 000000, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong kong, Hong Kong SAR, 000000, P. R. China
| | - Yang Li
- Department of Chemistry, City University of Hong Kong, Hong kong, Hong Kong SAR, 000000, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong kong, Hong Kong SAR, 000000, P. R. China
| | - Ping Man
- Department of Chemistry, City University of Hong Kong, Hong kong, Hong Kong SAR, 000000, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong kong, Hong Kong SAR, 000000, P. R. China
| | - Hongji Tan
- Department of Chemistry, City University of Hong Kong, Hong kong, Hong Kong SAR, 000000, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong kong, Hong Kong SAR, 000000, P. R. China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong kong, Hong Kong SAR, 000000, P. R. China
| | - Jinjie Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong kong, Hong Kong SAR, 000000, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong kong, Hong Kong SAR, 000000, P. R. China
| | - Thuc Hue Ly
- Department of Chemistry, City University of Hong Kong, Hong kong, Hong Kong SAR, 000000, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong kong, Hong Kong SAR, 000000, P. R. China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong kong, Hong Kong SAR, 000000, P. R. China
| | - Chun-Sing Lee
- Department of Chemistry, City University of Hong Kong, Hong kong, Hong Kong SAR, 000000, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong kong, Hong Kong SAR, 000000, P. R. China
| |
Collapse
|
7
|
Wang T, Li Y, Yang X, Hu Y, Du X, Zhang M, Huang Z, Liu S, Wang Y, Xie W. Efficient C(sp 3)-H Bond Oxidation on Perovskite Quantum Dots Based on Ce-Oxygen Affinity. Angew Chem Int Ed Engl 2024; 63:e202409656. [PMID: 38837290 DOI: 10.1002/anie.202409656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Perovskite quantum dots (QDs) have shown attractive prospects in the field of visible photocatalysis, especially in the synthesis of high value-added chemicals. However, under aerobic conditions, the stable operation of QD catalysts has been limited by the reactive oxygen species (ROS) generated by photoexcitation, especially superoxide species O2⋅-. Here, we propose a strategy of Ce3+ doping in perovskite QDs to guide superoxide species for photocatalytic oxidation reactions. In C(sp3)-H bond oxidation of hydrocarbons, superoxide species were rapidly generated and efficiently utilized on the surface of perovskite QDs, which achieves the stable operation of the catalytic system and obtains a high product conversion rate (15.3 mmol/g/h for benzaldehydes). The mechanism studies show that the strong Ce-oxygen affinity accelerates the relaxation process of photoinduced exciton transfer to superoxide species and inhibits the radiative recombination pathway. This work provides a new idea of utilizing oxygen species on perovskite surface and broadens the design strategy of high-performance QD photocatalysts.
Collapse
Affiliation(s)
- Teng Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yonglong Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Xian Yang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yanfang Hu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Xiaomeng Du
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Maodi Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Zhuanzhuan Huang
- Ultrafast Electron Microscopy Laboratory, Key Laboratory of Weak-Light Nonlinear Photonics (Ministry of Education), School of Physics, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Siyu Liu
- Ultrafast Electron Microscopy Laboratory, Key Laboratory of Weak-Light Nonlinear Photonics (Ministry of Education), School of Physics, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Ying Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Wei Xie
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| |
Collapse
|
8
|
Kambhampati P. Unraveling the excitonics of light emission from metal-halide perovskite quantum dots. NANOSCALE 2024; 16:15033-15058. [PMID: 39052235 DOI: 10.1039/d4nr01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal halide semicondictor perovskites have been under intense investigation for their promise in light absorptive applications like photovoltaics. They have more recently experienced interest for their promise in light emissive applications. A key aspect of perovskites is their glassy, ionic lattice that exhibits dynamical disorder. One possible result of this dynamical disorder is their strong coupling between electronic and lattice degrees of freedom which may confer remarkable properties for light emission such as defect tolerance. How does the system, comprised of excitons, couple to the bath, comprised of lattice modes? How does this system-bath interaction give rise to novel light emissive properties and how do these properties give insight into the nature of these materials? We review recent work from this group in which time-resolved photoluminescence spectroscopy is used to reveal such insights. Based upon a fast time resolution of 3 ps, energy resolution, and temperature dependence, a wide variety of insights are gleaned. These insights include: lattice contributions to the emission linewidths, multiexciton formation, hot carrier cooling, excitonic fine structure, single dot superradiance, and a breakdown of the Condon approximation, all due to complex structural dynamics in these materials.
Collapse
|
9
|
Ye J, Gaur D, Mi C, Chen Z, Fernández IL, Zhao H, Dong Y, Polavarapu L, Hoye RLZ. Strongly-confined colloidal lead-halide perovskite quantum dots: from synthesis to applications. Chem Soc Rev 2024; 53:8095-8122. [PMID: 38894687 DOI: 10.1039/d4cs00077c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Colloidal semiconductor nanocrystals enable the realization and exploitation of quantum phenomena in a controlled manner, and can be scaled up for commercial uses. These materials have become important for a wide range of applications, from ultrahigh definition displays, to solar cells, quantum computing, bioimaging, optical communications, and many more. Over the last decade, lead-halide perovskite nanocrystals have rapidly gained prominence as efficient semiconductors. Although the majority of studies have focused on large nanocrystals in the weak- to intermediate-confinement regime, quantum dots (QDs) in the strongly-confined regime (with sizes smaller than the Bohr diameter, which ranges from 4-12 nm for lead-halide perovskites) offer unique opportunities, including polarized light emission and color-pure, stable luminescence in the region that is unattainable by perovskites with single-halide compositions. In this tutorial review, we bring together the latest insights into this emerging and rapidly growing area, focusing on the synthesis, steady-state optical properties (including exciton fine-structure splitting), and transient kinetics (including hot carrier cooling) of strongly-confined perovskite QDs. We also discuss recent advances in their applications, including single photon emission for quantum technologies, as well as light-emitting diodes. We finish with our perspectives on future challenges and opportunities for strongly-confined QDs, particularly around improving the control over monodispersity and stability, important fundamental questions on the photophysics, and paths forward to improve the performance of perovskite QDs in light-emitting diodes.
Collapse
Affiliation(s)
- Junzhi Ye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Deepika Gaur
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry Campus Universitario As Lagoas, Marcosende 36310, Vigo, Spain.
| | - Chenjia Mi
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Zijian Chen
- Centre for Intelligent and Biomimetic Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 440305, China
| | - Iago López Fernández
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry Campus Universitario As Lagoas, Marcosende 36310, Vigo, Spain.
| | - Haitao Zhao
- Centre for Intelligent and Biomimetic Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 440305, China
| | - Yitong Dong
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry Campus Universitario As Lagoas, Marcosende 36310, Vigo, Spain.
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
10
|
Pang H, Du S, Deng J, Kong W, Zhao Y, Zheng B, Ma L. Enhancing Carrier Transport in 2D/3D Perovskite Heterostructures through Organic Cation Fluorination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401797. [PMID: 38577831 DOI: 10.1002/smll.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Indexed: 04/06/2024]
Abstract
The interfacial 2D/3D perovskite heterostructures have attracted extensive attention due to their unique ability to combine the high stability of 2D perovskites with the remarkable efficiency of 3D perovskites. However, the carrier transport mechanism within the 2D/3D perovskite heterostructures remains unclear. In this study, the carrier transport dynamics in 2D/3D perovskite heterostructures through a variety of time-resolved spectroscopic measurements is systematically investigated. Time-resolved photoluminescence results reveal nanosecond hole transfer from the 3D to 2D perovskites, with enhanced efficiency through the introduction of fluorine atoms on the phenethylammonium (PEA) cation. Transient absorption measurements unveil the ultrafast picosecond electron and energy transfer from 2D to 3D perovskites. Furthermore, it is demonstrated that the positioning of fluorination on the PEA cations effectively regulates the efficiency of charge and energy transfer within the heterostructures. These insightful findings shed light on the underlying carrier transport mechanism and underscore the critical role of cation fluorination in optimizing carrier transport within 2D/3D perovskite heterostructure-based devices.
Collapse
Affiliation(s)
- Haoran Pang
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shijie Du
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junpeng Deng
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Kong
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yilun Zhao
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bohong Zheng
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lin Ma
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
11
|
Wang S, Wu T, Guo J, Zhao R, Hua Y, Zhao Y. Engineering the Hole Transport Layer with a Conductive Donor-Acceptor Covalent Organic Framework for Stable and Efficient Perovskite Solar Cells. ACS CENTRAL SCIENCE 2024; 10:1383-1395. [PMID: 39071056 PMCID: PMC11273455 DOI: 10.1021/acscentsci.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
Spiro-OMeTAD doped with lithium-bis(trifluoromethylsulfonyl)-imide (Li-TFSI) and tertbutyl-pyridine (t-BP) is widely used as a hole transport layer (HTL) in n-i-p perovskite solar cells (PSCs). Spiro-OMeTAD based PSCs typically show poor stability owing to the agglomeration of Li-TFSI, the migration of lithium ions (Li+), and the existence of potential mobile defects originating from the perovskite layer. Thus, it is necessary to search for a strategy that suppresses the degradation of PSCs and overcomes the Shockley Queisser efficiency limit via harvesting excess energy from hot charge carrier. Herein, two covalent organic frameworks (COFs) including BPTA-TAPD-COF and a well-defined donor-acceptor COF (BPTA-TAPD-COF@TCNQ) were developed and incorporated into Spiro-OMeTAD HTL. BPTA-TAPD-COF and BPTA-TAPD-COF@TCNQ could act as multifunctional additives of Spiro-OMeTAD HTL, which improve the photovoltaic performance and stability of the PSC device by accelerating charge-carrier extraction, suppressing the Li+ migration and Li-TFSI agglomeration, and capturing mobile defects. Benefiting from the increased conductivity, the addition of BPTA-TAPD-COF@TCNQ in the device led to the highest power conversion efficiency of 24.68% with long-term stability in harsh conditions. This work provides an example of using COFs as additives of HTL to enable improvements of both efficiency and stability for PSCs.
Collapse
Affiliation(s)
- Shihuai Wang
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, School of
Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Tai Wu
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, School of
Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Jingjing Guo
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Rongjun Zhao
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, School of
Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Yong Hua
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, School of
Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Yanli Zhao
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
12
|
Fan K, Sergeeva KA, Sergeev AA, Zhang L, Chan CCS, Li Z, Zhong X, Kershaw SV, Liu J, Rogach AL, Wong KS. Slow Hot-Exciton Cooling and Enhanced Interparticle Excitonic Coupling in HgTe Quantum Dots. ACS NANO 2024; 18:18011-18021. [PMID: 38935537 DOI: 10.1021/acsnano.4c05061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Rapid hot-carrier/exciton cooling constitutes a major loss channel for photovoltaic efficiency. How to decelerate the hot-carrier/exciton relaxation remains a crux for achieving high-performance photovoltaic devices. Here, we demonstrate slow hot-exciton cooling that can be extended to hundreds of picoseconds in colloidal HgTe quantum dots (QDs). The energy loss rate is 1 order of magnitude smaller than bulk inorganic semiconductors, mediated by phonon bottleneck and interband biexciton Auger recombination (BAR) effects, which are both augmented at reduced QD sizes. The two effects are competitive with the emergence of multiple exciton generation. Intriguingly, BAR dominates even under low excitation fluences with a decrease in interparticle distance. Both experimental evidence and numerical evidence reveal that such efficient BAR derives from the tunneling-mediated interparticle excitonic coupling induced by wave function overlap between neighboring HgTe QDs in films. Thus, our study unveils the potential for realizing efficient hot-carrier/exciton solar cells based on HgTe QDs. Fundamentally, we reveal that the delocalized nature of quantum-confined wave function intensifies BAR. The interparticle excitonic coupling may cast light on the development of next-generation photoelectronic materials, which can retain the size-tunable confinement of colloidal semiconductor QDs while simultaneously maintaining high mobilities and conductivities typical for bulk semiconductor materials.
Collapse
Affiliation(s)
- Kezhou Fan
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P. R. China
| | - Kseniia A Sergeeva
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R., P. R. China
| | - Aleksandr A Sergeev
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P. R. China
- Far-Eastern Branch of Russian Academy of Sciences, Institute of Automation and Control Processes, Vladivostok 690041, Russia
| | - Lu Zhang
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P. R. China
| | - Christopher C S Chan
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P. R. China
| | - Zhuo Li
- TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R., P. R. China
- City University of Hong Kong Matter Science Research Institute (Futian, Shenzhen), Shenzhen 518048, P. R. China
- Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Xiaoyan Zhong
- TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R., P. R. China
- City University of Hong Kong Matter Science Research Institute (Futian, Shenzhen), Shenzhen 518048, P. R. China
- Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R., P. R. China
| | - Junwei Liu
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R., P. R. China
| | - Kam Sing Wong
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P. R. China
| |
Collapse
|
13
|
Yang W, Jo SH, Lee TW. Perovskite Colloidal Nanocrystal Solar Cells: Current Advances, Challenges, and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401788. [PMID: 38708900 DOI: 10.1002/adma.202401788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Indexed: 05/07/2024]
Abstract
The power conversion efficiencies (PCEs) of polycrystalline perovskite (PVK) solar cells (SCs) (PC-PeSCs) have rapidly increased. However, PC-PeSCs are intrinsically unstable without encapsulation, and their efficiency drops during large-scale production; these problems hinder the commercial viability of PeSCs. Stability can be increased by using colloidal PVK nanocrystals (c-PeNCs), which have high surface strains, low defect density, and exceptional crystal quality. The use of c-PeNCs separates the crystallization process from the film formation process, which is preponderant in large-scale fabrication. Consequently, the use of c-PeNCs has substantial potential to overcome challenges encountered when fabricating PC-PeSCs. Research on colloidal nanocrystal-based PVK SCs (NC-PeSCs) has increased their PCEs to a level greater than those of other quantum-dot SCs, but has not reached the PCEs of PC-PeSCs; this inferiority significantly impedes widespread application of NC-PeSCs. This review first introduces the distinctive properties of c-PeNCs, then the strategies that have been used to achieve high-efficiency NC-PeSCs. Then it discusses in detail the persisting challenges in this domain. Specifically, the major challenges and solutions for NC-PeSCs related to low short-circuit current density Jsc are covered. Last, the article presents a perspective on future research directions and potential applications in the realm of NC-PeSCs.
Collapse
Affiliation(s)
- Wenqiang Yang
- Institute of Atomic Manufacturing, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, China
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Hyeon Jo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary program in Bioengineering, Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
14
|
Li Q, Wu K, Zhu H, Yang Y, He S, Lian T. Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals. Chem Rev 2024; 124:5695-5763. [PMID: 38629390 PMCID: PMC11082908 DOI: 10.1021/acs.chemrev.3c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/09/2024]
Abstract
The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.
Collapse
Affiliation(s)
- Qiuyang Li
- Department
of Physics, University of Michigan, 450 Church St, Ann Arbor, Michigan 48109, United States
| | - Kaifeng Wu
- State
Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiming Zhu
- Department
of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ye Yang
- The
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM
(Collaborative Innovation Center of Chemistry for Energy Materials),
College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng He
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
15
|
Li Z, Sun A, Zheng Y, Zhuang R, Wu X, Tian C, Tang C, Liu Y, Ouyang B, Du J, Li Z, Cai J, Wu X, Chen J, Hua Y, Chen CC. Efficient Charge Transport in Inverted Perovskite Solar Cells via 2D/3D Ferroelectric Heterojunction. SMALL METHODS 2024:e2400425. [PMID: 38593370 DOI: 10.1002/smtd.202400425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Indexed: 04/11/2024]
Abstract
While the 2D/3D heterojunction is an effective method to improve the power conversion efficiency (PCE) of perovskite solar cells (PSCs), carriers are often confined in the quantum wells (QWs) due to the unique structure of 2D perovskite, which makes the charge transport along the out-of-plane direction difficult. Here, a 2D/3D ferroelectric heterojunction formed by 4,4-difluoropiperidine hydrochloride (2FPD) in inverted PSCs is reported. The enriched 2D perovskite (2FPD)2PbI4 layer with n = 1 on the perovskite surface exhibits ferroelectric response and has oriented dipoles along the out-of-plane direction. The ferroelectricity of the oriented dipole layer facilitates the enhancement of the built-in electric field (1.06 V) and the delay of the cooling process of hot carriers, reflected in the high carrier temperature (above 1400 K) and the prolonged photobleach recovery time (139.85 fs, measured at bandgap), improving the out-of-plane conductivity. In addition, the alignment of energy levels is optimized and exciton binding energy (32.8 meV) is reduced by changing the dielectric environment of the surface. Finally, the 2FPD-treated PSCs achieve a PCE of 24.82% (certified: 24.38%) with the synergistic effect of ferroelectricity and defect passivation, while maintaining over 90% of their initial efficiency after 1000 h of maximum power point tracking.
Collapse
Affiliation(s)
- Zihao Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Anxin Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yiting Zheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Rongshan Zhuang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Xueyun Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Congcong Tian
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Chen Tang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Beilin Ouyang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jiajun Du
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Ziyi Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jingyu Cai
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Xiling Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jinling Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yong Hua
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Chun-Chao Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| |
Collapse
|
16
|
Palmer LD, Lee W, Dong CL, Liu RS, Wu N, Cushing SK. Determining Quasi-Equilibrium Electron and Hole Distributions of Plasmonic Photocatalysts Using Photomodulated X-ray Absorption Spectroscopy. ACS NANO 2024; 18:9344-9353. [PMID: 38498940 PMCID: PMC10993415 DOI: 10.1021/acsnano.3c08181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Most photocatalytic and photovoltaic devices operate under broadband, constant illumination. Electron and hole dynamics in these devices, however, are usually measured by using ultrafast pulsed lasers in a narrow wavelength range. In this work, we use excited-state X-ray theory originally developed for transient X-ray experiments to study steady-state photomodulated X-ray spectra. We use this method to attempt to extract electron and hole distributions from spectra collected at a nontime-resolved synchrotron beamline. A set of plasmonic metal core-shell nanoparticles is designed as the control experiment because they can systematically isolate photothermal, hot electron, and thermalized electron-hole pairs in a TiO2 shell. Steady-state changes in the Ti L2,3 edge are measured with and without continuous-wave illumination of the nanoparticle's localized surface plasmon resonance. The results suggest that within error the quasi-equilibrium carrier distribution can be determined even from relatively noisy data with mixed excited-state phenomena. Just as importantly, the theoretical analysis of noisy data is used to provide guidelines for the beamline development of photomodulated steady-state spectroscopy.
Collapse
Affiliation(s)
- Levi Daniel Palmer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena 91125, California, United States
| | - Wonseok Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena 91125, California, United States
| | - Chung-Li Dong
- Department
of Physics, Tamkang University, New Taipei City 251301, Taiwan
| | - Ru-Shi Liu
- Department
of Chemistry, National Taiwan University
and Advanced Research Center for Green Materials Science and Technology, Taipei 10617, Taiwan
| | - Nianqiang Wu
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst 01003−9303, Massachusetts, United States
| | - Scott Kevin Cushing
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena 91125, California, United States
| |
Collapse
|
17
|
Huang X, Qin Y, Guo T, Liu J, Hu Z, Shang J, Li H, Deng G, Wu S, Chen Y, Lin T, Shen H, Ge J, Meng X, Wang X, Chu J, Wang J. Long-Range Hot-Carrier Transport in Topologically Connected HgTe Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307396. [PMID: 38225755 DOI: 10.1002/advs.202307396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
The utilization of hot carriers as a means to surpass the Shockley-Queasier limit represents a promising strategy for advancing highly efficient photovoltaic devices. Quantum dots, owing to their discrete energy states and limited multi-phonon cooling process, are regarded as one of the most promising materials. However, in practical implementations, the presence of numerous defects and discontinuities in colloidal quantum dot (CQD) films significantly curtails the transport distance of hot carriers. In this study, the harnessing of excess energies from hot-carriers is successfully demonstrated and a world-record carrier diffusion length of 15 µm is observed for the first time in colloidal systems, surpassing existing hot-carrier materials by more than tenfold. The observed phenomenon is attributed to the specifically designed honeycomb-like topological structures in a HgTe CQD superlattice, with its long-range periodicity confirmed by High-Resolution Transmission Electron Microscopy(HR-TEM), Selected Area Electron Diffraction(SAED) patterns, and low-angle X-ray diffraction (XRD). In such a superlattice, nonlocal hot carrier transport is supported by three unique physical properties: the wavelength-independent responsivity, linear output characteristics and microsecond fast photoresponse. These findings underscore the potential of HgTe CQD superlattices as a feasible approach for efficient hot carrier collection, thereby paving the way for practical applications in highly sensitive photodetection and solar energy harvesting.
Collapse
Affiliation(s)
- Xinning Huang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Yilu Qin
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Tianle Guo
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Jingjing Liu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Zhourui Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 330106, China
| | - Jiale Shang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Hongfu Li
- Kunming Institute of Physics, Kunming, Yunnan, 650223, China
| | - Gongrong Deng
- Kunming Institute of Physics, Kunming, Yunnan, 650223, China
| | - Shuaiqin Wu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Frontier Institute of Chip and System, Institute of Optoelectronics, Shanghai, Frontier Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200438, China
| | - Yan Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Frontier Institute of Chip and System, Institute of Optoelectronics, Shanghai, Frontier Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200438, China
| | - Tie Lin
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Hong Shen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Jun Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Xiangjian Meng
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Xudong Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Junhao Chu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Jianlu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 330106, China
- Frontier Institute of Chip and System, Institute of Optoelectronics, Shanghai, Frontier Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200438, China
| |
Collapse
|
18
|
Wang L, Nughays R, Rossi TC, Oppermann M, Ogieglo W, Bian T, Shih CH, Guo TF, Pinnau I, Yin J, Bakr OM, Mohammed OF, Chergui M. Disentangling Thermal from Electronic Contributions in the Spectral Response of Photoexcited Perovskite Materials. J Am Chem Soc 2024; 146:5393-5401. [PMID: 38359303 PMCID: PMC10910496 DOI: 10.1021/jacs.3c12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Disentangling electronic and thermal effects in photoexcited perovskite materials is crucial for photovoltaic and optoelectronic applications but remains a challenge due to their intertwined nature in both the time and energy domains. In this study, we employed temperature-dependent variable-angle spectroscopic ellipsometry, density functional theory calculations, and broadband transient absorption spectroscopy spanning the visible to mid-to-deep-ultraviolet (UV) ranges on MAPbBr3 thin films. The use of deep-UV detection opens a new spectral window that enables the exploration of high-energy excitations at various symmetry points within the Brillouin zone, facilitating an understanding of the ultrafast responses of the UV bands and the underlying mechanisms governing them. Our investigation reveals that the photoinduced spectral features remarkably resemble those generated by pure lattice heating, and we disentangle the relative thermal and electronic contributions and their evolutions at different delay times using combinations of decay-associated spectra and temperature-induced differential absorption. The results demonstrate that the photoinduced transients possess a significant thermal origin and cannot be attributed solely to electronic effects. Following photoexcitation, as carriers (electrons and holes) transfer their energy to the lattice, the thermal contribution increases from ∼15% at 1 ps to ∼55% at 500 ps and subsequently decreases to ∼35-50% at 1 ns. These findings elucidate the intricate energy exchange between charge carriers and the lattice in photoexcited perovskite materials and provide insights into the limited utilization efficiency of photogenerated charge carriers.
Collapse
Affiliation(s)
- Lijie Wang
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Razan Nughays
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Thomas C. Rossi
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Malte Oppermann
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wojciech Ogieglo
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tieyuan Bian
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Kowloon 999077, Hong Kong, P. R. China
| | - Chun-Hua Shih
- Department
of Photonics, National Cheng Kung University, Tainan 701, Taiwan ROC
| | - Tzung-Fang Guo
- Department
of Photonics, National Cheng Kung University, Tainan 701, Taiwan ROC
| | - Ingo Pinnau
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Kowloon 999077, Hong Kong, P. R. China
| | - Osman M. Bakr
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center (AMPM), Division of Physical
Science and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Majed Chergui
- Laboratory
of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
19
|
Zhang Z, Ghonge S, Ding Y, Zhang S, Berciu M, Schaller RD, Jankó B, Kuno M. Resonant Multiple-Phonon Absorption Causes Efficient Anti-Stokes Photoluminescence in CsPbBr 3 Nanocrystals. ACS NANO 2024; 18:6438-6444. [PMID: 38363716 DOI: 10.1021/acsnano.3c11908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Lead halide perovskite nanocrystals, such as CsPbBr3, exhibit efficient photoluminescence (PL) up-conversion, also referred to as anti-Stokes photoluminescence (ASPL). This is a phenomenon where irradiating nanocrystals up to 100 meV below gap results in higher energy band edge emission. Most surprising is that ASPL efficiencies approach unity and involve single-photon interactions with multiple phonons. This is unexpected given the statistically disfavored nature of multiple-phonon absorption. Here, we report and rationalize near-unity anti-Stokes photoluminescence efficiencies in CsPbBr3 nanocrystals and attribute them to resonant multiple-phonon absorption by polarons. The theory explains paradoxically large efficiencies for intrinsically disfavored, multiple-phonon-assisted ASPL in nanocrystals. Moreover, the developed microscopic mechanism has immediate and important implications for applications of ASPL toward condensed phase optical refrigeration.
Collapse
Affiliation(s)
- Zhuoming Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Sushrut Ghonge
- Department of Physics and Astronomy, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Yang Ding
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Shubin Zhang
- Department of Physics and Astronomy, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Mona Berciu
- Department of Physics and Astronomy, University of British Columbia, Vancouver Campus 325-6224, Agricultural Road, Vancouver, BC V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Boldizsár Jankó
- Department of Physics and Astronomy, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Masaru Kuno
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
- Department of Physics and Astronomy, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
20
|
Shcherbakov-Wu W, Saris S, Sheehan TJ, Wong NN, Powers ER, Krieg F, Kovalenko MV, Willard AP, Tisdale WA. Persistent enhancement of exciton diffusivity in CsPbBr 3 nanocrystal solids. SCIENCE ADVANCES 2024; 10:eadj2630. [PMID: 38381813 PMCID: PMC10881049 DOI: 10.1126/sciadv.adj2630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
In semiconductors, exciton or charge carrier diffusivity is typically described as an inherent material property. Here, we show that the transport of excitons among CsPbBr3 perovskite nanocrystals (NCs) depends markedly on how recently those NCs were occupied by a previous exciton. Using transient photoluminescence microscopy, we observe a striking dependence of the apparent exciton diffusivity on excitation laser power that does not arise from nonlinear exciton-exciton interactions or thermal heating. We interpret our observations with a model in which excitons cause NCs to transition to a long-lived metastable configuration that markedly increases exciton transport. The exciton diffusivity observed here (>0.15 square centimeters per second) is considerably higher than that observed in other NC systems, revealing unusually strong excitonic coupling between NCs. The finding of a persistent enhancement in excitonic coupling may help explain other photophysical behaviors observed in CsPbBr3 NCs, such as superfluorescence, and inform the design of optoelectronic devices.
Collapse
Affiliation(s)
- Wenbi Shcherbakov-Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seryio Saris
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Thomas John Sheehan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Narumi Nagaya Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric R. Powers
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Franziska Krieg
- Department of Chemistry and Applied Bioscience, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale Interfaces, Empa – Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Department of Chemistry and Applied Bioscience, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale Interfaces, Empa – Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William A. Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Chen X, Pasanen HP, Khan R, Tkachenko NV, Janáky C, Samu GF. Effect of Single-Crystal TiO 2/Perovskite Band Alignment on the Kinetics of Electron Extraction. J Phys Chem Lett 2024; 15:2057-2065. [PMID: 38357864 PMCID: PMC10895670 DOI: 10.1021/acs.jpclett.3c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The kinetics of electron extraction at the electron transfer layer/perovskite interface strongly affects the efficiency of a perovskite solar cell. By combining transient absorption and time-resolved photoluminescence spectroscopy, the electron extraction process between FA0.83Cs0.17Pb(I0.83Br0.17)3 and TiO2 single crystals with different orientations of (100), (110), and (111) were probed from subpicosecond to several hundred nanoseconds. It was revealed that the band alignment between the constituents influenced the relative electron extraction process. TiO2(100) showed the fastest overall and hot electron transfer, owing to the largest conduction band and Fermi level offset compared to FA0.83Cs0.17Pb(I0.83Br0.17)3. It was found that an early electron accumulation in these systems can have an influence on the following electron extraction on the several nanosecond time scale. Furthermore, the existence of a potential barrier at the TiO2/perovskite interface was also revealed by performing excitation fluence-dependent measurements.
Collapse
Affiliation(s)
- Xiangtian Chen
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
| | - Hannu P Pasanen
- Photonic Compounds and Nanomaterials, Chemistry and Advanced Material Group, Tampere University, Tampere FI-33720, Finland
| | - Ramsha Khan
- Photonic Compounds and Nanomaterials, Chemistry and Advanced Material Group, Tampere University, Tampere FI-33720, Finland
| | - Nikolai V Tkachenko
- Photonic Compounds and Nanomaterials, Chemistry and Advanced Material Group, Tampere University, Tampere FI-33720, Finland
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner street 3., Szeged H-6728, Hungary
| | - Gergely Ferenc Samu
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner street 3., Szeged H-6728, Hungary
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm square 7-8, Szeged H-6721, Hungary
| |
Collapse
|
22
|
Tiede D, Romero-Pérez C, Koch KA, Ucer KB, Calvo ME, Srimath Kandada AR, Galisteo-López JF, Míguez H. Effect of Connectivity on the Carrier Transport and Recombination Dynamics of Perovskite Quantum-Dot Networks. ACS NANO 2024; 18:2325-2334. [PMID: 38206821 PMCID: PMC10811662 DOI: 10.1021/acsnano.3c10239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Quantum-dot (QD) solids are being widely exploited as a solution-processable technology to develop photovoltaic, light-emission, and photodetection devices. Charge transport in these materials is the result of a compromise between confinement at the individual QD level and electronic coupling among the different nanocrystals in the ensemble. While this is commonly achieved by ligand engineering in colloidal-based systems, ligand-free QD assemblies have recently emerged as an exciting alternative where nanostructures can be directly grown into porous matrices with optical quality as well as control over their connectivity and, hence, charge transport properties. In this context, we present a complete photophysical study comprising fluence- and temperature-dependent time-resolved spectroscopy to study carrier dynamics in ligand-free QD networks with gradually varying degrees of interconnectivity, which we achieve by changing the average distance between the QDs. Analysis of the photoluminescence and absorption properties of the QD assemblies, involving both static and time-resolved measurements, allows us to identify the weight of the different recombination mechanisms, both radiative and nonradiative, as a function of QD connectivity. We propose a picture where carrier diffusion, which is needed for any optoelectronic application and implies interparticle transport, gives rise to the exposure of carriers to a larger defect landscape than in the case of isolated QDs. The use of a broad range of fluences permits extracting valuable information for applications demanding either low- or high-carrier-injection levels and highlighting the relevance of a judicious design to balance recombination and diffusion.
Collapse
Affiliation(s)
- David
O. Tiede
- Instituto
de Ciencias de Materiales de Sevilla (Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla), C/Américo Vespucio, 49, Sevilla 41092, Spain
| | - Carlos Romero-Pérez
- Instituto
de Ciencias de Materiales de Sevilla (Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla), C/Américo Vespucio, 49, Sevilla 41092, Spain
| | - Katherine A. Koch
- Department
of Physics and Center for Functional Materials, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, United States
| | - K. Burak Ucer
- Department
of Physics and Center for Functional Materials, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, United States
| | - Mauricio E. Calvo
- Instituto
de Ciencias de Materiales de Sevilla (Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla), C/Américo Vespucio, 49, Sevilla 41092, Spain
| | - Ajay Ram Srimath Kandada
- Department
of Physics and Center for Functional Materials, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, United States
| | - Juan F. Galisteo-López
- Instituto
de Ciencias de Materiales de Sevilla (Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla), C/Américo Vespucio, 49, Sevilla 41092, Spain
| | - Hernán Míguez
- Instituto
de Ciencias de Materiales de Sevilla (Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla), C/Américo Vespucio, 49, Sevilla 41092, Spain
| |
Collapse
|
23
|
Lim JWM, Guo Y, Feng M, Cai R, Sum TC. Making and Breaking of Exciton Cooling Bottlenecks in Halide Perovskite Nanocrystals. J Am Chem Soc 2024; 146:437-449. [PMID: 38158611 DOI: 10.1021/jacs.3c09761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Harnessing quantum confinement (QC) effects in semiconductors to retard hot carrier cooling (HCC) is an attractive approach for enabling efficient hot carrier extraction to overcome the Shockley-Queisser limit. However, there is a debate about whether halide perovskite nanocrystals (PNCs) can effectively exploit these effects. To address this, we utilized pump-probe and multipulse pump-push-probe spectroscopy to investigate HCC behavior in PNCs of varying sizes and cation compositions. Our results validate the presence of an intrinsic phonon bottleneck with clear manifestations of QC effects in small CsPbBr3 PNCs exhibiting slower HCC rates compared to those of larger PNCs. However, the replacement of inorganic Cs+ with organic cations suppresses this intrinsic bottleneck. Furthermore, PNCs exhibit distinct size-dependent HCC behavior in response to changes in the cold carrier densities. We attribute this to the enhanced exciton-exciton interactions in strongly confined PNCs that facilitate Auger heating. Importantly, our findings dispel the existing controversy and provide valuable insights into design principles for engineering QC effects in PNC hot carrier applications.
Collapse
Affiliation(s)
- Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yuanyuan Guo
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Rui Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
24
|
Strandell DP, Zenatti D, Nagpal P, Ghosh A, Dirin DN, Kovalenko MV, Kambhampati P. Hot Excitons Cool in Metal Halide Perovskite Nanocrystals as Fast as CdSe Nanocrystals. ACS NANO 2024; 18:1054-1062. [PMID: 38109401 DOI: 10.1021/acsnano.3c10301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The idea of phonon bottlenecks has long been pursued in nanoscale materials for their application in hot exciton devices, such as photovoltaics. Decades ago, it was shown that there is no quantum phonon bottleneck in strongly confined quantum dots due to their physics of quantum confinement. More recently, it was proposed that there are hot phonon bottlenecks in metal halide perovskites due to their physics. Recent work has called into question these bottlenecks in metal halide perovskites. Here, we compare hot exciton cooling in a range of sizes of CsPbBr3 nanocrystals from weakly to strongly confined. These results are compared to strongly confined CdSe quantum dots of two sizes and degrees of quantum confinement. CdSe is a model system as a ruler for measuring hot exciton cooling being fast, by virtue of its efficient Auger-assisted processes. By virtue of 3 ps time resolution, the hot exciton photoluminescence can now be directly observed, which is the most direct measure of the presence of hot excitons and their lifetimes. The hot exciton photoluminescence decays on nearly the same 2 ps time scale on both the weakly confined perovskite and the larger CdSe quantum dots, much faster than the 10 ps cooling predicted by transient absorption experiments. The smaller CdSe quantum dot has still faster cooling, as expected from quantum size effects. The quantum dots of perovskites show extremely fast hot exciton cooling, decaying faster than detection limits of <1 ps, even faster than the CdSe system, suggesting the efficiency of Auger processes in these metal halide perovskite nanocrystals and especially in their quantum dot form. These results across a range of sizes of nanocrystals reveal extremely fast hot exciton cooling at high exciton density, independent of composition, but dependent upon size. Hence these metal halide perovskite nanocrystals seem to cool heavily following quantum dot physics.
Collapse
Affiliation(s)
| | - Davide Zenatti
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Priya Nagpal
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Arnab Ghosh
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Dmitry N Dirin
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dubendorf, Switzerland
| | | |
Collapse
|
25
|
Li H, Zhang J, Zhang Q. Manipulation of hot-carrier cooling dynamics in CsPbBr3 quantum dots via site-selective ligand engineering. J Chem Phys 2023; 159:214707. [PMID: 38047513 DOI: 10.1063/5.0175915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Prolonging the lifetime of photoinduced hot carriers in lead-halide perovskite quantum dots (QDs) is highly desirable because it can help improve the photovoltaic conversion efficiency. Ligand engineering has recently become a promising strategy to achieve this; nevertheless, mechanistic studies in this field remain limited. Herein, we propose a new scenario of ligand engineering featuring Pb2+/Br- site-selective capping on the surface of CsPbBr3 QDs. Through joint observations of temperature-dependent photoluminescence, ultrafast transient absorption, and Raman spectroscopy of the two contrasting model systems of CsPbBr3 QDs (i.e., capping with organic ligand only vs hybrid organic/inorganic ligands), we reveal that the phononic regulation of Pb-Br stretching at the Br-site (relative to Pb-site) leads to a larger suppression of charge-phonon coupling due to a stronger polaronic screening effect, thereby more effectively retarding the hot-carrier cooling process. This work opens a new route for the manipulation of hot-carrier cooling dynamics in perovskite systems via site-selective ligand engineering.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiachen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qun Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
26
|
Kim J, Xu Y, Bain D, Li M, Cotlet M, Yu Q, Musser AJ. Small to Large Polaron Behavior Induced by Controlled Interactions in Perovskite Quantum Dot Solids. ACS NANO 2023; 17:23079-23093. [PMID: 37934023 DOI: 10.1021/acsnano.3c08748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The polaron is an essential photoexcitation that governs the unique optoelectronic properties of organic-inorganic hybrid halide perovskites, and it has been subject to extensive spectroscopic and theoretical investigation over the past decade. A crucial but underexplored question is how the nature of the photogenerated polarons is impacted by the microscopic perovskite structure and what functional properties this affects. To tackle this question, we chemically tuned the interactions between perovskite quantum dots (QDs) to rationally manipulate the polaron properties. Through a suite of time-resolved spectroscopies, we find that inter-QD interactions open an excited-state channel to form large polaron species, which exhibit enhanced spatial diffusion, slower hot polaron cooling, and a longer intrinsic lifetime. At the same time, polaronic excitons are formed in competition via localized band-edge states, exhibiting strong photoluminescence but are limited by shorter intrinsic lifetimes. This control of polaron type and function through tunable inter-QD interactions not only provides design principles for QD-based materials but also experimentally disentangles polaronic species in hybrid perovskite materials.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yuanze Xu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Bain
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mingxing Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mircea Cotlet
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qiuming Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Andrew J Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
27
|
Ravali V, Ghosh T. Charge carrier dynamics and transient spectral evolutions in lead halide perovskites. Chem Commun (Camb) 2023; 59:13939-13950. [PMID: 37934456 DOI: 10.1039/d3cc04297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Lead halide perovskites (LHPs) have emerged as promising materials for solar cell applications due to their unique photophysical properties. Most of the crucial properties related to solar cell performance such as carrier mobility, diffusion length, recombination rates, etc. have been estimated using ultrafast spectroscopic methods. While various methods have been developed to prepare and fabricate high-quality perovskite films for photovoltaic applications, understanding the charge carrier dynamics is also crucial at each stage of the charge generation, cooling, and recombination processes. Using femtosecond (fs) transient absorption (TA) spectroscopy, various stages of charge carrier dynamics in perovskite materials could be monitored. In this article, we focus on some of the recent experimental developments related to charge carrier dynamics in perovskites and discuss the current understanding of (1) exciton dissociation, (2) charge carrier thermalization, (3) hot carrier cooling, and (4) electron-phonon coupling along with some of the crucial spectral emergence in the pump-probe experiments of LHP materials.
Collapse
Affiliation(s)
- Vanga Ravali
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh, 522237, India.
| | - Tufan Ghosh
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh, 522237, India.
| |
Collapse
|
28
|
Mondal N, Carwithen BP, Bakulin AA. Alloying metal cations in perovskite nanocrystals is a new route to controlling hot carrier cooling. LIGHT, SCIENCE & APPLICATIONS 2023; 12:276. [PMID: 37985751 PMCID: PMC10662473 DOI: 10.1038/s41377-023-01316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hot carrier cooling is slowed down upon alloying tin in lead-halide perovskite nanocrystals through the engineering of carrier-phonon and carrier-defect interactions.
Collapse
Affiliation(s)
- Navendu Mondal
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Ben P Carwithen
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| |
Collapse
|
29
|
Brosseau P, Ghosh A, Seiler H, Strandell D, Kambhampati P. Exciton-polaron interactions in metal halide perovskite nanocrystals revealed via two-dimensional electronic spectroscopy. J Chem Phys 2023; 159:184711. [PMID: 37962451 DOI: 10.1063/5.0173369] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Metal halide perovskite nanocrystals have been under intense investigation for their promise in optoelectronic devices due to their remarkable physics, such as liquid/solid duality. This liquid/solid duality may give rise to their defect tolerance and other such useful properties. This duality means that the electronic states are fluctuating in time, on a distribution of timescales from femtoseconds to picoseconds. Hence, these lattice induced energy fluctuations that are connected to polaron formation are also connected to exciton formation and dynamics. We observe these correlations and dynamics in metal halide perovskite nanocrystals of CsPbI3 and CsPbBr3 using two-dimensional electronic (2DE) spectroscopy, with its unique ability to resolve dynamics in heterogeneously broadened systems. The 2DE spectra immediately reveal a previously unobserved excitonic splitting in these 15 nm NCs that may have a coarse excitonic structure. 2D lineshape dynamics reveal a glassy response on the 300 fs timescale due to polaron formation. The lighter Br system shows larger amplitude and faster timescale fluctuations that give rise to dynamic line broadening. The 2DE signals enable 1D transient absorption analysis of exciton cooling dynamics. Exciton cooling within this doublet is shown to take place on a slower timescale than within the excitonic continuum. The energy dissipation rates are the same for the I and Br systems for incoherent exciton cooling but are very different for the coherent dynamics that give rise to line broadening. Exciton cooling is shown to take place on the same timescale as polaron formation, revealing both as coupled many-body excitation.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Arnab Ghosh
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Helene Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | |
Collapse
|
30
|
Zhao B, Li Y, Chen X, Han Y, Wei S, Wu K, Zhang X. Engineering Carrier Dynamics in Halide Perovskites by Dynamical Lattice Distortion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300386. [PMID: 37807821 PMCID: PMC10667814 DOI: 10.1002/advs.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/31/2023] [Indexed: 10/10/2023]
Abstract
The electronic structure of halide perovskites is central to their carrier dynamics, enabling the excellent optoelectronic performance. However, the experimentally resolved transient absorption spectra exhibit large discrepancies from the commonly computed electronic structure by density functional theory. Using pseudocubic CsPbI3 as a prototype example, here, it is unveiled with both ab initio molecular dynamics simulations and transmission electron microscopy that there exists pronounced dynamical lattice distortion in the form of disordered instantaneous octahedral tilting. Rigorous first-principles calculations reveal that the lattice distortion substantially alters the electronic band structure through renormalizing the band dispersions and the interband transition energies. Most notably, the electron and hole effective masses increase by 65% and 88%, respectively; the transition energy between the two highest valence bands decreases by about one half, agreeing remarkably well with supercontinuum transient-absorption measurements. This study further demonstrates how the resulting electronic structure modulates various aspects of the carrier dynamics such as carrier transport, hot-carrier relaxation, Auger recombination, and carrier multiplication in halide perovskites. The insights provide a pathway to engineer carrier transport and relaxation via lattice distortion, enabling the promise to achieve ultrahigh-efficiency photovoltaic devices.
Collapse
Affiliation(s)
- Bai‐Qing Zhao
- Beijing Computational Science Research CenterBeijing100193China
| | - Yulu Li
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Xuan‐Yan Chen
- Beijing Computational Science Research CenterBeijing100193China
| | - Yaoyao Han
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Su‐Huai Wei
- Beijing Computational Science Research CenterBeijing100193China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xie Zhang
- Beijing Computational Science Research CenterBeijing100193China
- School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| |
Collapse
|
31
|
Wang Y, Ye S, Lim JWM, Giovanni D, Feng M, Fu J, Krishnamoorthy HNS, Zhang Q, Xu Q, Cai R, Sum TC. Carrier multiplication in perovskite solar cells with internal quantum efficiency exceeding 100. Nat Commun 2023; 14:6293. [PMID: 37813878 PMCID: PMC10562407 DOI: 10.1038/s41467-023-41758-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023] Open
Abstract
Carrier multiplication (CM) holds great promise to break the Shockley-Queisser limit of single junction photovoltaic cells. Despite compelling spectroscopic evidence of strong CM effects in halide perovskites, studies in actual perovskite solar cells (PSCs) are lacking. Herein, we reconcile this knowledge gap using the testbed Cs0.05FA0.5MA0.45Pb0.5Sn0.5I3 system exhibiting efficient CM with a low threshold of 2Eg (~500 nm) and high efficiency of 99.4 ± 0.4%. Robust CM enables an unbiased internal quantum efficiency exceeding 110% and reaching as high as 160% in the best devices. Importantly, our findings inject fresh insights into the complex interplay of various factors (optical and parasitic absorption losses, charge recombination and extraction losses, etc.) undermining CM contributions to the overall performance. Surprisingly, CM effects may already exist in mixed Pb-Sn PSCs but are repressed by its present architecture. A comprehensive redesign of the existing device configuration is needed to leverage CM effects for next-generation PSCs.
Collapse
Affiliation(s)
- Yue Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Senyun Ye
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - David Giovanni
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Harish N S Krishnamoorthy
- Centre for Disruptive Photonic Technologies, TPI, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Tata Institute of Fundamental Research-Hyderabad, Sy. No. 36/P, Gopanapally Village, Serilingampally Mandal, Hyderabad, 500046, India
| | - Qiannan Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Qiang Xu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Rui Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
32
|
Huang Z, Tan W, Ma P, Yan L, Si J, Hou X. Visualization of Hot Carrier Dynamics in a Single CsPbBr 3 Perovskite Microplate Using Femtosecond Kerr-Gated Wide-Field Fluorescence Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2701. [PMID: 37836342 PMCID: PMC10574326 DOI: 10.3390/nano13192701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Lead halide perovskites (LHPs) have excellent semiconductor properties. They have been used in many applications such as solar cells. Recently, the hot carrier dynamics in this type of material have received much attention as they are useful for enhancing the performance of optoelectrical devices fabricated from it. Here, we study the ultrafast hot carrier dynamics of a single CsPbBr3 microplate using femtosecond Kerr-gated wide-field fluorescence spectroscopy. The transient photoluminescence spectra have been measured under a variety of excitation fluences. The temporal evolution of bandgap renormalization and the competition between hot carrier cooling and the recovery of the renormalized bandgap are clearly revealed.
Collapse
Affiliation(s)
| | - Wenjiang Tan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shannxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, 28 Xianning Road, Xi’an 710049, China
| | | | | | | | | |
Collapse
|
33
|
Feng M, Ye S, Lim JWM, Guo Y, Cai R, Zhang Q, He H, Sum TC. Insights to Carrier-Phonon Interactions in Lead Halide Perovskites via Multi-Pulse Manipulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301831. [PMID: 37279774 DOI: 10.1002/smll.202301831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Indexed: 06/08/2023]
Abstract
A fundamental understanding of the hot-carrier dynamics in halide perovskites is crucial for unlocking their prospects for next generation photovoltaics. Presently, a coherent picture of the hot carrier cooling process remains patchy due to temporally overlapping contributions from many-body interactions, multi-bands, band gap renormalization, Burstein-Moss shift etc. Pump-push-probe (PPP) spectroscopy recently emerges as a powerful tool complementing the ubiquitous pump-probe (PP) spectroscopy in the study of hot-carrier dynamics. However, limited information from PPP on the initial excitation density and carrier temperature curtails its full potential. Herein, this work bridges this gap in PPP with a unified model that retrieves these essential hot carrier metrics like initial carrier density and carrier temperature under the push conditions, thus permitting direct comparison with traditional PP spectroscopy. These results are well-fitted by the phonon bottleneck model, from which the longitudinal optical phonon scattering time τLO , for MAPbBr3 and MAPbI3 halide perovskite thin film samples are determined to be 240 ± 10 and 370 ± 10 fs, respectively.
Collapse
Affiliation(s)
- Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Senyun Ye
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, S2-B3a-01, Singapore, 639798, Singapore
| | - Yuanyuan Guo
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Rui Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Qiannan Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Huajun He
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
34
|
Wang C, Rong Y, Wang T. Inorganic A-site cations improve the performance of band-edge carriers in lead halide perovskites. FRONTIERS OF OPTOELECTRONICS 2023; 16:25. [PMID: 37747592 PMCID: PMC10519920 DOI: 10.1007/s12200-023-00078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/17/2023] [Indexed: 09/26/2023]
Abstract
In lead halide perovskites, organic A-site cations are generally introduced to fine-tune the properties. One of the questions under debate is whether organic A-site cations are essential for high-performance solar cells. In this study, we compare the band edge carrier dynamics and diffusion process in MAPbBr3 and CsPbBr3 single-crystal microplates. By transient absorption microscopy, the band-edge carrier diffusion constants are unraveled. With the replacement of inorganic A-site cations, the diffusion constant in CsPbBr3 increases almost 8 times compared to that in MAPbBr3. This work reveals that introducing inorganic A-site cations can lead to a much larger diffusion length and improve the performance of band-edge carriers.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yaoguang Rong
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ti Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
35
|
Li H, Wang Q, Oteki Y, Ding C, Liu D, Guo Y, Li Y, Wei Y, Wang D, Yang Y, Masuda T, Chen M, Zhang Z, Sogabe T, Hayase S, Okada Y, Iikubo S, Shen Q. Enhanced Hot-Phonon Bottleneck Effect on Slowing Hot Carrier Cooling in Metal Halide Perovskite Quantum Dots with Alloyed A-Site. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301834. [PMID: 37311157 DOI: 10.1002/adma.202301834] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Indexed: 06/15/2023]
Abstract
A deep understanding of the effect of the A-site cation cross-exchange on the hot-carrier relaxation dynamics in perovskite quantum dots (PQDs) has profound implications on the further development of disruptive photovoltaic technologies. In this study, the hot carrier cooling kinetics of pure FAPbI3 (FA+ , CH(NH2 )2 + ), MAPbI3 (MA+ , CH3 NH3 + + ), CsPbI3 (Cs+ , Cesium) and alloyed FA0.5 MA0.5 PbI3 , FA0.5 Cs0.5 PbI3 , and MA0.5 Cs0.5 PbI3 QDs are investigated using ultrafast transient absorption (TA) spectroscopy. The lifetimes of the initial fast cooling stage (<1 ps) of all the organic cation-containing PQDs are shorter than those of the CsPbI3 QDs, as verified by the electron-phonon coupling strength extracted from the temperature-dependent photoluminescence spectra. The lifetimes of the slow cooling stage of the alloyed PQDs are longer under illumination greater than 1 sun, which is ascribed to the introduction of co-vibrational optical phonon modes in the alloyed PQDs. This facilitated efficient acoustic phonon upconversion and enhanced the hot-phonon bottleneck effect, as demonstrated by first-principles calculations.
Collapse
Affiliation(s)
- Hua Li
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Qing Wang
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Yusuke Oteki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Chao Ding
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Dong Liu
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yao Guo
- Department of Materials Science and Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yusheng Li
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yuyao Wei
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Dandan Wang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yongge Yang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Taizo Masuda
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
- CN development division, Toyota Motor Corporation, Susono, Shizuoka, 410-1193, Japan
| | - Mengmeng Chen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Zheng Zhang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Tomah Sogabe
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Shuzi Hayase
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yoshitaka Okada
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Satoshi Iikubo
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Qing Shen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| |
Collapse
|
36
|
Yang W, Jo SH, Tang Y, Park J, Ji SG, Cho SH, Hong Y, Kim DH, Park J, Yoon E, Zhou H, Woo SJ, Kim H, Yun HJ, Lee YS, Kim JY, Hu B, Lee TW. Overcoming Charge Confinement in Perovskite Nanocrystal Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304533. [PMID: 37390092 DOI: 10.1002/adma.202304533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
The small nanoparticle size and long-chain ligands in colloidal metal halide perovskite quantum dots (PeQDs) cause charge confinement, which impedes exciton dissociation and carrier extraction in PeQD solar cells, so they have low short-circuit current density Jsc , which impedes further increases in their power conversion efficiency (PCE). Here, a re-assembling process (RP) is developed for perovskite nanocrystalline (PeNC) films made of colloidal perovskite nanocrystals to increase Jsc in PeNC solar cells. The RP of PeNC films increases their crystallite size and eliminates long-chain ligands, and thereby overcomes the charge confinement in PeNC films. These changes facilitate exciton dissociation and increase carrier extraction in PeNC solar cells. By use of this method, the gradient-bandgap PeNC solar cells achieve a Jsc = 19.30 mA cm-2 without compromising the photovoltage, and yield a high PCE of 16.46% with negligible hysteresis and good stability. This work provides a new strategy to process PeNC films and pave the way for high performance PeNC optoelectronic devices.
Collapse
Affiliation(s)
- Wenqiang Yang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Hyeon Jo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yipeng Tang
- Department of Materials Science and Engineering, University of Tennessee, 1001-1099 Estabrook Rd, Knoxville, TN, 37996, USA
| | - Jumi Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea
| | - Su Geun Ji
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seong Ho Cho
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yongseok Hong
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, Republic of Korea
| | - Dong-Hyeok Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Park
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eojin Yoon
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Huanyu Zhou
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Je Woo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyeran Kim
- Advanced Nano Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Hyung Joong Yun
- Advanced Nano Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Yun Seog Lee
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin Young Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Bin Hu
- Department of Materials Science and Engineering, University of Tennessee, 1001-1099 Estabrook Rd, Knoxville, TN, 37996, USA
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- SN Display Co. Ltd., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Engineering Research, Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
37
|
Li Y, Gao Y, Deng Z, Cao Y, Wang T, Wang Y, Zhang C, Yuan M, Xie W. Visible-light-driven reversible shuttle vicinal dihalogenation using lead halide perovskite quantum dot catalysts. Nat Commun 2023; 14:4673. [PMID: 37537156 PMCID: PMC10400542 DOI: 10.1038/s41467-023-40359-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
Dihalogenation of alkenes to the high-added value vicinal dihalides is a prominent process in modern synthetic chemistry. However, their effective conversion still requires the use of expensive and hazardous agents, sacrificial half-reaction coupling or primary energy input. Here, we show a photocatalytically assisted shuttle (p-shuttle) strategy for redox-neutral and reversible vicinal dihalogenation using low-cost and stable 1,2-dihaloethane under visible light illumination. Energetic hot electrons from metal-halide perovskite QDs enable the challenging photocatalytic reactions. Ultrafast laser transient absorption spectroscopy have unveiled the energy matching of the hot electrons with the high reduction potential of 1,2-dihaloethane, via two consecutive photoexcitation process. Powered by the sustainable energy as the only energy input, our new catalytic system using metal-halide perovskite QDs for dibromination, dichlorination and even unexplored hetero-dihalogenation, shows good tolerance with a wide range of alkenes at room temperature. In contrast to homogeneous photocatalysts, chalcogenide QDs and other semiconductor catalysts, perovskite QDs deliver previously unattainable performance in photoredox shuttle vicinal dihalogenation with the turnover number over 120,000. This work provides new opportunities in visible-light-driven heterogeneous catalysis for unlocking novel chemical transformations.
Collapse
Affiliation(s)
- Yonglong Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yangxuan Gao
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhijie Deng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yutao Cao
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Teng Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ying Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Cancan Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Mingjian Yuan
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wei Xie
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
38
|
Marjit K, Ghosh G, Ghosh S, Ghosh D, Medda A, Patra A. Electron Transfer Dynamics from CsPbBr 3 Nanocrystals to Au 144 Clusters. ACS PHYSICAL CHEMISTRY AU 2023; 3:348-357. [PMID: 37520319 PMCID: PMC10375896 DOI: 10.1021/acsphyschemau.2c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 08/01/2023]
Abstract
Lead halide perovskite nanocrystals have received significant attention as an absorber material for designing efficient optoelectronic devices. The fundamental understanding of the hot carrier (HC) dynamics as well as its extraction in hybrid systems is essential to further boost the performance of solar cells. Herein, we have explored the electron transfer dynamics in the CsPbBr3-Au144 cluster hybrid using ultrafast transient absorption spectroscopy. Our analysis reveals faster HC cooling time (from 515 to 334 fs) and a significant drop in HC temperature from 1055 to 860 K in hybrid, suggesting the hot electron transfer from CsPbBr3 nanocrystals to the Au nanoclusters (NCs). Eventually, we observe a much faster hot electron transfer compared to the band-edge electron transfer, and 45% hot-electron transfer efficiency was achieved at 0.64 eV, above band-edge photoexcitation. Furthermore, the significant enhancement of the photocurrent to the dark current ratio in this hybrid system confirms the charge separation via the electron transfer from CsPbBr3 nanocrystals to Au144 NCs. These findings on HC dynamics could be beneficial for optoelectronic devices.
Collapse
Affiliation(s)
- Kritiman Marjit
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Goutam Ghosh
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Srijon Ghosh
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Debarati Ghosh
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Anusri Medda
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amitava Patra
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Institute
of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
39
|
Fu J, Ramesh S, Melvin Lim JW, Sum TC. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chem Rev 2023. [PMID: 37276018 DOI: 10.1021/acs.chemrev.2c00843] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halide perovskites (HPs) are potential game-changing materials for a broad spectrum of optoelectronic applications ranging from photovoltaics, light-emitting devices, lasers to radiation detectors, ferroelectrics, thermoelectrics, etc. Underpinning this spectacular expansion is their fascinating photophysics involving a complex interplay of carrier, lattice, and quasi-particle interactions spanning several temporal orders that give rise to their remarkable optical and electronic properties. Herein, we critically examine and distill their dynamical behavior, collective interactions, and underlying mechanisms in conjunction with the experimental approaches. This review aims to provide a unified photophysical picture fundamental to understanding the outstanding light-harvesting and light-emitting properties of HPs. The hotbed of carrier and quasi-particle interactions uncovered in HPs underscores the critical role of ultrafast spectroscopy and fundamental photophysics studies in advancing perovskite optoelectronics.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sankaran Ramesh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
40
|
Das A, Acharjee D, Panda MK, Mahato AB, Ghosh S. Dodecahedron CsPbBr 3 Perovskite Nanocrystals Enable Facile Harvesting of Hot Electrons and Holes. J Phys Chem Lett 2023; 14:3953-3960. [PMID: 37078668 DOI: 10.1021/acs.jpclett.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This Letter reports the facile harvesting of hot carriers (HCs) in a composite of 12-faceted dodecahedron CsPbBr3 nanocrystal (NC) and a scavenger molecule. We recorded ∼3.3 × 1011 s-1 HC cooling rate in NC when excited with ∼1.4 times the band gap energy (Eg), increasing to >3 × 1012 s-1 in the presence of scavengers at high concentration due to the HC extractions. Since the observed intrinsic charge transfer rate (∼1.7 × 1012 s-1) in our NC-scavenger complex is about an order of magnitude higher than the HC cooling rate (∼3.3 × 1011 s-1), carriers are harvested before their cooling. Further, a fluorescence correlation spectroscopy study reveals NC tends to form a quasi-stable complex with a scavenger molecule, ensuring charge transfer completed (τct ≈ 0.6 ps) much before the complex breaks apart (>600 μs). The overall results of our study highlight the promise shown by 12-faceted NCs and their implications in modern applications, including hot carrier solar cells.
Collapse
Affiliation(s)
- Ayendrila Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Mrinal Kanti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Asit Baran Mahato
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
- Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| |
Collapse
|
41
|
Austin R, Farah Y, Sayer T, Luther B, Montoya-Castillo A, Krummel A, Sambur J. Hot carrier extraction from 2D semiconductor photoelectrodes. Proc Natl Acad Sci U S A 2023; 120:e2220333120. [PMID: 37011201 PMCID: PMC10104502 DOI: 10.1073/pnas.2220333120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Hot carrier-based energy conversion systems could double the efficiency of conventional solar energy technology or drive photochemical reactions that would not be possible using fully thermalized, "cool" carriers, but current strategies require expensive multijunction architectures. Using an unprecedented combination of photoelectrochemical and in situ transient absorption spectroscopy measurements, we demonstrate ultrafast (<50 fs) hot exciton and free carrier extraction under applied bias in a proof-of-concept photoelectrochemical solar cell made from earth-abundant and potentially inexpensive monolayer (ML) MoS2. Our approach facilitates ultrathin 7 Å charge transport distances over 1 cm2 areas by intimately coupling ML-MoS2 to an electron-selective solid contact and a hole-selective electrolyte contact. Our theoretical investigations of the spatial distribution of exciton states suggest greater electronic coupling between hot exciton states located on peripheral S atoms and neighboring contacts likely facilitates ultrafast charge transfer. Our work delineates future two-dimensional (2D) semiconductor design strategies for practical implementation in ultrathin photovoltaic and solar fuel applications.
Collapse
Affiliation(s)
- Rachelle Austin
- Department of Chemistry, Colorado State University, Fort Collins, CO80523
| | - Yusef R. Farah
- Department of Chemistry, Colorado State University, Fort Collins, CO80523
| | - Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder, CO80309
| | - Bradley M. Luther
- Department of Chemistry, Colorado State University, Fort Collins, CO80523
| | | | - Amber T. Krummel
- Department of Chemistry, Colorado State University, Fort Collins, CO80523
| | - Justin B. Sambur
- Department of Chemistry, Colorado State University, Fort Collins, CO80523
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
42
|
Carwithen BP, Hopper TR, Ge Z, Mondal N, Wang T, Mazlumian R, Zheng X, Krieg F, Montanarella F, Nedelcu G, Kroll M, Siguan MA, Frost JM, Leo K, Vaynzof Y, Bodnarchuk MI, Kovalenko MV, Bakulin AA. Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials. ACS NANO 2023; 17:6638-6648. [PMID: 36939330 PMCID: PMC10100565 DOI: 10.1021/acsnano.2c12373] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The relaxation of the above-gap ("hot") carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier-carrier and carrier-phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosystems is still disputed. Here, we devise a single approach, ultrafast pump-push-probe spectroscopy, to study carrier cooling in six different size-controlled LHP nanomaterials. In cuboidal nanocrystals, we observe only a weak size effect on the cooling dynamics. In contrast, two-dimensional systems show suppression of the hot phonon bottleneck effect common in bulk perovskites. The proposed kinetic model describes the intrinsic and density-dependent cooling times accurately in all studied perovskite systems using only carrier-carrier, carrier-phonon, and excitonic coupling constants. This highlights the impact of exciton formation on carrier cooling and promotes dimensional confinement as a tool for engineering carrier-phonon and carrier-carrier interactions in LHP optoelectronic materials.
Collapse
Affiliation(s)
- Ben P. Carwithen
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Thomas R. Hopper
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Ziyuan Ge
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Navendu Mondal
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Tong Wang
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Rozana Mazlumian
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Xijia Zheng
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Franziska Krieg
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Federico Montanarella
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Georgian Nedelcu
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Martin Kroll
- Center
for
Advancing Electronics Dresden, Technische
Universität Dresden, 01069 Dresden, Germany
- Integrated
Center for Applied Photophysics and Photonic Materials, Technische Universität Dresden, 01187 Dresden, Germany
| | - Miguel Albaladejo Siguan
- Chair
for Emerging Electronic Technologies, Technische
Universität Dresden, 01187 Dresden, Germany
- Leibniz
Institute for Solid State and Materials Research Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jarvist M. Frost
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Karl Leo
- Integrated
Center for Applied Photophysics and Photonic Materials, Technische Universität Dresden, 01187 Dresden, Germany
| | - Yana Vaynzof
- Chair
for Emerging Electronic Technologies, Technische
Universität Dresden, 01187 Dresden, Germany
- Leibniz
Institute for Solid State and Materials Research Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Maryna I. Bodnarchuk
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Artem A. Bakulin
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| |
Collapse
|
43
|
Bian F, Wu X, Yang Z, Shao S, Meng X, Qin G. Quantitative Evaluation of the Carrier Separation Performance of Heterojunction Photocatalysts: The Case of g-C 3N 4/SrTiO 3. J Phys Chem Lett 2023; 14:2927-2932. [PMID: 36930040 DOI: 10.1021/acs.jpclett.3c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Heterojunction photocatalysts are of great interest in the energy and environmental fields, because of their potential to significantly increase the efficiency of harvesting solar energy. Advances in design have been hampered by the continued use of only qualitative analyses. Quantitative evaluation of the carrier separation performance is urgently needed for the design and application of heterojunction photocatalysts. Taking the g-C3N4/SrTiO3 heterojunction as an example, we address the conventional energy band and electronic structure issues by first-principles analysis. After interface coupling, the band edge alignment reverses from that of the respective isolated states of the heterojunction components, suggesting new ways of thinking about the catalytic mechanism of the heterojunction. More significantly, we show the carrier separation performance of heterojunction photocatalysts can be quantitatively predicted by the nonadiabatic molecular dynamics method, enabling more precisely directed research and promoting the quantified design and application of heterojunction photocatalysis, making a contribution of great scientific significance.
Collapse
Affiliation(s)
- Fang Bian
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xinge Wu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhaoying Yang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuai Shao
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiangying Meng
- College of Sciences, Northeastern University, Shenyang 110819, China
- Institute of Materials Intelligence Technology, Liaoning Academy of Materials, Shenyang 110167, China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Institute of Materials Intelligence Technology, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
44
|
Yu Y, Gao L, Niu X, Liu K, Li R, Yang D, Zeng H, Wang HQ, Ni Z, Lu J. Deciphering Adverse Detrapped Hole Transfer in Hot-Electron Photoelectric Conversion at Infrared Wavelengths. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210157. [PMID: 36732915 DOI: 10.1002/adma.202210157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/01/2023] [Indexed: 06/18/2023]
Abstract
Hot-carrier devices are promising alternatives for enabling path breaking photoelectric conversion. However, existing hot-carrier devices suffer from low efficiencies, particularly in the infrared region, and ambiguous physical mechanisms. In this work, the competitive interfacial transfer mechanisms of detrapped holes and hot electrons in hot-carrier devices are discovered. Through photocurrent polarity research and optical-pump-THz-probe (OPTP) spectroscopy, it is verified that detrapped hole transfer (DHT) and hot-electron transfer (HET) dominate the low- and high-density excitation responses, respectively. The photocurrent ratio assigned to DHT and HET increases from 6.6% to over 1133.3% as the illumination intensity decreases. DHT induces severe degeneration of the external quantum efficiency (EQE), especially at low illumination intensities. The EQE of a hot-electron device can theoretically increase by over two orders of magnitude at 10 mW cm-2 through DHT elimination. The OPTP results show that competitive transfer arises from the carrier oscillation type and carrier-density-related Coulomb screening. The screening intensity determines the excitation weight and hot-electron cooling scenes and thereby the transfer dynamics.
Collapse
Affiliation(s)
- Yuanfang Yu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
| | - Lei Gao
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
| | - Xianghong Niu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Kaiyang Liu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
| | - Ruizhi Li
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
| | - Dandan Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
- Institute of Optoelectronics and Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Haibo Zeng
- Institute of Optoelectronics and Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Hui-Qiong Wang
- Department of Physics and Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang, 43900, Malaysia
- Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhenhua Ni
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
- Purple Mountain Laboratories, Nanjing, 211111, P. R. China
| | - Junpeng Lu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
45
|
Baker H, Perez CM, Sonnichsen C, Strandell D, Prezhdo OV, Kambhampati P. Breaking Phonon Bottlenecks through Efficient Auger Processes in Perovskite Nanocrystals. ACS NANO 2023; 17:3913-3920. [PMID: 36796027 DOI: 10.1021/acsnano.2c12220] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The hot phonon bottleneck has been under intense investigation in perovskites. In the case of perovskite nanocrystals, there may be hot phonon bottlenecks as well as quantum phonon bottlenecks. While they are widely assumed to exist, evidence is growing for the breaking of potential phonon bottlenecks of both forms. Here, we perform state-resolved pump/probe spectroscopy (SRPP) and time-resolved photoluminescence spectroscopy (t-PL) to unravel hot exciton relaxation dynamics in model systems of bulk-like 15 nm nanocrystals of CsPbBr3 and FAPbBr3, with FA being formamidinium. The SRPP data can be misinterpreted to reveal a phonon bottleneck even at low exciton concentrations, where there should be none. We circumvent that spectroscopic problem with a state-resolved method that reveals an order of magnitude faster cooling and breaking of the quantum phonon bottleneck that might be expected in nanocrystals. Since the prior pump/probe methods of analysis are shown to be ambiguous, we perform t-PL experiments to unambiguously confirm the existence of hot phonon bottlenecks as well. The t-PL experiments reveal there is no hot phonon bottleneck in these perovskite nanocrystals. Ab initio molecular dynamics simulations reproduce experiments by inclusion of efficient Auger processes. This experimental and theoretical work reveals insight on hot exciton dynamics, how they are precisely measured, and ultimately how they may be exploited in these materials.
Collapse
Affiliation(s)
- Harry Baker
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Carlos Mora Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Colin Sonnichsen
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | |
Collapse
|
46
|
Seiler H, Zahn D, Taylor VCA, Bodnarchuk MI, Windsor YW, Kovalenko MV, Ernstorfer R. Direct Observation of Ultrafast Lattice Distortions during Exciton-Polaron Formation in Lead Halide Perovskite Nanocrystals. ACS NANO 2023; 17:1979-1988. [PMID: 36651873 PMCID: PMC9933605 DOI: 10.1021/acsnano.2c06727] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/10/2023] [Indexed: 05/31/2023]
Abstract
The microscopic origin of slow hot-carrier cooling in lead halide perovskites remains debated and has direct implications for applications. Slow hot-carrier cooling of several picoseconds has been attributed to either polaron formation or a hot-phonon bottleneck effect at high excited carrier densities (>1018 cm-3). These effects cannot be unambiguously disentangled with optical experiments alone. However, they can be distinguished by direct observations of ultrafast lattice dynamics, as these effects are expected to create qualitatively distinct fingerprints. To this end, we employ femtosecond electron diffraction and directly measure the sub-picosecond lattice dynamics of weakly confined CsPbBr3 nanocrystals following above-gap photoexcitation. While we do not observe signatures of a hot-phonon bottleneck lasting several picoseconds, the data reveal a light-induced structural distortion appearing on a time scale varying between 380 and 1200 fs depending on the excitation fluence. We attribute these dynamics to the effect of exciton-polarons on the lattice and the slower dynamics at high fluences to slower sub-picosecond hot-carrier cooling, which slows down the establishment of the exciton-polaron population. Further analysis and simulations show that the distortion is consistent with motions of the [PbBr3]- octahedral ionic cage, and closest agreement with the data is obtained for Pb-Br bond lengthening. Our work demonstrates how direct studies of lattice dynamics on the sub-picosecond time scale can discriminate between competing scenarios proposed in the literature to explain the origin of slow hot-carrier cooling in lead halide perovskites.
Collapse
Affiliation(s)
- Hélène Seiler
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Physics
Department, Free University of Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Daniela Zahn
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Victoria C. A. Taylor
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Maryna I. Bodnarchuk
- Laboratory
for Thin Films and Photovoltaics, Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Yoav William Windsor
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Institut
für Optik und Atomare Physik, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Maksym V. Kovalenko
- Laboratory
for Thin Films and Photovoltaics, Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Ralph Ernstorfer
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Institut
für Optik und Atomare Physik, Technische
Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
47
|
Ghosh A, Strandell DP, Kambhampati P. A spectroscopic overview of the differences between the absorbing states and the emitting states in semiconductor perovskite nanocrystals. NANOSCALE 2023; 15:2470-2487. [PMID: 36691921 DOI: 10.1039/d2nr05698d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Semiconductor perovskites have been under intense investigation for their promise in optoelectronic applications and their novel and unique physical properties. There have been a variety of material implementations of perovskites from thin films to single crystals to nanocrystals. The nanocrystal form, in particular, is attractive as it enables solution processing and also spectroscopically probes both absorptive and emissive transitions. Broadly, the literature is comprised of experiments of either form, but the experiments are rarely performed in concert and are not discussed in a unified picture. For example, absorptive experiments are typically transient absorption measurements, which aim to measure carrier kinetics and dynamics. In contrast, the emissive experiments largely focus on excitonic fine structures and coupling to phonons. The time resolved emission experiments report on excited state lifetimes and their dependence on temperature. There are broad differences in the spectroscopy techniques and the questions asked in both classes of experiments. Yet there is one measure in common that suggests there are mysteries in our understanding of how the absorbing and emitting states are connected. The linewidth of emission spectra is always larger than the linewidth of absorption spectra. The question of the physics underlying linewidths is complex and is one of the central issues in perovskite nanocrystals. So why are the absorptive and emissive linewidths different? At present even this simple question has no clear answer. The more complex questions of the structure and dynamics of absorptive and emissive states are even more ambiguous. Hence there is a need to connect these experiments and the relevant states. Here, we provide an overview of the salient absorptive and emissive spectroscopy techniques in an effort to begin connecting these two disparate areas of inquiry.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada.
| | - Dallas P Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada.
| | | |
Collapse
|
48
|
Yu X, Dai Y, Lu Y, Liu C, Yan Y, Shen R, Yang Z, Feng L, Sun L, Liu Y, Lin S. High Efficient Solar Cell Based on Heterostructure Constructed by Graphene and GaAs Quantum Wells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204058. [PMID: 36394152 PMCID: PMC9839879 DOI: 10.1002/advs.202204058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Despite the fascinating optoelectronic properties of graphene, the power conversion efficiency (PCE) of graphene based solar cells remains to be lifted up. Herein, it is experimentally shown that the graphene/quantum wells/GaAs heterostructure solar cell can reach a PCE of 20.2% and an open-circuit voltage (Voc ) as high as 1.16 V at 90 K. The high efficiency is a result of carrier multiplication (CM) effect of graphene in the graphene/GaAs heterostructure. Especially, the external quantum efficiency (EQE) in the ultraviolet wavelength can be improved up to 72.2% based on the heterostructure constructed by graphene/In0.15 Ga0.85 As/GaAs0.75 P0.25 quantum wells/GaAs. The EQE increases as the light wavelength decreases, which indicates more carriers can be effectively excited by the higher energy photons through CM effect. Owing to these physical characters, the graphene/GaAs heterostructure solar cell will provide a possible way to exceed Shockley-Queisser (S-Q) limit.
Collapse
Affiliation(s)
- Xutao Yu
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Yue Dai
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Yanghua Lu
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Chang Liu
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Yanfei Yan
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Runjiang Shen
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Zunshan Yang
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Lixuan Feng
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Lijie Sun
- State Key Laboratory of Space Power TechnologyShanghai Institute of Space Power SourcesShanghai200245P. R. China
| | - Yong Liu
- State Key Laboratory of Space Power TechnologyShanghai Institute of Space Power SourcesShanghai200245P. R. China
| | - Shisheng Lin
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027P. R. China
- State Key Laboratory of Modern Optical InstrumentationZhejiang UniversityHangzhou310027P. R. China
| |
Collapse
|
49
|
Wan X, Pan Y, Xu Y, Liu J, Chen H, Pan R, Zhao Y, Su P, Li Y, Zhang X, Zhang S, Li H, Su D, Weng Y, Zhang J. Ultralong Lifetime of Plasmon-Excited Electrons Realized in Nonepitaxial/Epitaxial Au@CdS/CsPbBr 3 Triple-Heteronanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207555. [PMID: 36353881 DOI: 10.1002/adma.202207555] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Combination of the strong light-absorbing power of plasmonic metals with the superior charge carrier dynamics of halide perovskites is appealing for bio-inspired solar-energy conversion due to the potential to acquire long-lived plasmon-induced hot electrons. However, the direct coupling of these two materials, with Au/CsPbBr3 heteronanocrystals (HNCs) as a prototype, results in severe suppression of plasmon resonances. The present work shows that interfacial engineering is a key knob for overcoming this impediment, based on the creation of a CdS mediate layer between Au and CsPbBr3 forming atomically organized Au-CdS and CdS-CsPbBr3 interfaces by nonepitaxial/epitaxial combined strategy. Transient spectroscopy studies demonstrate that the resulting Au@CdS/CsPbBr3 HNCs generate remarkably long-lived plasmon-induced charge carriers with lifetime up to nanosecond timescale, which is several orders of magnitude longer than those reported for colloidal plasmonic metal-semiconductor systems. Such long-lived carriers extracted from plasmonic antennas enable to drive CO2 photoreduction with efficiency outperforming previously reported CsPbBr3 -based photocatalysts. The findings disclose a new paradigm for achieving much elongated time windows to harness the substantial energy of transient plasmons through realization of synergistic coupling of plasmonic metals and halide perovskites.
Collapse
Affiliation(s)
- Xiaodong Wan
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yue Pan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanjun Xu
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jia Liu
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hailong Chen
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Rongrong Pan
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yizhou Zhao
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Peiwu Su
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuemei Li
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiuming Zhang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuping Zhang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hongbo Li
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yuxiang Weng
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiatao Zhang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
50
|
Zhang Z, Zhou R, Li D, Jiang Y, Wang X, Tang H, Xu J. Recent Progress in Halide Perovskite Nanocrystals for Photocatalytic Hydrogen Evolution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:106. [PMID: 36616016 PMCID: PMC9823411 DOI: 10.3390/nano13010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Due to its environmental cleanliness and high energy density, hydrogen has been deemed as a promising alternative to traditional fossil fuels. Photocatalytic water-splitting using semiconductor materials is a good prospect for hydrogen production in terms of renewable solar energy utilization. In recent years, halide perovskite nanocrystals (NCs) are emerging as a new class of fascinating nanomaterial for light harvesting and photocatalytic applications. This is due to their appealing optoelectronic properties, such as optimal band gaps, high absorption coefficient, high carrier mobility, long carrier diffusion length, etc. In this review, recent progress in halide perovskite NCs for photocatalytic hydrogen evolution is summarized. Emphasis is given to the current strategies that enhance the photocatalytic hydrogen production performance of halide perovskite NCs. Some scientific challenges and perspectives for halide perovskite photocatalysts are also proposed and discussed. It is anticipated that this review will provide valuable references for the future development of halide perovskite-based photocatalysts used in highly efficient hydrogen evolution.
Collapse
|