1
|
Shao L, Yu H, Wang M, Chen L, Ji B, Wu T, Teng X, Su M, Han X, Shi W, Hu X, Wang Z, He H, Han G, Zhang Y, Wu Q. DKK1-SE recruits AP1 to activate the target gene DKK1 thereby promoting pancreatic cancer progression. Cell Death Dis 2024; 15:566. [PMID: 39107271 PMCID: PMC11303742 DOI: 10.1038/s41419-024-06915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
Super-enhancers are a class of DNA cis-regulatory elements that can regulate cell identity, cell fate, stem cell pluripotency, and even tumorigenesis. Increasing evidence shows that epigenetic modifications play an important role in the pathogenesis of various types of cancer. However, the current research is far from enough to reveal the complex mechanism behind it. This study found a super-enhancer enriched with abnormally active histone modifications in pancreatic ductal adenocarcinoma (PDAC), called DKK1-super-enhancer (DKK1-SE). The major active component of DKK1-SE is component enhancer e1. Mechanistically, AP1 induces chromatin remodeling in component enhancer e1 and activates the transcriptional activity of DKK1. Moreover, DKK1 was closely related to the malignant clinical features of PDAC. Deletion or knockdown of DKK1-SE significantly inhibited the proliferation, colony formation, motility, migration, and invasion of PDAC cells in vitro, and these phenomena were partly mitigated upon rescuing DKK1 expression. In vivo, DKK1-SE deficiency not only inhibited tumor proliferation but also reduced the complexity of the tumor microenvironment. This study identifies that DKK1-SE drives DKK1 expression by recruiting AP1 transcription factors, exerting oncogenic effects in PDAC, and enhancing the complexity of the tumor microenvironment.
Collapse
Affiliation(s)
- Lan Shao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Mengyun Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Lu Chen
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boshu Ji
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xiangqi Teng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Mu Su
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xiao Han
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Weikai Shi
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xin Hu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Ziwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Guiping Han
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
2
|
Ivancevic A, Simpson DM, Joyner OM, Bagby SM, Nguyen LL, Bitler BG, Pitts TM, Chuong EB. Endogenous retroviruses mediate transcriptional rewiring in response to oncogenic signaling in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1218. [PMID: 39018396 PMCID: PMC466953 DOI: 10.1126/sciadv.ado1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Cancer cells exhibit rewired transcriptional regulatory networks that promote tumor growth and survival. However, the mechanisms underlying the formation of these pathological networks remain poorly understood. Through a pan-cancer epigenomic analysis, we found that primate-specific endogenous retroviruses (ERVs) are a rich source of enhancers displaying cancer-specific activity. In colorectal cancer and other epithelial tumors, oncogenic MAPK/AP1 signaling drives the activation of enhancers derived from the primate-specific ERV family LTR10. Functional studies in colorectal cancer cells revealed that LTR10 elements regulate tumor-specific expression of multiple genes associated with tumorigenesis, such as ATG12 and XRCC4. Within the human population, individual LTR10 elements exhibit germline and somatic structural variation resulting from a highly mutable internal tandem repeat region, which affects AP1 binding activity. Our findings reveal that ERV-derived enhancers contribute to transcriptional dysregulation in response to oncogenic signaling and shape the evolution of cancer-specific regulatory networks.
Collapse
Affiliation(s)
- Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Olivia M. Joyner
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lily L. Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ben G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
3
|
Larue AEM, Atlasi Y. The epigenetic landscape in intestinal stem cells and its deregulation in colorectal cancer. Stem Cells 2024; 42:509-525. [PMID: 38597726 PMCID: PMC11177158 DOI: 10.1093/stmcls/sxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Epigenetic mechanisms play a pivotal role in controlling gene expression and cellular plasticity in both normal physiology and pathophysiological conditions. These mechanisms are particularly important in the regulation of stem cell self-renewal and differentiation, both in embryonic development and within adult tissues. A prime example of this finely tuned epigenetic control is observed in the gastrointestinal lining, where the small intestine undergoes renewal approximately every 3-5 days. How various epigenetic mechanisms modulate chromatin functions in intestinal stem cells (ISCs) is currently an active area of research. In this review, we discuss the main epigenetic mechanisms that control ISC differentiation under normal homeostasis. Furthermore, we explore the dysregulation of these mechanisms in the context of colorectal cancer (CRC) development. By outlining the main epigenetic mechanisms contributing to CRC, we highlight the recent therapeutics development and future directions for colorectal cancer research.
Collapse
Affiliation(s)
- Axelle E M Larue
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
4
|
Wu P, Liu Z, Zheng L, Zhou Z, Wang W, Lu C. Comprehensive multimodal and multiomic profiling reveals epigenetic and transcriptional reprogramming in lung tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597667. [PMID: 38895479 PMCID: PMC11185586 DOI: 10.1101/2024.06.06.597667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Epigenomic mechanisms are critically involved in mediation of genetic and environmental factors that underlie cancer development. Histone modifications represent highly informative epigenomic marks that reveal activation and repression of gene activities and dysregulation of transcriptional control due to tumorigenesis. Here, we present a comprehensive epigenomic and transcriptomic mapping of 18 tumor and 20 non-neoplastic tissues from non-small cell lung adenocarcinoma patients. Our profiling covers 5 histone marks including activating (H3K4me3, H3K4me1, and H3K27ac) and repressive (H3K27me3 and H3K9me3) marks and the transcriptome using only 20 mg of tissue per sample, enabled by low-input omic technologies. Using advanced integrative bioinformatic analysis, we uncovered cancer-driving signaling cascade networks, changes in 3D genome modularity, and differential expression and functionalities of transcription factors and noncoding RNAs. Many of these identified genes and regulatory molecules showed no significant change in their expression or a single epigenomic modality, emphasizing the power of integrative multimodal and multiomic analysis using patient samples.
Collapse
|
5
|
Papadimitriou N, Kim A, Kawaguchi ES, Morrison J, Diez-Obrero V, Albanes D, Berndt SI, Bézieau S, Bien SA, Bishop DT, Bouras E, Brenner H, Buchanan DD, Campbell PT, Carreras-Torres R, Chan AT, Chang-Claude J, Conti DV, Devall MA, Dimou N, Drew DA, Gruber SB, Harrison TA, Hoffmeister M, Huyghe JR, Joshi AD, Keku TO, Kundaje A, Küry S, Le Marchand L, Lewinger JP, Li L, Lynch BM, Moreno V, Newton CC, Obón-Santacana M, Ose J, Pellatt AJ, Peoples AR, Platz EA, Qu C, Rennert G, Ruiz-Narvaez E, Shcherbina A, Stern MC, Su YR, Thomas DC, Thomas CE, Tian Y, Tsilidis KK, Ulrich CM, Um CY, Visvanathan K, Wang J, White E, Woods MO, Schmit SL, Macrae F, Potter JD, Hopper JL, Peters U, Murphy N, Hsu L, Gunter MJ, Gauderman WJ. Genome-wide interaction study of dietary intake of fibre, fruits, and vegetables with risk of colorectal cancer. EBioMedicine 2024; 104:105146. [PMID: 38749303 PMCID: PMC11112268 DOI: 10.1016/j.ebiom.2024.105146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Consumption of fibre, fruits and vegetables have been linked with lower colorectal cancer (CRC) risk. A genome-wide gene-environment (G × E) analysis was performed to test whether genetic variants modify these associations. METHODS A pooled sample of 45 studies including up to 69,734 participants (cases: 29,896; controls: 39,838) of European ancestry were included. To identify G × E interactions, we used the traditional 1--degree-of-freedom (DF) G × E test and to improve power a 2-step procedure and a 3DF joint test that investigates the association between a genetic variant and dietary exposure, CRC risk and G × E interaction simultaneously. FINDINGS The 3-DF joint test revealed two significant loci with p-value <5 × 10-8. Rs4730274 close to the SLC26A3 gene showed an association with fibre (p-value: 2.4 × 10-3) and G × fibre interaction with CRC (OR per quartile of fibre increase = 0.87, 0.80, and 0.75 for CC, TC, and TT genotype, respectively; G × E p-value: 1.8 × 10-7). Rs1620977 in the NEGR1 gene showed an association with fruit intake (p-value: 1.0 × 10-8) and G × fruit interaction with CRC (OR per quartile of fruit increase = 0.75, 0.65, and 0.56 for AA, AG, and GG genotype, respectively; G × E -p-value: 0.029). INTERPRETATION We identified 2 loci associated with fibre and fruit intake that also modify the association of these dietary factors with CRC risk. Potential mechanisms include chronic inflammatory intestinal disorders, and gut function. However, further studies are needed for mechanistic validation and replication of findings. FUNDING National Institutes of Health, National Cancer Institute. Full funding details for the individual consortia are provided in acknowledgments.
Collapse
Affiliation(s)
- Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Andre Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eric S Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Virginia Diez-Obrero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, 08908, Spain; Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, 08908, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Barcelona, 08908, Spain; Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumour Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia; University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, 08908, Spain; Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Girona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew A Devall
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA; Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, USA
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research and Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Amit D Joshi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Sébastien Küry
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Brigid M Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, 08908, Spain; Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, 08908, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Barcelona, 08908, Spain; Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Christina C Newton
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, 08908, Spain; Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, 08908, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Barcelona, 08908, Spain
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Andrew J Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita R Peoples
- Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mariana C Stern
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claire E Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; School of Public Health, Capital Medical University, Beijing, China
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jun Wang
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA; Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Finlay Macrae
- The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia; Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA.
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA.
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France; Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK.
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Drew DA, Kim AE, Lin Y, Qu C, Morrison J, Lewinger JP, Kawaguchi E, Wang J, Fu Y, Zemlianskaia N, Díez-Obrero V, Bien SA, Dimou N, Albanes D, Baurley JW, Wu AH, Buchanan DD, Potter JD, Prentice RL, Harlid S, Arndt V, Barry EL, Berndt SI, Bouras E, Brenner H, Budiarto A, Burnett-Hartman A, Campbell PT, Carreras-Torres R, Casey G, Chang-Claude J, Conti DV, Devall MA, Figueiredo JC, Gruber SB, Gsur A, Gunter MJ, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl KM, Kundaje A, Le Marchand L, Li L, Lynch BM, Murphy N, Nassir R, Newcomb PA, Newton CC, Obón-Santacana M, Ogino S, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Rennert G, Ruiz-Narvaez E, Sakoda LC, Scacheri PC, Schmit SL, Schoen RE, Stern MC, Su YR, Thomas DC, Tian Y, Tsilidis KK, Ulrich CM, Um CY, van Duijnhoven FJ, Van Guelpen B, White E, Hsu L, Moreno V, Peters U, Chan AT, Gauderman WJ. Two genome-wide interaction loci modify the association of nonsteroidal anti-inflammatory drugs with colorectal cancer. SCIENCE ADVANCES 2024; 10:eadk3121. [PMID: 38809988 PMCID: PMC11135391 DOI: 10.1126/sciadv.adk3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Regular, long-term aspirin use may act synergistically with genetic variants, particularly those in mechanistically relevant pathways, to confer a protective effect on colorectal cancer (CRC) risk. We leveraged pooled data from 52 clinical trial, cohort, and case-control studies that included 30,806 CRC cases and 41,861 controls of European ancestry to conduct a genome-wide interaction scan between regular aspirin/nonsteroidal anti-inflammatory drug (NSAID) use and imputed genetic variants. After adjusting for multiple comparisons, we identified statistically significant interactions between regular aspirin/NSAID use and variants in 6q24.1 (top hit rs72833769), which has evidence of influencing expression of TBC1D7 (a subunit of the TSC1-TSC2 complex, a key regulator of MTOR activity), and variants in 5p13.1 (top hit rs350047), which is associated with expression of PTGER4 (codes a cell surface receptor directly involved in the mode of action of aspirin). Genetic variants with functional impact may modulate the chemopreventive effect of regular aspirin use, and our study identifies putative previously unidentified targets for additional mechanistic interrogation.
Collapse
Affiliation(s)
- David A. Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andre E. Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jun Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yubo Fu
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Natalia Zemlianskaia
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Stephanie A. Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John D. Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Ross L. Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth L. Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmanouil Bouras
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | | | - Peter T. Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - David V. Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew A.M. Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jane C. Figueiredo
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen B. Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrea Gsur
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R. Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina M. Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, Charlottesville, VA, USA
| | - Brigid M. Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura’a University, Mecca, Saudi Arabia
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J. Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita R. Peoples
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lori C. Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Peter C. Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie L. Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mariana C. Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yu-Ru Su
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Duncan C. Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Caroline Y. Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Andrew T. Chan
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - W. James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Udayasuryan B, Zhou Z, Ahmad RN, Sobol P, Deng C, Nguyen TTD, Kodikalla S, Morrison R, Goswami I, Slade DJ, Verbridge SS, Lu C. Fusobacterium nucleatum infection modulates the transcriptome and epigenome of HCT116 colorectal cancer cells in an oxygen-dependent manner. Commun Biol 2024; 7:551. [PMID: 38720110 PMCID: PMC11079022 DOI: 10.1038/s42003-024-06201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Fusobacterium nucleatum, a gram-negative oral bacterium, has been consistently validated as a strong contributor to the progression of several types of cancer, including colorectal (CRC) and pancreatic cancer. While previous in vitro studies have shown that intracellular F. nucleatum enhances malignant phenotypes such as cell migration, the dependence of this regulation on features of the tumor microenvironment (TME) such as oxygen levels are wholly uncharacterized. Here we examine the influence of hypoxia in facilitating F. nucleatum invasion and its effects on host responses focusing on changes in the global epigenome and transcriptome. Using a multiomic approach, we analyze epigenomic alterations of H3K27ac and global transcriptomic alterations sustained within a hypoxia and normoxia conditioned CRC cell line HCT116 at 24 h following initial infection with F. nucleatum. Our findings reveal that intracellular F. nucleatum activates signaling pathways and biological processes in host cells similar to those induced upon hypoxia conditioning in the absence of infection. Furthermore, we show that a hypoxic TME favors F. nucleatum invasion and persistence and therefore infection under hypoxia may amplify malignant transformation by exacerbating the effects induced by hypoxia alone. These results motivate future studies to investigate host-microbe interactions in tumor tissue relevant conditions that more accurately define parameters for targeted cancer therapies.
Collapse
Affiliation(s)
- Barath Udayasuryan
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Raffae N Ahmad
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Polina Sobol
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Tam T D Nguyen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Shivanie Kodikalla
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Ryan Morrison
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Ishan Goswami
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Daniel J Slade
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Scott S Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Song P, Han R, Yang F. Super enhancer lncRNAs: a novel hallmark in cancer. Cell Commun Signal 2024; 22:207. [PMID: 38566153 PMCID: PMC10986047 DOI: 10.1186/s12964-024-01599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Super enhancers (SEs) consist of clusters of enhancers, harboring an unusually high density of transcription factors, mediator coactivators and epigenetic modifications. SEs play a crucial role in the maintenance of cancer cell identity and promoting oncogenic transcription. Super enhancer lncRNAs (SE-lncRNAs) refer to either transcript from SEs locus or interact with SEs, whose transcriptional activity is highly dependent on SEs. Moreover, these SE-lncRNAs can interact with their associated enhancer regions in cis and modulate the expression of oncogenes or key signal pathways in cancers. Inhibition of SEs would be a promising therapy for cancer. In this review, we summarize the research of SE-lncRNAs in different kinds of cancers so far and decode the mechanism of SE-lncRNAs in carcinogenesis to provide novel ideas for the cancer therapy.
Collapse
Affiliation(s)
- Ping Song
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310006, China
| | - Rongyan Han
- Department of emergency, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang Province, China
| | - Fan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
9
|
Voutsadakis IA. Targeting super-enhancer activity for colorectal cancer therapy. Am J Transl Res 2024; 16:700-719. [PMID: 38586095 PMCID: PMC10994804 DOI: 10.62347/qkhb5897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024]
Abstract
In addition to genetic variants and copy number alterations, epigenetic deregulation of oncogenes and tumor suppressors is a major contributor in cancer development and propagation. Regulatory elements for gene transcription regulation can be found in promoters which are located in the vicinity of transcription start sites but also at a distance, in enhancer sites, brought to interact with proximal sites when occupied by enhancer protein complexes. These sites provide most of the specific regulatory sequences recognized by transcription factors. A sub-set of enhancers characterized by a longer structure and stronger activity, called super-enhancers, are critical for the expression of specific genes, usually associated with individual cell type identity and function. Super-enhancers show deregulation in cancer, which may have profound repercussions for cancer cell survival and response to therapy. Dysfunction of super-enhancers may result from multiple mechanisms that include changes in their sequence, alterations in the topological neighborhoods where they belong, and alterations in the proteins that mediate their function, such as transcription factors and epigenetic modifiers. These can become potential targets for therapeutic interventions. Genes that are targets of super-enhancers are cell and cancer type specific and could also be of interest for therapeutic targeting. In colorectal cancer, a super-enhancer regulated and over-expressed oncogene is MYC, under the influence of the WNT/β-catenin pathway. Identification and targeting of additional oncogenes regulated by super-enhancers in colorectal cancer may pave the way for combination therapies targeting the super-enhancer machinery and signal transduction pathways that regulate the specific transcription factors operative on them.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area HospitalSault Ste. Marie, ON, Canada
- Division of Clinical Sciences, Section of Internal Medicine, Northern Ontario School of MedicineSudbury, ON, Canada
| |
Collapse
|
10
|
Peng G, Liu B, Zheng M, Zhang L, Li H, Liu M, Liang Y, Chen T, Luo X, Shi X, Ren J, Zheng Y. TSCRE: a comprehensive database for tumor-specific cis-regulatory elements. NAR Cancer 2024; 6:zcad063. [PMID: 38213995 PMCID: PMC10782923 DOI: 10.1093/narcan/zcad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024] Open
Abstract
Cis-regulatory elements (CREs) and super cis-regulatory elements (SCREs) are non-coding DNA regions which influence the transcription of nearby genes and play critical roles in development. Dysregulated CRE and SCRE activities have been reported to alter the expression of oncogenes and tumor suppressors, thereby regulating cancer hallmarks. To address the strong need for a comprehensive catalogue of dysregulated CREs and SCREs in human cancers, we present TSCRE (http://tscre.zsqylab.com/), an open resource providing tumor-specific and cell type-specific CREs and SCREs derived from the re-analysis of publicly available histone modification profiles. Currently, TSCRE contains 1 864 941 dysregulated CREs and 68 253 dysregulated SCREs identified from 1366 human patient samples spanning 17 different cancer types and 9 histone marks. Over 95% of these elements have been validated in public resources. TSCRE offers comprehensive annotations for each element, including associated genes, expression patterns, clinical prognosis, somatic mutations, transcript factor binding sites, cancer-type specificity, and drug response. Additionally, TSCRE integrates pathway and transcript factor enrichment analyses for each study, enabling in-depth functional and mechanistic investigations. Furthermore, TSCRE provides an interactive interface for users to explore any CRE and SCRE of interest. We believe TSCRE will be a highly valuable platform for the community to discover candidate cancer biomarkers.
Collapse
Affiliation(s)
- Guanjie Peng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, China
| | - Bingyuan Liu
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, China
| | - Mohan Zheng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Luowanyue Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Huiqin Li
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengni Liu
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Yuan Liang
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Tianjian Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaotong Luo
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianping Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| |
Collapse
|
11
|
Feng T, Hu T, Liu W, Zhang Y. Enhancer Recognition: A Transformer Encoder-Based Method with WGAN-GP for Data Augmentation. Int J Mol Sci 2023; 24:17548. [PMID: 38139375 PMCID: PMC10743946 DOI: 10.3390/ijms242417548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Enhancers are located upstream or downstream of key deoxyribonucleic acid (DNA) sequences in genes and can adjust the transcription activity of neighboring genes. Identifying enhancers and determining their functions are important for understanding gene regulatory networks and expression regulatory mechanisms. However, traditional enhancer recognition relies on manual feature engineering, which is time-consuming and labor-intensive, making it difficult to perform large-scale recognition analysis. In addition, if the original dataset is too small, there is a risk of overfitting. In recent years, emerging methods, such as deep learning, have provided new insights for enhancing identification. However, these methods also present certain challenges. Deep learning models typically require a large amount of high-quality data, and data acquisition demands considerable time and resources. To address these challenges, in this paper, we propose a data-augmentation method based on generative adversarial networks to solve the problem of small datasets. Moreover, we used regularization methods such as weight decay to improve the generalizability of the model and alleviate overfitting. The Transformer encoder was used as the main component to capture the complex relationships and dependencies in enhancer sequences. The encoding layer was designed based on the principle of k-mers to preserve more information from the original DNA sequence. Compared with existing methods, the proposed approach made significant progress in enhancing the accuracy and strength of enhancer identification and prediction, demonstrating the effectiveness of the proposed method. This paper provides valuable insights for enhancer analysis and is of great significance for understanding gene regulatory mechanisms and studying disease correlations.
Collapse
Affiliation(s)
- Tianyu Feng
- College of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China; (T.F.); (T.H.)
| | - Tao Hu
- College of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China; (T.F.); (T.H.)
| | - Wenyu Liu
- College of Ecology, Lanzhou University, Lanzhou 730000, China;
| | - Yang Zhang
- Supercomputer Center, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
Lin X, Chen JD, Wang CY, Cai Z, Zhan R, Yang C, Zhang LY, Li LY, Xiao Y, Chen MK, Wu M. Cooperation of MLL1 and Jun in controlling H3K4me3 on enhancers in colorectal cancer. Genome Biol 2023; 24:268. [PMID: 38012744 PMCID: PMC10680327 DOI: 10.1186/s13059-023-03108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Enhancer dysregulation is one of the important features for cancer cells. Enhancers enriched with H3K4me3 have been implicated to play important roles in cancer. However, their detailed features and regulatory mechanisms have not been well characterized. RESULTS Here, we profile the landscape of H3K4me3-enriched enhancers (m3Es) in 43 pairs of colorectal cancer (CRC) samples. M3Es are widely distributed in CRC and averagely possess around 10% of total active enhancers. We identify 1322 gain variant m3Es and 367 lost variant m3Es in CRC. The target genes of the gain m3Es are enriched in immune response pathways. We experimentally prove that repression of CBX8 and RPS6KA5 m3Es inhibits target gene expression in CRC. Furthermore, we find histone methyltransferase MLL1 is responsible for depositing H3K4me3 on the identified Vm3Es. We demonstrate that the transcription factor AP1/JUN interacts with MLL1 and regulates m3E activity. Application of a small chemical inhibitor for MLL1 activity, OICR-9429, represses target gene expression of the identified Vm3Es, enhances anti-tumor immunity and inhibits CRC growth in an animal model. CONCLUSIONS Taken together, our study illustrates the genome-wide landscape and the regulatory mechanisms of m3Es in CRC, and reveals potential novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Xiang Lin
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ji-Dong Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen-Yu Wang
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhen Cai
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Rui Zhan
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen Yang
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - La-Ying Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yong Xiao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Ming-Kai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
13
|
Bouras E, Kim AE, Lin Y, Morrison J, Du M, Albanes D, Barry EL, Baurley JW, Berndt SI, Bien SA, Bishop TD, Brenner H, Budiarto A, Burnett-Hartman A, Campbell PT, Carreras-Torres R, Casey G, Cenggoro TW, Chan AT, Chang-Claude J, Conti DV, Cotterchio M, Devall M, Diez-Obrero V, Dimou N, Drew DA, Figueiredo JC, Giles GG, Gruber SB, Gunter MJ, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Joshi AD, Kawaguchi ES, Keku TO, Kundaje A, Le Marchand L, Lewinger JP, Li L, Lynch BM, Mahesworo B, Männistö S, Moreno V, Murphy N, Newcomb PA, Obón-Santacana M, Ose J, Palmer JR, Papadimitriou N, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Potter JD, Qi L, Qu C, Rennert G, Ruiz-Narvaez E, Sakoda LC, Schmit SL, Shcherbina A, Stern MC, Su YR, Tangen CM, Thomas DC, Tian Y, Um CY, van Duijnhoven FJ, Van Guelpen B, Visvanathan K, Wang J, White E, Wolk A, Woods MO, Ulrich CM, Hsu L, Gauderman WJ, Peters U, Tsilidis KK. Genome-wide interaction analysis of folate for colorectal cancer risk. Am J Clin Nutr 2023; 118:881-891. [PMID: 37640106 PMCID: PMC10636229 DOI: 10.1016/j.ajcnut.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Epidemiological and experimental evidence suggests that higher folate intake is associated with decreased colorectal cancer (CRC) risk; however, the mechanisms underlying this relationship are not fully understood. Genetic variation that may have a direct or indirect impact on folate metabolism can provide insights into folate's role in CRC. OBJECTIVES Our aim was to perform a genome-wide interaction analysis to identify genetic variants that may modify the association of folate on CRC risk. METHODS We applied traditional case-control logistic regression, joint 3-degree of freedom, and a 2-step weighted hypothesis approach to test the interactions of common variants (allele frequency >1%) across the genome and dietary folate, folic acid supplement use, and total folate in relation to risk of CRC in 30,550 cases and 42,336 controls from 51 studies from 3 genetic consortia (CCFR, CORECT, GECCO). RESULTS Inverse associations of dietary, total folate, and folic acid supplement with CRC were found (odds ratio [OR]: 0.93; 95% confidence interval [CI]: 0.90, 0.96; and 0.91; 95% CI: 0.89, 0.94 per quartile higher intake, and 0.82 (95% CI: 0.78, 0.88) for users compared with nonusers, respectively). Interactions (P-interaction < 5×10-8) of folic acid supplement and variants in the 3p25.2 locus (in the region of Synapsin II [SYN2]/tissue inhibitor of metalloproteinase 4 [TIMP4]) were found using traditional interaction analysis, with variant rs150924902 (located upstream to SYN2) showing the strongest interaction. In stratified analyses by rs150924902 genotypes, folate supplementation was associated with decreased CRC risk among those carrying the TT genotype (OR: 0.82; 95% CI: 0.79, 0.86) but increased CRC risk among those carrying the TA genotype (OR: 1.63; 95% CI: 1.29, 2.05), suggesting a qualitative interaction (P-interaction = 1.4×10-8). No interactions were observed for dietary and total folate. CONCLUSIONS Variation in 3p25.2 locus may modify the association of folate supplement with CRC risk. Experimental studies and studies incorporating other relevant omics data are warranted to validate this finding.
Collapse
Affiliation(s)
- Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia; BioRealm LLC, Walnut, CA, United States
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Timothy D Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia; Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | | | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Robert Carreras-Torres
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia; Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States; Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | | - Matthew Devall
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States; Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, United States
| | - Virginia Diez-Obrero
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Eric S Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, United States
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, United States; Department of Computer Science, Stanford University, Stanford, CA, United States
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, United States
| | - Brigid M Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Victor Moreno
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; School of Public Health, University of Washington, Seattle, WA, United States
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, United States
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J Pellatt
- Department of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Anita R Peoples
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Lihong Qi
- Department of Public Health Sciences, University of California Davis, Davis, CA, United States
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States; Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA, United States; Department of Computer Science, Stanford University, Stanford, CA, United States
| | - Mariana C Stern
- Department of Population and Public Health Sciences and Norris Comprehensive Cancer Center, Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; School of Public Health, Capital Medical University, Beijing, China
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Franzel Jb van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jun Wang
- Department of Population and Public Health Sciences and Norris Comprehensive Cancer Center, Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, United States
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St John's, Canada
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Epidemiology, University of Washington, Seattle, WA, United States.
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom.
| |
Collapse
|
14
|
Park HA, Edelmann D, Canzian F, Seibold P, Harrison TA, Hua X, Shi Q, Silverman A, Benner A, Macauda A, Schneider M, Goldberg RM, Alberts SR, Hoffmeister M, Brenner H, Chan AT, Peters U, Newcomb PA, Chang-Claude J. Genome-wide study of genetic polymorphisms predictive for outcome from first-line oxaliplatin-based chemotherapy in colorectal cancer patients. Int J Cancer 2023; 153:1623-1634. [PMID: 37539667 PMCID: PMC10550047 DOI: 10.1002/ijc.34663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 08/05/2023]
Abstract
We conducted the first large genome-wide association study to identify novel genetic variants that predict better (or poorer) prognosis in colorectal cancer patients receiving standard first-line oxaliplatin-based chemotherapy vs chemotherapy without oxaliplatin. We used data from two phase III trials, NCCTG N0147 and NCCTG N9741 and a population-based patient cohort, DACHS. Multivariable Cox proportional hazards models were employed, including an interaction term between each SNP and type of treatment for overall survival (OS) and progression-free survival. The analysis was performed for studies individually, and the results were combined using fixed-effect meta-analyses separately for resected stage III colon cancer (3098 patients from NCCTG N0147 and 549 patients from DACHS) and mCRC (505 patients from NCCTG N9741 and 437 patients from DACHS). We further performed gene-based analysis as well as in silico bioinformatics analysis for CRC-relevant functional genomic annotation of identified loci. In stage III colon cancer patients, a locus on chr22 (rs11912167) was associated with significantly poorer OS after oxaliplatin-based chemotherapy vs chemotherapy without oxaliplatin (Pinteraction < 5 × 10-8 ). For mCRC patients, three loci on chr1 (rs1234556), chr12 (rs11052270) and chr15 (rs11858406) were found to be associated with differential OS (P < 5 × 10-7 ). The locus on chr1 located in the intronic region of RCSD1 was replicated in an independent cohort of 586 mCRC patients from ALGB/SWOG 80405 (Pinteraction = .04). The GWA gene-based analysis yielded for RCSD1 the most significant association with differential OS in mCRC (P = 6.6 × 10-6 ). With further investigation into its biological mechanisms, this finding could potentially be used to individualize first-line treatment and improve clinical outcomes.
Collapse
Affiliation(s)
- Hanla A. Park
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United State of America
| | - Xinwei Hua
- Department of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United State of America
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, United State of America
- Department of Cardiology, Peking University Third Hospital, Peking University, Beijing, China
| | - Qian Shi
- Department of Quantitative Science, Mayo Clinic, Rochester, Minnesota, United State of America
| | - Allison Silverman
- Epidemiology Program, Fred Hutchinson Research Cancer Research Center, Seattle, Washington, United State of America
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Steven R. Alberts
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United State of America
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew T. Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United State of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United State of America
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United State of America
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United State of America
- School of Public Health, University of Washington, Seattle, Washington, United State of America
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United State of America
- School of Public Health, University of Washington, Seattle, Washington, United State of America
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Choudalakis M, Kungulovski G, Mauser R, Bashtrykov P, Jeltsch A. Refined read-out: The hUHRF1 Tandem-Tudor domain prefers binding to histone H3 tails containing K4me1 in the context of H3K9me2/3. Protein Sci 2023; 32:e4760. [PMID: 37593997 PMCID: PMC10464304 DOI: 10.1002/pro.4760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
UHRF1 is an essential chromatin protein required for DNA methylation maintenance, mammalian development, and gene regulation. We investigated the Tandem-Tudor domain (TTD) of human UHRF1 that is known to bind H3K9me2/3 histones and is a major driver of UHRF1 localization in cells. We verified binding to H3K9me2/3 but unexpectedly discovered stronger binding to H3 peptides and mononucleosomes containing K9me2/3 with additional K4me1. We investigated the combined binding of TTD to H3K4me1-K9me2/3 versus H3K9me2/3 alone, engineered mutants with specific and differential changes of binding, and discovered a novel read-out mechanism for H3K4me1 in an H3K9me2/3 context that is based on the interaction of R207 with the H3K4me1 methyl group and on counting the H-bond capacity of H3K4. Individual TTD mutants showed up to a 10,000-fold preference for the double-modified peptides, suggesting that after a conformational change, WT TTD could exhibit similar effects. The frequent appearance of H3K4me1-K9me2 regions in human chromatin demonstrated in our TTD chromatin pull-down and ChIP-western blot data suggests that it has specific biological roles. Chromatin pull-down of TTD from HepG2 cells and full-length murine UHRF1 ChIP-seq data correlate with H3K4me1 profiles indicating that the H3K4me1-K9me2/3 interaction of TTD influences chromatin binding of full-length UHRF1. We demonstrate the H3K4me1-K9me2/3 specific binding of UHRF1-TTD to enhancers and promoters of cell-type-specific genes at the flanks of cell-type-specific transcription factor binding sites, and provided evidence supporting an H3K4me1-K9me2/3 dependent and TTD mediated downregulation of these genes by UHRF1. All these findings illustrate the important physiological function of UHRF1-TTD binding to H3K4me1-K9me2/3 double marks in a cellular context.
Collapse
Affiliation(s)
- Michel Choudalakis
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Goran Kungulovski
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Rebekka Mauser
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Pavel Bashtrykov
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Albert Jeltsch
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| |
Collapse
|
16
|
Mo J, Liu C, Li Z, Fan L, Wu S, Husain H, Zhong C, Zhang B. A bioinformatics analysis of potential cellular communication networks in non-alcoholic steatohepatitis and colorectal adenoma using scRNA-seq and bulk-seq. J Gastrointest Oncol 2023; 14:1770-1787. [PMID: 37720432 PMCID: PMC10502531 DOI: 10.21037/jgo-23-502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the global most common chronic liver disease. Non-alcoholic steatohepatitis (NASH), an inflammatory subtype of NAFLD, has been shown to significantly increase the risk of colorectal adenoma (CRA). Therefore, from the perspective of bioinformatics analysis, the potential mechanisms of NASH/NAFLD-CRA can be explored. Methods In this study, we screened the differentially expressed genes (DEGs) and core effect pathways between NASH and CRA by analyzing the single-cell data of CRA patients and the high-throughput sequencing data (GSE37364 and GSE89632) in the online database. We screened therapeutic targets and biomarkers through gene function classification, pathway enrichment analysis, and protein-protein interaction network analysis. In terms of single cell data, we screened the core effect pathway and specific signal pathway of cell communication through cell annotation and cell communication analyses. The purpose of the study was to find potential biomarkers, therapeutic targets, and related effect pathways of NASH-CRA. Results NASH-CRA comorbidities were concentrated in inflammatory regulation-related pathways, and the core genes of disease progression included IL1B, FOSL1, EGR1, MYC, PTGS2, and FOS. The results suggested the key pathway of NASH-CRA might be the WNT pathway. The main cell signal communication pathways included WNT2B - (FZD6 + LRP5) and WNT2B - (FZD6 + LRP6). The send-receive process occurred in embryonic stem cells. Conclusions The core genes of NASH-CRA (FOS, EGR1, MYC, PTGS2, FOSL1, and IL1B) may participate in inflammation and immune responses through up-regulation in the process of disease occurrence, interfering with the pathophysiological process of CRA and NASH. NASH-CRA produces cell signal communication in the WNT pathway sent by WNT2B and received by FZD6, LRP5, and LRP6 in embryonic stem cells. These findings may help formulate early diagnosis and treatment strategies for CRA in NAFLD/NASH patients, and further explore corresponding prognostic markers and potential approaches. The significance of scRNA-seq in exploring tumor heterogeneity lies in promoting our understanding of the expression program of tumor related genes in tumor development patterns. However, the biggest challenge is that this analysis may miss out on some biologically significant gene expression programs.
Collapse
Affiliation(s)
- Jiahao Mo
- The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Chang Liu
- The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Zhuolin Li
- The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Longxiu Fan
- The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Shaohua Wu
- The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Hatim Husain
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Cailing Zhong
- Department of Gastroenterology, the Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Beiping Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Dimou N, Kim AE, Flanagan O, Murphy N, Diez-Obrero V, Shcherbina A, Aglago EK, Bouras E, Campbell PT, Casey G, Gallinger S, Gruber SB, Jenkins MA, Lin Y, Moreno V, Ruiz-Narvaez E, Stern MC, Tian Y, Tsilidis KK, Arndt V, Barry EL, Baurley JW, Berndt SI, Bézieau S, Bien SA, Bishop DT, Brenner H, Budiarto A, Carreras-Torres R, Cenggoro TW, Chan AT, Chang-Claude J, Chanock SJ, Chen X, Conti DV, Dampier CH, Devall M, Drew DA, Figueiredo JC, Giles GG, Gsur A, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jordahl K, Kawaguchi E, Keku TO, Larsson SC, Le Marchand L, Lewinger JP, Li L, Mahesworo B, Morrison J, Newcomb PA, Newton CC, Obon-Santacana M, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Peoples AR, Pharoah PDP, Platz EA, Potter JD, Rennert G, Scacheri PC, Schoen RE, Su YR, Tangen CM, Thibodeau SN, Thomas DC, Ulrich CM, Um CY, van Duijnhoven FJB, Visvanathan K, Vodicka P, Vodickova L, White E, Wolk A, Woods MO, Qu C, Kundaje A, Hsu L, Gauderman WJ, Gunter MJ, Peters U. Probing the diabetes and colorectal cancer relationship using gene - environment interaction analyses. Br J Cancer 2023; 129:511-520. [PMID: 37365285 PMCID: PMC10403521 DOI: 10.1038/s41416-023-02312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Diabetes is an established risk factor for colorectal cancer. However, the mechanisms underlying this relationship still require investigation and it is not known if the association is modified by genetic variants. To address these questions, we undertook a genome-wide gene-environment interaction analysis. METHODS We used data from 3 genetic consortia (CCFR, CORECT, GECCO; 31,318 colorectal cancer cases/41,499 controls) and undertook genome-wide gene-environment interaction analyses with colorectal cancer risk, including interaction tests of genetics(G)xdiabetes (1-degree of freedom; d.f.) and joint testing of Gxdiabetes, G-colorectal cancer association (2-d.f. joint test) and G-diabetes correlation (3-d.f. joint test). RESULTS Based on the joint tests, we found that the association of diabetes with colorectal cancer risk is modified by loci on chromosomes 8q24.11 (rs3802177, SLC30A8 - ORAA: 1.62, 95% CI: 1.34-1.96; ORAG: 1.41, 95% CI: 1.30-1.54; ORGG: 1.22, 95% CI: 1.13-1.31; p-value3-d.f.: 5.46 × 10-11) and 13q14.13 (rs9526201, LRCH1 - ORGG: 2.11, 95% CI: 1.56-2.83; ORGA: 1.52, 95% CI: 1.38-1.68; ORAA: 1.13, 95% CI: 1.06-1.21; p-value2-d.f.: 7.84 × 10-09). DISCUSSION These results suggest that variation in genes related to insulin signaling (SLC30A8) and immune function (LRCH1) may modify the association of diabetes with colorectal cancer risk and provide novel insights into the biology underlying the diabetes and colorectal cancer relationship.
Collapse
Affiliation(s)
- Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France.
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Orlagh Flanagan
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Virginia Diez-Obrero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, 08908, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, 08908, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, Barcelona, 08908, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, 08908, Spain
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Elom K Aglago
- School of Public Health, Imperial College London, London, United Kingdom
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Graham Casey
- Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen B Gruber
- Center for Precision Medicine, Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Victor Moreno
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, 08908, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Mariana C Stern
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Kostas K Tsilidis
- School of Public Health, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique médicale, F-44000, Nantes, France
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 8908, Barcelona, Spain
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher H Dampier
- Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, USA
- Department of General Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Matthew Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - David A Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kristina Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Christina C Newton
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Mireia Obon-Santacana
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, 08908L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UH, USA
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Anita R Peoples
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UH, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yu-Ru Su
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Duncan C Thomas
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UH, USA
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Kala Visvanathan
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL, Canada
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- School of Public Health, Imperial College London, London, United Kingdom
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Di Giorgio E, Benetti R, Kerschbamer E, Xodo L, Brancolini C. Super-enhancer landscape rewiring in cancer: The epigenetic control at distal sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:97-148. [PMID: 37657861 DOI: 10.1016/bs.ircmb.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Super-enhancers evolve as elements at the top of the hierarchical control of gene expression. They are important end-gatherers of signaling pathways that control stemness, differentiation or adaptive responses. Many epigenetic regulations focus on these regions, and not surprisingly, during the process of tumorigenesis, various alterations can account for their dysfunction. Super-enhancers are emerging as key drivers of the aberrant gene expression landscape that sustain the aggressiveness of cancer cells. In this review, we will describe and discuss about the structure of super-enhancers, their epigenetic regulation, and the major changes affecting their functionality in cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Roberta Benetti
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Emanuela Kerschbamer
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Luigi Xodo
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy.
| |
Collapse
|
19
|
Carreras-Torres R, Kim AE, Lin Y, Diez-Obrero V, Bien SA, Qu C, Wang J, Dimou N, Aglago EK, Albanes D, Arndt V, Baurley JW, Berndt SI, Bézieau S, Bishop DT, Bouras E, Brenner H, Budiarto A, Campbell PT, Casey G, Chan AT, Chang-Claude J, Chen X, Conti DV, Dampier CH, Devall MAM, Drew DA, Figueiredo JC, Gallinger S, Giles GG, Gruber SB, Gsur A, Gunter MJ, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl KM, Kawaguchi E, Keku TO, Kundaje A, Le Marchand L, Lewinger JP, Li L, Mahesworo B, Morrison JL, Murphy N, Nan H, Nassir R, Newcomb PA, Obón-Santacana M, Ogino S, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Peoples AR, Pharoah PDP, Platz EA, Rennert G, Ruiz-Narvaez E, Sakoda LC, Scacheri PC, Schmit SL, Schoen RE, Shcherbina A, Slattery ML, Stern MC, Su YR, Tangen CM, Thomas DC, Tian Y, Tsilidis KK, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, Vodicka P, Cenggoro TW, Weinstein SJ, White E, Wolk A, Woods MO, Hsu L, Peters U, Moreno V, Gauderman WJ. Genome-wide Interaction Study with Smoking for Colorectal Cancer Risk Identifies Novel Genetic Loci Related to Tumor Suppression, Inflammation, and Immune Response. Cancer Epidemiol Biomarkers Prev 2023; 32:315-328. [PMID: 36576985 PMCID: PMC9992283 DOI: 10.1158/1055-9965.epi-22-0763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Tobacco smoking is an established risk factor for colorectal cancer. However, genetically defined population subgroups may have increased susceptibility to smoking-related effects on colorectal cancer. METHODS A genome-wide interaction scan was performed including 33,756 colorectal cancer cases and 44,346 controls from three genetic consortia. RESULTS Evidence of an interaction was observed between smoking status (ever vs. never smokers) and a locus on 3p12.1 (rs9880919, P = 4.58 × 10-8), with higher associated risk in subjects carrying the GG genotype [OR, 1.25; 95% confidence interval (CI), 1.20-1.30] compared with the other genotypes (OR <1.17 for GA and AA). Among ever smokers, we observed interactions between smoking intensity (increase in 10 cigarettes smoked per day) and two loci on 6p21.33 (rs4151657, P = 1.72 × 10-8) and 8q24.23 (rs7005722, P = 2.88 × 10-8). Subjects carrying the rs4151657 TT genotype showed higher risk (OR, 1.12; 95% CI, 1.09-1.16) compared with the other genotypes (OR <1.06 for TC and CC). Similarly, higher risk was observed among subjects carrying the rs7005722 AA genotype (OR, 1.17; 95% CI, 1.07-1.28) compared with the other genotypes (OR <1.13 for AC and CC). Functional annotation revealed that SNPs in 3p12.1 and 6p21.33 loci were located in regulatory regions, and were associated with expression levels of nearby genes. Genetic models predicting gene expression revealed that smoking parameters were associated with lower colorectal cancer risk with higher expression levels of CADM2 (3p12.1) and ATF6B (6p21.33). CONCLUSIONS Our study identified novel genetic loci that may modulate the risk for colorectal cancer of smoking status and intensity, linked to tumor suppression and immune response. IMPACT These findings can guide potential prevention treatments.
Collapse
Affiliation(s)
- Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, 17190, Girona, Spain
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Virginia Diez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jun Wang
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Elom K Aglago
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, USA
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christopher H Dampier
- Department of General Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Matthew AM Devall
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - David A Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina M Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anshul Kundaje
- Department of Genetics, Department of Computer Science, Stanford University, Stanford, California, USA
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - John L Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indianapolis, Indiana, USA
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura’a University, Saudi Arabia
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | | | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anna Shcherbina
- Biomedical Informatics Program, Dept. of Biomedical Data Sciences, Stanford University
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Mariana C Stern
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Franzel JB van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, and Biomedical Center, Medical Faculty, Pilsen, Czech Republic
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
20
|
Qu DC, Neu D, Khawaja ZQ, Wang R, Bartels CF, Lovrenert K, Chan ER, Hill-Baskin AE, Scacheri PC, Berger NA. Epigenetic effects of high-fat diet on intestinal tumorigenesis in C57BL/6J- Apc Min/+ mice. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2023; 7:3-16. [PMID: 36817228 PMCID: PMC9937564 DOI: 10.20517/jtgg.2022.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim Obesity and obesogenic diets might partly accelerate cancer development through epigenetic mechanisms. To determine these early effects, we investigated the impact of three days of a high-fat diet on epigenomic and transcriptomic changes in Apc Min/+ murine intestinal epithelia. Method ChIP-Seq and RNA-Seq were performed on small intestinal epithelia of WT and Apc Min/+ male mice fed high-fat diet (HFD) or low-fat diet (LFD) for three days to identify genomic regions associated with differential H3K27ac levels as a marker of variant enhancer loci (VELs) as well as differentially expressed genes (DEGs). Results Regarding epigenetic and transcriptomic changes, diet type (LFD vs. HFD) showed a significant impact, and genotype (WT vs.Apc Min/+) showed a small impact. Compared to LFD, HFD resulted in 1306 gained VELs, 230 lost VELs, 133 upregulated genes, and 127 downregulated genes in WT mice, with 1056 gained VELs, 371 lost VELs, 222 upregulated genes, and 182 downregulated genes in Apc Min/+ mice. Compared to the WT genotype, the Apc Min/+ genotype resulted in zero changed VELs for either diet type group, 21 DEGs for LFD, and 48 DEGs for HFD. Most gained VELs, and upregulated genes were associated with lipid metabolic processes. Gained VELs were also associated with Wnt signaling. Downregulated genes were associated with antigen presentation and processing. Conclusion Three days of HFD-induced epigenomic and transcriptomic changes involving metabolic and immunologic pathways that may promote tumor growth in the genetically predisposed murine intestine without affecting key cancer signaling pathways.
Collapse
Affiliation(s)
- Dan C Qu
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Devin Neu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zain Q Khawaja
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ruoyu Wang
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cynthia F Bartels
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Katreya Lovrenert
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ernest R Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anne E Hill-Baskin
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nathan A Berger
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Ho SWT, Sheng T, Xing M, Ooi WF, Xu C, Sundar R, Huang KK, Li Z, Kumar V, Ramnarayanan K, Zhu F, Srivastava S, Isa ZFBA, Anene-Nzelu CG, Razavi-Mohseni M, Shigaki D, Ma H, Tan ALK, Ong X, Lee MH, Tay ST, Guo YA, Huang W, Li S, Beer MA, Foo RSY, Teh M, Skanderup AJ, Teh BT, Tan P. Regulatory enhancer profiling of mesenchymal-type gastric cancer reveals subtype-specific epigenomic landscapes and targetable vulnerabilities. Gut 2023; 72:226-241. [PMID: 35817555 DOI: 10.1136/gutjnl-2021-326483] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Gastric cancer (GC) comprises multiple molecular subtypes. Recent studies have highlighted mesenchymal-subtype GC (Mes-GC) as a clinically aggressive subtype with few treatment options. Combining multiple studies, we derived and applied a consensus Mes-GC classifier to define the Mes-GC enhancer landscape revealing disease vulnerabilities. DESIGN Transcriptomic profiles of ~1000 primary GCs and cell lines were analysed to derive a consensus Mes-GC classifier. Clinical and genomic associations were performed across >1200 patients with GC. Genome-wide epigenomic profiles (H3K27ac, H3K4me1 and assay for transposase-accessible chromatin with sequencing (ATAC-seq)) of 49 primary GCs and GC cell lines were generated to identify Mes-GC-specific enhancer landscapes. Upstream regulators and downstream targets of Mes-GC enhancers were interrogated using chromatin immunoprecipitation followed by sequencing (ChIP-seq), RNA sequencing, CRISPR/Cas9 editing, functional assays and pharmacological inhibition. RESULTS We identified and validated a 993-gene cancer-cell intrinsic Mes-GC classifier applicable to retrospective cohorts or prospective single samples. Multicohort analysis of Mes-GCs confirmed associations with poor patient survival, therapy resistance and few targetable genomic alterations. Analysis of enhancer profiles revealed a distinctive Mes-GC epigenomic landscape, with TEAD1 as a master regulator of Mes-GC enhancers and Mes-GCs exhibiting preferential sensitivity to TEAD1 pharmacological inhibition. Analysis of Mes-GC super-enhancers also highlighted NUAK1 kinase as a downstream target, with synergistic effects observed between NUAK1 inhibition and cisplatin treatment. CONCLUSION Our results establish a consensus Mes-GC classifier applicable to multiple transcriptomic scenarios. Mes-GCs exhibit a distinct epigenomic landscape, and TEAD1 inhibition and combinatorial NUAK1 inhibition/cisplatin may represent potential targetable options.
Collapse
Affiliation(s)
- Shamaine Wei Ting Ho
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Taotao Sheng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| | - Manjie Xing
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Wen Fong Ooi
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Chang Xu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Raghav Sundar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zhimei Li
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Montreal Heart Institute, Quebec, Quebec, Canada.,Department of Medicine, University of Montreal, Quebec, Quebec, Canada
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dustin Shigaki
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Haoran Ma
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Ming Hui Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Yu Amanda Guo
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Weitai Huang
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roger Sik Yin Foo
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore
| | - Anders Jacobsen Skanderup
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore .,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
| |
Collapse
|
22
|
Chen Y, Ying Y, Wang M, Ma C, Jia M, Shi L, Wang S, Zheng X, Chen W, Shu XS. A distal super-enhancer activates oncogenic ETS2 via recruiting MECOM in inflammatory bowel disease and colorectal cancer. Cell Death Dis 2023; 14:8. [PMID: 36609474 PMCID: PMC9822945 DOI: 10.1038/s41419-022-05513-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Abnormal activities of distal cis-regulatory elements (CREs) contribute to the initiation and progression of cancer. Gain of super-enhancer (SE), a highly active distal CRE, is essential for the activation of key oncogenes in various cancers. However, the mechanism of action for most tumor-specific SEs still largely remains elusive. Here, we report that a candidate oncogene ETS2 was activated by a distal SE in inflammatory bowel disease (IBD) and colorectal cancer (CRC). The SE physically interacted with the ETS2 promoter and was required for the transcription activation of ETS2. Strikingly, the ETS2-SE activity was dramatically upregulated in both IBD and CRC tissues when compared to normal colon controls and was strongly correlated with the level of ETS2 expression. The tumor-specific activation of ETS2-SE was further validated by increased enhancer RNA transcription from this region in CRC. Intriguingly, a known IBD-risk SNP resides in the ETS2-SE and the genetic variant modulated the level of ETS2 expression through affecting the binding of an oncogenic transcription factor MECOM. Silencing of MECOM induced significant downregulation of ETS2 in CRC cells, and the level of MECOM and ETS2 correlated well with each other in CRC and IBD samples. Functionally, MECOM and ETS2 were both required for maintaining the colony-formation and sphere-formation capacities of CRC cells and MECOM was crucial for promoting migration. Taken together, we uncovered a novel disease-specific SE that distantly drives oncogenic ETS2 expression in IBD and CRC and delineated a mechanistic link between non-coding genetic variation and epigenetic regulation of gene transcription.
Collapse
Affiliation(s)
- Yongheng Chen
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Ying Ying
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Maolin Wang
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Canjie Ma
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Min Jia
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Liang Shi
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shilan Wang
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xiangyi Zheng
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Wei Chen
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xing-Sheng Shu
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
23
|
Chen PB, Fiaux PC, Zhang K, Li B, Kubo N, Jiang S, Hu R, Rooholfada E, Wu S, Wang M, Wang W, McVicker G, Mischel PS, Ren B. Systematic discovery and functional dissection of enhancers needed for cancer cell fitness and proliferation. Cell Rep 2022; 41:111630. [PMID: 36351387 PMCID: PMC9687083 DOI: 10.1016/j.celrep.2022.111630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/21/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
A scarcity of functionally validated enhancers in the human genome presents a significant hurdle to understanding how these cis-regulatory elements contribute to human diseases. We carry out highly multiplexed CRISPR-based perturbation and sequencing to identify enhancers required for cell proliferation and fitness in 10 human cancer cell lines. Our results suggest that the cell fitness enhancers, unlike their target genes, display high cell-type specificity of chromatin features. They typically adopt a modular structure, comprised of activating elements enriched for motifs of oncogenic transcription factors, surrounded by repressive elements enriched for motifs recognized by transcription factors with tumor suppressor functions. We further identify cell fitness enhancers that are selectively accessible in clinical tumor samples, and the levels of chromatin accessibility are associated with patient survival. These results reveal functional enhancers across multiple cancer cell lines, characterize their context-dependent chromatin organization, and yield insights into altered transcription programs in cancer cells.
Collapse
Affiliation(s)
- Poshen B Chen
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Patrick C Fiaux
- Bioinformatics and System Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Naoki Kubo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Shan Jiang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Rong Hu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Emma Rooholfada
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Mengchi Wang
- Bioinformatics and System Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Wei Wang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Bioinformatics and System Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Graham McVicker
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Paul S Mischel
- Department of Pathology, Stanford Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA; Institute of Genome Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Zhou RW, Xu J, Martin TC, Zachem AL, He J, Ozturk S, Demircioglu D, Bansal A, Trotta AP, Giotti B, Gryder B, Shen Y, Wu X, Carcamo S, Bosch K, Hopkins B, Tsankov A, Steinhagen R, Jones DR, Asara J, Chipuk JE, Brody R, Itzkowitz S, Chio IIC, Hasson D, Bernstein E, Parsons RE. A local tumor microenvironment acquired super-enhancer induces an oncogenic driver in colorectal carcinoma. Nat Commun 2022; 13:6041. [PMID: 36253360 PMCID: PMC9576746 DOI: 10.1038/s41467-022-33377-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Tumors exhibit enhancer reprogramming compared to normal tissue. The etiology is largely attributed to cell-intrinsic genomic alterations. Here, using freshly resected primary CRC tumors and patient-matched adjacent normal colon, we find divergent epigenetic landscapes between CRC tumors and cell lines. Intriguingly, this phenomenon extends to highly recurrent aberrant super-enhancers gained in CRC over normal. We find one such super-enhancer activated in epithelial cancer cells due to surrounding inflammation in the tumor microenvironment. We restore this super-enhancer and its expressed gene, PDZK1IP1, following treatment with cytokines or xenotransplantation into nude mice, thus demonstrating cell-extrinsic etiology. We demonstrate mechanistically that PDZK1IP1 enhances the reductive capacity CRC cancer cells via the pentose phosphate pathway. We show this activation enables efficient growth under oxidative conditions, challenging the previous notion that PDZK1IP1 acts as a tumor suppressor in CRC. Collectively, these observations highlight the significance of epigenomic profiling on primary specimens.
Collapse
Affiliation(s)
- Royce W Zhou
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jia Xu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tiphaine C Martin
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexis L Zachem
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John He
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sait Ozturk
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ankita Bansal
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew P Trotta
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Berkley Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yao Shen
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xuewei Wu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Saul Carcamo
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kaitlyn Bosch
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Benjamin Hopkins
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander Tsankov
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Randolph Steinhagen
- Division of Colon and Rectal Surgery, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Drew R Jones
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY, 10016, USA
| | - John Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel Brody
- Mount Sinai Biorepository, Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Steven Itzkowitz
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Dan Hasson
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
25
|
Liu M, Wei H, Yang J, Chen X, Wang H, Zheng Y, Wang Y, Zhou Y. Multi-Omics Analysis of Molecular Characteristics and Carcinogenic Effect of NFE2L3 in Pan-Cancer. Front Genet 2022; 13:916973. [PMID: 35846126 PMCID: PMC9284341 DOI: 10.3389/fgene.2022.916973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
NFE2L3, also known as NFE2L3, is a nuclear transcription factor associated with the pathogenesis and progression of human tumors. To systematically and comprehensively investigate the role of NFE2L3 in tumors, a pan-cancer analysis was performed using multi-omics data, including gene expression analysis, diagnostic and prognostic analysis, epigenetic methylation analysis, gene alteration analysis, immune feature analysis, functional enrichment analysis, and tumor cell functional status analysis. Furthermore, the molecular mechanism of NFE2L3 in liver hepatocellular carcinoma (LIHC) was explored. The relationship between NFE2L3 expression and survival prognosis of patients with LIHC was analyzed and a nomogram prediction model was constructed. Our study showed that NFE2L3 expression was upregulated in most cancers, suggesting that NFE2L3 may play an important role in promoting cancer progression. NFE2L3 expression is closely related to DNA methylation, genetic alteration, immune signature, and tumor cell functional status in pan-cancers. Furthermore, NFE2L3 was demonstrated to be an independent risk factor for LIHC, and the nomogram model based on NFE2L3 expression had good prediction efficiency for the overall survival of patients with LIHC. In summary, our study indicated that NFE2L3 may be an important molecular biomarker for the diagnosis and prognosis of pan-cancer. NFE2L3 is expected to be a potential molecular target for the treatment of tumors.
Collapse
Affiliation(s)
- Mengxiao Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hui Wei
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xia Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Haoying Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yuping Wang, ; Yongning Zhou,
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yuping Wang, ; Yongning Zhou,
| |
Collapse
|
26
|
Jordahl KM, Shcherbina A, Kim AE, Su YR, Lin Y, Wang J, Qu C, Albanes D, Arndt V, Baurley JW, Berndt SI, Bien SA, Bishop DT, Bouras E, Brenner H, Buchanan DD, Budiarto A, Campbell PT, Carreras-Torres R, Casey G, Cenggoro TW, Chan AT, Conti DV, Dampier CH, Devall MA, Díez-Obrero V, Dimou N, Drew DA, Figueiredo JC, Gallinger S, Giles GG, Gruber SB, Gsur A, Gunter MJ, Hampel H, Harlid S, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Joshi AD, Keku TO, Larsson SC, Le Marchand L, Lewinger JP, Li L, Mahesworo B, Moreno V, Morrison JL, Murphy N, Nan H, Nassir R, Newcomb PA, Obón-Santacana M, Ogino S, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Peoples AR, Pharoah PDP, Platz EA, Potter JD, Prentice RL, Rennert G, Ruiz-Narvaez E, Sakoda LC, Scacheri PC, Schmit SL, Schoen RE, Slattery ML, Stern MC, Tangen CM, Thibodeau SN, Thomas DC, Tian Y, Tsilidis KK, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, Vodicka P, White E, Wolk A, Woods MO, Wu AH, Zemlianskaia N, Chang-Claude J, Gauderman WJ, Hsu L, Kundaje A, Peters U. Beyond GWAS of Colorectal Cancer: Evidence of Interaction with Alcohol Consumption and Putative Causal Variant for the 10q24.2 Region. Cancer Epidemiol Biomarkers Prev 2022; 31:1077-1089. [PMID: 35438744 PMCID: PMC9081195 DOI: 10.1158/1055-9965.epi-21-1003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/30/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Currently known associations between common genetic variants and colorectal cancer explain less than half of its heritability of 25%. As alcohol consumption has a J-shape association with colorectal cancer risk, nondrinking and heavy drinking are both risk factors for colorectal cancer. METHODS Individual-level data was pooled from the Colon Cancer Family Registry, Colorectal Transdisciplinary Study, and Genetics and Epidemiology of Colorectal Cancer Consortium to compare nondrinkers (≤1 g/day) and heavy drinkers (>28 g/day) with light-to-moderate drinkers (1-28 g/day) in GxE analyses. To improve power, we implemented joint 2df and 3df tests and a novel two-step method that modifies the weighted hypothesis testing framework. We prioritized putative causal variants by predicting allelic effects using support vector machine models. RESULTS For nondrinking as compared with light-to-moderate drinking, the hybrid two-step approach identified 13 significant SNPs with pairwise r2 > 0.9 in the 10q24.2/COX15 region. When stratified by alcohol intake, the A allele of lead SNP rs2300985 has a dose-response increase in risk of colorectal cancer as compared with the G allele in light-to-moderate drinkers [OR for GA genotype = 1.11; 95% confidence interval (CI), 1.06-1.17; OR for AA genotype = 1.22; 95% CI, 1.14-1.31], but not in nondrinkers or heavy drinkers. Among the correlated candidate SNPs in the 10q24.2/COX15 region, rs1318920 was predicted to disrupt an HNF4 transcription factor binding motif. CONCLUSIONS Our study suggests that the association with colorectal cancer in 10q24.2/COX15 observed in genome-wide association study is strongest in nondrinkers. We also identified rs1318920 as the putative causal regulatory variant for the region. IMPACT The study identifies multifaceted evidence of a possible functional effect for rs1318920.
Collapse
Affiliation(s)
- Kristina M Jordahl
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, California
- Department of Computer Science, Stanford University, Stanford, California
| | - Andre E Kim
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jun Wang
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, California
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - David V Conti
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Christopher H Dampier
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Matthew A Devall
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Niki Dimou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Stephen B Gruber
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Juan Pablo Lewinger
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - John L Morrison
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Neil Murphy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indianapolis, Indiana
- IU Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura'a University, Saudi Arabia
| | - Polly A Newcomb
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mireia Obón-Santacana
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, 08908L'Hospitalet de Llobregat, Barcelona, Spain
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - Nikos Papadimitriou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Anita R Peoples
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Mariana C Stern
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Duncan C Thomas
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom
| | - Cornelia M Ulrich
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Emily White
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Natalia Zemlianskaia
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - W James Gauderman
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California
- Department of Computer Science, Stanford University, Stanford, California
| | - Ulrike Peters
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
27
|
Orouji E, Raman AT, Singh AK, Sorokin A, Arslan E, Ghosh AK, Schulz J, Terranova CJ, Jiang S, Tang M, Maitituoheti M, Barrodia P, Jiang Y, Callahan SC, Tomczak KJ, Jiang Z, Davis JS, Ghosh S, Lee HM, Reyes-Uribe L, Chang K, Liu Y, Chen H, Azhdarnia A, Morris JS, Vilar E, Carmon KS, Kopetz S, Rai K. Chromatin state dynamics confers specific therapeutic strategies in enhancer subtypes of colorectal cancer. Gut 2022; 71:938-949. [PMID: 34059508 PMCID: PMC8745382 DOI: 10.1136/gutjnl-2020-322835] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Enhancer aberrations are beginning to emerge as a key epigenetic feature of colorectal cancers (CRC), however, a comprehensive knowledge of chromatin state patterns in tumour progression, heterogeneity of these patterns and imparted therapeutic opportunities remain poorly described. DESIGN We performed comprehensive epigenomic characterisation by mapping 222 chromatin profiles from 69 samples (33 colorectal adenocarcinomas, 4 adenomas, 21 matched normal tissues and 11 colon cancer cell lines) for six histone modification marks: H3K4me3 for Pol II-bound and CpG-rich promoters, H3K4me1 for poised enhancers, H3K27ac for enhancers and transcriptionally active promoters, H3K79me2 for transcribed regions, H3K27me3 for polycomb repressed regions and H3K9me3 for heterochromatin. RESULTS We demonstrate that H3K27ac-marked active enhancer state could distinguish between different stages of CRC progression. By epigenomic editing, we present evidence that gains of tumour-specific enhancers for crucial oncogenes, such as ASCL2 and FZD10, was required for excessive proliferation. Consistently, combination of MEK plus bromodomain inhibition was found to have synergistic effects in CRC patient-derived xenograft models. Probing intertumour heterogeneity, we identified four distinct enhancer subtypes (EPIgenome-based Classification, EpiC), three of which correlate well with previously defined transcriptomic subtypes (consensus molecular subtypes, CMSs). Importantly, CMS2 can be divided into two EpiC subgroups with significant survival differences. Leveraging such correlation, we devised a combinatorial therapeutic strategy of enhancer-blocking bromodomain inhibitors with pathway-specific inhibitors (PARPi, EGFRi, TGFβi, mTORi and SRCi) for EpiC groups. CONCLUSION Our data suggest that the dynamics of active enhancer underlies CRC progression and the patient-specific enhancer patterns can be leveraged for precision combination therapy.
Collapse
Affiliation(s)
- Elias Orouji
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Present address: Epigenetics Initiative, Princess Margaret Genomics Centre, Toronto, ON, Canada
| | - Ayush T. Raman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA,Present address: Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anand K. Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Emre Arslan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Archit K. Ghosh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan Schulz
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher J. Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayinuer Maitituoheti
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Praveen Barrodia
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingda Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S. Carson Callahan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katarzyna J. Tomczak
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiqin Jiang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Jennifer S. Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sukhen Ghosh
- Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hey Min Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle Chang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yusha Liu
- Department of Bioinformatics and Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huiqin Chen
- Department of Bioinformatics and Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ali Azhdarnia
- Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jeffrey S. Morris
- Department of Bioinformatics and Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Present address: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kendra S. Carmon
- Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA .,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
28
|
Barrero MJ, Cejas P, Long HW, Ramirez de Molina A. Nutritional Epigenetics in Cancer. Adv Nutr 2022; 13:1748-1761. [PMID: 35421212 PMCID: PMC9526851 DOI: 10.1093/advances/nmac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 01/28/2023] Open
Abstract
Alterations in the epigenome are well known to affect cancer development and progression. Epigenetics is highly influenced by the environment, including diet, which is a source of metabolic substrates that influence the synthesis of cofactors or substrates for chromatin and RNA modifying enzymes. In addition, plants are a common source of bioactives that can directly modify the activity of these enzymes. Here, we review and discuss the impact of diet on epigenetic mechanisms, including chromatin and RNA regulation, and its potential implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA,Translational Oncology Laboratory, Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
29
|
Recurrent Superenhancer of the Oncogene POU5F1B in Colorectal Cancers. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5405060. [PMID: 34934770 PMCID: PMC8684575 DOI: 10.1155/2021/5405060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022]
Abstract
Superenhancer usages in single cancer form such as colorectal cancer (CRC) may provide novel efficient targeting candidates. It is unclear whether CRC contains recurrent superenhancers that confer a predisposition to malignancy. We investigated the superenhancer profile of CRC cell line HCT116 and compared it to that of a healthy sigmoid colon. We found that HCT116 had lost most of the normal colon superenhancer activities but gained a new set of tumor-favoring superenhancers that facilitate tumor proliferation, growth signalling, and hypoxia resistance. Inhibiting the superenhancers by JQ-1 treatment had significantly decreased the colony formation capability of HCT116. Then, by comparing the superenhancer genes and robust CRC upregulated genes, we identified a superenhancer associated with a common CRC upregulated oncogene, POU5f1B. POU5f1B overexpression is related to the worse outcome in CRCs. Via performing ChIP-PCR in 35 clinical samples and investigating CRC anti-H3K27ac ChiP-seq public dataset consisting of 36 samples, we further identified that the superenhancer of oncogene POU5F1B is recurrently activated in CRCs, taking 62 and 72 per cent, respectively. Moreover, JQ-1 treatment successfully inhibited the POU5F1B expression in 5 out of 6 POU5F1B superenhancer-positive samples. Therefore, we concluded that the superenhancer activation of POU5F1B contributes partially to its high expression in CRCs, in addition to the well-known gene amplification aetiology.
Collapse
|
30
|
A β-Catenin-TCF-Sensitive Locus Control Region Mediates GUCY2C Ligand Loss in Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2021; 13:1276-1296. [PMID: 34954189 PMCID: PMC9073733 DOI: 10.1016/j.jcmgh.2021.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Sporadic colorectal cancers arise from initiating mutations in APC, producing oncogenic β-catenin/TCF-dependent transcriptional reprogramming. Similarly, the tumor suppressor axis regulated by the intestinal epithelial receptor GUCY2C is among the earliest pathways silenced in tumorigenesis. Retention of the receptor, but loss of its paracrine ligands, guanylin and uroguanylin, is an evolutionarily conserved feature of colorectal tumors, arising in the earliest dysplastic lesions. Here, we examined a mechanism of GUCY2C ligand transcriptional silencing by β-catenin/TCF signaling. METHODS We performed RNA sequencing analysis of 4 unique conditional human colon cancer cell models of β-catenin/TCF signaling to map the core Wnt-transcriptional program. We then performed a comparative analysis of orthogonal approaches, including luciferase reporters, chromatin immunoprecipitation sequencing, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) knockout, and CRISPR epigenome editing, which were cross-validated with human tissue chromatin immunoprecipitation sequencing datasets, to identify functional gene enhancers mediating GUCY2C ligand loss. RESULTS RNA sequencing analyses reveal the GUCY2C hormones as 2 of the most sensitive targets of β-catenin/TCF signaling, reflecting transcriptional repression. The GUCY2C hormones share an insulated genomic locus containing a novel locus control region upstream of the guanylin promoter that mediates the coordinated silencing of both genes. Targeting this region with CRISPR epigenome editing reconstituted GUCY2C ligand expression, overcoming gene inactivation by mutant β-catenin/TCF signaling. CONCLUSIONS These studies reveal DNA elements regulating corepression of GUCY2C ligand transcription by β-catenin/TCF signaling, reflecting a novel pathophysiological step in tumorigenesis. They offer unique genomic strategies that could reestablish hormone expression in the context of canonical oncogenic mutations to reconstitute the GUCY2C axis and oppose transformation.
Collapse
|
31
|
Li QL, Lin X, Yu YL, Chen L, Hu QX, Chen M, Cao N, Zhao C, Wang CY, Huang CW, Li LY, Ye M, Wu M. Genome-wide profiling in colorectal cancer identifies PHF19 and TBC1D16 as oncogenic super enhancers. Nat Commun 2021; 12:6407. [PMID: 34737287 PMCID: PMC8568941 DOI: 10.1038/s41467-021-26600-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer is one of the most common cancers in the world. Although genomic mutations and single nucleotide polymorphisms have been extensively studied, the epigenomic status in colorectal cancer patient tissues remains elusive. Here, together with genomic and transcriptomic analysis, we use ChIP-Seq to profile active enhancers at the genome wide level in colorectal cancer paired patient tissues (tumor and adjacent tissues from the same patients). In total, we sequence 73 pairs of colorectal cancer tissues and generate 147 H3K27ac ChIP-Seq, 144 RNA-Seq, 147 whole genome sequencing and 86 H3K4me3 ChIP-Seq samples. Our analysis identifies 5590 gain and 1100 lost variant enhancer loci in colorectal cancer, and 334 gain and 121 lost variant super enhancer loci. Multiple key transcription factors in colorectal cancer are predicted with motif analysis and core regulatory circuitry analysis. Further experiments verify the function of the super enhancers governing PHF19 and TBC1D16 in regulating colorectal cancer tumorigenesis, and KLF3 is identified as an oncogenic transcription factor in colorectal cancer. Taken together, our work provides an important epigenomic resource and functional factors for epigenetic studies in colorectal cancer.
Collapse
Affiliation(s)
- Qing-Lan Li
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiang Lin
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ya-Li Yu
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China
| | - Lin Chen
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Qi-Xin Hu
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Meng Chen
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China
| | - Nan Cao
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen Zhao
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen-Yu Wang
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Cheng-Wei Huang
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Mei Ye
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
32
|
Cai C, Bi D, Bick G, Wei Q, Liu H, Lu L, Zhang X, Qin H. Hepatocyte nuclear factor HNF1A is a potential regulator in shaping the super-enhancer landscape in colorectal cancer liver metastasis. FEBS Lett 2021; 595:3056-3071. [PMID: 34719039 DOI: 10.1002/1873-3468.14219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/10/2021] [Accepted: 10/17/2021] [Indexed: 01/15/2023]
Abstract
Super-enhancers (SEs) play essential roles in colorectal cancer (CRC) progression. However, how the SE landscape is orchestrated by transcriptional regulators and evolves is not clear. Using de novo motif analysis, we show that the hepatocyte nuclear factor 1 (HNF1)-binding motif is enriched in SEs in cell lines derived from liver metastases, but not in those from primary tumors. This finding was further validated by extending the method to pancreatic cancer and a pair of isogenic CRC lines. Next, we revealed HNF1-alpha (HNF1A) was majorly expressed and upregulated in CRC liver metastatic cell lines. Clinically, HNF1A was remarkably upregulated in synchronous liver metastases as compared to localized tumors. Collectively, our study implicates HNF1A as a key regulator in shaping the SE landscape in CRC liver metastasis.
Collapse
Affiliation(s)
- Chunmiao Cai
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gregory Bick
- Department of Cancer Biology, University of Cincinnati College of Medicine, OH, USA
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hu Liu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ling Lu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, OH, USA
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Maurya SS. Role of Enhancers in Development and Diseases. EPIGENOMES 2021; 5:epigenomes5040021. [PMID: 34968246 PMCID: PMC8715447 DOI: 10.3390/epigenomes5040021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Enhancers are cis-regulatory elements containing short DNA sequences that serve as binding sites for pioneer/regulatory transcription factors, thus orchestrating the regulation of genes critical for lineage determination. The activity of enhancer elements is believed to be determined by transcription factor binding, thus determining the cell state identity during development. Precise spatio-temporal control of the transcriptome during lineage specification requires the coordinated binding of lineage-specific transcription factors to enhancers. Thus, enhancers are the primary determinants of cell identity. Numerous studies have explored the role and mechanism of enhancers during development and disease, and various basic questions related to the functions and mechanisms of enhancers have not yet been fully answered. In this review, we discuss the recently published literature regarding the roles of enhancers, which are critical for various biological processes governing development. Furthermore, we also highlight that altered enhancer landscapes provide an essential context to understand the etiologies and mechanisms behind numerous complex human diseases, providing new avenues for effective enhancer-based therapeutic interventions.
Collapse
Affiliation(s)
- Shailendra S Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Department of Developmental Biology, School of Medicine, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
34
|
Asada K, Kaneko S, Takasawa K, Machino H, Takahashi S, Shinkai N, Shimoyama R, Komatsu M, Hamamoto R. Integrated Analysis of Whole Genome and Epigenome Data Using Machine Learning Technology: Toward the Establishment of Precision Oncology. Front Oncol 2021; 11:666937. [PMID: 34055633 PMCID: PMC8149908 DOI: 10.3389/fonc.2021.666937] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
With the completion of the International Human Genome Project, we have entered what is known as the post-genome era, and efforts to apply genomic information to medicine have become more active. In particular, with the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in his State of the Union address at the beginning of 2015, "precision medicine," which aims to divide patients and potential patients into subgroups with respect to disease susceptibility, has become the focus of worldwide attention. The field of oncology is also actively adopting the precision oncology approach, which is based on molecular profiling, such as genomic information, to select the appropriate treatment. However, the current precision oncology is dominated by a method called targeted-gene panel (TGP), which uses next-generation sequencing (NGS) to analyze a limited number of specific cancer-related genes and suggest optimal treatments, but this method causes the problem that the number of patients who benefit from it is limited. In order to steadily develop precision oncology, it is necessary to integrate and analyze more detailed omics data, such as whole genome data and epigenome data. On the other hand, with the advancement of analysis technologies such as NGS, the amount of data obtained by omics analysis has become enormous, and artificial intelligence (AI) technologies, mainly machine learning (ML) technologies, are being actively used to make more efficient and accurate predictions. In this review, we will focus on whole genome sequencing (WGS) analysis and epigenome analysis, introduce the latest results of omics analysis using ML technologies for the development of precision oncology, and discuss the future prospects.
Collapse
Affiliation(s)
- Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Syuzo Kaneko
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ken Takasawa
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hidenori Machino
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Takahashi
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Norio Shinkai
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Shimoyama
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masaaki Komatsu
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryuji Hamamoto
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
35
|
Zheng Y, Huang G, Silva TC, Yang Q, Jiang YY, Koeffler HP, Lin DC, Berman BP. A pan-cancer analysis of CpG Island gene regulation reveals extensive plasticity within Polycomb target genes. Nat Commun 2021; 12:2485. [PMID: 33931649 PMCID: PMC8087678 DOI: 10.1038/s41467-021-22720-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/23/2021] [Indexed: 02/05/2023] Open
Abstract
CpG Island promoter genes make up more than half of human genes, and a subset regulated by Polycomb-Repressive Complex 2 (PRC2+-CGI) become DNA hypermethylated and silenced in cancer. Here, we perform a systematic analysis of CGI genes across TCGA cancer types, finding that PRC2+-CGI genes are frequently prone to transcriptional upregulation as well. These upregulated PRC2+-CGI genes control important pathways such as Epithelial-Mesenchymal Transition (EMT) and TNFα-associated inflammatory response, and have greater cancer-type specificity than other CGI genes. Using publicly available chromatin datasets and genetic perturbations, we show that transcription factor binding sites (TFBSs) within distal enhancers underlie transcriptional activation of PRC2+-CGI genes, coinciding with loss of the PRC2-associated mark H3K27me3 at the linked promoter. In contrast, PRC2-free CGI genes are predominantly regulated by promoter TFBSs which are common to most cancer types. Surprisingly, a large subset of PRC2+-CGI genes that are upregulated in one cancer type are also hypermethylated/silenced in at least one other cancer type, underscoring the high degree of regulatory plasticity of these genes, likely derived from their complex regulatory control during normal development.
Collapse
Affiliation(s)
- Yueyuan Zheng
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Guowei Huang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Tiago C Silva
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Qian Yang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yan-Yi Jiang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - De-Chen Lin
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
36
|
Della Chiara G, Gervasoni F, Fakiola M, Godano C, D'Oria C, Azzolin L, Bonnal RJP, Moreni G, Drufuca L, Rossetti G, Ranzani V, Bason R, De Simone M, Panariello F, Ferrari I, Fabbris T, Zanconato F, Forcato M, Romano O, Caroli J, Gruarin P, Sarnicola ML, Cordenonsi M, Bardelli A, Zucchini N, Ceretti AP, Mariani NM, Cassingena A, Sartore-Bianchi A, Testa G, Gianotti L, Opocher E, Pisati F, Tripodo C, Macino G, Siena S, Bicciato S, Piccolo S, Pagani M. Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ. Nat Commun 2021; 12:2340. [PMID: 33879786 PMCID: PMC8058065 DOI: 10.1038/s41467-021-22544-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is characterized by pervasive epigenetic alterations with enhancer dysfunction orchestrating the aberrant cancer transcriptional programs and transcriptional dependencies. Here, we epigenetically characterize human colorectal cancer (CRC) using de novo chromatin state discovery on a library of different patient-derived organoids. By exploring this resource, we unveil a tumor-specific deregulated enhancerome that is cancer cell-intrinsic and independent of interpatient heterogeneity. We show that the transcriptional coactivators YAP/TAZ act as key regulators of the conserved CRC gained enhancers. The same YAP/TAZ-bound enhancers display active chromatin profiles across diverse human tumors, highlighting a pan-cancer epigenetic rewiring which at single-cell level distinguishes malignant from normal cell populations. YAP/TAZ inhibition in established tumor organoids causes extensive cell death unveiling their essential role in tumor maintenance. This work indicates a common layer of YAP/TAZ-fueled enhancer reprogramming that is key for the cancer cell state and can be exploited for the development of improved therapeutic avenues. The role of epigenetic deregulation in colorectal cancer (CRC) is not fully understood yet. Here the authors use patient-derived organoids, epigenomics and single-cell RNA-seq to reveal that YAP/TAZ are key regulators that bind to active enhancers in CRC and promote tumour survival.
Collapse
Affiliation(s)
- Giulia Della Chiara
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.,Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Human Organoid Models Integrative Center HOMIC, University of Milan, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Federica Gervasoni
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.,Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Human Organoid Models Integrative Center HOMIC, University of Milan, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Michaela Fakiola
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.,Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Chiara Godano
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Human Organoid Models Integrative Center HOMIC, University of Milan, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Claudia D'Oria
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.,Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Human Organoid Models Integrative Center HOMIC, University of Milan, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luca Azzolin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Raoul Jean Pierre Bonnal
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.,Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Giulia Moreni
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Department of Medical Microbiology, Laboratory of Clinical Virology, Amsterdam University Medical Center, University of Amsterdam, AZ, Amsterdam, the Netherlands
| | - Lorenzo Drufuca
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.,Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Grazisa Rossetti
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.,Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Valeria Ranzani
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Ramona Bason
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.,Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Marco De Simone
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Technology Center for Genomics and Bioinformatics, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Francesco Panariello
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,Telethon Institute of Genetics and Medicine TIGEM, Pozzuoli, Italy
| | - Ivan Ferrari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Tanya Fabbris
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
| | | | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jimmy Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Gruarin
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Maria Lucia Sarnicola
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
| | | | - Alberto Bardelli
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo (TO), Italy
| | | | | | | | - Andrea Cassingena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Testa
- Human Organoid Models Integrative Center HOMIC, University of Milan, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Luca Gianotti
- School of Medicine and Surgery, Milano-Bicocca University, and Department of Surgery, San Gerardo Hospital, Monza, Italy
| | - Enrico Opocher
- UO Chirurgia Epatobiliopancreatica e Digestiva Ospedale San Paolo, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy.,Tumor and Microenvironment Histopathology Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Giuseppe Macino
- Department of Cellular Biotechnologies and Hematology, La Sapienza University of Rome, Rome, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Piccolo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy. .,Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Massimiliano Pagani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy. .,Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy. .,Human Organoid Models Integrative Center HOMIC, University of Milan, Milan, Italy. .,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
37
|
iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength. Int J Mol Sci 2021; 22:ijms22073589. [PMID: 33808317 PMCID: PMC8036415 DOI: 10.3390/ijms22073589] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
As critical components of DNA, enhancers can efficiently and specifically manipulate the spatial and temporal regulation of gene transcription. Malfunction or dysregulation of enhancers is implicated in a slew of human pathology. Therefore, identifying enhancers and their strength may provide insights into the molecular mechanisms of gene transcription and facilitate the discovery of candidate drug targets. In this paper, a new enhancer and its strength predictor, iEnhancer-GAN, is proposed based on a deep learning framework in combination with the word embedding and sequence generative adversarial net (Seq-GAN). Considering the relatively small training dataset, the Seq-GAN is designed to generate artificial sequences. Given that each functional element in DNA sequences is analogous to a “word” in linguistics, the word segmentation methods are proposed to divide DNA sequences into “words”, and the skip-gram model is employed to transform the “words” into digital vectors. In view of the powerful ability to extract high-level abstraction features, a convolutional neural network (CNN) architecture is constructed to perform the identification tasks, and the word vectors of DNA sequences are vertically concatenated to form the embedding matrices as the input of the CNN. Experimental results demonstrate the effectiveness of the Seq-GAN to expand the training dataset, the possibility of applying word segmentation methods to extract “words” from DNA sequences, the feasibility of implementing the skip-gram model to encode DNA sequences, and the powerful prediction ability of the CNN. Compared with other state-of-the-art methods on the training dataset and independent test dataset, the proposed method achieves a significantly improved overall performance. It is anticipated that the proposed method has a certain promotion effect on enhancer related fields.
Collapse
|
38
|
Grady WM. Epigenetic alterations in the gastrointestinal tract: Current and emerging use for biomarkers of cancer. Adv Cancer Res 2021; 151:425-468. [PMID: 34148620 DOI: 10.1016/bs.acr.2021.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is a leading cause of cancer related deaths worldwide. One of the hallmarks of cancer and a fundamental trait of virtually all gastrointestinal cancers is genomic and epigenomic DNA alterations. Cancer cells acquire genetic and epigenetic alterations that drive the initiation and progression of the cancers by altering the molecular and cell biological process of the cells. These alterations, as well as other host and microenvironment factors, ultimately mediate the initiation and progression of cancers, including colorectal cancer. Epigenetic alterations, which include changes affecting DNA methylation, histone modifications, chromatin structure, and noncoding RNA expression, have emerged as a major class of molecular alteration in colon polyps and colorectal cancer. The classes of epigenetic alterations, their status in colorectal polyps and cancer, their effects on neoplasm biology, and their application to clinical care will be discussed.
Collapse
Affiliation(s)
- William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
39
|
Liu Y, Xue M, Cao D, Qin L, Wang Y, Miao Z, Wang P, Hu X, Shen J, Xiong B. Multi-omics characterization of WNT pathway reactivation to ameliorate BET inhibitor resistance in liver cancer cells. Genomics 2021; 113:1057-1069. [PMID: 33667649 DOI: 10.1016/j.ygeno.2021.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/17/2021] [Accepted: 02/28/2021] [Indexed: 01/10/2023]
Abstract
The Bromodomain and Extra-terminal domain (BET) proteins are promising targets in treating cancers. Although BET inhibitors have been in clinical trials, they are limited by lacking of suitable biomarkers to indicate drug responses in different cancers. Here we identify DHRS2, ETV4 and NOTUM as potential biomarkers to indicate drug resistance in liver cancer cells of a recently discovered BET inhibitor, Hjp-6-171. Furthermore, we confirm that reactivation of WNT pathway, the target of NOTUM, contributes to the drug sensitivity restoration in Hjp-6-171 resistant cells. Specially, combinations of Hjp-6-171 and a GSK3β inhibitor CHIR-98014 show remarkable therapeutic effects in vitro and in vivo. Integrating RNA-seq and ChIP-seq data, we reveal the expression signature of β-catenin regulated genes is contrary in sensitive cells to that in resistant cells. We propose WNT signaling molecules such as β-catenin and ETV4 to be candidate biomarkers to indicate BET inhibitor responses in liver cancer patients.
Collapse
Affiliation(s)
- Yuwei Liu
- SARI center for stem cell and nanomedicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengzhu Xue
- SARI center for stem cell and nanomedicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Danyan Cao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lihuai Qin
- Center for chemical biology and drug discovery, department of pharmacological sciences, Tisch cancer institute, Icahn School of medicine at Mount Sinai, New York 10029, USA
| | - Ying Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zehong Miao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peng Wang
- Bio-Med Big Data Center, Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xin Hu
- Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Jingkang Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Xiong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
40
|
Díez-Obrero V, Dampier CH, Moratalla-Navarro F, Devall M, Plummer SJ, Díez-Villanueva A, Peters U, Bien S, Huyghe JR, Kundaje A, Ibáñez-Sanz G, Guinó E, Obón-Santacana M, Carreras-Torres R, Casey G, Moreno V. Genetic Effects on Transcriptome Profiles in Colon Epithelium Provide Functional Insights for Genetic Risk Loci. Cell Mol Gastroenterol Hepatol 2021; 12:181-197. [PMID: 33601062 PMCID: PMC8102177 DOI: 10.1016/j.jcmgh.2021.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The association of genetic variation with tissue-specific gene expression and alternative splicing guides functional characterization of complex trait-associated loci and may suggest novel genes implicated in disease. Here, our aims were as follows: (1) to generate reference profiles of colon mucosa gene expression and alternative splicing and compare them across colon subsites (ascending, transverse, and descending), (2) to identify expression and splicing quantitative trait loci (QTLs), (3) to find traits for which identified QTLs contribute to single-nucleotide polymorphism (SNP)-based heritability, (4) to propose candidate effector genes, and (5) to provide a web-based visualization resource. METHODS We collected colonic mucosal biopsy specimens from 485 healthy adults and performed bulk RNA sequencing. We performed genome-wide SNP genotyping from blood leukocytes. Statistical approaches and bioinformatics software were used for QTL identification and downstream analyses. RESULTS We provided a complete quantification of gene expression and alternative splicing across colon subsites and described their differences. We identified thousands of expression and splicing QTLs and defined their enrichment at genome-wide regulatory regions. We found that part of the SNP-based heritability of diseases affecting colon tissue, such as colorectal cancer and inflammatory bowel disease, but also of diseases affecting other tissues, such as psychiatric conditions, can be explained by the identified QTLs. We provided candidate effector genes for multiple phenotypes. Finally, we provided the Colon Transcriptome Explorer web application. CONCLUSIONS We provide a large characterization of gene expression and splicing across colon subsites. Our findings provide greater etiologic insight into complex traits and diseases influenced by transcriptomic changes in colon tissue.
Collapse
Affiliation(s)
- Virginia Díez-Obrero
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Christopher H Dampier
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia; Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Ferran Moratalla-Navarro
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Matthew Devall
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Sarah J Plummer
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Anna Díez-Villanueva
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Ulrike Peters
- Epidemiology Department, University of Washington, Seattle, Washington; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie Bien
- Epidemiology Department, University of Washington, Seattle, Washington; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jeroen R Huyghe
- Epidemiology Department, University of Washington, Seattle, Washington; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California
| | - Gemma Ibáñez-Sanz
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; Gastroenterology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabeth Guinó
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Mireia Obón-Santacana
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Robert Carreras-Torres
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia.
| | - Víctor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
41
|
Fortini BK, Tring S, Devall MA, Ali MW, Plummer SJ, Casey G. SNPs associated with colorectal cancer at 15q13.3 affect risk enhancers that modulate GREM1 gene expression. Hum Mutat 2021; 42:237-245. [PMID: 33476087 PMCID: PMC7898835 DOI: 10.1002/humu.24166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/12/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Several genome wide association studies of colorectal cancer (CRC) have identified single nucleotide polymorphisms (SNPs) on chromosome 15q13.3 associated with CRC risk. To identify functional variant(s) underlying this association, we investigated SNPs in linkage disequilibrium with the risk‐associated SNP rs4779584 that overlapped regulatory regions/enhancer elements characterized in colon‐related tissues and cells. We identified several SNP‐containing regulatory regions that exhibited enhancer activity in vitro, including one SNP (rs1406389) that correlated with allele‐specific effects on enhancer activity. Deletion of either this enhancer or another enhancer that had previously been reported in this region correlated with decreased expression of GREM1 following CRISPR/Cas9 genome editing. That GREM1 is one target of these enhancers was further supported by an expression quantitative trait loci correlation between rs1406389 and GREM1 expression in the transverse but not sigmoid colon in the Genotype‐Tissue Expression dataset. Taken together, we conclude that the 15q13.3 region contains at least two functional variants that map to distinct enhancers and impact CRC risk through modulation of GREM1 expression.
Collapse
Affiliation(s)
| | - Stephanie Tring
- Molecular Genomics Core, University of Southern California, Los Angeles, California, USA
| | - Matthew A Devall
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Mourad Wagdy Ali
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah J Plummer
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
42
|
Zhang J, Yue W, Zhou Y, Liao M, Chen X, Hua J. Super enhancers-Functional cores under the 3D genome. Cell Prolif 2021; 54:e12970. [PMID: 33336467 PMCID: PMC7848964 DOI: 10.1111/cpr.12970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Complex biochemical reactions take place in the nucleus all the time. Transcription machines must follow the rules. The chromatin state, especially the three-dimensional structure of the genome, plays an important role in gene regulation and expression. The super enhancers are important for defining cell identity in mammalian developmental processes and human diseases. It has been shown that the major components of transcriptional activation complexes are recruited by super enhancer to form phase-separated condensates. We summarize the current knowledge about super enhancer in the 3D genome. Furthermore, a new related transcriptional regulation model from super enhancer is outlined to explain its role in the mammalian cell progress.
Collapse
Affiliation(s)
- Juqing Zhang
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina
| | - Wei Yue
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina
| | - Yaqi Zhou
- College of Life ScienceNorthwest A&F UniversityYanglingChina
| | - Mingzhi Liao
- College of Life ScienceNorthwest A&F UniversityYanglingChina
| | - Xingqi Chen
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Jinlian Hua
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
43
|
Grady WM, Yu M, Markowitz SD. Epigenetic Alterations in the Gastrointestinal Tract: Current and Emerging Use for Biomarkers of Cancer. Gastroenterology 2021; 160:690-709. [PMID: 33279516 PMCID: PMC7878343 DOI: 10.1053/j.gastro.2020.09.058] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer, liver cancer, stomach cancer, pancreatic cancer, and esophageal cancer are leading causes of cancer-related deaths worldwide. A fundamental trait of virtually all gastrointestinal cancers is genomic and epigenomic DNA alterations. Cancer cells acquire genetic and epigenetic alterations that drive the initiation and progression of the cancers by altering the molecular and cell biological processes of the cells. These alterations, as well as other host and microenvironment factors, ultimately mediate the clinical behavior of the precancers and cancers and can be used as biomarkers for cancer risk determination, early detection of cancer and precancer, determination of the prognosis of cancer and prediction of the response to therapy. Epigenetic alterations have emerged as one of most robust classes of biomarkers and are the basis for a growing number of clinical tests for cancer screening and surveillance.
Collapse
Affiliation(s)
- William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA,Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ming Yu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | | |
Collapse
|
44
|
Ghaffari S, Hanson C, Schmidt RE, Bouchonville KJ, Offer SM, Sinha S. An integrated multi-omics approach to identify regulatory mechanisms in cancer metastatic processes. Genome Biol 2021; 22:19. [PMID: 33413550 PMCID: PMC7789593 DOI: 10.1186/s13059-020-02213-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metastatic progress is the primary cause of death in most cancers, yet the regulatory dynamics driving the cellular changes necessary for metastasis remain poorly understood. Multi-omics approaches hold great promise for addressing this challenge; however, current analysis tools have limited capabilities to systematically integrate transcriptomic, epigenomic, and cistromic information to accurately define the regulatory networks critical for metastasis. RESULTS To address this limitation, we use a purposefully generated cellular model of colon cancer invasiveness to generate multi-omics data, including expression, accessibility, and selected histone modification profiles, for increasing levels of invasiveness. We then adopt a rigorous probabilistic framework for joint inference from the resulting heterogeneous data, along with transcription factor binding profiles. Our approach uses probabilistic graphical models to leverage the functional information provided by specific epigenomic changes, models the influence of multiple transcription factors simultaneously, and automatically learns the activating or repressive roles of cis-regulatory events. Global analysis of these relationships reveals key transcription factors driving invasiveness, as well as their likely target genes. Disrupting the expression of one of the highly ranked transcription factors JunD, an AP-1 complex protein, confirms functional relevance to colon cancer cell migration and invasion. Transcriptomic profiling confirms key regulatory targets of JunD, and a gene signature derived from the model demonstrates strong prognostic potential in TCGA colorectal cancer data. CONCLUSIONS Our work sheds new light into the complex molecular processes driving colon cancer metastasis and presents a statistically sound integrative approach to analyze multi-omics profiles of a dynamic biological process.
Collapse
Affiliation(s)
- Saba Ghaffari
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Casey Hanson
- Department of Genetics, Stanford University, Stanford, USA
| | - Remington E Schmidt
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St SW, Rochester, MN, 55905, USA
| | - Kelly J Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St SW, Rochester, MN, 55905, USA
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St SW, Rochester, MN, 55905, USA.
| | - Saurabh Sinha
- Department of Computer Science, Carl R. Woese Institute of Genomic Biology, and Cancer Center of Illinois, University of Illinois at Urbana-Champaign, 2122, Siebel Center, 201 N. Goodwin Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
45
|
Yang Q, Huang G, Li L, Li E, Xu L. Potential Mechanism of Immune Evasion Associated with the Master Regulator ASCL2 in Microsatellite Stability in Colorectal Cancer. J Immunol Res 2021; 2021:5964752. [PMID: 33628843 PMCID: PMC7892217 DOI: 10.1155/2021/5964752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) has two major subtypes, microsatellite instability (MSI) and microsatellite stability (MSS) based on the genomic instability. In this study, using computational programs, we identified 9 master transcription factors (TFs) based on epigenomic profiling in MSS CRC samples. Notably, unbiased gene set enrichment analysis (GSEA) showed that several master TFs were strongly associated with immune-related functions in TCGA MSS CRC tissues, such as interferon gamma (IFN-γ) and interferon alpha (IFN-α) responses. Focusing to the top candidate, ASCL2, we found that CD8+ T cell infiltration was low in ASCL2 overexpressed MSS CRC samples. Compared with other gastrointestinal (GI) cancers (gastric cancer, MSI CRC, and esophageal cancer), ASCL2 is specifically upregulated in MSS CRC. Moreover, we identified 28 candidate genes in IFN-γ and IFN-α response pathways which were negatively correlated with ASCL2. Together, these results link transcriptional dysregulation with the immune evasion in MSS CRC, which may advance the understanding of immune resistance and contribute to developing novel treatments of MSS CRC.
Collapse
Affiliation(s)
- Qian Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Guangdong, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Guowei Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Guangdong, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Liyan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Guangdong, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Guangdong, China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Guangdong, China
| | - Liyan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Guangdong, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
46
|
Lidschreiber K, Jung LA, von der Emde H, Dave K, Taipale J, Cramer P, Lidschreiber M. Transcriptionally active enhancers in human cancer cells. Mol Syst Biol 2021; 17:e9873. [PMID: 33502116 PMCID: PMC7838827 DOI: 10.15252/msb.20209873] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
The growth of human cancer cells is driven by aberrant enhancer and gene transcription activity. Here, we use transient transcriptome sequencing (TT-seq) to map thousands of transcriptionally active putative enhancers in fourteen human cancer cell lines covering seven types of cancer. These enhancers were associated with cell type-specific gene expression, enriched for genetic variants that predispose to cancer, and included functionally verified enhancers. Enhancer-promoter (E-P) pairing by correlation of transcription activity revealed ~ 40,000 putative E-P pairs, which were depleted for housekeeping genes and enriched for transcription factors, cancer-associated genes, and 3D conformational proximity. The cell type specificity and transcription activity of target genes increased with the number of paired putative enhancers. Our results represent a rich resource for future studies of gene regulation by enhancers and their role in driving cancerous cell growth.
Collapse
Affiliation(s)
- Katja Lidschreiber
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
- Department of Biosciences and NutritionKarolinska InstitutetNEOHuddingeSweden
| | - Lisa A Jung
- Department of Biosciences and NutritionKarolinska InstitutetNEOHuddingeSweden
- Department of Cell and Molecular BiologyKarolinska InstitutetBiomedicumSolnaSweden
| | - Henrik von der Emde
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Kashyap Dave
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetBiomedicumSolnaSweden
| | - Jussi Taipale
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetBiomedicumSolnaSweden
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Genome‐Scale Biology ProgramUniversity of HelsinkiHelsinkiFinland
| | - Patrick Cramer
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
- Department of Biosciences and NutritionKarolinska InstitutetNEOHuddingeSweden
| | - Michael Lidschreiber
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
- Department of Biosciences and NutritionKarolinska InstitutetNEOHuddingeSweden
| |
Collapse
|
47
|
Choudhuri A, Trompouki E, Abraham BJ, Colli LM, Kock KH, Mallard W, Yang ML, Vinjamur DS, Ghamari A, Sporrij A, Hoi K, Hummel B, Boatman S, Chan V, Tseng S, Nandakumar SK, Yang S, Lichtig A, Superdock M, Grimes SN, Bowman TV, Zhou Y, Takahashi S, Joehanes R, Cantor AB, Bauer DE, Ganesh SK, Rinn J, Albert PS, Bulyk ML, Chanock SJ, Young RA, Zon LI. Common variants in signaling transcription-factor-binding sites drive phenotypic variability in red blood cell traits. Nat Genet 2020; 52:1333-1345. [PMID: 33230299 DOI: 10.1038/s41588-020-00738-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies identify genomic variants associated with human traits and diseases. Most trait-associated variants are located within cell-type-specific enhancers, but the molecular mechanisms governing phenotypic variation are less well understood. Here, we show that many enhancer variants associated with red blood cell (RBC) traits map to enhancers that are co-bound by lineage-specific master transcription factors (MTFs) and signaling transcription factors (STFs) responsive to extracellular signals. The majority of enhancer variants reside on STF and not MTF motifs, perturbing DNA binding by various STFs (BMP/TGF-β-directed SMADs or WNT-induced TCFs) and affecting target gene expression. Analyses of engineered human blood cells and expression quantitative trait loci verify that disrupted STF binding leads to altered gene expression. Our results propose that the majority of the RBC-trait-associated variants that reside on transcription-factor-binding sequences fall in STF target sequences, suggesting that the phenotypic variation of RBC traits could stem from altered responsiveness to extracellular stimuli.
Collapse
Affiliation(s)
- Avik Choudhuri
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Eirini Trompouki
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Leandro M Colli
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD, USA.,Department of Medical Imaging, Hematology, and Medical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kian Hong Kock
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA
| | - William Mallard
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine and Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Divya S Vinjamur
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alireza Ghamari
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Audrey Sporrij
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Karen Hoi
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Barbara Hummel
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Sonja Boatman
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Victoria Chan
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sierra Tseng
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Satish K Nandakumar
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Asher Lichtig
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Michael Superdock
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Seraj N Grimes
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Summer Institute in Biomedical Informatics, Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Teresa V Bowman
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | | | - Roby Joehanes
- Hebrew Senior Life, Harvard Medical School, Boston, MA, USA.,Framingham Heart Study, National Heart, Blood, and Lung Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan B Cantor
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine and Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John Rinn
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Paul S Albert
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA.,The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Summer Institute in Biomedical Informatics, Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leonard I Zon
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. .,Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
48
|
Papavassiliou AG, Musti AM. The Multifaceted Output of c-Jun Biological Activity: Focus at the Junction of CD8 T Cell Activation and Exhaustion. Cells 2020; 9:cells9112470. [PMID: 33202877 PMCID: PMC7697663 DOI: 10.3390/cells9112470] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
c-Jun is a major component of the dimeric transcription factor activator protein-1 (AP-1), a paradigm for transcriptional response to extracellular signaling, whose components are basic-Leucine Zipper (bZIP) transcription factors of the Jun, Fos, activating transcription factor (ATF), ATF-like (BATF) and Jun dimerization protein 2 (JDP2) gene families. Extracellular signals regulate c-Jun/AP-1 activity at multiple levels, including transcriptional and posttranscriptional regulation of c-Jun expression and transactivity, in turn, establishing the magnitude and the duration of c-Jun/AP-1 activation. Another important level of c-Jun/AP-1 regulation is due to the capability of Jun family members to bind DNA as a heterodimer with every other member of the AP-1 family, and to interact with other classes of transcription factors, thereby acquiring the potential to integrate diverse extrinsic and intrinsic signals into combinatorial regulation of gene expression. Here, we review how these features of c-Jun/AP-1 regulation underlie the multifaceted output of c-Jun biological activity, eliciting quite distinct cellular responses, such as neoplastic transformation, differentiation and apoptosis, in different cell types. In particular, we focus on the current understanding of the role of c-Jun/AP-1 in the response of CD8 T cells to acute infection and cancer. We highlight the transcriptional and epigenetic regulatory mechanisms through which c-Jun/AP-1 participates in the productive immune response of CD8 T cells, and how its downregulation may contribute to the dysfunctional state of tumor infiltrating CD8 T cells. Additionally, we discuss recent insights pointing at c-Jun as a suitable target for immunotherapy-based combination approaches to reinvigorate anti-tumor immune functions.
Collapse
Affiliation(s)
- Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anna Maria Musti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-3337543732
| |
Collapse
|
49
|
Penney KL, Banbury BL, Bien S, Harrison TA, Hua X, Phipps AI, Sun W, Song M, Joshi AD, Alberts SR, Allegra CJ, Atkins J, Colangelo LH, George TJ, Goldberg RM, Lucas PC, Nair SG, Shi Q, Sinicrope FA, Wolmark N, Yothers G, Peters U, Newcomb PA, Chan AT. Genetic Variant Associated With Survival of Patients With Stage II-III Colon Cancer. Clin Gastroenterol Hepatol 2020; 18:2717-2723.e3. [PMID: 31811950 PMCID: PMC7269796 DOI: 10.1016/j.cgh.2019.11.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/29/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Many genetic variants have been associated with colorectal cancer risk, although few have been associated with survival times of patients. Identification of genetic variants associated with survival times might improve our understanding of disease progression and aid in outcome prediction. We performed a genome-wide association study to identify variants associated with colon cancer survival time. METHODS We performed a post hoc analysis of data from NCCTG N0147 (Alliance), a randomized phase 3 trial of patients with resected stage III colon cancer, and from NSABP C-08 (NRG), a phase 3 trial that compared therapy regimens for patients with resected stage II or III colon cancer. Genotype analyses were performed on DNA from blood samples from 4974 patients. We used Cox proportional hazards regression to evaluate the association of each single nucleotide polymorphism with times of overall survival and disease-free survival, adjusting for age at diagnosis, sex, treatment group, and principal components of genetic ancestry. We performed the analysis for studies N0147 and C-08 separately, and results were combined in a fixed-effects meta-analysis. RESULTS A locus on chromosome 7p15.2 was significantly associated with overall survival time (P ≤ 5x10-08). The most significant variant at this locus, rs76766811 (P = 1.6x10-08), is common among African Americans (minor allele frequency, approximately 18%) but rare in European Americans (minor allele frequency <0.1%). Within strata of self-reported ancestry, this variant was associated with times of overall survival and disease-free survival in only African Americans (hazard ratio for overall survival, 2.82; 95% CI, 1.88-4.23; P = 5.0x10-07 and hazard ratio for disease-free survival, 2.27; 95% CI, 1.62-3.18; P = 1.8x10-06). CONCLUSIONS In an analysis of data from 2 trials of patients with stage II or III colon cancer, we identified rs76766811 as a potential prognostic variant in African American patients. This finding should be confirmed in additional study populations. ClinicalTrials.gov Identifiers: NCT00096278 (NSABP C-08) and NCT00079274 (NCCTG N0147).
Collapse
Affiliation(s)
- Kathryn L Penney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Stephanie Bien
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Xinwei Hua
- Fred Hutchinson Cancer Research Center, Seattle, Washington; University of Washington, Seattle, Washington
| | - Amanda I Phipps
- Fred Hutchinson Cancer Research Center, Seattle, Washington; University of Washington, Seattle, Washington
| | - Wei Sun
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven R Alberts
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Carmen J Allegra
- University of Florida, Gainesville, Florida; NRG Oncology, Pittsburgh, Pennsylvania
| | - James Atkins
- NRG Oncology, Pittsburgh, Pennsylvania; Southeast Clinical Oncology Research (SCOR) Consortium NCORP, Winston-Salem, North Carolina
| | - Linda H Colangelo
- NRG Oncology, Pittsburgh, Pennsylvania; University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas J George
- University of Florida, Gainesville, Florida; NRG Oncology, Pittsburgh, Pennsylvania
| | - Richard M Goldberg
- NRG Oncology, Pittsburgh, Pennsylvania; West Virginia University Cancer Institute, Morgantown, West Virginia
| | - Peter C Lucas
- NRG Oncology, Pittsburgh, Pennsylvania; University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Suresh G Nair
- Lehigh Valley Hospital-Cedar Crest, Allentown, Pennsylvania
| | - Qian Shi
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota; Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota
| | - Frank A Sinicrope
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Norman Wolmark
- NRG Oncology, Pittsburgh, Pennsylvania; Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | - Greg Yothers
- NRG Oncology, Pittsburgh, Pennsylvania; University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ulrike Peters
- Fred Hutchinson Cancer Research Center, Seattle, Washington; University of Washington, Seattle, Washington
| | - Polly A Newcomb
- Fred Hutchinson Cancer Research Center, Seattle, Washington; University of Washington, Seattle, Washington
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
50
|
Aberrant super-enhancer landscape reveals core transcriptional regulatory circuitry in lung adenocarcinoma. Oncogenesis 2020; 9:92. [PMID: 33070167 PMCID: PMC7568720 DOI: 10.1038/s41389-020-00277-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Lung adenocarcinoma (LUAD) relies on dysregulated gene expression to sustain its infinite growth and progression. Emerging evidence indicates that aberrant transcriptional program results from core transcriptional regulatory circuitry (CRC) which is driven by super-enhancers (SEs). In this study, by integrating profiles of H3K27Ac chromatin immunoprecipitation sequencing (ChIP-seq) from normal adult lung and LUAD cell lines, we revealed that widespread alterations of the super-enhancer were presence during lung carcinogenesis. With SE-based modeling of regulatory circuits and assessments of transcription factor (TF) dependencies, we reconstructed an interconnected transcriptional regulation network formed by three master TFs, including ELF3, EHF, and TGIF1, all of which promoted each other’s expression that confirmed by ChIP-qPCR and western blot. Loss-of function assay revealed that each of them is essential for LUAD cells survival, invasion and metastasis. Meanwhile, the rescue assay also illustrated the transacting transcriptional regulatory circuitry. In addition, the mRNA levels of ELF3, EHF, and TGIF1 were differentially expressed in LUAD tumors and peritumoral tissue. IHC of serial sections revealed that high expressions of CRC (ELF3/EHF/TGIF1-High) were closely associated with high proliferative activity in tumor tissue and poor prognosis on patients with LUAD. Finally, we used small molecular inhibitors to perturb the transcriptional circuitry, also exhibited a prominent anti-cancer effect in vitro. Our findings reveal the mechanism of the transcriptional dysregulation and addiction of LUAD.
Collapse
|