1
|
Rentsch D, Bergs A, Shao J, Elvers N, Ruse C, Seidenthal M, Aoki I, Gottschalk A. Tools and methods for cell ablation and cell inhibition in Caenorhabditis elegans. Genetics 2025; 229:1-48. [PMID: 39110015 PMCID: PMC11708922 DOI: 10.1093/genetics/iyae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 01/11/2025] Open
Abstract
To understand the function of cells such as neurons within an organism, it can be instrumental to inhibit cellular function, or to remove the cell (type) from the organism, and thus to observe the consequences on organismic and/or circuit function and animal behavior. A range of approaches and tools were developed and used over the past few decades that act either constitutively or acutely and reversibly, in systemic or local fashion. These approaches make use of either drugs or genetically encoded tools. Also, there are acutely acting inhibitory tools that require an exogenous trigger like light. Here, we give an overview of such methods developed and used in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Dennis Rentsch
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Jiajie Shao
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Nora Elvers
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Christiane Ruse
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Marius Seidenthal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Ichiro Aoki
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| |
Collapse
|
2
|
Vedantham K, Niu L, Ma R, Connelly L, Nagella A, Wang SJ, Wang ZW. Track-A-Worm 2.0: A Software Suite for Quantifying Properties of C. elegans Locomotion, Bending, Sleep, and Action Potentials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612524. [PMID: 39314462 PMCID: PMC11418985 DOI: 10.1101/2024.09.12.612524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Comparative analyses of locomotor behavior and cellular electrical properties between wild-type and mutant C. elegans are crucial for exploring the gene basis of behaviors and the underlying cellular mechanisms. Although many tools have been developed by research labs and companies, their application is often hindered by implementation difficulties or lack of features specifically suited for C. elegans. Track-A-Worm 2.0 addresses these challenges with three key components: WormTracker, SleepTracker, and Action Potential (AP) Analyzer. WormTracker accurately quantifies a comprehensive set of locomotor and body bending metrics, reliably distinguish between the ventral and dorsal sides, continuously tracks the animal using a motorized stage, and seamlessly integrates external devices, such as a light source for optogenetic stimulation. SleepTracker detects and quantifies sleep-like behavior in freely moving animals. AP Analyzer assesses the resting membrane potential, afterhyperpolarization level, and various AP properties, including threshold, amplitude, mid-peak width, rise and decay times, and maximum and minimum slopes. Importantly, it addresses the challenge of AP threshold quantification posed by the absence of a pre-upstroke inflection point. Track-A-Worm 2.0 is potentially a valuable tool for many C. elegans research labs due to its powerful functionality and ease of implementation.
Collapse
Affiliation(s)
- Kiranmayi Vedantham
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ryan Ma
- Health Research Program, University of Connecticut, Storrs, CT, USA
| | - Liam Connelly
- Health Research Program, University of Connecticut, Storrs, CT, USA
| | - Anusha Nagella
- Health Research Program, University of Connecticut, Storrs, CT, USA
| | - Sijie Jason Wang
- MD Program, University of Connecticut School of Medicine, Farmington, CT
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
3
|
Xu C, Wu X, Qiu J, Ye J, Lin Q, Deng J, Zeng Y, Wang W, Zhang H, Zheng H. Genome-wide identification of gap junction gene family and their expression profiles under low temperature stress in noble scallop Chlamys nobilis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101310. [PMID: 39137603 DOI: 10.1016/j.cbd.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/13/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Gap junctions, formed by gap junction proteins (GJ), play crucial roles in cell signaling and immune responses. The structure and function of the GJ from vertebrates (called connexins) have been extensively studied. However, little is known about the proteins forming gap junctions in invertebrates (called innexins). In this study, 14 GJ genes of Chlamys nobilis were identified. GJ proteins are mainly distributed on the plasma membrane, and all proteins are hydrophilic Phylogenetic tree analysis showed that the GJ proteins in C. nobilis were distantly related to those in vertebrates but closely related to those in invertebrates. Conserved motifs analysis of these GJ proteins in C. nobilis identified to have 10 conserved motifs, similar to gap junction proteins in other bivalves. Moreover, expression profiles of CnGJ genes under chronic and acute low temperature stress were also investigated. Results showed that chronic low temperature stress had a significant effect on the expression levels of CnGJ genes, and the expression profiles of CnGJ genes showed significantly variation under acute low temperature stress. All these results indicated that CnGJ genes play important roles in environmental adaptation in scallops. The present study initially elucidated the function of gap junction genes in noble scallop C. nobilis, which provides new insights into the GJ genes in mollusks and will help us better understand their roles in environmental stress in scallops.
Collapse
Affiliation(s)
- Changping Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Xuanbing Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Jiale Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Jianming Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Qing Lin
- Shantou Fruit Tree and Aquatic Technology Promotion Station, Shantou 515063, China
| | - Jingwen Deng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yetao Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Weili Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hongkuan Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
4
|
Avila B, Augusto P, Zimmer M, Serafino M, Makse HA. Fibration symmetries and cluster synchronization in the Caenorhabditis elegans connectome. ARXIV 2024:arXiv:2305.19367v2. [PMID: 37396607 PMCID: PMC10312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Capturing how the Caenorhabditis elegans connectome structure gives rise to its neuron functionality remains unclear. It is through fiber symmetries found in its neuronal connectivity that synchronization of a group of neurons can be determined. To understand these we investigate graph symmetries and search for such in the symmetrized versions of the forward and backward locomotive sub-networks of the Caenorhabditi elegans worm neuron network. The use of ordinarily differential equations simulations admissible to these graphs are used to validate the predictions of these fiber symmetries and are compared to the more restrictive orbit symmetries. Additionally fibration symmetries are used to decompose these graphs into their fundamental building blocks which reveal units formed by nested loops or multilayered fibers. It is found that fiber symmetries of the connectome can accurately predict neuronal synchronization even under not idealized connectivity as long as the dynamics are within stable regimes of simulations.
Collapse
Affiliation(s)
- Bryant Avila
- Levich Institute, Physics Department, City College of New York, New York, NY, USA
| | - Pedro Augusto
- Vienna Biocenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Manuel Zimmer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Matteo Serafino
- Levich Institute, Physics Department, City College of New York, New York, NY, USA
| | - Hernán A. Makse
- Levich Institute, Physics Department, City College of New York, New York, NY, USA
| |
Collapse
|
5
|
Meng J, Ahamed T, Yu B, Hung W, EI Mouridi S, Wang Z, Zhang Y, Wen Q, Boulin T, Gao S, Zhen M. A tonically active master neuron modulates mutually exclusive motor states at two timescales. SCIENCE ADVANCES 2024; 10:eadk0002. [PMID: 38598630 PMCID: PMC11006214 DOI: 10.1126/sciadv.adk0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Continuity of behaviors requires animals to make smooth transitions between mutually exclusive behavioral states. Neural principles that govern these transitions are not well understood. Caenorhabditis elegans spontaneously switch between two opposite motor states, forward and backward movement, a phenomenon thought to reflect the reciprocal inhibition between interneurons AVB and AVA. Here, we report that spontaneous locomotion and their corresponding motor circuits are not separately controlled. AVA and AVB are neither functionally equivalent nor strictly reciprocally inhibitory. AVA, but not AVB, maintains a depolarized membrane potential. While AVA phasically inhibits the forward promoting interneuron AVB at a fast timescale, it maintains a tonic, extrasynaptic excitation on AVB over the longer timescale. We propose that AVA, with tonic and phasic activity of opposite polarities on different timescales, acts as a master neuron to break the symmetry between the underlying forward and backward motor circuits. This master neuron model offers a parsimonious solution for sustained locomotion consisted of mutually exclusive motor states.
Collapse
Affiliation(s)
- Jun Meng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Tosif Ahamed
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Bin Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sonia EI Mouridi
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, 69008 Lyon, France
| | - Zezhen Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yongning Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Quan Wen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Thomas Boulin
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, 69008 Lyon, France
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mei Zhen
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
6
|
Avila B, Serafino M, Augusto P, Zimmer M, Makse HA. Fibration symmetries and cluster synchronization in the Caenorhabditis elegans connectome. PLoS One 2024; 19:e0297669. [PMID: 38598455 PMCID: PMC11006206 DOI: 10.1371/journal.pone.0297669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
Capturing how the Caenorhabditis elegans connectome structure gives rise to its neuron functionality remains unclear. It is through fiber symmetries found in its neuronal connectivity that synchronization of a group of neurons can be determined. To understand these we investigate graph symmetries and search for such in the symmetrized versions of the forward and backward locomotive sub-networks of the Caenorhabditi elegans worm neuron network. The use of ordinarily differential equations simulations admissible to these graphs are used to validate the predictions of these fiber symmetries and are compared to the more restrictive orbit symmetries. Additionally fibration symmetries are used to decompose these graphs into their fundamental building blocks which reveal units formed by nested loops or multilayered fibers. It is found that fiber symmetries of the connectome can accurately predict neuronal synchronization even under not idealized connectivity as long as the dynamics are within stable regimes of simulations.
Collapse
Affiliation(s)
- Bryant Avila
- Physics Department, Levich Institute, City College of New York, New York, NY, United Stated of America
| | - Matteo Serafino
- Physics Department, Levich Institute, City College of New York, New York, NY, United Stated of America
| | - Pedro Augusto
- Vienna Biocenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Manuel Zimmer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Hernán A. Makse
- Physics Department, Levich Institute, City College of New York, New York, NY, United Stated of America
| |
Collapse
|
7
|
Nicoletti M, Chiodo L, Loppini A, Liu Q, Folli V, Ruocco G, Filippi S. Biophysical modeling of the whole-cell dynamics of C. elegans motor and interneurons families. PLoS One 2024; 19:e0298105. [PMID: 38551921 PMCID: PMC10980225 DOI: 10.1371/journal.pone.0298105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/13/2024] [Indexed: 04/01/2024] Open
Abstract
The nematode Caenorhabditis elegans is a widely used model organism for neuroscience. Although its nervous system has been fully reconstructed, the physiological bases of single-neuron functioning are still poorly explored. Recently, many efforts have been dedicated to measuring signals from C. elegans neurons, revealing a rich repertoire of dynamics, including bistable responses, graded responses, and action potentials. Still, biophysical models able to reproduce such a broad range of electrical responses lack. Realistic electrophysiological descriptions started to be developed only recently, merging gene expression data with electrophysiological recordings, but with a large variety of cells yet to be modeled. In this work, we contribute to filling this gap by providing biophysically accurate models of six classes of C. elegans neurons, the AIY, RIM, and AVA interneurons, and the VA, VB, and VD motor neurons. We test our models by comparing computational and experimental time series and simulate knockout neurons, to identify the biophysical mechanisms at the basis of inter and motor neuron functioning. Our models represent a step forward toward the modeling of C. elegans neuronal networks and virtual experiments on the nematode nervous system.
Collapse
Affiliation(s)
- Martina Nicoletti
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
- Center for Life Nano- & Neuro-Science (CLN2S@Sapienza), Istituto Italiano di Tecnologia, Rome, Italy
| | - Letizia Chiodo
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Loppini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Qiang Liu
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Viola Folli
- Center for Life Nano- & Neuro-Science (CLN2S@Sapienza), Istituto Italiano di Tecnologia, Rome, Italy
- D-tails s.r.l., Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science (CLN2S@Sapienza), Istituto Italiano di Tecnologia, Rome, Italy
| | - Simonetta Filippi
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Florence, Italy
- ICRANet—International Center for Relativistic Astrophysics Network, Pescara, Italy
| |
Collapse
|
8
|
Almoril-Porras A, Calvo AC, Niu L, Beagan J, Hawk JD, Aljobeh A, Wisdom EM, Ren I, Díaz-García M, Wang ZW, Colón-Ramos DA. Specific configurations of electrical synapses filter sensory information to drive choices in behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551556. [PMID: 37577611 PMCID: PMC10418224 DOI: 10.1101/2023.08.01.551556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Synaptic configurations in precisely wired circuits underpin how sensory information is processed by the nervous system, and the emerging animal behavior. This is best understood for chemical synapses, but far less is known about how electrical synaptic configurations modulate, in vivo and in specific neurons, sensory information processing and context-specific behaviors. We discovered that INX-1, a gap junction protein that forms electrical synapses, is required to deploy context-specific behavioral strategies during C. elegans thermotaxis behavior. INX-1 couples two bilaterally symmetric interneurons, and this configuration is required for the integration of sensory information during migration of animals across temperature gradients. In inx-1 mutants, uncoupled interneurons display increased excitability and responses to subthreshold temperature stimuli, resulting in abnormally longer run durations and context-irrelevant tracking of isotherms. Our study uncovers a conserved configuration of electrical synapses that, by increasing neuronal capacitance, enables differential processing of sensory information and the deployment of context-specific behavioral strategies.
Collapse
Affiliation(s)
- Agustin Almoril-Porras
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Ana C. Calvo
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut Health Center; Farmington, CT 06030, USA
| | - Jonathan Beagan
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Josh D. Hawk
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Ahmad Aljobeh
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Elias M. Wisdom
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Ivy Ren
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Malcom Díaz-García
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center; Farmington, CT 06030, USA
| | - Daniel A. Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
- Wu Tsai Institute, Yale University; New Haven, CT 06510, USA
- Marine Biological Laboratory; Woods Hole, MA, USA
- Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico; San Juan 00901, Puerto Rico
| |
Collapse
|
9
|
Zhan X, Chen C, Niu L, Du X, Lei Y, Dan R, Wang ZW, Liu P. Locomotion modulates olfactory learning through proprioception in C. elegans. Nat Commun 2023; 14:4534. [PMID: 37500635 PMCID: PMC10374624 DOI: 10.1038/s41467-023-40286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Locomotor activities can enhance learning, but the underlying circuit and synaptic mechanisms are largely unknown. Here we show that locomotion facilitates aversive olfactory learning in C. elegans by activating mechanoreceptors in motor neurons, and transmitting the proprioceptive information thus generated to locomotion interneurons through antidromic-rectifying gap junctions. The proprioceptive information serves to regulate experience-dependent activities and functional coupling of interneurons that process olfactory sensory information to produce the learning behavior. Genetic destruction of either the mechanoreceptors in motor neurons, the rectifying gap junctions between the motor neurons and locomotion interneurons, or specific inhibitory synapses among the interneurons impairs the aversive olfactory learning. We have thus uncovered an unexpected role of proprioception in a specific learning behavior as well as the circuit, synaptic, and gene bases for this function.
Collapse
Affiliation(s)
- Xu Zhan
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Chao Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, Hubei, China
- Department of Orthopaedics, Hefeng Central Hospital, 445800, Enshi, Hubei, China
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Xinran Du
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Ying Lei
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Rui Dan
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Garrudo FFF, Linhardt RJ, Ferreira FC, Morgado J. Designing Electrical Stimulation Platforms for Neural Cell Cultivation Using Poly(aniline): Camphorsulfonic Acid. Polymers (Basel) 2023; 15:2674. [PMID: 37376320 DOI: 10.3390/polym15122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Electrical stimulation is a powerful strategy to improve the differentiation of neural stem cells into neurons. Such an approach can be implemented, in association with biomaterials and nanotechnology, for the development of new therapies for neurological diseases, including direct cell transplantation and the development of platforms for drug screening and disease progression evaluation. Poly(aniline):camphorsulfonic acid (PANI:CSA) is one of the most well-studied electroconductive polymers, capable of directing an externally applied electrical field to neural cells in culture. There are several examples in the literature on the development of PANI:CSA-based scaffolds and platforms for electrical stimulation, but no review has examined the fundamentals and physico-chemical determinants of PANI:CSA for the design of platforms for electrical stimulation. This review evaluates the current literature regarding the application of electrical stimulation to neural cells, specifically reviewing: (1) the fundamentals of bioelectricity and electrical stimulation; (2) the use of PANI:CSA-based systems for electrical stimulation of cell cultures; and (3) the development of scaffolds and setups to support the electrical stimulation of cells. Throughout this work, we critically evaluate the revised literature and provide a steppingstone for the clinical application of the electrical stimulation of cells using electroconductive PANI:CSA platforms/scaffolds.
Collapse
Affiliation(s)
- Fábio F F Garrudo
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Biology and Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Jorge Morgado
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
11
|
Hardege I, Morud J, Courtney A, Schafer WR. A Novel and Functionally Diverse Class of Acetylcholine-Gated Ion Channels. J Neurosci 2023; 43:1111-1124. [PMID: 36604172 PMCID: PMC9962794 DOI: 10.1523/jneurosci.1516-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Fast cholinergic neurotransmission is mediated by acetylcholine-gated ion channels; in particular, excitatory nicotinic acetylcholine receptors play well established roles in virtually all nervous systems. Acetylcholine-gated inhibitory channels have also been identified in some invertebrate phyla, yet their roles in the nervous system are less well understood. We report the existence of multiple new inhibitory ion channels with diverse ligand activation properties in Caenorhabditis elegans We identify three channels, LGC-40, LGC-57, and LGC-58, whose primary ligand is choline rather than acetylcholine, as well as the first evidence of a truly polymodal channel, LGC-39, which is activated by both cholinergic and aminergic ligands. Using our new ligand-receptor pairs we uncover the surprising extent to which single neurons in the hermaphrodite nervous system express both excitatory and inhibitory channels, not only for acetylcholine but also for the other major neurotransmitters. The results presented in this study offer new insight into the potential evolutionary benefit of a vast and diverse repertoire of ligand-gated ion channels to generate complexity in an anatomically compact nervous system.SIGNIFICANCE STATEMENT Here we describe the diversity of cholinergic signaling in the nematode Caenorhabditis elegans We identify and characterize a novel family of ligand-gated ion channels and show that they are preferentially gated by choline rather than acetylcholine and expressed broadly in the nervous system. Interestingly, we also identify one channel gated by chemically diverse ligands including acetylcholine and aminergic ligands. By using our new knowledge of these ligand-gated ion channels, we built a model to predict the synaptic polarity in the C. elegans connectome. This model can be used for generating hypotheses on neural circuit function.
Collapse
Affiliation(s)
- Iris Hardege
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Julia Morud
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Amy Courtney
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - William R Schafer
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
12
|
Mizumoto K, Jin Y, Bessereau JL. Synaptogenesis: unmasking molecular mechanisms using Caenorhabditis elegans. Genetics 2023; 223:iyac176. [PMID: 36630525 PMCID: PMC9910414 DOI: 10.1093/genetics/iyac176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/22/2022] [Indexed: 01/13/2023] Open
Abstract
The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Yishi Jin
- Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean-Louis Bessereau
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, 69008 Lyon, France
| |
Collapse
|
13
|
Wang ZW, Trussell LO, Vedantham K. Regulation of Neurotransmitter Release by K + Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:305-331. [PMID: 37615872 DOI: 10.1007/978-3-031-34229-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
K+ channels play potent roles in the process of neurotransmitter release by influencing the action potential waveform and modulating neuronal excitability and release probability. These diverse effects of K+ channel activation are ensured by the wide variety of K+ channel genes and their differential expression in different cell types. Accordingly, a variety of K+ channels have been implicated in regulating neurotransmitter release, including the Ca2+- and voltage-gated K+ channel Slo1 (also known as BK channel), voltage-gated K+ channels of the Kv3 (Shaw-type), Kv1 (Shaker-type), and Kv7 (KCNQ) families, G-protein-gated inwardly rectifying K+ (GIRK) channels, and SLO-2 (a Ca2+-. Cl-, and voltage-gated K+ channel in C. elegans). These channels vary in their expression patterns, subcellular localization, and biophysical properties. Their roles in neurotransmitter release may also vary depending on the synapse and physiological or experimental conditions. This chapter summarizes key findings about the roles of K+ channels in regulating neurotransmitter release.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Laurence O Trussell
- Oregon Hearing Research Center & Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kiranmayi Vedantham
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
14
|
Menelaou E, Kishore S, McLean DL. Mixed synapses reconcile violations of the size principle in zebrafish spinal cord. eLife 2022; 11:64063. [PMID: 36166290 PMCID: PMC9514842 DOI: 10.7554/elife.64063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Mixed electrical-chemical synapses potentially complicate electrophysiological interpretations of neuronal excitability and connectivity. Here, we disentangle the impact of mixed synapses within the spinal locomotor circuitry of larval zebrafish. We demonstrate that soma size is not linked to input resistance for interneurons, contrary to the biophysical predictions of the ‘size principle’ for motor neurons. Next, we show that time constants are faster, excitatory currents stronger, and mixed potentials larger in lower resistance neurons, linking mixed synapse density to resting excitability. Using a computational model, we verify the impact of weighted electrical synapses on membrane properties, synaptic integration and the low-pass filtering and distribution of coupling potentials. We conclude differences in mixed synapse density can contribute to excitability underestimations and connectivity overestimations. The contribution of mixed synaptic inputs to resting excitability helps explain ‘violations’ of the size principle, where neuron size, resistance and recruitment order are unrelated.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Sandeep Kishore
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
15
|
Jiang J, Su Y, Zhang R, Li H, Tao L, Liu Q. C. elegans enteric motor neurons fire synchronized action potentials underlying the defecation motor program. Nat Commun 2022; 13:2783. [PMID: 35589790 PMCID: PMC9120479 DOI: 10.1038/s41467-022-30452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
C. elegans neurons were thought to be non-spiking until our recent discovery of action potentials in the sensory neuron AWA; however, the extent to which the C. elegans nervous system relies on analog or digital coding is unclear. Here we show that the enteric motor neurons AVL and DVB fire synchronous all-or-none calcium-mediated action potentials following the intestinal pacemaker during the rhythmic C. elegans defecation behavior. AVL fires unusual compound action potentials with each depolarizing calcium spike mediated by UNC-2 followed by a hyperpolarizing potassium spike mediated by a repolarization-activated potassium channel EXP-2. Simultaneous behavior tracking and imaging in free-moving animals suggest that action potentials initiated in AVL propagate along its axon to activate precisely timed DVB action potentials through the INX-1 gap junction. This work identifies a novel circuit of spiking neurons in C. elegans that uses digital coding for long-distance communication and temporal synchronization underlying reliable behavioral rhythm.
Collapse
Affiliation(s)
- Jingyuan Jiang
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yifan Su
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ruilin Zhang
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
- Yuanpei College, Peking University, Beijing, 100871, China
| | - Haiwen Li
- LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, China
| | - Louis Tao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY, 10065, USA.
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR.
| |
Collapse
|
16
|
Naudin L, Jiménez Laredo JL, Liu Q, Corson N. Systematic generation of biophysically detailed models with generalization capability for non-spiking neurons. PLoS One 2022; 17:e0268380. [PMID: 35560186 PMCID: PMC9106219 DOI: 10.1371/journal.pone.0268380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Unlike spiking neurons which compress continuous inputs into digital signals for transmitting information via action potentials, non-spiking neurons modulate analog signals through graded potential responses. Such neurons have been found in a large variety of nervous tissues in both vertebrate and invertebrate species, and have been proven to play a central role in neuronal information processing. If general and vast efforts have been made for many years to model spiking neurons using conductance-based models (CBMs), very few methods have been developed for non-spiking neurons. When a CBM is built to characterize the neuron behavior, it should be endowed with generalization capabilities (i.e. the ability to predict acceptable neuronal responses to different novel stimuli not used during the model’s building). Yet, since CBMs contain a large number of parameters, they may typically suffer from a lack of such a capability. In this paper, we propose a new systematic approach based on multi-objective optimization which builds general non-spiking models with generalization capabilities. The proposed approach only requires macroscopic experimental data from which all the model parameters are simultaneously determined without compromise. Such an approach is applied on three non-spiking neurons of the nematode Caenorhabditis elegans (C. elegans), a well-known model organism in neuroscience that predominantly transmits information through non-spiking signals. These three neurons, arbitrarily labeled by convention as RIM, AIY and AFD, represent, to date, the three possible forms of non-spiking neuronal responses of C. elegans.
Collapse
Affiliation(s)
- Loïs Naudin
- Department of Applied Mathematics, Normandie University, Le Havre, Normandie, France
- * E-mail:
| | | | - Qiang Liu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | - Nathalie Corson
- Department of Applied Mathematics, Normandie University, Le Havre, Normandie, France
| |
Collapse
|
17
|
Choudhary S, Kashyap SS, Martin RJ, Robertson AP. Advances in our understanding of nematode ion channels as potential anthelmintic targets. Int J Parasitol Drugs Drug Resist 2022; 18:52-86. [PMID: 35149380 PMCID: PMC8841521 DOI: 10.1016/j.ijpddr.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
18
|
Yu B, Wang Y, Gao S. Motor Rhythm Dissection From the Backward Circuit in C. elegans. Front Mol Neurosci 2022; 15:845733. [PMID: 35370545 PMCID: PMC8966088 DOI: 10.3389/fnmol.2022.845733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
Motor rhythm is initiated and sustained by oscillatory neuronal activity. We recently discovered that the A-class excitatory motor neurons (MNs) (A-MNs) function as intrinsic oscillators. They drive backward locomotion by generating rhythmic postsynaptic currents (rPSCs) in body wall muscles. Molecular underpinning of the rPSCs, however, is not fully elucidated. We report here that there are three types of the rPSC patterns, namely the phasic, tonic, and long-lasting, each with distinct kinetics and channel-dependence. The Na+ leak channel is required for all rPSC patterns. The tonic rPSCs exhibit strong dependence on the high-voltage-gated Ca2+ channels. Three K+ channels, the BK-type Ca2+-activated K+ channel, Na+-activated K+ channel, and voltage-gated K+ channel (Kv4), primarily inhibit tonic and long-lasting rPSCs with varying degrees and preferences. The elaborate regulation of rPSCs by different channels, through increasing or decreasing the rPSCs frequency and/or charge, correlates with the changes in the reversal velocity for respective channel mutants. The molecular dissection of different A-MNs-rPSC components therefore reveals different mechanisms for multiplex motor rhythm.
Collapse
Affiliation(s)
- Bin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shangbang Gao,
| |
Collapse
|
19
|
Intrinsic Sources and Functional Impacts of Asymmetry at Electrical Synapses. eNeuro 2022; 9:ENEURO.0469-21.2022. [PMID: 35135867 PMCID: PMC8925721 DOI: 10.1523/eneuro.0469-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Electrical synapses couple inhibitory neurons across the brain, underlying a variety of functions that are modifiable by activity. Despite recent advances, many functions and contributions of electrical synapses within neural circuitry remain underappreciated. Among these are the sources and impacts of electrical synapse asymmetry. Using multi-compartmental models of neurons coupled through dendritic electrical synapses, we investigated intrinsic factors that contribute to effective synaptic asymmetry and that result in modulation of spike timing and synchrony between coupled cells. We show that electrical synapse location along a dendrite, input resistance, internal dendritic resistance, or directional conduction of the electrical synapse itself each alter asymmetry as measured by coupling between cell somas. Conversely, we note that asymmetrical gap junction (GJ) conductance can be masked by each of these properties. Furthermore, we show that asymmetry modulates spike timing and latency of coupled cells by up to tens of milliseconds, depending on direction of conduction or dendritic location of the electrical synapse. Coordination of rhythmic activity between two cells also depends on asymmetry. These simulations illustrate that causes of asymmetry are diverse, may not be apparent in somatic measurements of electrical coupling, influence dendritic processing, and produce a variety of outcomes on spiking and synchrony of coupled cells. Our findings highlight aspects of electrical synapses that should always be included in experimental demonstrations of coupling, and when assembling simulated networks containing electrical synapses.
Collapse
|
20
|
Palumbos SD, Skelton R, McWhirter R, Mitchell A, Swann I, Heifner S, Von Stetina S, Miller DM. cAMP controls a trafficking mechanism that maintains the neuron specificity and subcellular placement of electrical synapses. Dev Cell 2021; 56:3235-3249.e4. [PMID: 34741804 DOI: 10.1016/j.devcel.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
Electrical synapses are established between specific neurons and within distinct subcellular compartments, but the mechanisms that direct gap junction assembly in the nervous system are largely unknown. Here, we show that a developmental program tunes cAMP signaling to direct the neuron-specific assembly and placement of electrical synapses in the C. elegans motor circuit. We use live-cell imaging to visualize electrical synapses in vivo and an optogenetic assay to confirm that they are functional. In ventral A class (VA) motor neurons, the UNC-4 transcription factor blocks expression of cAMP antagonists that promote gap junction miswiring. In unc-4 mutants, VA electrical synapses are established with an alternative synaptic partner and are repositioned from the VA axon to soma. cAMP counters these effects by driving gap junction trafficking into the VA axon for electrical synapse assembly. Thus, our experiments establish that cAMP regulates gap junction trafficking for the biogenesis of functional electrical synapses.
Collapse
Affiliation(s)
- Sierra D Palumbos
- Neuroscience Program, Vanderbilt University, Nashville, TN 37212, USA
| | - Rachel Skelton
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Rebecca McWhirter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Amanda Mitchell
- Vanderbilt Summer Science Academy, Vanderbilt University, Nashville, TN 37212, USA
| | - Isaiah Swann
- Vanderbilt Summer Science Academy, Vanderbilt University, Nashville, TN 37212, USA
| | | | - Stephen Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - David M Miller
- Neuroscience Program, Vanderbilt University, Nashville, TN 37212, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA.
| |
Collapse
|
21
|
Sordillo A, Bargmann CI. Behavioral control by depolarized and hyperpolarized states of an integrating neuron. eLife 2021; 10:e67723. [PMID: 34738904 PMCID: PMC8570696 DOI: 10.7554/elife.67723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Coordinated transitions between mutually exclusive motor states are central to behavioral decisions. During locomotion, the nematode Caenorhabditis elegans spontaneously cycles between forward runs, reversals, and turns with complex but predictable dynamics. Here, we provide insight into these dynamics by demonstrating how RIM interneurons, which are active during reversals, act in two modes to stabilize both forward runs and reversals. By systematically quantifying the roles of RIM outputs during spontaneous behavior, we show that RIM lengthens reversals when depolarized through glutamate and tyramine neurotransmitters and lengthens forward runs when hyperpolarized through its gap junctions. RIM is not merely silent upon hyperpolarization: RIM gap junctions actively reinforce a hyperpolarized state of the reversal circuit. Additionally, the combined outputs of chemical synapses and gap junctions from RIM regulate forward-to-reversal transitions. Our results indicate that multiple classes of RIM synapses create behavioral inertia during spontaneous locomotion.
Collapse
Affiliation(s)
- Aylesse Sordillo
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller UniversityNew YorkUnited States
- Chan Zuckerberg InitiativeRedwood CityUnited States
| |
Collapse
|
22
|
Soh GB, Tchitnga R, Woafo P. Long-range interaction effects on coupled excitable nodes: traveling waves and chimera state. Heliyon 2021; 7:e07026. [PMID: 34036198 PMCID: PMC8134981 DOI: 10.1016/j.heliyon.2021.e07026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022] Open
Abstract
In this paper, analytical and numerical studies of the influence of the long-range interaction parameter on the excitability threshold in a ring of FitzHugh-Nagumo (FHN) system are investigated. The long-range interaction is introduced to the network to model regulation of the Gap junctions or hemichannels activity at the connexins level, which provides links between pre-synaptic and post-synaptic neurons. Results show that the long-range coupling enhances the range of the threshold parameter. We also investigate the long-range effects on the network dynamics, which induces enlargement of the oscillatory zone before the excitable regime. When considering bidirectional coupling, the long-range interaction induces traveling patterns such as traveling waves, while when considering unidirectional coupling, the long-range interaction induces multi-chimera states. We also studied the difference between the dynamics of coupled oscillators and coupled excitable neurons. We found that, for the coupled system, the oscillation period decreases with the increasing of the coupling parameter. For the same values of the coupling parameter, the oscillation period of the Oscillatory dynamics is greater than the oscillation period of the excitable dynamics. The analytical approximation shows good agreement with the numerical results.
Collapse
Affiliation(s)
- Guy Blondeau Soh
- Laboratory of Electronics, Automation and Signal Processing, Faculty of Science, Department of Physics, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Robert Tchitnga
- Laboratory of Electronics, Automation and Signal Processing, Faculty of Science, Department of Physics, University of Dschang, P.O. Box 67, Dschang, Cameroon.,Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Paul Woafo
- Laboratory of Modeling and Simulation in Engineering, Biomimetics and Prototypes, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
23
|
Ashley GE, Duong T, Levenson MT, Martinez MAQ, Johnson LC, Hibshman JD, Saeger HN, Palmisano NJ, Doonan R, Martinez-Mendez R, Davidson BR, Zhang W, Ragle JM, Medwig-Kinney TN, Sirota SS, Goldstein B, Matus DQ, Dickinson DJ, Reiner DJ, Ward JD. An expanded auxin-inducible degron toolkit for Caenorhabditis elegans. Genetics 2021; 217:iyab006. [PMID: 33677541 PMCID: PMC8045686 DOI: 10.1093/genetics/iyab006] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/10/2021] [Indexed: 12/30/2022] Open
Abstract
The auxin-inducible degron (AID) system has emerged as a powerful tool to conditionally deplete proteins in a range of organisms and cell types. Here, we describe a toolkit to augment the use of the AID system in Caenorhabditis elegans. We have generated a set of single-copy, tissue-specific (germline, intestine, neuron, muscle, pharynx, hypodermis, seam cell, anchor cell) and pan-somatic TIR1-expressing strains carrying a co-expressed blue fluorescent reporter to enable use of both red and green channels in experiments. These transgenes are inserted into commonly used, well-characterized genetic loci. We confirmed that our TIR1-expressing strains produce the expected depletion phenotype for several nuclear and cytoplasmic AID-tagged endogenous substrates. We have also constructed a set of plasmids for constructing repair templates to generate fluorescent protein::AID fusions through CRISPR/Cas9-mediated genome editing. These plasmids are compatible with commonly used genome editing approaches in the C. elegans community (Gibson or SapTrap assembly of plasmid repair templates or PCR-derived linear repair templates). Together these reagents will complement existing TIR1 strains and facilitate rapid and high-throughput fluorescent protein::AID tagging of genes. This battery of new TIR1-expressing strains and modular, efficient cloning vectors serves as a platform for straightforward assembly of CRISPR/Cas9 repair templates for conditional protein depletion.
Collapse
Affiliation(s)
- Guinevere E Ashley
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tam Duong
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Max T Levenson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Londen C Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jonathan D Hibshman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hannah N Saeger
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ryan Doonan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Raquel Martinez-Mendez
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Brittany R Davidson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sydney S Sirota
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel J Dickinson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - David J Reiner
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
24
|
Meng L, Yan D. NLR-1/CASPR Anchors F-Actin to Promote Gap Junction Formation. Dev Cell 2020; 55:574-587.e3. [PMID: 33238150 DOI: 10.1016/j.devcel.2020.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Gap junctions are present in most tissues and play essential roles in various biological processes. However, we know surprisingly little about the molecular mechanisms underlying gap junction formation. Here, we uncover the essential role of a conserved EGF- and laminin-G-domain-containing protein nlr-1/CASPR in the regulation of gap junction formation in multiple tissues across different developmental stages in C. elegans. NLR-1 is located in the gap junction perinexus, a region adjacent to but not overlapping with gap junctions, and forms puncta before the clusters of gap junction channels appear on the membrane. We show that NLR-1 can directly bind to actin to recruit F-actin networks at the gap junction formation plaque, and the formation of F-actin patches plays a critical role in the assembly of gap junction channels. Our findings demonstrate that nlr-1/CASPR acts as an early stage signal for gap junction formation through anchoring of F-actin networks.
Collapse
Affiliation(s)
- Lingfeng Meng
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
25
|
GABAergic motor neurons bias locomotor decision-making in C. elegans. Nat Commun 2020; 11:5076. [PMID: 33033264 PMCID: PMC7544903 DOI: 10.1038/s41467-020-18893-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Proper threat-reward decision-making is critical to animal survival. Emerging evidence indicates that the motor system may participate in decision-making but the neural circuit and molecular bases for these functions are little known. We found in C. elegans that GABAergic motor neurons (D-MNs) bias toward the reward behavior in threat-reward decision-making by retrogradely inhibiting a pair of premotor command interneurons, AVA, that control cholinergic motor neurons in the avoidance neural circuit. This function of D-MNs is mediated by a specific ionotropic GABA receptor (UNC-49) in AVA, and depends on electrical coupling between the two AVA interneurons. Our results suggest that AVA are hub neurons where sensory inputs from threat and reward sensory modalities and motor information from D-MNs are integrated. This study demonstrates at single-neuron resolution how motor neurons may help shape threat-reward choice behaviors through interacting with other neurons.
Collapse
|
26
|
Jin EJ, Park S, Lyu X, Jin Y. Gap junctions: historical discoveries and new findings in the Caenorhabditiselegans nervous system. Biol Open 2020; 9:bio053983. [PMID: 32883654 PMCID: PMC7489761 DOI: 10.1242/bio.053983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gap junctions are evolutionarily conserved structures at close membrane contacts between two cells. In the nervous system, they mediate rapid, often bi-directional, transmission of signals through channels called innexins in invertebrates and connexins in vertebrates. Connectomic studies from Caenorhabditis elegans have uncovered a vast number of gap junctions present in the nervous system and non-neuronal tissues. The genome also has 25 innexin genes that are expressed in spatial and temporal dynamic pattern. Recent findings have begun to reveal novel roles of innexins in the regulation of multiple processes during formation and function of neural circuits both in normal conditions and under stress. Here, we highlight the diverse roles of gap junctions and innexins in the C. elegans nervous system. These findings contribute to fundamental understanding of gap junctions in all animals.
Collapse
Affiliation(s)
- Eugene Jennifer Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seungmee Park
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaohui Lyu
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Treinin M, Jin Y. Cholinergic transmission in C. elegans: Functions, diversity, and maturation of ACh-activated ion channels. J Neurochem 2020; 158:1274-1291. [PMID: 32869293 DOI: 10.1111/jnc.15164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Acetylcholine is an abundant neurotransmitter in all animals. Effects of acetylcholine are excitatory, inhibitory, or modulatory depending on the receptor and cell type. Research using the nematode C. elegans has made ground-breaking contributions to the mechanistic understanding of cholinergic transmission. Powerful genetic screens for behavioral mutants or for responses to pharmacological reagents identified the core cellular machinery for synaptic transmission. Pharmacological reagents that perturb acetylcholine-mediated processes led to the discovery and also uncovered the composition and regulators of acetylcholine-activated channels and receptors. From a combination of electrophysiological and molecular cellular studies, we have gained a profound understanding of cholinergic signaling at the levels of synapses, neural circuits, and animal behaviors. This review will begin with a historical overview, then cover in-depth current knowledge on acetylcholine-activated ionotropic receptors, mechanisms regulating their functional expression and their functions in regulating locomotion.
Collapse
Affiliation(s)
- Millet Treinin
- Department of Medical Neurobiology, Hadassah Medical school - Hebrew University, Jerusalem, Israel
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Choi MK, Liu H, Wu T, Yang W, Zhang Y. NMDAR-mediated modulation of gap junction circuit regulates olfactory learning in C. elegans. Nat Commun 2020; 11:3467. [PMID: 32651378 PMCID: PMC7351742 DOI: 10.1038/s41467-020-17218-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Modulation of gap junction-mediated electrical synapses is a common form of neural plasticity. However, the behavioral consequence of the modulation and the underlying molecular cellular mechanisms are not understood. Here, using a C. elegans circuit of interneurons that are connected by gap junctions, we show that modulation of the gap junctions facilitates olfactory learning. Learning experience weakens the gap junctions and induces a repulsive sensory response to the training odorants, which together decouple the responses of the interneurons to the training odorants to generate learned olfactory behavior. The weakening of the gap junctions results from downregulation of the abundance of a gap junction molecule, which is regulated by cell-autonomous function of the worm homologs of a NMDAR subunit and CaMKII. Thus, our findings identify the function of a gap junction modulation in an in vivo model of learning and a conserved regulatory pathway underlying the modulation.
Collapse
Affiliation(s)
- Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA. .,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
29
|
Shui Y, Liu P, Zhan H, Chen B, Wang ZW. Molecular basis of junctional current rectification at an electrical synapse. SCIENCE ADVANCES 2020; 6:eabb3076. [PMID: 32923588 PMCID: PMC7455501 DOI: 10.1126/sciadv.abb3076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Rectifying electrical synapses (RESs) exist across animal species, but their rectification mechanism is largely unknown. We investigated why RESs between AVA premotor interneurons and A-type cholinergic motoneurons (A-MNs) in Caenorhabditis elegans escape circuit conduct junctional currents (I j) only in the antidromic direction. These RESs consist of UNC-7 innexin in AVA and UNC-9 innexin in A-MNs. UNC-7 has multiple isoforms differing in the length and sequence of the amino terminus. In a heterologous expression system, only one UNC-7 isoform, UNC-7b, can form heterotypic gap junctions (GJs) with UNC-9 that strongly favor I j in the UNC-9 to UNC-7 direction. Knockout of unc-7b alone almost eliminated the I j, whereas AVA-specific expression of UNC-7b substantially rescued the coupling defect of unc-7 mutant. Neutralizing charged residues in UNC-7b amino terminus abolished the rectification property of UNC-7b/UNC-9 GJs. Our results suggest that the rectification property results from electrostatic interactions between charged residues in UNC-7b amino terminus.
Collapse
Affiliation(s)
- Yuan Shui
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
30
|
Ixmatlahua DJ, Vizcarra B, Gómez-Lira G, Romero-Maldonado I, Ortiz F, Rojas-Piloni G, Gutiérrez R. Neuronal Glutamatergic Network Electrically Wired with Silent But Activatable Gap Junctions. J Neurosci 2020; 40:4661-4672. [PMID: 32393538 PMCID: PMC7294797 DOI: 10.1523/jneurosci.2590-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 11/21/2022] Open
Abstract
It is widely assumed that electrical synapses in the mammalian brain, especially between interneurons, underlie neuronal synchrony. In the hippocampus, principal cells also establish electrical synapses with each other and have also been implicated in network oscillations, whereby the origin of fast electrical activity has been attributed to ectopic spikelets and dendro-dendritic or axo-axonal gap junctions. However, if electrical synapses were in axo-dendritic connections, where chemical synapses occur, the synaptic events would be mixed, having an electrical component preceding the chemical one. This type of communication is less well studied, mainly because it is not easily detected. Moreover, a possible scenario could be that an electrical synapse coexisted with a chemical one, but in a nonconductive state; hence, it would be considered inexistent. Could chemical synapses have a quiescent electrical component? If so, can silent electrical synapses be activated to be detected? We addressed this possibility, and we here report that, indeed, the connexin-36-containing glutamatergic mossy fiber synapses of the rat hippocampus express previously unrecognized electrical synapses, which are normally silent. We reveal that these synapses are pH sensitive, actuate in vitro and in vivo, and that the electrical signaling is bidirectional. With the simultaneous recording of hundreds of cells, we could reveal the existence of an electrical circuit in the hippocampus of adult rats of either sex consisting of principal cells where the nodes are interregional glutamatergic synapses containing silent but ready-to-use gap junctions.SIGNIFICANCE STATEMENT In this work, we present a series of experiments, both in vitro and in vivo, that reveal previously unrecognized silent pH-sensitive electrical synapses coexisting in one of the best studied glutamatergic synapses of the brain, the mossy fiber synapse of the hippocampus. This type of connectivity underlies an "electrical circuit" between two substructures of the adult rat hippocampus consisting of principal cells where the nodes are glutamatergic synapses containing silent but ready-to-use gap junctions. Its identification will allow us to explore the participation of such a circuit in physiological and pathophysiological functions and will provide valuable conceptual tools to understanding computational and regulatory mechanisms that may underlie network activity.
Collapse
Affiliation(s)
- Diana J Ixmatlahua
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| | - Bianca Vizcarra
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| | - Gisela Gómez-Lira
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| | - Isabel Romero-Maldonado
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| | - Franco Ortiz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| | - Gerardo Rojas-Piloni
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México, 76230 Querétaro, Mexico
| | - Rafael Gutiérrez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| |
Collapse
|
31
|
Evidence of Biorealistic Synaptic Behavior in Diffusive Li-based Two-terminal Resistive Switching Devices. Sci Rep 2020; 10:8711. [PMID: 32457315 PMCID: PMC7251090 DOI: 10.1038/s41598-020-65237-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/30/2020] [Indexed: 11/09/2022] Open
Abstract
Following the recent advances in artificial synaptic devices and the renewed interest regarding artificial intelligence and neuromorphic computing, a new two-terminal resistive switching device, based on mobile Li+ ions is hereby explored. Emulation of neural functionalities in a biorealistic manner has been recently implemented through the use of synaptic devices with diffusive dynamics. Mimicking of the spontaneous synaptic weight relaxation of neuron cells, which is regulated by the concentration kinetics of positively charged ions like Ca2+, is facilitated through the conductance relaxation of such diffusive devices. Adopting a battery-like architecture, using LiCoO2 as a resistive switching cathode layer, SiOx as an electrolyte and TiO2 as an anode, Au/LiCoO2/SiOx/TiO2/p++-Si two-terminal devices have been fabricated. Analog conductance modulation, via voltage-driven regulation of Li+ ion concentration in the cathode and anode layers, along with current rectification and nanobattery effects are reported. Furthermore, evidence is provided for biorealistic synaptic behavior, manifested as paired pulse facilitation based on the summation of excitatory post-synaptic currents and spike-timing-dependent plasticity, which are governed by the Li+ ion concentration and its relaxation dynamics.
Collapse
|
32
|
Lybrand ZR, Martinez-Acosta VG, Zoran MJ. Coupled sensory interneurons mediate escape neural circuit processing in an aquatic annelid worm, Lumbriculus variegatus. J Comp Neurol 2020; 528:468-480. [PMID: 31502251 DOI: 10.1002/cne.24769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/25/2019] [Accepted: 08/30/2019] [Indexed: 11/08/2022]
Abstract
The interneurons associated with rapid escape circuits are adapted for fast pathway activation and rapid conduction. An essential aspect of fast activation is the processing of sensory information with limited delays. Although aquatic annelid worms have some of the fastest escape responses in nature, the sensory networks that mediate their escape behavior are not well defined. Here, we demonstrate that the escape circuit of the mud worm, Lumbriculus variegatus, is a segmentally arranged network of sensory interneurons electrically coupled to the central medial giant fiber (MGF), the command-like interneuron for head withdrawal. Electrical stimulation of the body wall evoked fast, short-duration spikelets in the MGF, which we suggest are the product of intermediate giant fiber activation coupled to MGF collateral dendrites. Since these contact sites have immunoreactivity with a glutamate receptor antibody, and the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dion abolishes evoked MGF responses, we conclude that the afferent pathway for MGF-mediated escape is glutamatergic. This electrically coupled sensory network may facilitate rapid escape activation by enhancing the amplitude of giant axon depolarization.
Collapse
Affiliation(s)
- Zane R Lybrand
- Department of Biology, University of Texas, San Antonio, Texas
| | | | - Mark J Zoran
- Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
33
|
Dobosiewicz M, Liu Q, Bargmann CI. Reliability of an interneuron response depends on an integrated sensory state. eLife 2019; 8:e50566. [PMID: 31718773 PMCID: PMC6894930 DOI: 10.7554/elife.50566] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
The central nervous system transforms sensory information into representations that are salient to the animal. Here we define the logic of this transformation in a Caenorhabditis elegans integrating interneuron. AIA interneurons receive input from multiple chemosensory neurons that detect attractive odors. We show that reliable AIA responses require the coincidence of two sensory inputs: activation of AWA olfactory neurons that are activated by attractive odors, and inhibition of one or more chemosensory neurons that are inhibited by attractive odors. AWA activates AIA through an electrical synapse, while the disinhibitory pathway acts through glutamatergic chemical synapses. AIA interneurons have bistable electrophysiological properties consistent with their calcium dynamics, suggesting that AIA activation is a stereotyped response to an integrated stimulus. Our results indicate that AIA interneurons combine sensory information using AND-gate logic, requiring coordinated activity from multiple chemosensory neurons. We propose that AIA encodes positive valence based on an integrated sensory state.
Collapse
Affiliation(s)
- May Dobosiewicz
- Lulu and Anthony Wang Laboratory of Neural Circuits and BehaviorThe Rockefeller UniversityNew YorkUnited States
| | - Qiang Liu
- Lulu and Anthony Wang Laboratory of Neural Circuits and BehaviorThe Rockefeller UniversityNew YorkUnited States
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and BehaviorThe Rockefeller UniversityNew YorkUnited States
- Chan Zuckerberg InitiativePalo AltoUnited States
| |
Collapse
|
34
|
Voelker L, Upadhyaya B, Ferkey DM, Woldemariam S, L’Etoile ND, Rabinowitch I, Bai J. INX-18 and INX-19 play distinct roles in electrical synapses that modulate aversive behavior in Caenorhabditis elegans. PLoS Genet 2019; 15:e1008341. [PMID: 31658255 PMCID: PMC6837551 DOI: 10.1371/journal.pgen.1008341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/07/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022] Open
Abstract
In order to respond to changing environments and fluctuations in internal states, animals adjust their behavior through diverse neuromodulatory mechanisms. In this study we show that electrical synapses between the ASH primary quinine-detecting sensory neurons and the neighboring ASK neurons are required for modulating the aversive response to the bitter tastant quinine in C. elegans. Mutant worms that lack the electrical synapse proteins INX-18 and INX-19 become hypersensitive to dilute quinine. Cell-specific rescue experiments indicate that inx-18 operates in ASK while inx-19 is required in both ASK and ASH for proper quinine sensitivity. Imaging analyses find that INX-19 in ASK and ASH localizes to the same regions in the nerve ring, suggesting that both sides of ASK-ASH electrical synapses contain INX-19. While inx-18 and inx-19 mutant animals have a similar behavioral phenotype, several lines of evidence suggest the proteins encoded by these genes play different roles in modulating the aversive quinine response. First, INX-18 and INX-19 localize to different regions of the nerve ring, indicating that they are not present in the same synapses. Second, removing inx-18 disrupts the distribution of INX-19, while removing inx-19 does not alter INX-18 localization. Finally, by using a fluorescent cGMP reporter, we find that INX-18 and INX-19 have distinct roles in establishing cGMP levels in ASK and ASH. Together, these results demonstrate that electrical synapses containing INX-18 and INX-19 facilitate modulation of ASH nociceptive signaling. Our findings support the idea that a network of electrical synapses mediates cGMP exchange between neurons, enabling modulation of sensory responses and behavior. Animals are constantly adjusting their behavior to respond to changes in the environment or to their internal state. This behavior modulation is achieved by altering the activity of neurons and circuits through a variety of neuroplasticity mechanisms. Chemical synapses are known to impact neuroplasticity in several different ways, but the diversity of mechanisms by which electrical synapses contribute is still being investigated. Electrical synapses are specialized sites of connection between neurons where ions and small signaling molecules can pass directly from one cell to the next. By passing small molecules through electrical synapses, neurons may be able to modify the activity of their neighbors. In this study we identify two genes that contribute to electrical synapses between two sensory neurons in C. elegans. We show that these electrical synapses are crucial for proper modulation of sensory responses, as without them animals are overly responsive to an aversive stimulus. In addition to pinpointing their sites of action, we present evidence that they may be contributing to neuromodulation by facilitating passage of the small molecule cGMP between neurons. Our work provides evidence for a role of electrical synapses in regulating animal behavior.
Collapse
Affiliation(s)
- Lisa Voelker
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
| | - Bishal Upadhyaya
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Denise M. Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States of America
| | - Sarah Woldemariam
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, United States of America
| | - Noelle D. L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, United States of America
| | - Ithai Rabinowitch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medical Neurobiology, Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem, Israel
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Nance J, Frøkjær-Jensen C. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019; 212:959-990. [PMID: 31405997 PMCID: PMC6707460 DOI: 10.1534/genetics.119.301506] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022] Open
Abstract
The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
36
|
Shindou T, Ochi-Shindou M, Murayama T, Saita EI, Momohara Y, Wickens JR, Maruyama IN. Active propagation of dendritic electrical signals in C. elegans. Sci Rep 2019; 9:3430. [PMID: 30837592 PMCID: PMC6401061 DOI: 10.1038/s41598-019-40158-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/11/2019] [Indexed: 11/09/2022] Open
Abstract
Active propagation of electrical signals in C. elegans neurons requires ion channels capable of regenerating membrane potentials. Here we report regenerative depolarization of a major gustatory sensory neuron, ASEL. Whole-cell patch-clamp recordings in vivo showed supralinear depolarization of ASEL upon current injection. Furthermore, stimulation of animal's nose with NaCl evoked all-or-none membrane depolarization in ASEL. Mutant analysis showed that EGL-19, the α1 subunit of L-type voltage-gated Ca2+ channels, is essential for regenerative depolarization of ASEL. ASEL-specific knock-down of EGL-19 by RNAi demonstrated that EGL-19 functions in C. elegans chemotaxis along an NaCl gradient. These results demonstrate that a natural substance induces regenerative all-or-none electrical signals in dendrites, and that these signals are essential for activation of sensory neurons for chemotaxis. As in other vertebrate and invertebrate nervous systems, active information processing in dendrites occurs in C. elegans, and is necessary for adaptive behavior.
Collapse
Affiliation(s)
- Tomomi Shindou
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Mayumi Ochi-Shindou
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Takashi Murayama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Ei-Ichiro Saita
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Yuto Momohara
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Jeffery R Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
| |
Collapse
|
37
|
Welzel G, Schuster S. A Direct Comparison of Different Measures for the Strength of Electrical Synapses. Front Cell Neurosci 2019; 13:43. [PMID: 30809130 PMCID: PMC6379294 DOI: 10.3389/fncel.2019.00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
During the last decades it became increasingly evident that electrical synapses are capable of activity-dependent plasticity. However, measuring the actual strength of electrical transmission remains difficult. Usually changes in coupling strength can only be inferred indirectly from measures such as the coupling coefficient and the coupling conductance. Because these are affected by both junctional and non-junctional conductance, plastic changes can potentially be due to both components. Furthermore, these techniques also require the blocking of chemical transmission, so that processes that involve crosstalk between chemical and electrical synapses will be suppressed. To directly examine the magnitude of errors that can occur, we use dual whole-cell current- and voltage-clamp recordings from the soma of the pair of easily accessible, electrically coupled Retzius cells in the leech to simultaneously determine coupling coefficients, coupling conductances and directly measured gap junctional currents. We present the first direct and comparative analysis of gap junction conductance using all three methods and analyze how each method would characterize the response of gap junctions to serotonin. The traditional coupling coefficients showed severe deficits in assessing the symmetry and strength of electrical synapses. These were reduced when coupling conductances were determined and were absent in the direct method. Additionally, both coupling coefficient and coupling conductance caused large and systematic errors in assessing the size and time course of the serotonin-induced changes of gap junctional currents. Most importantly, both measurements can easily be misinterpreted as implying long-term gap junctional plasticity, although the direct measurements confirm its absence. We thus show directly that coupling coefficients and coupling conductances can severely confound plastic changes in membrane and junctional conductance. Wherever possible, voltage clamp measurements should be chosen to accurately characterize the timing and strength of plasticity of electrical synapses. However, we also demonstrate that coupling coefficients can still yield a qualitatively correct picture when amended by independent measurements of the course of membrane resistance during the experiments.
Collapse
Affiliation(s)
- Georg Welzel
- Department of Animal Physiology, University of Bayreuth, Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
38
|
|
39
|
Karbowski J. Deciphering neural circuits for Caenorhabditis elegans behavior by computations and perturbations to genome and connectome. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Plasticity of the Electrical Connectome of C. elegans. Cell 2019; 176:1174-1189.e16. [PMID: 30686580 PMCID: PMC10064801 DOI: 10.1016/j.cell.2018.12.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/12/2018] [Accepted: 12/14/2018] [Indexed: 11/23/2022]
Abstract
The specific patterns and functional properties of electrical synapses of a nervous system are defined by the neuron-specific complement of electrical synapse constituents. We systematically examined the molecular composition of the electrical connectome of the nematode C. elegans through a genome- and nervous-system-wide analysis of the expression patterns of the invertebrate electrical synapse constituents, the innexins. We observe highly complex combinatorial expression patterns throughout the nervous system and found that these patterns change in a strikingly neuron-type-specific manner throughout the nervous system when animals enter an insulin-controlled diapause arrest stage under harsh environmental conditions, the dauer stage. By analyzing several individual synapses, we demonstrate that dauer-specific electrical synapse remodeling is responsible for specific aspects of the altered locomotory and chemosensory behavior of dauers. We describe an intersectional gene regulatory mechanism involving terminal selector and FoxO transcription factors mediating dynamic innexin expression plasticity in a neuron-type- and environment-specific manner.
Collapse
|
41
|
Mulcahy B, Witvliet D, Holmyard D, Mitchell J, Chisholm AD, Meirovitch Y, Samuel ADT, Zhen M. A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System. Front Neural Circuits 2018; 12:94. [PMID: 30524248 PMCID: PMC6262311 DOI: 10.3389/fncir.2018.00094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023] Open
Abstract
The “connectome,” a comprehensive wiring diagram of synaptic connectivity, is achieved through volume electron microscopy (vEM) analysis of an entire nervous system and all associated non-neuronal tissues. White et al. (1986) pioneered the fully manual reconstruction of a connectome using Caenorhabditis elegans. Recent advances in vEM allow mapping new C. elegans connectomes with increased throughput, and reduced subjectivity. Current vEM studies aim to not only fill the remaining gaps in the original connectome, but also address fundamental questions including how the connectome changes during development, the nature of individuality, sexual dimorphism, and how genetic and environmental factors regulate connectivity. Here we describe our current vEM pipeline and projected improvements for the study of the C. elegans nervous system and beyond.
Collapse
Affiliation(s)
- Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Daniel Witvliet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Douglas Holmyard
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.,Nanoscale Biomedical Imaging Facility, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
| | - James Mitchell
- Center for Brain Science, Department of Physics, Harvard University, Cambridge, MA, United States
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Yaron Meirovitch
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Aravinthan D T Samuel
- Center for Brain Science, Department of Physics, Harvard University, Cambridge, MA, United States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Guo M, Ge M, Berberoglu MA, Zhou J, Ma L, Yang J, Dong Q, Feng Y, Wu Z, Dong Z. Dissecting Molecular and Circuit Mechanisms for Inhibition and Delayed Response of ASI Neurons during Nociceptive Stimulus. Cell Rep 2018; 25:1885-1897.e9. [PMID: 30428355 DOI: 10.1016/j.celrep.2018.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/05/2018] [Accepted: 10/17/2018] [Indexed: 10/27/2022] Open
Abstract
The mechanisms by which off-response neurons stay quiescent during stimulation are largely unknown. Here, we dissect underlying molecular and circuit mechanisms for the inhibition of off-response ASI neurons during nociceptive Cu2+ stimulation. ASIs are inhibited in parallel by sensory neurons ASER, ADFs, and ASHs. ASER activates RIC interneurons that release octopamine (OA) to inhibit ASIs through SER-3 and SER-6 receptors. ADFs release 5-HT that acts on the SER-1 receptor to activate RICs and subsequently inhibit ASIs. Furthermore, it is an inherent property of ASIs that only a delayed on response is evoked by Cu2+ stimulation even when all inhibitory neurons are silenced. Ectopic expression of the ion channel OCR-2, which functions synergistically with OSM-9, in the cilia of ASIs can induce an immediate on response of ASIs upon Cu2+ stimulation. Our findings elucidate the molecular and circuit mechanisms regulating fundamental properties of ASIs, including their inhibition and delayed response.
Collapse
Affiliation(s)
- Min Guo
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Minghai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Michael A Berberoglu
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jie Zhou
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Long Ma
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Juan Yang
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiyan Dong
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yanni Feng
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhengxing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiqiang Dong
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
43
|
Güiza J, Barría I, Sáez JC, Vega JL. Innexins: Expression, Regulation, and Functions. Front Physiol 2018; 9:1414. [PMID: 30364195 PMCID: PMC6193117 DOI: 10.3389/fphys.2018.01414] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 01/02/2023] Open
Abstract
The innexin (Inx) proteins form gap junction channels and non-junctional channels (named hemichannels) in invertebrates. These channels participate in cellular communication playing a relevant role in several physiological processes. Pioneer studies conducted mainly in worms and flies have shown that innexins participate in embryo development and behavior. However, recent studies have elucidated new functions of innexins in Arthropoda, Nematoda, Annelida, and Cnidaria, such as immune response, and apoptosis. This review describes emerging data of possible new roles of innexins and summarizes the data available to date.
Collapse
Affiliation(s)
- Juan Güiza
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Iván Barría
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - José L Vega
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
44
|
C. elegans AWA Olfactory Neurons Fire Calcium-Mediated All-or-None Action Potentials. Cell 2018; 175:57-70.e17. [PMID: 30220455 DOI: 10.1016/j.cell.2018.08.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 08/09/2018] [Indexed: 12/25/2022]
Abstract
Neurons in Caenorhabditis elegans and other nematodes have been thought to lack classical action potentials. Unexpectedly, we observe membrane potential spikes with defining characteristics of action potentials in C. elegans AWA olfactory neurons recorded under current-clamp conditions. Ion substitution experiments, mutant analysis, pharmacology, and modeling indicate that AWA fires calcium spikes, which are initiated by EGL-19 voltage-gated CaV1 calcium channels and terminated by SHK-1 Shaker-type potassium channels. AWA action potentials result in characteristic signals in calcium imaging experiments. These calcium signals are also observed when intact animals are exposed to odors, suggesting that natural odor stimuli induce AWA spiking. The stimuli that elicit action potentials match AWA's specialized function in climbing odor gradients. Our results provide evidence that C. elegans neurons can encode information through regenerative all-or-none action potentials, expand the computational repertoire of its nervous system, and inform future modeling of its neural coding and network dynamics.
Collapse
|
45
|
Tolstenkov O, Van der Auwera P, Steuer Costa W, Bazhanova O, Gemeinhardt TM, Bergs AC, Gottschalk A. Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans. eLife 2018; 7:34997. [PMID: 30204083 PMCID: PMC6173582 DOI: 10.7554/elife.34997] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022] Open
Abstract
Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons (PINs) for both locomotion regimes. Electrical feedback from AS MNs via gap junctions may affect only backward PINs.
Collapse
Affiliation(s)
- Oleg Tolstenkov
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Cluster of Excellence Frankfurt Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Petrus Van der Auwera
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Department of Biology, Functional Genomics and Proteomics Unit, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Wagner Steuer Costa
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Olga Bazhanova
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Tim M Gemeinhardt
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Amelie Cf Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,International Max Planck Research School in Structure and Function of Biological Membranes, Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Cluster of Excellence Frankfurt Macromolecular Complexes, Goethe University, Frankfurt, Germany
| |
Collapse
|
46
|
Wen Q, Gao S, Zhen M. Caenorhabditis elegans excitatory ventral cord motor neurons derive rhythm for body undulation. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0370. [PMID: 30201835 DOI: 10.1098/rstb.2017.0370] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 12/25/2022] Open
Abstract
The intrinsic oscillatory activity of central pattern generators underlies motor rhythm. We review and discuss recent findings that address the origin of Caenorhabditis elegans motor rhythm. These studies propose that the A- and mid-body B-class excitatory motor neurons at the ventral cord function as non-bursting intrinsic oscillators to underlie body undulation during reversal and forward movements, respectively. Proprioception entrains their intrinsic activities, allows phase-coupling between members of the same class motor neurons, and thereby facilitates directional propagation of undulations. Distinct pools of premotor interneurons project along the ventral nerve cord to innervate all members of the A- and B-class motor neurons, modulating their oscillations, as well as promoting their bi-directional coupling. The two motor sub-circuits, which consist of oscillators and descending inputs with distinct properties, form the structural base of dynamic rhythmicity and flexible partition of the forward and backward motor states. These results contribute to a continuous effort to establish a mechanistic and dynamic model of the C. elegans sensorimotor system. C. elegans exhibits rich sensorimotor functions despite a small neuron number. These findings implicate a circuit-level functional compression. By integrating the role of rhythm generation and proprioception into motor neurons, and the role of descending regulation of oscillators into premotor interneurons, this numerically simple nervous system can achieve a circuit infrastructure analogous to that of anatomically complex systems. C. elegans has manifested itself as a compact model to search for general principles of sensorimotor behaviours.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Quan Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Mei Zhen
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital; Department of Molecular Genetics, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1XS, Canada
| |
Collapse
|
47
|
Synchronization of Chemical Synaptic Coupling of the Chay Neuron System under Time Delay. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8060927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Xu T, Huo J, Shao S, Po M, Kawano T, Lu Y, Wu M, Zhen M, Wen Q. Descending pathway facilitates undulatory wave propagation in Caenorhabditis elegans through gap junctions. Proc Natl Acad Sci U S A 2018; 115:E4493-E4502. [PMID: 29686107 PMCID: PMC5948959 DOI: 10.1073/pnas.1717022115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Descending signals from the brain play critical roles in controlling and modulating locomotion kinematics. In the Caenorhabditis elegans nervous system, descending AVB premotor interneurons exclusively form gap junctions with the B-type motor neurons that execute forward locomotion. We combined genetic analysis, optogenetic manipulation, calcium imaging, and computational modeling to elucidate the function of AVB-B gap junctions during forward locomotion. First, we found that some B-type motor neurons generate rhythmic activity, constituting distributed oscillators. Second, AVB premotor interneurons use their electric inputs to drive bifurcation of B-type motor neuron dynamics, triggering their transition from stationary to oscillatory activity. Third, proprioceptive couplings between neighboring B-type motor neurons entrain the frequency of body oscillators, forcing coherent bending wave propagation. Despite substantial anatomical differences between the motor circuits of C. elegans and higher model organisms, converging principles govern coordinated locomotion.
Collapse
Affiliation(s)
- Tianqi Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
| | - Jing Huo
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
| | - Shuai Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
| | - Michelle Po
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Taizo Kawano
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Yangning Lu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Min Wu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Quan Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China;
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
49
|
The UBR-1 ubiquitin ligase regulates glutamate metabolism to generate coordinated motor pattern in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007303. [PMID: 29649217 PMCID: PMC5931689 DOI: 10.1371/journal.pgen.1007303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/02/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022] Open
Abstract
UBR1 is an E3 ubiquitin ligase best known for its ability to target protein degradation by the N-end rule. The physiological functions of UBR family proteins, however, remain not fully understood. We found that the functional loss of C. elegans UBR-1 leads to a specific motor deficit: when adult animals generate reversal movements, A-class motor neurons exhibit synchronized activation, preventing body bending. This motor deficit is rescued by removing GOT-1, a transaminase that converts aspartate to glutamate. Both UBR-1 and GOT-1 are expressed and critically required in premotor interneurons of the reversal motor circuit to regulate the motor pattern. ubr-1 and got-1 mutants exhibit elevated and decreased glutamate level, respectively. These results raise an intriguing possibility that UBR proteins regulate glutamate metabolism, which is critical for neuronal development and signaling. Ubiquitin-mediated protein degradation is central to diverse biological processes. The selection of substrates for degradation is carried out by the E3 ubiquitin ligases, which target specific groups of proteins for ubiquitination. The human genome encodes hundreds of E3 ligases; many exhibit sequence conservation across animal species, including one such ligase called UBR1. Patients carrying mutations in UBR1 exhibit severe systemic defects, but the biology behinds UBR1’s physiological function remains elusive. Here we found that the C. elegans UBR-1 regulates glutamate level. When UBR-1 is defective, C. elegans exhibits increased glutamate; this leads to synchronization of motor neuron activity, hence defective locomotion when animals reach adulthood. UBR1-mediated glutamate metabolism may contribute to the physiological defects of UBR1 mutations.
Collapse
|
50
|
Gao S, Guan SA, Fouad AD, Meng J, Kawano T, Huang YC, Li Y, Alcaire S, Hung W, Lu Y, Qi YB, Jin Y, Alkema M, Fang-Yen C, Zhen M. Excitatory motor neurons are local oscillators for backward locomotion. eLife 2018; 7:e29915. [PMID: 29360035 PMCID: PMC5780044 DOI: 10.7554/elife.29915] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/22/2017] [Indexed: 01/16/2023] Open
Abstract
Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron's oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron's intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network.
Collapse
Affiliation(s)
- Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Sihui Asuka Guan
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Anthony D Fouad
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaUnited States
| | - Jun Meng
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Taizo Kawano
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Yung-Chi Huang
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Yi Li
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Salvador Alcaire
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Yangning Lu
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Yingchuan Billy Qi
- Neurobiology Section, Division of Biological SciencesUniversity of CaliforniaSan DiegoUnited States
| | - Yishi Jin
- Neurobiology Section, Division of Biological SciencesUniversity of CaliforniaSan DiegoUnited States
| | - Mark Alkema
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Christopher Fang-Yen
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaUnited States
- Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| |
Collapse
|